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Series Foreword

The goal of building systems that can adapt to their environments and
learn from their experience has attracted researchers from many fields,
including computer science, engineering, mathematics, physics, neuro
science, and cognitive science. Out of this research has come a wide
variety of learning techniques that are transforming many industrial and
scientific fields. Recently, several research communities have begun to
converge on a common set of issues surrounding supervised, unsuper
vised, and reinforcement learning problems. The MIT Press Series on
Adaptive Computation and Machine Learning seeks to unify the many
diverse strands of machine learning research and to foster high-quality
research and innovative applications.

The MIT Press is extremely pleased to publish this contribution by
Ethem Alpaydm to the series. This textbook presents a readable and con
cise introduction to machine learning that reflects these diverse research
strands. The book covers all of the main problem formulations and intro
duces the latest algorithms and techniques encompassing methods from
computer science, neural computation, information theory, and statis
tics. This book will be a compelling textbook for introductory courses in
machine learning at the undergraduate and beginning graduate level.
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Preface

Machine learning is programming computers to optimize a performance
criterion using example data or past experience. We need learning in
cases where we cannot directly write a computer program to solve a given
problem, but need example data or experience. One case where learning
is necessary is when human expertise does not exist, or when humans
are unable to explain their expertise. Consider the recognition of spoken
speech, that is, converting the acoustic speech signal to an ASCrr text; we
can do this task seemingly without any difficulty, but we are unable to
explain how we do it. Different people utter the same word differently
due to differences in age, gender, or accent. In machine learning, the ap
proach is to collect a large collection of sample utterances from different
people and learn to map these to words.

Another case is when the problem to be solved changes in time, or
depends on the particular environment. We would like to have general
purpose systems that can adapt to their circumstances, rather than ex
plicitly writing a different program for each special circumstance. Con
sider routing packets over a computer network. The path maximizing the
quality of service from a source to destination changes continuously as
the network traffic changes. A learning routing program is able to adapt
to the best path by monitoring the network traffic. Another example is
an intelligent user interface that can adapt to the biometrics of its user,
namely, his or her accent, handwriting, working habits, and so forth.

Already, there are many successful applications of machine learning
in various domains: There are commercially available systems for rec
ognizing speech and handwriting. Retail companies analyze their past
sales data to learn their customers' behavior to improve customer rela
tionship management. Financial institutions analyze past transactions



xxvi Preface

to predict customers' credit risks. Robots learn to optimize their behav
ior to complete a task using minimum resources. In bioinformatics, the
huge amount of data can only be analyzed and knowledge be extracted
using computers. These are only some of the applications that we-that
is, you and I-will discuss throughout this book. We can only imagine
what future applications can be realized using machine learning: Cars
that can drive themselves under different road and weather conditions,
phones that can translate in real time to and from a foreign language,
autonomous robots that can navigate in a new environment, for example,
on the surface of another planet. Machine learning is certainly an exciting
field to be working in!

The book discusses many methods that have their bases in different
fields; statistics, pattern recognition, neural networks, artificial intelli
gence, signal processing, control, and data mining. In the past, research
in these different communities followed different paths with different
emphases. In this book, the aim is to incorporate them together to give a
unified treatment of the problems and the proposed solutions to them.

This is an introductory textbook, intended for senior undergraduate
and graduate level courses on machine learning, as well as engineers
working in the industry who are interested in the application of these
methods. The prerequisites are courses on computer programming, prob
ability, calculus, and linear algebra. The aim is to have all learning algo
rithms sufficiently explained so it will be a small step from the equations
given in the book to a computer program. For some cases, pseudocode
of algorithms are also included to make this task easier.

The book can be used for a one semester course by sampling from the
chapters, or it can be used for a two-semester course, possibly by dis
cussing extra research papers; in such a case, I hope that the references
at the end of each chapter are useful.

The Web page is http://www.cmpe.boun.edu.trj-ethemji2mlj where I
will post information related to the book that becomes available after the
book goes to press, for example, errata. I welcome your feedback via
email toalpaydin@boun.edu.tr.

I very much enjoyed writing this book; I hope you will enjoy reading it.
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1 if e is true; 0 otherwise
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1.1

Introduction

What Is Machine Learning?

WITH ADVANCES in computer technology, we currently have the ability
to store and process large amounts of data, as well as to access it from
physically distant locations over a computer network. Most data acquisi
tion devices are digital now and record reliable data. Think, for example,
of a supermarket chain that has hundreds of stores all over a country
selling thousands of goods to millions of customers. The point of sale
terminals record the details of each transaction: date, customer identifi
cation code, goods bought and their amount, total money spent, and so
forth. This typically amounts to gigabytes of data every day. This stored
data becomes useful only when it is analyzed and turned into information
that we can make use of, for example, to make predictions.

We do not know exactly which people are likely to buy a particular
product, or which author to suggest to people who enjoy reading Hem
ingway. If we knew, we would not need any analysis of the data; we would
just go ahead and write down the code. But because we do not, we can
only collect data and hope to extract the answers to these and similar
questions from data.

We do believe that there is a process that explains the data we observe.
Though we do not know the details of the process underlying the gener
ation of data-for example, consumer behavior-we know that it is not
completely random. People do not go to supermarkets and buy things
at random. When they buy beer, they buy chips; they buy ice cream in
summer and spices for Ghihwein in winter. There are certain patterns in
the data.

We may not be able to identify the process completely, but we believe
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we can construct a good and useful approximation. That approximation
may not explain everything, but may still be able to account for some part
of the data. We believe that though identifying the complete process may
not be possible, we can still detect certain patterns or regularities. This
is the niche of machine learning. Such patterns may help us understand
the process, or we can use those patterns to make predictions: Assuming
that the future, at least the near future, will not be much different from
the past when the sample data was collected, the future predictions can
also be expected to be right.

Application of machine learning methods to large databases is called
data mining. The analogy is that a large volume of earth and raw ma
terial is extracted from a mine, which when processed leads to a small
amount of very precious material; similarly in data mining, a large vol
ume of data is processed to construct a simple model with valuable use,
for example, having high predictive accuracy. Its application areas are
abundant: In addition to retail, in finance banks analyze their past data
to build models to use in credit applications, fraud detection, and the
stock market. In manufacturing, learning models are used for optimiza
tion, control, and troubleshooting. In medicine, learning programs are
used for medical diagnosis. In telecommunications, call patterns are an
alyzed for network optimization and maximizing the quality of service.
In science, large amounts of data in physics, astronomy, and biology can
only be analyzed fast enough by computers. The World Wide Web is huge;
it is constantly growing and searching for relevant information cannot be
done manually.

But machine learning is not just a database problem; it is also a part
of artificial intelligence. To be intelligent, a system that is in a changing
environment should have the ability to learn. If the system can learn and
adapt to such changes, the system designer need not foresee and provide
solutions for all possible situations.

Machine learning also helps us find solutions to many problems in vi
sion, speech recognition, and robotics. Let us take the example of rec
ognizing faces: This is a task we do effortlessly; every day we recognize
family members and friends by looking at their faces or from their pho
tographs, despite differences in pose, lighting, hair style, and so forth.
But we do it unconsciously and are unable to explain how we do it. Be
cause we are not able to explain our expertise, we cannot write the com
puter program. At the same time, we know that a face image is not just a
random collection of pixels; a face has structure. It is symmetric. There
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are the eyes, the nose, the mouth, located in certain places on the face.
Each person's face is a pattern composed of a particular combination
of these. By analyzing sample face images of a person, a learning pro
gram captures the pattern specific to that person and then recognizes by
checking for this pattern in a given image. This is one example of pattern
recognition.

Machine learning is programming computers to optimize a performance
criterion using example data or past experience. We have a model defined
up to some parameters, and learning is the execution of a computer pro
gram to optimize the parameters of the model using the training data or
past experience. The model may be predictive to make predictions in the
future, or descriptive to gain knowledge from data, or both.

Machine learning uses the theory of statistics in building mathematical
models, because the core task is making inference from a sample. The
role of computer science is twofold: First, in training, we need effiCient
algorithms to solve the optimization problem, as well as to store and pro
cess the massive amount of data we generally have. Second, once a model
is learned, its representation and algorithmic solution for inference needs
to be efficient as well. In certain applications, the efficiency of the learn
ing or inference algorithm, namely, its space and time complexity, may
be as important as its predictive accuracy.

Let us now discuss some example applications in more detail to gain
more insight into the types and uses of machine learning.

1.2 Examples of Machine Learning Applications

1.2.1 Learning Associations

In the case of retail-for example, a supermarket chain-one application
of machine learning is basket analysis, which is finding associations be
tween products bought by customers: If people who buy X typically also
buy Y, and if there is a customer who buys X and does not buy Y, he
or she is a potential Y customer. Once we find such customers, we can
target them for cross-selling.

ASSOCIATION RULE In finding an association rule, we are interested in learning a conditional
probability of the form P(YIX) where Y is the product we would like to
condition on X, which is the product or the set of products which we
know that the customer has already purchased.
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Let us say, going over our data, we calculate that P(chipslbeer) = 0.7.
Then, we can define the rule:

70 percent of customers who buy beer also buy chips.

We may want to make a distinction among customers and toward this,
estimate P(YIX, D) where D is the set of customer attributes, for exam
ple, gender, age, marital status, and so on, assuming that we have access
to this information. If this is a bookseller instead of a supermarket, prod
ucts can be books or authors. In the case of a Web portal, items corre
spond to links to Web pages, and we can estimate the links a user is likely
to click and use this information to download such pages in advance for
faster access.

1.2.2 Classification

A credit is an amount of money loaned by a financial institution, for
example, a bank, to be paid back with interest, generally in installments.
It is important for the bank to be able to predict in advance the risk
associated with a loan, which is the probability that the customer will
default and not pay the whole amount back. This is both to make sure
that the bank will make a profit and also to not inconvenience a customer
with a loan over his or her financial capacity.

In credit scoring (Hand 1998), the bank calculates the risk given the
amount of credit and the information about the customer. The informa
tion about the customer includes data we have access to and is relevant in
calculating his or her financial capacity-namely, income, savings, collat
erals, profeSSion, age, past financial history, and so forth. The bank has
a record of past loans containing such customer data and whether the
loan was paid back or not. From this data of particular applications, the
aim is to infer a general rule coding the association between a customer's
attributes and his risk. That is, the machine learning system fits a model
to the past data to be able to calculate the risk for a new application and
then decides to accept or refuse it accordingly.

ClASSIFICATION This is an example of a classification problem where there are two
classes: low-risk and high-risk customers. The information about a cus
tomer makes up the input to the classifier whose task is to assign the
input to one of the two classes.
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Figure 1.1 Example of a training dataset where each circle corresponds to one
data instance with input values in the corresponding axes and its sign indicates
the class. For simplicity, only two customer attributes, income and savings,
are taken as input and the two classes are low-risk ('+') and high-risk ('-'). An
example discriminant that separates the two types of examples is also shown.

After training with the past data, a classification rule learned may be
of the form

IF income> 81 AND savings> 82 THEN low-risk ELSE high-risk

for suitable values of 81 and 82 (see figure 1.1). This is an example of
DISCRIMINANT a discriminant; it is a function that separates the examples of different

classes.
PREDICTION Having a rule like this, the main application is prediction: Once we have

a rule that fits the past data, if the future is similar to the past, then we
can make correct predictions for novel instances. Given a new application
with a certain income and savings, we can easily decide whether it is low
risk or high-risk.

In some cases, instead of making a 0/1 (low-risk/high-risk) type de
cision, we may want to calculate a probability, namely, P(YIX), where
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X are the customer attributes and Y is a or 1 respectively for low-risk
and high-risk. From this perspective, we can see classification as learn
ing an association from X to Y. Then for a given X = x, if we have
P(Y = llX = x) = 0.8, we say that the customer has an 80 percent proba
bility of being high-risk, or equivalently a 20 percent probability of being
low-risk. We then decide whether to accept or refuse the loan depending
on the possible gain and loss.

PATTERN There are many applications of machine learning in pattern recognition.
RECOGNITION One is optical character recognition, which is recognizing character codes

from their images. This is an example where there are multiple classes,
as many as there are characters we would like to recognize. Especially
interesting is the case when the characters are handwritten. People have
different handwriting styles; characters may be written small or large,
slanted, with a pen or pencil, and there are many possible images corre
sponding to the same character. Though writing is a human invention,
we do not have any system that is as accurate as a human reader. We do
not have a formal description of 'A' that covers all 'A's and none of the
non-lA's. Not having it, we take samples from writers and learn a defini
tion of A-ness from these examples. But though we do not know what it
is that makes an image an 'A', we are certain that all those distinct 'A's
have something in common, which is what we want to extract from the
examples. We know that a character image is not just a collection of ran
dom dots; it is a collection of strokes and has a regularity that we can
capture by a learning program.

If we are reading a text, one factor we can make use of is the redun
dancy in human languages. A word is a sequence of characters and suc
cessive characters are not independent but are constrained by the words
of the language. This has the advantage that even if we cannot recognize
a character, we can still read t?e word. Such contextual dependencies
may also occur in higher levels, between words and sentences, through
the syntax and semantics of the language. There are machine learning
algorithms to learn sequences and model such dependencies.

In the case of face recognition, the input is an image, the classes are
people to be recognized, and the learning program should learn to asso
ciate the face images to identities. This problem is more difficult than
optical character recognition because there are more classes, input im
age is larger, and a face is three-dimensional and differences in pose and
lighting cause Significant changes in the image. There may also be oc
clusion of certain inputs; for example, glasses may hide the eyes and
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eyebrows, and a beard may hide the chin.
In medical diagnosis, the inputs are the relevant information we have

about the patient and the classes are the illnesses. The inputs contain the
patient's age, gender, past medical history, and current symptoms. Some
tests may not have been applied to the patient, and thus these inputs
would be missing. Tests take time, may be costly, and may inconvience
the patient so we do not want to apply them unless we believe that they
will give us valuable information. In the case of a medical diagnosis, a
wrong decision may lead to a wrong or no treatment, and in cases of
doubt it is preferable that the classifier reject and defer decision to a
human expert.

In speech recognition, the input is acoustic and the classes are words
that can be uttered. This time the association to be learned is from an
acoustic signal to a word of some language. Different people, because
of differences in age, gender, or accent, pronounce the same word dif
ferently, which makes this task rather difficult. Another difference of
speech is that the input is temporal; words are uttered in time as a se
quence of speech phonemes and some words are longer than others. A
recent approach in speech recognition involves the use of lip movements
as recorded by a camera as a second source of information in recogniz
ing speech. This requires sensor fusion, which is the integration of inputs
from different modalities, namely, acoustic and visual.

KNOWLEDGE Learning a rule from data also allows knowledge extraction. The rule is
EXTRACTION a simple model that explains the data, and looking at this model we have

an explanation about the process underlying the data. For example, once
we learn the discriminant separating low-risk and high-risk customers,
we have the knowledge of the properties of low-risk customers. We can
then use this information to target potential low-risk customers more
efficiently, for example, through advertising.

COMPRESSION Learning also performs compression in that by fitting a rule to the data,
we get an explanation that is simpler than the data, requiring less mem
ory to store and less computation to process. Once you have the rules of
addition, you do not need to remember the sum of every possible pair of
numbers.

OlITLIER DETECTION Another use of machine learning is outlier detection, which is finding
the instances that do not obey the rule and are exceptions. In this case,
after learning the rule, we are not interested in the rule but the exceptions
not covered by the rule, which may imply anomalies requiring attention
for example, fraud.
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1.2.3 Regression

Let us say we want to have a system that can predict the price of a used
car. Inputs are the car attributes-brand, year, engine capacity, milage,
and other information-that we believe affect a car's worth. The output
is the price of the car. Such problems where the output is a number are

REGRESSION regression problems.
Let X denote the car attributes and Y be the price of the car. Again

surveying the past transactions, we can collect a training data and the
machine learning program fits a function to this data to learn Y as a
function of X. An example is given in figure 1.2 where the fitted function
is of the form

y = wx + Wo

for suitable values of wand woo
SUPERVISED LEARNING Both regression and classification are supervised learning problems

where there is an input, X, an output, Y, and the task is to learn the map
ping from the input to the output. The approach in machine learning is
that we assume a model defined up to a set of parameters:

y = g(xI8)

where g(.) is the model and 8 are its parameters. Y is a number in re
gression and is a class code (e.g., 0/1) in the case of classification. g(.)

is the regression function or in classification, it is the discriminant func
tion separating the instances of different classes. The machine learning
program optimizes the parameters, 8, such that the approximation error
is minimized, that is, our estimates are as close as possible to the cor
rect values given in the training set. For example in figure 1.2, the model
is linear and wand Wo are the parameters optimized for best fit to the
training data. In cases where the linear model is too restrictive, one can
use for example a quadratic

y = wzx2 + WIX + Wo

or a higher-order polynomial, or any other nonlinear function of the in
put, this time optimizing its parameters for best fit.

Another example of regression is navigation of a mobile robot, for ex
ample, an autonomous car, where the output is the angle by which the
steering wheel should be turned at each time, to advance without hitting
obstacles and deviating from the route. Inputs in such a case are pro
vided by sensors on the car, for example, a video camera, GPS, and so
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Figure 1.2 A training dataset of used cars and the function fitted. For simplic
ity, milage is taken as the only input attribute and a linear model is used.

forth. Training data can be collected by monitoring and recording the
actions of a human driver.

One can envisage other applications of regression where one is trying
to optimize a function. l Let us say we want to build a machine that roasts
coffee. The machine has many inputs that affect the quality: various
settings of temperatures, times, coffee bean type, and so forth. We make
a number of experiments and for different settings of these inputs, we
measure the quality of the coffee, for example, as consumer satisfaction.
To find the optimal setting, we fit a regression model linking these inputs
to coffee quality and choose new points to sample near the optimum of
the current model to look for a better configuration. We sample these
points, check quality, and add these to the data and fit a new model. This
is generally called response surface design.

1. I would like to thank Michael Jordan for this example.
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1.2.4 Unsupervised Learning

In supervised learning, the aim is to learn a mapping from the input to
an output whose correct values are provided by a supervisor. In unsuper
vised learning, there is no such supervisor and we only have input data.
The aim is to find the regularities in the input. There is a structure to the
input space such that certain patterns occur more often than others, and
we want to see what generally happens and what does not. In statistics,

DENSITY ESTIMATION this is called density estimation.
CLUSTERING One method for density estimation is clustering where the aim is to

find clusters or groupings of input. In the case of a company with a data
of past customers, the customer data contains the demographic informa
tion as well as the past transactions with the company, and the company
may want to see the distribution of the profile of its customers, to see
what type of customers frequently occur. In such a case, a clustering
model allocates customers similar in their attributes to the same group,
providing the company with natural groupings of its customers. Once
such groups are found, the company may decide strategies, for example,
services and products, specific to different groups. Such a grouping also
allows identifying those who are outliers, namely, those who are different
from other customers, which may imply a niche in the market that can
be further exploited by the company.

An interesting application of clustering is in image compression. In
this case, the input instances are image pixels represented as RGB val
ues. A clustering program groups pixels with similar colors in the same
group, and such groups correspond to the colors occurring frequently in
the image. If in an image, there are only shades of a small number of
colors and if we code those belonging to the same group with one color,
for example, their average, then the image is quantized. Let us say the
pixels are 24 bits to represent 16 million colors, but if there are shades
of only 64 main colors, for each pixel, we need 6 bits instead of 24. For
example, if the scene has various shades of blue in different parts of the
image, and if we use the same average blue for all of them, we lose the
details in the image but gain space in storage and transmission. Ideally,
one would like to identify higher-level regularities by analyzing repeated
image patterns, for example, texture, objects, and so forth. This allows a
higher-level, simpler, and more useful description of the scene, and for
example, achieves better compression than compressing at the pixel level.
If we have scanned document pages, we do not have random on/off pix-
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els but bitmap images of characters. There is structure in the data, and
we make use of this redundancy by finding a shorter description of the
data: 16 x 16 bitmap of lA' takes 32 bytes; its ASCII code is only 1 byte.

Machine learning methods are also used in bioinformatics. DNA in our
genome is the "blueprint of life" and is a sequence of bases, namely, A, G,
C, and T. RNA is transcribed from DNA, and proteins are translated from
the RNA. Proteins are what the living body is and does. Just as a DNA is
a sequence of bases, a protein is a sequence of amino acids (as defined
by bases). One application area of computer science in molecular biology
is alignment, which is matching one sequence to another. This is a dif
ficult string matching problem because strings may be quite long, there
are many template strings to match against, and there may be deletions,
insertions, and substitutions. Clustering is used in learning motifs, which
are sequences of amino acids that occur repeatedly in proteins. Motifs
are of interest because they may correspond to structural or functional
elements within the sequences they characterize. The analogy is that if
the amino acids are letters and proteins are sentences, motifs are like
words, namely, a string of letters with a particular meaning occurring
frequently in different sentences.

1.2.5 Reinforcement Learning

In some applications, the output of the system is a sequence of actions.
In such a case, a single action is not important; what is important is the
policy that is the sequence of correct actions to reach the goal. There is
no such thing as the best action in any intermediate state; an action is
good if it is part of a good policy. In such a case, the machine learning
program should be able to assess the goodness of policies and learn from
past good action sequences to be able to generate a policy. Such learning

REINFORCEMENT methods are called reinforcement learning algorithms.
LEARNING A good example is game playing where a single move by itself is not

that important; it is the sequence of right moves that is good. A move is
good if it is part of a good game playing policy. Game playing is an im
portant research area in both artificial intelligence and machine learning.
This is because games are easy to describe and at the same time, they are
quite difficult to play well. A game like chess has a small number of rules
but it is very complex because of the large number of possible moves at
each state and the large number of moves that a game contains. Once
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we have good algorithms that can learn to play games well, we can also
apply them to applications with more evident economic utility.

A robot navigating in an environment in search of a goal location is an
other application area of reinforcement learning. At any time, the robot
can move in one of a number of directions. After a number of trial runs,
it should learn the correct sequence of actions to reach to the goal state
from an initial state, doing this as quickly as possible and without hit
ting any of the obstacles. One factor that makes reinforcement learning
harder is when the system has unreliable and partial sensory informa
tion. For example, a robot equipped with a video camera has incomplete
information and thus at any time is in a partially observable state and
should decide taking into account this uncertainty. A task may also re
quire a concurrent operation of multiple agents that should interact and
cooperate to accomplish a common goal. An example is a team of robots
playing soccer.

1.3 Notes

Evolution is the major force that defines our bodily shape as well as our
built-in instincts and reflexes. We also learn to change our behavior dur
ing our lifetime. This helps us cope with changes in the environment
that cannot be predicted by evolution. Organisms that have a short life
in a well-defined environment may have all their behavior built-in, but
instead of hardwiring into us all sorts of behavior for any circumstance
that we could encounter in our life, evolution gave us a large brain and a
mechanism to learn, such that we could update ourselves with experience
and adapt to different environments. When we learn the best strategy in
a certain situation, that knowledge is stored in our brain, and when the
situation arises again, when we re-cognize ("cognize" means to know) the
situation, we can recall the suitable strategy and act accordingly. Learn
ing has its limits though; there may be things that we can never learn with
the limited capacity of our brains, just like we can never "learn" to grow
a third arm, or an eye on the back of our head, even if either would be
useful. See Leahey and Harris 1997 for learning and cognition from the
point of view of psychology. Note that unlike in psychology, cognitive sci
ence, or neuroscience, our aim in machine learning is not to understand
the processes underlying learning in humans and animals, but to build
useful systems, as in any domain of engineering.
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Almost all of science is fitting models to data. Scientists design exper
iments and make observations and collect data. They then try to extract
knowledge by finding out simple models that explain the data they ob
served. This is called induction and is the process of extracting general
rules from a set of particular cases.

We are now at a point that such analysis of data can no longer be done
by people, both because the amount of data is huge and because people
who can do such analysis are rare and manual analysis is costly. There
is thus a growing interest in computer models that can analyze data and
extract information automatically from them, that is, learn.

The methods we are going to discuss in the coming chapters have their
origins in different scientific domains. Sometimes the same algorithm
was independently invented in more than one field, following a different
historical path.

In statistics, going from particular observations to general descriptions
is called inference and learning is called estimation. Classification is
called discriminant analysis in statistics (McLachlan 1992; Hastie, Tib
shirani, and Friedman 2001). Before computers were cheap and abun
dant, statisticians could only work with small samples. Statisticians, be
ing mathematicians, worked mostly with simple parametric models that
could be analyzed mathematically. In engineering, classification is called
pattern recognition and the approach is nonparametric and much more
empirical (Duda, Hart, and Stork 2001; Webb 1999). Machine learning is
related to artificial intelligence (Russell and Norvig 1995) because an in
telligent system should be able to adapt to changes in its environment.
Application areas like vision, speech, and robotics are also tasks that
are best learned from sample data. In electrical engineering, research in
signal processing resulted in adaptive computer vision and speech pro
grams. Among these, the development of hidden Markov models (HMM)
for speech recognition is especially important.

In the late 1980s with advances in VLSI technology and the possibil
ity of building parallel hardware containing thousands of processors,
the field of artificial neural networks was reinvented as a possible the
ory to distribute computation over a large number of processing units
(Bishop, 1995). Over time, it has been realized in the neural network
community that most neural network learning algorithms have their ba
sis in statistics-for example, the multilayer perceptron is another class
of nonparametric estimator-and claims of brain-like computation have
started to fade.
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Data mining is the name coined in the business world for the appli
cation of machine learning algorithms to large amounts of data (Weiss
and Indurkhya 1998). In computer science, it is also called knowledge
discovery in databases (KDD).

Research in these different communities (statistics, pattern recogni
tion, neural networks, signal processing, control, artificial intelligence,
and data mining) followed different paths in the past with different em
phases. In this book, the aim is to incorporate these emphases together
to give a unified treatment of the problems and the proposed solutions
to them.

1.4 Relevant Resources

The latest research on machine learning is distributed over journals and
conferences from different fields. Dedicated journals are Machine Learn
ing and journal of Machine Learning Research. Journals with a neural
network emphasis are Neural Computation, Neural Networks, and the
IEEE Transactions on Neural Networks. Statistics journals like Annals of
Statistics and journal of the American Statistical Association also publish
machine learning papers. IEEE Transactions on Pattern Analysis and Ma
chine Intelligence is another source.

Journals on artificial intelligence, pattern recognition, fuzzy logic, and
signal processing also contain machine learning papers. Journals with an
emphasis on data mining are Data Mining and Knowledge Discovery, IEEE
Transactions on Knowledge and Data Engineering, and ACM Special Inter
est Group on Knowledge Discovery and Data Mining Explorations journal.

The major conferences on machine learning are Neural Information
Processing Systems (NIPS), Uncertainty in Artificial Intelligence (VA!), In
ternational Conference on Machine Learning (ICML), European Conference
on Machine Learning (ECML), and Computational Learning Theory (COLT).
International joint Conference on Artificial Intelligence (DCA!), as well as
conferences on neural networks, pattern recognition, fuzzy logic, and ge
netic algorithms, have sessions on machine learning and conferences on
application areas like computer vision, speech technology, robotics, and
data mining.

There are a number of dataset repositories on the Internet that are used
frequently by machine learning researchers for benchmarking purposes:
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• UCI Repository for machine learning is the most popular repository:
http://www.ics.ucLedu/~mlearn/MLRepository.html

• UCI KDD Archive:
http://kdd.ics.uci.edu/summary.data.application .htm I

• Statlib: http://Iib.stat.cmu.edu

• Delve: http://www.cs.utoronto.ca/~delve/

Most recent papers by machine learning researchers are accessible over
the Internet, and a good place to start searching is the NEe Research
Index at http://citeseer.nj.nec.com/cs

1.5 Exercises

1. Imagine you have two possibilities: You can fax a document, that is, send the
image, or you can use an optical character reader (OCR) and send the text
file. Discuss the advantage and disadvantages of the two approaches in a
comparative manner. When would one be preferable over the other?

2. Let us say we are building an OCR and for each character, we store the bitmap
of that character as a template that we match with the read character pixel by
pixel. Explain when such a system would fail. Why are barcode readers still
used?

3. Assume we are given the task to build a system that can distinguish junk e
mail. What is in a junk e-mail that lets us know that it is junk? How can the
computer detect junk through a syntactic analysis? What would you like the
computer to do if it detects a junk e-mail-delete it automatically, move it to
a different file, or just highlight it on the screen?

4. Let us say you are given the task of building an automated taxi. Define the
constraints. What are the inputs? What is the output? How can you com
municate with the passenger? Do you need to communicate with the other
automated taxis, that is, do you need a "language"?

5. In basket analysis, we want to find the dependence between two items X
and Y. Given a database of customer transactions, how can you find these
dependencies? How would you generalize this to more than two items?

6. How can you predict the next command to be typed by the user? Or the
next page to be downloaded over the Web? When would such a prediction be
useful? When would it be annoying?
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2 Supervised Learning

We discuss supervised learning starting from the simplest case, which
is learning a class from its positive and negative examples. We gener
alize and discuss the case of multiple classes, then regression, where
the outputs are continuous.

2.1 Learning a Class from Examples

LET us say we want to learn the class, C, of a "family car." We have a
set of examples of cars, and we have a group of people that we survey
to whom we show these cars. The people look at the cars we show them

POSITIVE EXAMPLES and label them; the cars that they believe are family cars are positive
NEGATIVE EXAMPLES examples and the other cars are negative examples. Class learning is

finding a description that is shared by all positive examples and none of
the negative examples. Doing this, we can make a prediction: Given a car
that we have not seen before, by checking with the description learned,
we will be able to say whether it is a family car or not. Or we can do
knowledge extraction: This study may be sponsored by a car company,
and the aim may be to understand what people expect from a family car.

After some discussions with experts in the field, let us say that we reach
the conclusion that among all features a car may have, the features that
separate a family car from other cars are the price and engine power.
These two attributes are the inputs to the class recognizer. Note that

INPUT when we decide on this particular input representation, we are ignoring
REPRESENTATION various other attributes as irrelevant. Though one may think of other

attributes such as seating capacity and color that might be important for
distinguishing among car types, we will consider only price and engine
power to keep this example simple.
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Figure 2.1 Training set for the class of a "family car." Each data point corre
sponds to one example car and the coordinates of the point indicate the price
and engine power of that car. '+' denotes a positive example of the class (a family
car), and '-' denotes a negative example (not a family car); it is another type of
car.

Let us denote price as the first input attribute Xl (e.g., in U.S. dollars)
and engine power as the second attribute X2 (e.g., engine volume in cubic
centimeters). Thus we represent each car using two numeric values

and its label denotes its type

{
I if x is a positive example

r = 0 if x is a negative example

Each car is represented by such an ordered pair (x, r) and the training
set contains N such examples

X = {Xl, r l }~=l

where t indexes different examples in the set; it does not represent time
or any such order.
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Figure 2.2 Example of a hypothesis class. The class of family car is a rectangle
in the price-engine power space.

Our training data can now be plotted in the two-dimensional (Xl, X2)

space where each instance t is a data point at coordinates (x~, x~) and its
type, namely, positive versus negative, is given by r t (see figure 2.1).

After further discussions with the expert and the analysis of the data,
we may have reason to believe that for a car to be a family car, its price
and engine power should be in a certain range

(2.4) (PI.:o; price .:0; P2) AND (el .:0; engine power .:0; e2)

for suitable values of pl,p2,eI, and e2. Equation 2.4 thus assumes C to
be a rectangle in the price-engine power space (see figure 2.2).

HYPOTHESIS ClASS Equation 2.4 fixes J-f, the hypothesis class from which we believe C is
drawn, namely, the set of rectangles. The learning algorithm then should

HYPOTHESIS find a particular hypothesis, h E J-f, to approximate C as closely as pos
sible.

Though the expert defines this hypothesis class, he cannot say what
the values of the parameters are; that is, though we choose J-f, we do
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not know which particular h E J-{ is equal, or closest, to C. But once we
restrict our attention to this hypothesis class, learning the class reduces
to the easier problem of finding the four parameters that define h.

The aim is to find h E J-{ that is as similar as possible to C. Let us say
the hypothesis h makes a prediction for an instance x such that

h( ) = {I if h classifies x as a positive example
x 0 if h classifies x as a negative example

In real life we do not know C(x), so we cannot evaluate how well hex)
matches C(x). What we have is a training set X, which is a small subset of
the set of all possible x. The empirical error is the proportion of training
instances where predictions of h do not match the required values given
in X. The error of hypothesis h given the training set X is

N

E(hIX) = I l(h(x l
) !- r l

)

1=1

where l(a !- b) is 1 if a !- b and is 0 if a = b (see figure 2.3).
In our example, the hypothesis class J-{ is the set of all possible rect

angles. Each quadruple (p~, p~, e~, e~) defines one hypothesis, h, from
J-{, and we need to choose the best one, or in other words, we need to
find the values of these four parameters given the training set, to in
clude all the positive examples and none of the negative examples. Note
that if Xl and X2 are real-valued, there are infinitely many such h for
which this is satisfied, namely, for which the error, E, is zero, but given
a future example somewhere close to the boundary between positive and
negative examples, different candidate hypotheses may make different
predictions. This is the problem of generalization-that is, how well our
hypothesis will correctly classify future examples that are not part of the
training set.

One possibility is to find the most specific hypothesis, 5, that is the
tightest rectangle that includes all the positive examples and none of the
negative examples (see figure 2.4). This gives us one hypothesis, h = 5, as
our induced class. Note that the actual class C may be larger than 5 but is
never smaller. The most general hypothesis, G, is the largest rectangle we
can draw that includes all the positive examples and none of the negative
examples (figure 2.4). Any h E J-{ between 5 and G is a valid hypothesis
with no error, said to be consistent with the training set, and such h make
up the version space.
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Figure 2.3 C is the actual class and h is our induced hypothesis. The point
where C is 1 but h is 0 is a false negative, and the point where C is 0 but h is
1 is a false positive. Other points. namely true positives and true negatives, are
correctly classified.

Given X, we can find S, or G, or maybe an average of them (why?),
or any h from the version space and use it as our hypothesis, h. Given
another training set, the parameters and thus the learned hypothesis, h,
can be different.

As another possibility, we can say that any instartce covered by S is pos
itive, any instance not covered by G is negative, and any other instance

DOUBT (between S and G) is a case of doubt, which we cannot label With certainty
due to lack of data. In such a case, the system rejects the instance and
defers the decision to a human expert.

Here, we assume that :J{ includes C; that is, there exists h E :J{, such
that E(hiX) is zero. Given a hypothesis class :J{, it may be the case that
we cannot learn C; that is, there exists no h E :J{ for which the error is
zero. Thus, in any application, we need to make sure that :J{ is flexible
enough, or has enough "capacity," to learn C.
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e

Figure 2.4 S is the most specific hypothesis and G is the most general hypoth
esis.

2.2 Vapnik-Chervonenkis (Ve) Dimension

Let us say we have a dataset containing N points. These N points can
be labeled in 2N ways as positive and negative. Therefore, 2N different
learning problems can be defined by N data points. If for any of these
problems, we can find a hypothesis h E J-( that separates the positive ex
amples from the negative, then we say J{ shatters N points. That is, any
learning problem definable by N examples can be learned with no error
by a hypothesis drawn from:Jf, The maximum number of points that can

VC DIMENSION be shattered by J{ is called the Vapnik-Chervonenkis (Ve) dimension of
J{, is denoted as VC(J{), and measures the capacity of the hypothesis
class J-f.

In figure 2.5, we see that an axis-aligned rectangle can shatter four
points in two dimensions. Then VC(J{). when J{ is the hypothesis class
of axis-aligned rectangles in two dimensions, is four. In calculating the
VC dimension, it is enough that we find four points that can be shattered;
it is not necessary that we be able to shatter any four points in two di-
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Figure 2.5 An axis-aligned rectangle can shatter four points. Only rectangles
covering two points are shown.

mensions. For example, four points placed on a line cannot be shattered
by rectangles. However, we cannot place five points in two dimensions
anywhere such that a rectangle can separate the positive and negative
examples for all possible labelings.

VC dimension may seem pessimistic. It tells us that using a rectangle
as our hypothesis class, we can learn only datasets containing four points
and not more. A learning algorithm that can learn datasets of four points
is not very useful. However, this is because the VC dimension is inde
pendent of the probability distribution from which instances are drawn.
In real life, the world is smoothly changing, instances close by most of
the time have the same labels, and we need not worry about all possible
labelings. There are a lot of datasets containing many more data points
than four that are learnable by our hypothesis class (figure 2.1). So even
hypothesis classes with small VC dimensions are applicable and are pre
ferred over those with large VC dimensions, for example, a lookup table
that has infinite VC dimension.
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2.3 Probably Approximately Correct (PAC) Learning

Using the tightest rectangle, 5, as our hypothesis, we would like to find
how many examples we need. We would like our hypothesis to be approx
imately correct, namely, that the error probability be bounded by some
value. We also would like to be confident in our hypothesis in that we
want to know that our hypothesis will be correct most of the time (if not
always); so we want to be probably correct as well (by a probability we
can specify).

PAC LEARNING In Probably Approximately Correct (PAC) learning, given a class, C, and
examples drawn from some unknown but fixed probability distribution,
p(x), we want to find the number of examples, N, such that with prob
ability at least 1 - D, the hypothesis h has error at most E, for arbitrary
D :$ 1/2 and E > 0

P{C6h :$ E} 2: 1 - D

where C6h is the region of difference between C and h.
In our case, because 5 is the tightest possible rectangle, the error region

between C and h = 5 is the sum of four rectangular strips (see figure 2.6).
We would like to make sure that the probability of a positive example
falling in here (and causing an error) is at most €. For any of these strips,
if we can guarantee that the probability is upper bounded by E/4, the
error is at most 4(E/4) = E. Note that we count the overlaps in the corners
twice, and the total actual error in this case is less than 4 (E /4). The
probability that a randomly drawn example misses this strip is 1 - E/4.
The probability that all N independent draws miss the strip is (1- E/4)N,
and the probability that all N independent draws miss any of the four
strips is at most 4(1 - E/4)N, which we would like to be at most D. We
have the inequality

(1 - x) :$ exp[ -x]

So if we choose Nand Dsuch that we have

4exp[-EN/4]:$ D

we can also write 4(1 - E/4)N :$ D. Dividing both sides by 4, taking
(natural) log and rearranging terms, we have

(2.7) N 2: (4/E) log(4/D)
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Figure 2.6 The difference between hand C is the sum of four rectangular strips,
one of which is shaded.

Therefore, provided that we take at least (4/ E) log (4/ <5) independent
examples from C and use the tightest rectangle as our hypothesis h, with
confidence probability at least 1 - <5, a given point will be misclassified
with error probability at most E. We can have arbitrary large confidence
by decreasing <5 and arbitrary small error by decreasing E, and we see in
equation 2.7 that the number of examples is a slowly growing function of
1/E and 1/ <5, linear and logarithmic respectively.

2.4 Noise

NOISE Noise is any unwanted anomaly in the data and due to noise, the class
may be more difficult to learn and zero error may be infeasible with a
simple hypothesis class (see figure 2.7). There are several interpretations
of noise:

• There may be imprecision in recording the input attributes, which may
shift the data points in the input space.

• There may be errors in labeling the data points, which may relabel
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positive instances as negative and vice versa. This is sometimes called
teacher noise.

• There may be additional attributes, which we have not taken into ac
count, that affect the label of an instance. Such attributes may be
hidden or latent in that they may be unobservable. The effect of these
neglected attributes is thus modeled as a random component and is
included in "noise."

As can be seen in figure 2.7, when there is noise, there is not a simple
boundary between the positive and negative instances and to separate
them, one needs a complicated hypothesis that corresponds to a hypoth
esis class with larger capacity. A rectangle can be defined by four num
bers, but to define a more complicated shape one needs a more complex
model with a much larger number of parameters. With a complex model,
one can make a perfect fit to the data and attain zero error; see the wiggly
shape in figure 2.7. Another possibility is to keep the model simple and
allow some error; see the rectangle in figure 2.7.

Using the simple rectangle (unless its training error is much bigger)
makes more sense because of the following:

1. It is a simple model to use. It is easy to check whether a point is
inside or outside a rectangle and we can easily check, for a future data
instance, whether it is a positive or a negative instance.

2. It is a simple model to train and has fewer parameters. It is easier
to find the corner values of a rectangle than the control points of an
arbitrary shape. With a small training set when the training instances
differ a little bit, we expect the simpler model to change less than a
complex model: A simple model is thus said to have less variance.
On the other hand, a too simple model assumes more, is more rigid,
and may fail if indeed the underlying class is not that simple: A sim
pler model has more bias. Finding the optimal model corresponds to
minimizing both the bias and the variance.

3. It is a simple model to explain. A rectangle simply corresponds to
defining intervals on the two attributes. By learning a simple model,
we can extract information from the raw data given in the training set.

4. If indeed there is mislabeling or noise in input and the actual class is
really a simple model like the rectangle, then the simple rectangle, be
cause it has less variance and is less affected by single instances, will
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Figure 2.7 When there is noise, there is not a simple boundary between the pos
itive and negative instances, and zero misclassification error may not be possible
with a simple hypothesis. A rectangle is a simple hypothesis with four param
eters defining the comers. An arbitrary closed form can be drawn by piecewise
functions with a larger number of control points.

be a better discriminator than the wiggly shape, although the simple
one may make more errors on the training set. We say that a simple
(but not too simple) model would generalize better than a complex

OCCAM'S RAZOR model. This principle is known as Occam's razor, which states that
simpler explanations are more plausible and any unnecessary complex
ity should be shaved off.

2.5 Learning Multiple Classes

In our example of learning a family car, we have positive examples be
longing to the class family car and the negative examples belonging to all
other cars. This is a two-class problem. In the general case, we have K
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Figure 2.8 There are three classes: family car, sports car, and luxury sedan.
There are three hypotheses induced, each one covering the instances of one
class and leaving outside the instances of the other two classes. '7' are reject
regions where no, or more than one, class is chosen.

classes denoted as Ci. i = 1, ... ,K, and an input instance belongs to one
and exactly one of them. The training set is now of the form

X = {xt yt}N, t=1

(2.8)

where y has K dimensions and

t {I if xt
E Ci

ri= 0 ifxtECj,j~i

An example is given in figure 2.8 with instances from three classes:
family car, sports car, and luxury sedan.

In machine learning for classification, we would like to learn the bound
ary separating the instances of one class from the instances of all other
classes. Thus we view a K -class classification problem as K two-class
problems. The training examples belonging to Ci are the positive in
stances of hypothesis hi and the examples of all other classes are the
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(2.9)

REJECT

2.6

negative instances of hi. Thus in a K-class problem, we have K hypothe
ses to learn such that

I {I if Xl E Ci
hi (x ) = 0 ·f Ie· -L .

1 X E j.J -r I

For a given x, ideally only one of hi(x),i = 1, ... ,K is 1 and we can
choose a class. But when no, or two or more, hi(x) is 1, we cannot choose
a class, and this is the case of doubt and the classifier rejects such cases.

In our example of learning a family car, we used only one hypothesis
and only modeled the positive examples. Any negative example outside
is not a family car. Alternatively, sometimes we may prefer to build two
hypotheses, one for the positive and the other for the negative instances.
This assumes a structure also for the negative instances that can be cov
ered by another hypothesis. Separating family cars from sports cars is
such a problem; each class has a structure of its own. The advantage is
that if the input is a luxury sedan, we can have both hypotheses decide
negative and reject the input.

Regression

INTERPOLATION

In classification, given an input, the output that is generated is Boolean;
it is a yes/no answer. When the output is a numeric value, what we would
like to learn is not a class, C(x) E {O, l}, but is a continuous function. In
machine learning, the function is not known but we have a training set of
examples drawn from it

X = {xl,rIW=1

where rt E ~. If there is no noise, the task is interpolation. We would like
to find the function ((x) that passes through these points such that we
have

r t = ((x t )

In polynomial interpolation, given N points, we find the (N -1) st degree
polynomial that we can use to predict the output for any x. This is called

EXTRAPOLATION extrapolation if x is outside of the range of x t in the training set. In
time-series prediction, for example, we have data up to the present and

REGRESSION we want to predict the value for the future. In regression, there is noise
added to the output of the unknown function

(2.10) r t = ((x t ) + €
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where f(x) E 'R is the unknown function and E is random noise. The ex
planation for noise is that there are extra hidden variables that we cannot
observe

(2.11) rt=f*(xt,zt)

where zt denote those hidden variables. We would like to approximate
the output by our model g(x). The empirical error on the training set X

is

1 N
E(gIX) = - 2,)rt - g(x t )]2

N t=1

Because rand g(x) are numeric quantities, for example, E 'R, there is
an ordering defined on their values and we can define a distance between
values, as the square of the difference, which gives us more information
than equal/not equal, as used in classification. The square of the differ
ence is one error function that can be used; another is the absolute value
of the difference. We will see other examples in the coming chapters.

Our aim is to find g(.) that minimizes the empirical error. Again our
approach is the same; we assume a hypothesis class for g(.) with a small
set of parameters. If we assume that g(x) is linear, we have

d

(2.13) g(x) = WIXI + ... + WdXd + Wo = L WjXj + Wo

j=1

Let us now go back to our example in section 1.2.3 where we estimated
the price of a used car. There we used a single input linear model

(2.14) g(x) = WIX + Wo

where WI and Wo are the parameters to learn from data. The WI and Wo

values should minimize
N

(2.15) E(WI, wolX) = L [r t - (WIX + wO)]2
t=I

Its minimum point can be calculated by taking the partial derivatives
of E with respect to WI and Wo, setting them equal to 0, and solving for
the two unknowns:

Lt xtrt - XPN

Lt(xt)2 - Nx2

(2.16) Wo
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Figure 2.9 Linear, second-order, and sixth-order polynomials are fitted to the
same set of points. The highest order gives a perfect fit but given this much
data, it is very unlikely that the real curve is so shaped. The second order seems
better than the linear fit in capturing the trend in the training data.

where x = It xt / N, r = It r t/N. The line found is shown in figure 1.2.
If the linear model is too simple, it is too constrained and incurs a

large approximation error, and in such a case, the output may be taken
as a higher-order function of the input, for example, quadratic

where similarly we have an analytical solution for the parameters. When
the order of the polynomial is increased, the error on the training data de
creases. But a high-order polynomial follows individual examples closely
instead of capturing the general trend (see the sixth-order polynomial in
figure 2.9), so we should be careful when fine-tuning the model complex
ity to the complexity of the function underlying the data.
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2.7 Model Selection and Generalization

Let us start with the case of learning a Boolean function from examples.
In a Boolean function, all inputs and the output are binary. There are
2d possible ways to write d binary values and therefore, with d inputs,
the training set has at most 2d examples. As shown in table 2.1, each
of these can be labeled as 0 or 1, and therefore, there are 22d possible
Boolean functions of d inputs.

Each distinct training example removes half the hypotheses, namely,
those whose guesses are wrong. For example, let us say we have x I = 0,
X2 = 1 and the output is 0; this removes hs, h6, h7, hs, h13, hI4 , hIS, h16.
This is one way to see learning; as we see more training examples, we re
move those hypotheses that are not consistent with the training data. In
the case of a Boolean function, to end up with a single hypothesis we need
to see all 2d training examples. If the training set we are given contains
only a small subset of all possible instances, as it generally does-that is,
if we know what the output should be for only a small percentage of the
cases-the solution is not unique. After seeing N example cases, there re-

ILL-POSED PROBLEM main 22d
- N possible functions. This is an example of an ill-posed problem

where the data by itself is not sufficient to find a unique solution.
The same problem also exists in other learning applications, in classi

fication, and in regression. As we see more training examples, we know
more about the underlying function, and we carve out more hypotheses
that are inconsistent from the hypothesis class, but we still are left with
many consistent hypotheses.

So because learning is ill-posed, and data by itself is not sufficient to
find the solution, we should make some extra assumptions to have a
unique solution with the data we have. The set of assumptions we make

INDUCTIVE BIAS to have learning possible is called the inductive bias of the learning algo
ritlun. One way we introduce inductive bias is when we assume a hypoth
esis class. In learning the class of family car, there are infinitely many
ways of separating the positive examples from the negative examples.
Assuming the shape of a rectangle is one inductive bias, and then the
tightest fitting rectangle, for example, is another inductive bias. In linear
regression, assuming a linear function is an inductive bias.

But we know that each hypothesis class has a certain capacity and can
learn only certain functions. The class of functions that can be learned
can be extended by using a hypothesis class with larger capacity, contain
ing more complex hypotheses. For example, the hypothesis class that is
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Table 2.1 With two inputs, there are four possible cases and sixteen possible
Boolean functions.

Xl )(2 hi h2 h3 h4 hs h6 h7 hs hg hID h ll h l 2 h l 3 hI4 hIS h l 6
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

a union of two nonoverlapping rectangles has higher capacity, but its
hypotheses are more complex. Similarly in regression, as we increase
the order of the polynomial, the capacity and complexity increase. The
question now is to decide where to stop.

Thus learning is not possible without inductive bias, and now the ques-
MODEL SELECTION tion is how to choose the right bias. This is called model selection. In

answering this question, we should remember that the aim of machine
learning is rarely to replicate the training data but the prediction for new
cases. That is we would like to be able to generate the right output for an
input instance outside the training set, one for which the correct output
is not given in the training set. How well a model trained on the training

GENERALIZATION set predicts the right output for new instances is called generalization.
For best generalization, we should match the complexity of the hy

pothesis with the complexity of the function underlying the data. If the
UNDERFITfING hypothesis is less complex than the function, we have underfitting, for

example, when trying to fit a line to data sampled from a third-order
polynomial. In such a case, as we increase the complexity, both the train
ing error and the validation error decrease. But if we have a hypothesis
that is too complex, the data is not enough to constrain it and we may
end up with a bad hypothesis, for example, when fitting two rectangles
to data sampled from one rectangle. Or if there is noise, an overcomplex
hypothesis may learn not only the underlying function but also the noise
in the data and may make a bad fit, for example, when fitting a sixth
order polynomial to noisy data sampled from a third-order polynomial.

OVERFITfING This is called overfitting. In such a case, haVing more training data helps
but only up to a certain point.

TRIPLE TRADE-OFF We can summarize our discussion citing the triple trade-off (Dietterich
2003). In all learning algorithms that are trained from example data,
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there is a trade-off between three factors:

• the complexity of the hypothesis we fit to data, namely, the capacity
of the hypothesis class,

• the amount of training data, and

• the generalization error on new examples.

As the amount of training data increases, the generalization error de
creases. As the complexity of the model increases, the generalization
error decreases first and then starts to increase. The generalization er
ror of an overcomplex hypothesis can be kept in check by increasing the
amount of training data but only up to a point.

We can measure the generalization ability of a hypothesis, namely, the
quality of its inductive bias, if we have access to data outside the training
set. We simulate this by dividing the training set we have into two parts.
We use one part for training (Le., to find a hypothesis), and the remaining

VALIDATION SET part is called the validation set and is used to test the generalization abil
ity. Assuming large enough training and validation sets, the hypothesis
that is the most accurate on the validation set is the best one (the one

CROSS-VALIDATION that has the best inductive bias). This process is called cross-validation.
So, for example, to find the right order in polynomial regression, given a
number of candidate polynomials of different orders, we find their coeffi
cients on the training set, calculate their errors on the validation set, and
take the one that has the least validation error as the best polynomial.

Note that if we need to report the error to give an idea about the ex
pected error of our best model, we should not use the validation error.
We have used the validation set to choose the best model, and it has ef-

TEST SET fectively become a part of the training set. We need a third set, a test set,
sometimes also called the publication set, containing examples not used
in training or validation. An analogy from our lives is when we are taking
a course: The example problems that the instructor solves in class while
teaching a subject form the training set; exam questions are the valida
tion set; and the problems we solve in our later, professional life are the
test set.

In chapter 14, we discuss how to assess the error rate of a model
and how to choose the better of two models when we do not have large
datasets to be easily divided into two or three.
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Let us now recapitulate and generalize. We have a sample

(2.18) X = {xt,rtW=l

lID The sample is independent and identically distributed Wd); the ordering
is not important and all instances are drawn from the same joint dis
tribution p(x, r). t indexes one of the N instances, xt is the arbitrary
dimensional input, and rt is the associated desired output. rt is 0/1 for
two-class learning, is a K-dimensional binary vector (where exactly one of
the dimensions is 1 and all others 0) for (K > 2)-class classification, and
is a real value in regression.

The aim is to build a good and useful approximation to r t using the
model g(xtle). In doing this, there are three decisions we must make:

1. Model we use in learning, denoted as

where g(.) is the model, x is the input, and e are the parameters. g(.)

defines the hypothesis class, and a particular value of e instantiates
one hypothesis from the hypothesis class. For example, in class learn
ing, we have taken a rectangle as our model whose four coordinates
make up (); in linear regression, the model is the linear function of the
input whose slope and intercept are the parameters learned from the
data. The model (inductive bias) is fixed by the machine learning sys
tem designer based on his or her knowledge of the application. The
parameters are tuned by a learning algorithm using the training set,
sampled from that application.

2. Loss function, L(·), to compute the difference between the desired out
put, r t , and our approximation to it, g(xtl(}), given the current value
of the parameters, e. The approximation error, or loss, is the sum of
losses over the individual instances

(2.19) E((}IX) = IL(rt,g(xtl(})
t

In class learning where outputs are 0/1, L(·) checks for equality or not;
in regression, because the output is a numeric value, we have ordering
information for distance and one possibility is to use the square of the
difference.
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(2.20)
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3. Optimization procedure to find 0* that minimizes the approximation
error

0* = argminEWIX)
e

where arg min returns the argument that minimizes. In regression, we
can solve analytically for the optimum. With more complex models
and error functions, we may need to use more complex optimization
methods, for example, gradient-based methods, simulated annealing,
or genetic algorithms.

For this to work well, the following conditions should be satisfied: First,
the hypothesis class of g( .) should be large enough, that is, have enough
capacity, to include the unknown function that generated the data that is
represented in r t in a noisy form. Second, there should be enough train
ing data to allow us to pinpoint the correct (or a good enough) hypothesis
from the hypothesis class. Third, we should have a good optimization
method that finds the correct hypothesis given the training data.

Different machine learning algorithms differ either in the models they
assume (their hypothesis class/inductive bias), the loss measures they
employ, or the optimization procedure they use. We will see many exam
ples in the coming chapters.

2.9 Notes

Mitchell proposed version spaces and the candidate elimination algo
rithm to incrementally build Sand G as instances are given one by one;
see Mitchell 1997 for a recent review. Hirsh (1990) discusses how ver
sion spaces can handle the case when instances are perturbed by small
amount of noise. In one of the earliest works on machine learning, Win
ston (1975) proposed the idea of a "near miss." A near miss is a negative
example that is very much like a positive example. In our terminology,
we see that a near miss would be an instance that falls in the gray area
between Sand G, and would be more useful for learning, than an ordi
nary positive or negative example. Related to this idea is active learning
where the learning algorithm can generate instances itself and ask for
them to be labeled, instead of passively being given them (Angluin 1988)
(see exercise 6).
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VC dimension was proposed by Vapnik and Chervonenkis in the early
1970s. A recent source is Vapnik 1995 where he writes, "Nothing is more
practical than a good theory" (p. x), which is as true in machine learning
as in any other branch of science. You should not rush to the computer;
you can save yourself from hours of useless programming by some think
ing, a notebook, and a pencil-you may also need an eraser.

The PAC model was proposed by Valiant (1984). The PAC analysis of
learning a rectangle is from Blumer et al. 1989. A good textbook on com
putational learning theory covering PAC learning and VC dimension is
Kearns and Vazirani 1994.

2.10 Exercises

1. Write the computer program that finds Sand G from a given training set.

2. Imagine you are given the training instances one at a time, instead of all at
once. How can you incrementally adjust Sand G in such a case? (Hint: See
the candidate elimination algorithm in Mitchell 1997.)

3. Why is it better to use the average of Sand G as the final hypothesis?

4. Let us say our hypothesis class is a circle instead of a rectangle. What are the
parameters? How can the parameters of a circle hypothesis be calculated in
such a case? What if it is an ellipse? Why does it make more sense to use
an ellipse instead of a circle? How can you generalize your code to K > 2
classes?

5. Imagine our hypothesis is not one rectangle but a union of two (or m > 1)
rectangles. What is the advantage of such a hypothesis class? Show that any
class can be represented by such a hypothesis class with large enough m.

6. If we have a supervisor who can provide us with the label for any x, where
should we choose x to learn with fewer queries?

7. In equation 2.12, we summed up the squares of the differences between the
actual value and the estimated value. This error function is the one most
frequently used, but it is one of several possible error functions. Because
it sums up the squares of the differences, it is not robust to outliers. What
would be a better error function to implement robust regression?

8. Derive equation 2.16.

9. Assume our hypothesis class is the set of lines, and we use a line to separate
the positive and negative examples, instead of bounding the positive exam
ples as in a rectangle, leaving the negatives outside (see figure 2.10). Show
that the VC dimension of a line is 3.



38 2 Supervised Learning

e

e

X,

Figure 2.10 A line separating positive and negative instances.

10. Show that the VC dimension of the triangle hypothesis class is 7 in two di
mensions. (Hint: For best separation, it is best to place the seven points
equidistant on a circle.)
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3 Bayesian Decision Theory

We discuss probability theory as the framework for making decisions
under uncertainty. In classification, Bayes' rule is used to calculate
the probabilities of the classes. We generalize to discuss how we can
make rational decisions to minimize expected risk. We also introduce
Bayesian networks to visually and effiCiently represent dependencies
among random variables.

3.1 Introduction

PROGRAMMING COMPUTERS to make inference from data is a cross
between statistics and computer science, where statisticians provide the
mathematical framework of making inference from data and computer
scientists work on the efficient hardware and software implementation
of the inference methods on computers.

Data comes from a process that is not completely known. This lack
of knowledge is indicated by modeling the process as a random process.
Maybe the process is actually deterministic, but because we do not have
access to complete knowledge about it, we model it as random and use
probability theory to analyze it. At this point, it may be a good idea to
jump to the appendix and review basic probability theory before contin
uing with this chapter.

Tossing a coin is a random process because we cannot predict at any
toss whether the outcome will be heads or tails-that is why we toss

. coins, or buy lottery tickets, or get insurance. We can only talk about the
probability that the outcome of the next toss will be heads or tails. It may
be argued that if we have access to extra knowledge such as the exact
composition of the coin, its initial position, the force and its direction
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that is applied to the coin when tossing it, where and how it is caught,
and so forth, the exact outcome of the toss can be predicted.

The extra pieces of knowledge that we do not have access to are named
the unobservable variables. In the coin tossing example, the only observ
able variable is the outcome of the toss. Denoting the unobservables by
z and the observable as x, in reality we have

x = fez)

where f(·) is the deterministic function that defines the outcome from
the unobservable pieces of knowledge. Because we cannot model the
process this way, we define the outcome X as a random variable drawn
from a probability distribution P(X = x) that specifies the process.

The outcome of tossing a coin is heads or tails, and we define a random
variable that takes one of two values. Let us say X = 1 denotes that the
outcome of a toss is heads and X = 0 denotes tails. Such X are Bernoulli
distributed where the parameter of the distribution Po is the probability
that the outcome is heads.

P(X = 1) = Po and P(X = 0) = 1 - P(X = 1) = 1 - Po

Assume that we are asked to predict the outcome of the next toss. If
we know Po, our prediction will be heads if Po > 0.5 and tails otherwise.
This is because if we choose the more probable case, the probability of
error, which is 1 minus the probability of our choice, will be minimum.
If this is a fair coin with Po = 0.5, we have no better means of prediction
than choosing heads all the time or tossing a fair coin ourselves!

If we do not know P (X) and want to estimate this from a given sample,
SAMPLE then we are in the realm of statistics. We have a sample, X, containing

examples drawn from the probability distribution of the observables Xl,

denoted as p(x). The aim is to build an approximator to it, rex), using
the sample X.

In the coin tossing example, the sample contains the outcomes of the
past N tosses. Then using X, we can estimate Po, which is the parameter
that uniquely specifies the distribution. Our estimate of Po is

~ #{tosses with outcome heads}
Po = #{tosses}

Numerically using the random variables, Xl is 1 if the outcome of toss t

is heads and 0 otherwise. Given the sample {heads, heads, heads, tails,
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heads, tails, tails, heads, heads}, we have X = {I, 1, 1,0, 1, 0, 0, 1, I} and
the estimate is

. I.~=l xt 6Po = =-
N 9

3.2 Classification

We discussed credit scoring in section 1.2.2, where we saw that in a bank,
according to their past transactions, some customers are low-risk in that
they paid back their loans and the bank profited from them and other
customers are high-risk in that they defaulted. Analyzing this data, we
would like to learn the class "high-risk customer" so that in the future,
when there is a new application for a loan, we can check whether that
person obeys the class description or not and thus accept or reject the
application. Using our knowledge of the application, let us say that we
decide that there are two pieces of information that are observable. We
observe them because we have reason to believe that they give us an
idea about the credibility of a customer. Let us say, for example, we
observe customer's yearly income and savings, which we represent by
two random variables Xl and X2.

It may again be claimed that if we had access to other pieces of know
ledge such as the state of economy in full detail and full knowledge about
the customer, his or her intention, moral codes, and so forth, whether
someone is a low-risk or high-risk customer could have been determin
istically calculated. But these are nonobservables and with what we can
observe, the credibility of a customer is denoted by a Bernoulli random
variable C conditioned on the observables X = [X I, X2]T where C = 1
indicates a high-risk customer and C = 0 indicates a low-risk customer.
Thus if we know P(CIXI, X2), when a new application arrives with Xl = Xl

and X2 = X2, we can

{
C = 1 if P(C = llxl,X2) > 0.5

choose C = 0 otherwise

or equivalently

(3.1) { C = 1 if P(C = lIXJ, X2) > P(C = 01Xl,X2)
choose C = 0 otherwise

The probability of error is 1 - max(P(C = llxl,x2),P(C = 0IXl,X2».
This example is similar to the coin tossing example except that here, the
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Bernoulli random variable C is conditioned on two other observable vari
ables. Let us denote by x the vector of observed variables, x = [x I, X2]T.

The problem then is to be able to calculate P(Clx). Using Bayes' rule, it
can be written as

P(Clx) = P(C)p(xIC)
p(x)

P(C = 1) is called the prior probability that C takes the value 1, which
in our example corresponds to the probability that a customer is high
risk, regardless of the x value. It is called the prior probability because
it is the knowledge we have as to the value of C before looking at the
observables x, satisfying

P(C = 0) + P(C = 1) = 1

CLASS LIKELIHOOD p(xIC) is called the class likelihood and is the conditional probability
that an event belonging to C has the associated observation value x. In
our case, P(Xl, x21 C = 1) is the probability that a high-risk customer has
his or her Xl = Xl and X2 = X2. It is what the data tells us regarding the
class.

EVIDENCE p(x), the evidence, is the marginal probability that an observation x is
seen, regardless of whether it is a positive or negative example.

(3.3) p(x) = p(xlC = I)P(C = 1) + p(xlC = O)P(C = 0)

Combining the prior and what the data tells us using Bayes' rule, we
POSTERIOR calculate the posterior probability of the concept, P(Clx), after having

PROBABILITY seen the observation, x.

. prior x likelihood
postenor = .d

eVI ence
Because of normalization by the evidence, the posteriors sum up to 1:

P(C = Olx) + P(C = Ilx) = 1

Once we have the posteriors, we decide by using equation 3.1. For now,
we assume that we know the prior and likelihoods; in later chapters, we
discuss how to estimate P(C) and p(xIC) from a given training sample.

In the general case, we have K mutually exclusive and exhaustive classes;
Ci, i = 1, ... ,K; for example, in optical digit recognition, the input is a
bitmap image and there are ten classes. We have the prior probabilities
satisfying

K

(3.4) P(Ci) ~ 0 and L P(Ci) = 1
i=I
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R (lX;lx)

(3.5)

BAYES' CLASSIFIER

(3.6)

3.3

LOSS FUNCTION

EXPECTED RISK

(3.7)

(3.8)

ZERO-ONE LOSS

(3.9)

P(XICi) is the probability of seeing x as the input when it is known to
belong to class Ci. The posterior probability of class Ci can be calculated
as

P(C;lx) = P(XICi)P(Ci) = P(XICi)P(C;)

p(x) L.~=l P(XICk)P(Ck)

and for minimum error, the Bayes' classifier chooses the class with the
highest posterior probability; that is, we

choose Ci if P(Ci Ix) = maxP(Ck Ix)
k

Losses and Risks

It may be the case that decisions are not equally good or costly. A finan
cial institution when making a decision for a loan applicant should take
into account the potential gain and loss as well. An accepted low-risk
applicant increases profit, while a rejected high-risk applicant decreases
loss. The loss for a high-risk applicant erroneously accepted may be dif
ferent from the potential gain for an erroneously rejected low-risk appli
cant. The situation is much more critical and far from symmetry in other
domains like medical diagnosis or earthquake prediction.

Let us define action lXi as the decision to assign the input to class Ci,

and Aik as the loss incurred for taking action lXi when the input actually
belongs to Ck. Then the expected risk for taking action lXi is

K

R(lX;lx) = L AikP(Ckl x )
k=l

and we choose the action with minimum risk:

choose lXi if R(lX;lx) = minR(lXklx)
k

Let us define K actions lXi, i = 1, ... , K, where lXi is the action of assign
ing x to C;. In the special case of the zero-one loss case where

{
0 ifi=k

Aik = 1 if i f- k

all correct decisions have no loss and all errors are equally costly. The
risk of taking action lXi is

K

L AikP(Ckl x )
k=l
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L P(Ck Ix)
kh
1 - P(C;lx)

because 2:kP(Cklx) = 1. Thus to minimize risk, we choose the most
probable case. In later chapters, for simplicity, we will always assume
this case and choose the class with the highest posterior, but note that
this is indeed a special case and rarely do applications have a symmetric,
zero-one loss. In the general case, it is a simple postprocessing to go
from posteriors to risks and to take the action to minimize the risk.

In some applications, wrong decisions-namely, misclassifications
may have very high cost, and it is generally required that a more complex
for example, manual-decision is made if the automatic system has low
certainty of its decision. For example, if we are using an optical digit rec
ognizer to read postal codes on envelopes, wrongly recognizing the code
causes the envelope to be sent to a wrong destination.

REJECT In such a case, we define an additional action of reject or doubt, OCK+l,
with OCi, i = 1, ... , K, being the usual actions of deciding on classes Ci, i =

I, ... ,K (Duda, Hart, and Stork 2001).
A possible loss function is

{

0 if i = k
(3.10) i\ik= i\ ifi=K+l

1 otherwise

where 0 < i\ < 1 is the loss incurred for choosing the (K + l)st action of
reject. Then the risk of reject is

K

(3.11) R(OCK+llx) = L i\P(Cklx) = i\
k=l

and the risk of choosing class C; is

(3.12) R(oc;lx) = L P(Ck Ix) = 1 - P(C;lx)
Hi

The optimal decision rule is to

choose C

(3.13) reject

if R(oc;lx) < R(OCklx) for all k ~ i and

R(oc;lx) < R(OCK+llx)

if R(OCK+,lx) < R(oc;lx), i = 1, ... ,K
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Given the loss function of equation 3.10, this simplifies to
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(3.14)

choose C;

reject

if P(C;lx) > P(Cklx) for all k 1= i and

P(C;lx) > 1 - A

otherwise

This whole approach is meaningful if 0 < A < 1: If ,\ = 0, we always
reject; a reject is as good as a correct classification. If'\ ~ 1, we never
reject; a reject is as costly as, or costlier than, an error.

3.4 Discriminant Functions

DISCRIMINANT Classification can also be seen as implementing a set of discriminant func-
FUNCTIONS tions, g; (x), i = 1, ... , K, such that we

(3.15) choose C; if g;(x) = maxgk(x)
k

We can represent the Bayes' classifier in this way by setting

g;(x) = -R(oc;lx)

and the maximum discriminant function corresponds to minimum con
ditional risk. When we use the zero-one loss function, we have

g;(x) = P(C;lx)

or ignoring the common normaliZing term, p(x), we can write

g;(x) = p(xIC;)P(C;)

DECISION REGIONS This divides the feature space into K decision regions 'R 1, ... , 'RK, where
'R; = {x Ig; (x) = maxk gk (x)}. The regions are separated by decision
boundaries, surfaces in feature space where ties occur among the largest
discriminant functions (see figure 3.1).

When there are two classes, we can define a single discriminant

g(x) = gdx) - gz(x)

and we

h {
CI if g(x) > 0

c oose .
Cz otherwIse

An example is a two-class learning problem where the positive exam
ples can be taken as CI and the negative examples as Cz. When K = 2,

DICHOTOMIZER the classification system is a dichotomizer and for K ~ 3, it is a poly-
POLYCHOTOMIZER chotomizer.
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Figure 3.1 Example of decision regions and decision boundaries.

3.5 Utility Theory

In equation 3.7, we defined the expected risk and chose the action that
UTILITY THEORY minimizes expected risk. We now generalize this to utility theory, which

is concerned with making rational decisions when we are uncertain about
the state. Let us say that given evidence x, the probability of state Sk is

UTILITY FUNCTION calculated as P(Sklx). We define a utility function, Uik, which measures
EXPECTED UTILITY how good it is to take action Oli when the state is Sk. The expected utility

is

(3.16) EU(Ol;lx) = L UikP(Skl x )
k

A rational decision maker chooses the action that maximizes the ex
pected utility

(3.17) Choose Oli if EU(Olilx) = maxEU(Oljlx)
J

In the context of classification, decisions correspond to choosing one
of the classes. and maximizing the expected utility is eqUivalent to mini
mizing expected risk. Uik are generally measured in monetary terms, and
this gives us a way to define the loss matrix t..ik as well. For example, in
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defining a reject option (equation 3.10), if we know how much money we
will gain as a result of a correct decision, how much money we will lose
on a wrong decision, and how costly it is to defer the decision to a human
expert, depending on the particular application we have, we can fill in the
correct values Uik in a currency unit, instead of 0, A, and 1, and make our
decision so as to maximize expected earnings.

In the case of reject, we are choosing between the automatic decision
made by the computer program and human decision that is costlier but
assumed to have a higher probability of being correct. Similarly one can
imagine a cascade of multiple automatic decision makers, which as we
proceed are costlier but have a higher chance of being correct.

Note that maximizing expected utility is just one possibility; one may
define other types of rational behavior, for example, minimizing worst
possible loss.

3.6 Value of Information

In medical diagnosis, there are many tests that can be applied to a patient.
Taking the pulse has no cost but doing a blood test is costly-there is
both the cost of the test and the inconvenience to the patient-but the
blood test may give us much more information. Generally we assume
that all observable features are observed but this may not always be the
case; certain features may be costly to observe as in the case of a blood
test in medical diagnosis, and we would like to observe them only when
they are really needed. So we would like to be able to assess the value of
information that additional features may prOvide.

Let us say we have x of already observed features. Then the expected
utility of current best action is

EU(x) = max L UikP(Sklx)
I k

If we observe the new feature z and use it with x, then the expected
utility of best action is

EU(x,z) =maxLUikP(Sklx,z)
I k

If EU(x, z) > EU(x), then we can say that z is useful, and this differ
VALUE OF ence is the value of information provided by z. But we should also take

INFORMATION into account the cost of observing z, as well as processing it: P(Sk lx, z)
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Figure 3.2 Bayesian network modeling that rain is the cause of wet grass.

uses both x and z, and is more complex than P(Sklx). Z may be added
as a new feature only if its contribution is worth more than its additional
complexity.

Bayesian Networks

Bayesian networks, also called belief networks or probabilistic networks,
are graphical models for representing the interaction between variables
visually. A Bayesian network is composed of nodes and arcs between the
nodes. Each node corresponds to a random variable, X, and has a value
corresponding to the probability of the random variable, P(X). If there is
a directed arc from node X to node Y, this indicates that X has a direct
influence on Y. This influence is speCified by the conditional probability
P(YIX). The network is a directed acyclic graph (DAG), namely, there are
no cycles. The nodes and the arcs between the nodes define the structure
of the network, and the conditional probabilities are the parameters given
the structure.

A simple example is given in figure 3.2, which models that rain causes
the grass to get wet. It rains on 40 percent of the days and when it rains,
there is a 90 percent chance that the grass gets wet; maybe 10 percent of
the time it does not rain long enough for us to really consider the grass
wet enough. The random variables in this example are binary: true or
false. There is a 20 percent probability that the grass gets wet without its
actually raining, for example, when a sprinkler is used.
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P(S)=0.2 P(R)=O.4

Sprinkler Rain

P(W IR,S)=0.95

P(W IR,-S)=0.90

P(W I -R,S)=0.90

Wet grass P(WI-R,-S)=O.IO

Figure 3.3 Rain and sprinkler are the two causes of wet grass.

We see that these three values completely specify the joint distribution
of P(R, W). If P(R) = 0.4, then P(~R) = 0.6 and similarly P(~WIR) = 0.1
and P(~WI~R) = 0.8.

CAUSAL GRAPH This is a causal graph in that it explains that the major cause of wet
grass is rain. Bayes' rule allows uS to invert the dependencies and have
a diagnosis. For example, knowing that the grass is wet, the probability
that it rained can be calculated:

P(RIW)
P(WIR)P(R)

P(W)

P(WIR)P(R)

P(WIR)P(R) + P(WI ~R)P(~R)

0.9 x 0.4 = 0.75
0.9 x 0.4 + 0.2 x 0.6

The denominator P(W) is the probability of having wet grass, regard
less of whether it rained or not. Note that knowing that the grass is wet
increased the probability of rain from 0.4 to 0.75; this is because P(WIR)

is high and P(WI~R) is low.
Let uS now say that we want to include sprinkler as another cause of

wet grass. This is shown in figure 3.3. Node W has two parents, Rand
S, and thus its probability is conditioned on the values of those two,
P(WIR, S). We can calculate the probability of having wet grass given the
sprinkler is on, not knowing whether it rained or not. This is a causal
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(predictive) inference:

P(WIS) P(WIR, S)P(RIS) + P(WI~R, S)P( ~RIS)

P(WIR, S)P(R) + P(WI ~R,S)P( ~R)

0.95 x 0.4 + 0.9 x 0.6 = 0.92

P(RIS) = P(R) because according to figure 3.3, Rand S are independent.
We can calculate the probability that the sprinkler is on, given that the
grass is wet. This is a diagnostic inference.

P(SIW) = P(WIS)P(S) = 0.92 x 0.2 = 035
P(W) 0.52 .

where

P(W) P(WIR,S)P(R,S) +P(WI~R,S)P(~R,S)

+P(WIR, ~S)P(R,~S) + P(WI~R, ~S)P( ~R, ~S)

P(WIR, S)P(R)P(S) + P(WI~R, S)P(~R)P(S)

+P(WIR, ~S)P(R)P(~S)+ P(WI~R, ~S)P(~R)P(~S)

0.95 x 0.4 x 0.2 + 0.9 x 0.6 x 0.2 + 0.9 x 0.4 x 0.8

+0.1 x 0.6 x 0.8

0.52

Knowing that the grass is wet increased the probability of haVing the
sprinkler on. Now let us assume that it rained. Then we have

P(SIR, W)
P(WIR, S)P(SIR)

P(WIR)
0.21

P(WIR, S)P(S)
P(WIR)

EXPLAINING AWAY Note that this value is less than P(SI W). This is called explaining away;
given that we know it rained, the probability of sprinkler causing the wet
grass decreases. Knowing that the grass is wet, rain and sprinkler become
dependent.

Figure 3.3 shows that Rand S are independent. However we may think
that they are actually dependent in the presence of another variable: we
usually do not turn on the sprinkler if it is likely to rain. So a better graph
is given in figure 3.4. If it is cloudy, it is likely to rain and we are likely
to find the sprinkler off. We can, for example, calculate the probability of
having wet grass if it is cloudy:

P(WIC) = P(WIR, S, C)P(R,SIC)
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P(S I C)=O.l

P(S I -C)=O.5

P(C)=O.5

P(R I C)=O.8

peR I -C)=O.l
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Sprinkler

Wet grass

Rain

P(W I R,S)=O.95

P(W IR,-S)=O.90

P(W I -R,S)=O.90

P(WI-R,-S)=O.10

Figure 3.4 If it is cloudy, it is likely that it will rain and we will not use the
sprinkler.

+P(WI~R,5, C)P(~R,SIC)

+P(WIR, -5, C)P(R, -SIC)

+P(WI~R,~5, C)P(~R,~SIC)

P(WIR,5)P(RIC)P(5IC)

+P(WI~R,5)P(~RIC)P(SIC)

+P(WIR, ~S)P(RIC)P(~SIC)

+P(WI~R,~5)P(~RIC)P(~SIC)

where we have used that P(WIR,5, C) = P(WIR, S); given Rand 5, W is
independent of C. Similarly P(R,5IC) = P(RIC)P(SIC); given C, Rand
5 are independent. This is the advantage of Bayesian networks, which
explicitly encode independencies and allow breaking down inference into
calculation over small groups of variables.

We can make the network even more detailed depending on what we
can observe. For example, we may have a cat that likes taking a walk
on the roof and makes noise (even if the roof is not a hot tin one). The
cat does not go out when it rains (figure 3.5). Then, for example, we can
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P(C)=O.5

Cloudy

P(S IC)=O.l

P(S I -C)=0.5

Sprinkler

P(R I C)=0.8

P(R I -C)=O.l

Rain

P(F I R)=O.l

P(F I -R)=0.7

rooF

Figure 3.5 Rain not only makes the grass wet but also disturbs the cat who
normally makes noise on the roof.

calculate the probability that we hear the cat on the roof given that it is
cloudy, namely, P(FIC), or even P(FIS).

The graphical representation is visual and helps understanding. The
network represents conditional independence statements and allows us
to break down the problem of representing the joint distribution of many
variables into local structures; this eases both analysis and computation.
Figure 3.5 represents a joint density of five binary variables that would
normally require thirty-one values (2 5 - 1) to be stored, whereas here
there are only eleven. If each node has a small number of parents, the
complexity decreases from exponential to linear (in the number of nodes).
As we have seen earlier, inference is also easier as the joint density is
broken down into conditional densities of smaller groups of variables:

(3.18) P(C,S,R, W,F) = P(C)P(SIC)P(RIC)P(WIS,R)P(FIR)

Though in this example we use binary variables, it is clear that the
variables can be discrete with any number of possible values, or they can
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(3.19)

BEUEF PROPAGATION

JUNCTION TREE

CAUSALITY

NAIVE BAYES'

CLASSIFIER

be continuous. This only changes the conditional probabilities. In the
general case, when we have variables X! , ... , Xd,

d

P(Xl, ... , Xd) = nP(X;lparents(Xi))
i=!

Then given any subset of Xi, namely, setting them to certain values due
to evidence, we can calculate the probability distribution of some other
subset of Xi by marginalizing over the joint. This is costly because it
requires calculating an exponential number of joint probability combina
tions, even though each of them can be simplified as in equation 3.18.
There exists an efficient algorithm called belief propagation (Pearl 1988)
that we can use for inference when the network is a tree. There exists also
an algorithm that converts a given directed acyclic graph to a tree, named
the junction tree, by clustering variables, so that belief propagation can
be done (Lauritzen and Spiegelhalter 1988).

One major advantage of using a Bayesian network is that we do not
need to designate explicitly certain variables as input and certain others
as output. The value of any set of variables can be established through
evidence and the probabilities of any other set of variables can be in
ferred, and the difference between unsupervised and supervised learning
becomes blurry.

It should be stressed at this point that a link from a node X does not,
and need not, always imply a causality. It only implies a direct influence of
X over Y in the sense that the probability of Y is conditioned on the value
of X, and two nodes may have a link between them even if there is no
direct cause. It is preferable to have the causal relations in constructing
the network by providing an explanation of how the data is generated
(Pearl 2000) but such causes may not always be accessible.

Most of the methods that we discuss in this book can be written down
as a Bayesian network. For example, for the case of classification that we
discussed in section 3.2, the corresponding Bayesian network is shown in
figure 3.6. Bayes' rule as given in equation 3.2 allows calculating p(Clx),
namely, a diagnosis.

If the inputs are independent, the network is written as in figure 3.7,
which is called the naive Bayes' classifier, because it ignores possible de
pendencies, namely, correlations, among the inputs and reduces a multi-
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P(C)

C

p(x I C)

x

Figure 3.6 Bayesian network for classification.

P(C)

c

Figure 3.7 Naive Bayes' classifier is a Bayesian network for classification as
smning independent inputs.

variate problem to a group of univariate problems:

d

p(xIC;) = np(xjIC;)
j=!

HIDDEN VARIABLES In a problem, there may also be hidden variables whose values are
never known through evidence. The advantage of using hidden variables
is that the dependency structure can be more easily defined. For exam
ple, in basket analysis when we want to find the dependencies among
items sold, let us say we know that there is a dependency among "baby
food," "diapers," and "milk" in that a customer buying one of these is
very much likely to buy the other two. Instead of putting (noncausal)
arcs among these three, we may designate a hidden node "baby at home"
as the hidden cause of the consumption of these three items. When there
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are hidden nodes, their values are estimated given the values of observed
nodes and filled in.

The learning algorithms used for learning the parameters of a Bayesian
network are not different from the methods we discuss in later chapters
(Buntine 1996). They are basically for estimating the conditional proba
bilities. Learning the structure is much more difficult. Although there are
also algorithms proposed for this aim, basically it is the human expert
who defines causal relationships among variables and creates hierarchies
of small groups of variables.

3.8 Influence Diagrams

Just as we have previously generalized from probabilities to actions with
INFLUENCE DIAGRAMS risks, influence diagrams are graphical models that allow the generaliza

tion of Bayesian networks to include decisions and utilities. An influence
diagram contains chance nodes representing random variables that we
use in Bayesian networks. It also has decision nodes and a utility node.
A decision node represents a choice of actions. A utility node is where the
utility is calculated. Decisions may be based on chance nodes and may
affect other chance nodes and the utility node.

Inference on an influence diagram is an extension to inference on a
Bayesian network. Given evidence on some of the chance nodes, this
evidence is propagated and for each possible decision, the utility is calcu
lated and the decision having the highest utility is chosen. The influence
diagram for classification of a given input is shown in figure 3.8. Given
the input, the decision node decides on a class and for each choice, we
incur a certain utility (risk).

v

Figure 3.8 Influence diagram corresponding to classification. Depending on
input x, a class is chosen that incurs a certain utility (risk).
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3.9 Association Rules

ASSOCIATION RULE An association rule is an implication of the form X - Y. One example
BASKET ANALYSIS of association rules is in basket analysis where we want to find the de

pendency between two items X and Y. The typical application is in retail
where X and Yare items sold (section 1.2.1).

In learning association rules, there are two measures that are calcu
lated:

CONFIDENCE • Confidence of the association rule X - Y:

(3.20)

Confidence(X - Y) == P(YIX)
P(X, Y)

P(X)
#{customers who bought X and Y}

#{customers who bought X}

SUPPORT

(3.21)

APRIORI ALGORITHM

• Support of the association rule X - Y:

Su ort(X, Y) == P(X, Y) = #{customers who bought X and Y}
pp #{customers}

Confidence is the conditional probability, P(YIX), which is what we
normally calculate. To be able to say that the rule holds with enough
confidence, this value should be close to 1 and significantly larger than
P(Y), the overall probability of people buying Y. We are also interested in
maximizing the support of the rule, because even if there is a dependency
with a strong confidence value, if the number of such customers is small,
the rule is worthless. Support shows the statistical significance of the
rule whereas confidence shows the strength of the rule.

The minimum support and confidence values are set by the company,
and all rules with higher support and confidence are searched for in the
database. These formulas for support and confidence can easily be gen
eralized to more than two items, such that X and Yare disjoint sets of
items. For example, P(YIX, Z) is a three-item set that is more important
than a two-item set. Because a sales database is generally very large, we
want to find the dependencies by doing a small number of passes over
the database. There is an efficient algorithm, called Apriori (Agrawal et
al. 1996), that does this.
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Making decisions under uncertainty has a long history, and over time
humanity has looked at all sorts of strange places for evidence to re
move the uncertainty: stars, crystal balls, and coffee cups. Reasoning
from meaningful evidence using probability theory is only a few hundred
years old; see Newman 1988 for the history of probability and statistics
and some very early articles by Laplace, Bernoulli, and others who have
founded the theory.

Russell and Norvig (1995) give an excellent discussion of utility theory
and the value of information, also discussing the assignment of utili
ties in monetary terms. Shafer and Pearl 1986 is an early collection of
articles on reasoning under uncertainty. Pearl's 1988 book is a classic,
and his recent book (Pearl 2000) investigates the concept of causality
in more detail. Jensen's 1996 book is a very readable introduction to
Bayesian networks. A more formal treatment is given in Lauritzen 1996.
The paper by Huang and Darwiche (1994) is a good tutorial explaining
the construction of the junction tree and inference over the tree in de
tail. When the network is large, exact inference becomes infeasible; one
can use stochastic sampling (Andrieu et al. 2003) or variational methods
(Jordan et al. 1999). Buntine 1996 contains a literature survey on learn
ing in Bayesian networks and Jordan 1999 is a collection of more recent
work. The construction of the network structure by an expert as well as
methods for learning the structure from data are discussed in Cowell et
al. 1999.

The Association for Uncertainty in Artificial Intelligence has a Web page
at http://www.auaLorg where there is a good selection of tutorial papers
and links to public domain programs. Recent work on Bayesian networks
can be found in the proceedings of the Uncertainty in Artificial Intelli
gence (VAl).

3.11 Exercises

LIKELIHOOD RATIO 1. In a two-class problem, the likelihood ratio is

p(xlCd

p(xICz)

Write the discriminant function in terms of the likelihood ratio.

LOG ODDS 2. In a two-class problem, the log odds is defined as
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I P(C1Ix)
og P(C2Ix)

Write the discriminant function in terms of the log odds.

3. In a two-class, two-action problem, if the loss function is "II = "22 = 0,
"12 = 10, and "21 = 1, write the optimal decision rule.

4. Somebody tosses a fair coin and if the result is heads, you get nothing, oth
erwise you get $5. How much would you pay to play this game? What if the
win is $500 instead of $5?

5. In figure 3.4, calculate P(CIW).

6. In figure 3.5, calculate P(FIC).

7. Given the structure in figure 3.5 and a sample X containing observations as

Cloudy Sprinkler Rain Wet grass Roof
No Yes No Yes Yes
Yes No Yes No No

how do you learn the probabilities?

8. Generalize the confidence and support formulas for basket analysis to calcu
late k-dependencies, namely, P(YIX 1, ••• , Xk).

9. If, in basket analysis, associated with each item sold, we also have a number
indicating how much the customer enjoyed the product, for example, in a
scale of 0 to 10, how can you use this extra information to calculate which
item to propose to a customer?
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4 Parametric Methods

Having discussed how to make optimal decisions when the uncer
tainty is modeled using probabilities, we now see how we can esti
mate these probabilities from a given training set. We start with the
parametric approach for classification and regression. We discuss
the semiparametric and nonparametric approaches in later chap
ters. We introduce model selection methods for trading off the model
complexity and the empirical error.

4.1 Introduction

A S T A TI S TI C is any value that is calculated from a given sample. In
statistical inference, we make a decision using the information provided
by a sample. Our first approach is parametric where we assume that
the sample is drawn from some distribution that obeys a known model,
for example, Gaussian. The advantage of the parametric approach is
that the model is defined up to a small number of parameters-for ex
ample, mean, variance-the sufficient statistics of the distribution. Once
those parameters are estimated from the sample, the whole distribution
is known. We estimate the parameters of the distribution from the given
sample, plug in these estimates to the assumed model, and get an esti
mated distribution, which we then use to make a decision. The method
we use to estimate the parameters of a distribution is maximum likeli
hood estimation. We also discuss Bayesian estimation, which has recently
become popular with the availability of large computing power.

We start with density estimation, which is the general case of estimating
p(x). We use this for classification where the estimated densities are the
class densities p (x ICi) and P (C;), to be able to calculate the posterior
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P(C;lx) and make our decision. We then discuss regression where the
estimated density is p(Ylx). In this chapter, x is one-dimensional and
thus the densities are univariate. We generalize to the multivariate case
in chapter 5.

4.2 Maximum Ukelihood Estimation

Let us say we have an independent and identically distributed (iid) sample
X = {Xt}~I' We assume that xt are instances drawn from some known
probability density family. p(xIO). defined up to parameters, 0:

xt~p(xIO)

We want to find 0 that makes sampling xt from p(xIO) as likely as
LIKELIHOOD possible. Because x t are independent, the likelihood of sample X given

the parameter 0 is the product of the likelihoods of the individual points:
N

(4.1) 1(0) == p(XIO) = np(xtIO)
t=1

MAXIMUM LIKELIHOOD In maximum likelihood estimation, we are interested in finding 0 that
ESTIMATION makes X the most likely to be drawn. We thus search for 0 that maxi

mizes the likelihood of the sample, which we denote by lWIX). We can
maximize the log of the likelihood without changing the value where it
takes its maximum. log(·) converts the product into a sum and leads to
further computational simplification when certain densities are assumed,

LOG LIKELIHOOD for example, containing exponents. The log likelihood is defined as
N

(4.2) LWIX) == loglWIX) = L 10gp(xtI0)
t=1

Let us now see some distributions that arise in the applications we are
interested in. If we have a two-class problem, the distribution we use is
Bernoulli. When there are K > 2 classes, its generalization is the multi
nomial. Gaussian (normal) density is the one most frequently used for
modeling class-conditional input densities. For these three distributions.
we discuss the maximum likelihood estimators (MLE) of their parameters.

4.2.1 Bernoulli Density

In a Bernoulli distribution there are two outcomes: An event occurs or
it does not, for example, an instance is a positive example of the class,
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L(pIX)

or it is not. The event occurs and the Bernoulli random variable X takes
the value 1 with probability P, and the nonoccurrence of the event has
probability 1 - P and this is denoted by X taking the value O. This is
written as

(4.3) P(x) = pX(l_ p)l-X,X E {a, I}

P is the only parameter and given an tid sample X = {Xl }~=1' where
Xl E {a, I}, we want to calculate its estimator, p. The log likelihood is

N
log np(xt)(l_ p)o-x')

1=1

~xqOgp + (N - ~XI) log(l- p)

p that maximizes the log likelihood can be found by solving for dL/dp =

O.

(4.4)
~ II Xl
p=--

N

The estimate for p is the ratio of the number of occurrences of the event
to the number of experiments. Remembering that if X is Bernoulli with
p, E[X] = p, and as expected, the maximum likelihood estimator of the
mean is the sample average.

4.2.2 Multinomial Density

Consider the generalization of Bernoulli where instead of two states, the
outcome of a random event is one of K mutually exclusive and exhaustive
states, for example, classes, each of which has a probability of occurring
Pi with If= 1 Pi = 1. Let Xl, X2, ... ,XK are the indicator variables where Xi

is 1 if the outcome is state i and a otherwise.

K

(4.5) P(Xl,X2, ... ,XK) = np7/
i=l

Let us say we do N such independent experiments with outcomes X =

{XI}~=l where

Xl = {I if experiment t chooses state i
I a otherwise
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(4.6)

4 Parametric Methods

with Ii x~ = 1. The MLE of Pi is

" It x~Pi=--
N

The estimate for the probability of state i is the ratio of experiments
with outcome of state i to the total number of experiments. There are two
ways one can get this: If Xi are 0/1, then they can be thought of as K sepa
rate Bernoulli experiments. Or, one can explicitly write the log likelihood
and find Pi that maximize it (subject to the condition that Ii Pi = 1).

(4.8) m

4.2.3 Gaussian (Normal) Density

X is Gaussian (normal) distributed with mean J1 and variance (J"2, denoted
as N(J1, (J"2), if its density function is

(4.7) p(x) = ~(J" exp [ - (\~)2 ] ,-00 < X < 00

Given a sample X = {Xtlf=l with xt - N(J1, (J"2), the log likelihood of a
Gaussian sample is

N I (x t _J1)2
L(J1, (J"IX) = -zlog(2rr)-Nlog(J"- t 2(J"2

The MLE are

It xt
N

Ir(xt -m)2

N

We follow the usual convention and use Greek letters for the popula
tion parameters and Roman letters for their estimates from the sample.
Sometimes, the hat (circumflex) is also used to denote the estimator, for
example, p.

4.3 Evaluating an Estimator: Bias and Variance

Let X be a sample from a population specified up to a parameter e, and
let d = d(X) be an estimator of e. To evaluate the quality of this estima
tor, we can measure how much it is different from e, that is, (d(X) - e)2.
But since it is a random variable (it depends on the sample), we need to
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MEAN SQUARE ERROR average this over possible X and consider r(d, 8), the mean square error
of the estimator d defined as

(4.9) r(d,8) = E[(d(X) - 8)2]

BIAS The bias of an estimator is given as

(4.10) be(d) = E[d(X)] - 8

UNBIASED ESTIMATOR If be(d) = 0 for all 8 values, then we say that d is an unbiased estimator
of 8. For example, with Xl drawn from some density with mean /1, the
sample average, m, is an unbiased estimator of the mean, /1, because

[
LI x

t
] 1 '" I N /1E[m] = E -- = - L E[x ] = - = /1

N Nt N

This means that though on a particular sample, m may be different
from /1, if we take many such samples, Xi, and estimate many mi =

m(Xi), their average will get close to /1 as the number of such samples
increases. m is also a consistent estimator, that is, Var(m) - 0 as N - 00.

(
L xt) 1 N(J2 (J2

Var(m) = Var _I- = - '" Var(x t
) = -- = -

N N2 L N2 N
t

As N, the number of points in the sample, gets larger, m deviates less
from /1. Let us now check, S2, the MLE of (J2:

Lt(XI - m)2 LI(xt )2 - Nm 2

N N
Lt E[(Xt)2] - N· E[m2]

N

Given that Var(X) = E[X2] - E[X]2, we get E[X2] = Var(X) + E[X]2

and

Then we have

E[S2] = N«(J2 + /12) - :«(J2 IN + /12) = (N~ 1) (J2 f= (J2

which shows that S2 is a biased estimator of (J2. (N I (N - 1) )S2 is an
unbiased estimator. However when N is large, the difference is negligable.
This is an example of an asymptotically unbiased estimator whose bias
goes to 0 as N goes to infinity.
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vanance
( )

d.
-------'-'*)(--'l)e<O(H)f-(t**-1)( ~

E[d] e
( )

bias

Figure 4.1 e is the parameter to be estimated. d; are several estimates (denoted
by 'x') over different samples. Bias is the difference between the expected value
of d and e. Variance is how much d; are scattered around the expected value.
We would like both to be small.

The mean square error can be rewritten as follows (d is short for d(X»:

variance

(4.11)

r(d, (}) E[(d-(})2]

E [(d - E[d] + E[d] _ (})2]

E [(d - E[d])2 + (E[d] - 8)2 + 2(E[d] - 8)(d - E[d])]

E [(d - E[d])2] + E [(E[d] - 8)2] + 2E [(E[d] - (})(d - E[d])]

E [(d - E[d])2] + (E[d] - (})2 + 2(E[d] - (})E[d - E[d]]

~ [(d - E[d])2l + ,(E[d], - (})2,

bias!

The two equalities follow because E[d] is a constant and therefore E[d]
() also is a constant, and because E[d - E[d]] = E[d] - E[d] = O. In

VARIANCE equation 4.11, the first term is the variance that measures how much, on
average, di vary around the expected value (going from one dataset to
another), and the second term is the bias that measures how much the
expected value varies from the correct value () (figure 4.1). We then write
error as the sum of these two terms, the variance and the square of the
bias:

(4.12) r(d, (}) = Var(d) + (bo(d»2
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PRIOR DENSITY

POSTERIOR DENSITY

(4.13)

Sometimes, before looking at a sample, we (or experts of the application)
may have some prior information on the possible value range that a pa
rameter, e, may take. This information is quite useful and should be
used, especially when the sample is small. The prior information does
not tell us exactly what the parameter value is (otherwise we would not
need the sample), and we model this uncertainty by viewing e as a ran
dom variable and by defining a prior density for it, p({}). For example, let
us say we are told that e is approximately normal and with 90 percent
confidence, e lies between 5 and 9, symmetrically around 7. Then we can
write p({}) to be normal with mean 7 and because

P( -1.64 < e -1.1 < 1.64} 0.9
u

P (1.1 - 1.64u < e < 1.1 + 1.64u} 0.9

we take 1.64u = 2 and use u = 2/1.64. We can thus assume p({}) 
N(7, (2/1.64)2).

The prior density, p((}), tells us the likely values that 0 may take before

looking at the sample. We combine this with what the sample data tells
us, namely, the likelihood density, p(XIO), using Bayes' rule, and get the
posterior density of 0, which tells us the likely 0 values after looking at
the sample:

((}IX) = p(XIO)p(O) = p(XIO)p(O)
p p(X) f p(XIO')p((}')dO'

For estimating the density at x, we have

p(xIX) fp(x, OIX)dO

fp(xIO, X)p(OIX)dO

Jp(x/())p({}IX)dO

p(xIO,X) = p(xIO) because once we know 0, the sufficient statistics,
we know everything about the distribution. Thus we are taking an average
over predictions using all values of 0, weighted by their probabilities. If
we are doing a prediction in the form, Y = g(xIO), as in regression, then
we have

Y = Jg(xIO)p(OIX)dO
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Evaluating the integrals may be quite difficult, except in cases where
the posterior has a nice form. When the full integration is not feasible,
we reduce it to a single point. If we can assume that p(8IX) has a nar

MAXIMUM A row peak around its mode, then using the maximum a posteriori (MAP)
POSTERIORI ESTIMATE estimate will make the calculation easier:

(4.14) (}MAP = argmaxp«(}IX)
e

thus replacing a whole density with a single point, getting rid of the inte
gral and using as

p(xIX)

YMAP

P(XIOMAP)

g(XI(}MAP)

p«(})

If we have no prior reason to favor some values of (), then the prior
density is flat and the posterior will have the same form as the likeli
hood, p(XI(}), and the MAP estimate will be equivalent to the maximum
likelihood estimate (section 4.2) where we have

(4.15) (}ML = argmaxp(XI(})
e

BAYES' ESTIMATOR Another possibility is the Bayes' estimator, which is defined as the ex-
pected value of the posterior density

(4.16) (}Bayes = E[(}IX] = f(}p(8IX)d()

The reason for taking the expected value is that the best estimate of
a random variable is its mean. Let us say () is the variable we want to
predict with E[()] = J1. It can be shown that if c, a constant value, is our
estimate of (), then

E[(8-C)2] E[(8-J1+J1-C)2]

(4.17) = E[«(} - J1)2] + (J.1- C)2

which is minimum if C is taken as J1. In the case of a normal density, the
mode is the expected value and thus if p(8IX) is normal, then (}Bayes =

(}MAP.

As an example, let us suppose Xl ~ N(8, 0"6) and () ~ N(J1, 0"2), where
J1, 0", and 0"6 are known:

p(XI(}) 1 exp [_ II(x
l- (})2]

(2rr)N/20"t; 20"6

1 [(8-J1)2]
.j'[IT0" exp - 20"2
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(4.18)

4.5

(4.19)

(4.20)

(4.21)

(4.22)

It can be shown that p(eIX) is normal with

E[eIX] = N /aJ m + 1/a
2

J.l
N/aJ + 1/a2 N/aJ + 1/a2

Thus the Bayes' estimator is a weighted average of the prior mean J.l and
the sample mean m, with weights being inversely proportional to their
variances. As the sample size N increases, the Bayes' estimator gets
closer to the sample average, using more the information provided by
the sample. When a 2 is small, that is, when we have little prior uncer
tainty regarding the correct value of e, or when N is small, our prior
guess J.l has a higher effect.

Note that both MAP and Bayes' estimators reduce the whole posterior
density to a single point and lose information unless the posterior is
unimodal and makes a narrow peak around these points. With the cost
of computation getting cheaper, one possibility is to use a Monte Carlo
approach that generates samples from the posterior density (Andrieu et
al. 2003). There also are approximation methods one can use to evaluate
the full integral.

Parametric Classification

We saw in chapter 3 that using the Bayes' rule, we can write the posterior
probability of class C; as

P(C;/x) = p(xIC;)P(C;) = p(xIC;)P(C;)

p(x) If=l p(xICdP(Ck)

and use the discriminant function

9;(X) = p(xIC;)P(C;)

or equivalently

9;(X) = logp(xIC;) + logP(C;)

If we can assume that p (x IC;) are Gaussian

p(xIC;) = ~ exp [_ (x - ~;)2]
rra; 2a;

equation 4.20 becomes

1 (X-J.l)2
9;(x) = --2Iog2rr -loga; - 2' + logP(C;)

2a;
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(4.23)

(4.24)

(4.25)

(4.26)

(4.27)

(4.28)

(4.29)

4 Parametric Methods

Let us see an example: Assume we are a car company selling K dif
ferent cars, and for simplicity, let us say that the sole factor that affects
a customer's choice is his or her yearly income, which we denote by x.
Then P (Cj) is the proportion of customers who buy car type i. If the
yearly income distributions of such customers can be approximated with
a Gaussian, then p(xIC;), the probability that a customer who bought car
type i has income x, can be taken N(p;, o}), where p; is the mean income
of such customers and o} is their income variance.

When we do not know P (C;) and p (x IC;), we estimate them from a sam
ple and plug in their estimates to get the estimate for the discriminant
function. We are given a sample

X = {xt, rt}~=l

where x E 2t is one-dimensional and r E {O, I} K such that

t {I if xt E C;
r; = 0 if x t E Ck, k =f. i

For each class, the estimates for the means and variances are (relying
on equation 4.8)

It xtr/

It r/
Idx t - m;)2 r ,.t

S2
I It rl

and the estimates for the priors are (relying on equation 4.6)

F(C;) = It r /
N

Plugging these estimates into equation 4.22, we get

1 (x-m;)2_
g;(x)=-"2log2rr-Iogs;- 2s1 +logP(C;)

The first term is a constant and can be dropped because it is common
in all gi (x). If the priors are equal, the last term can also be dropped. If
we can further assume that variances are equal, we can write

g;(x) = -(x - m;)2

and thus we assign x to the class with the nearest mean:

Choose C if Ix - mil = min Ix - mk I
k
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Figure 4.2 Likelihood functions and the posteriors with equal priors for two
classes when the input is one-dimensional. Variances are equal and the posteri
ors intersect at one point, which is the threshold of decision.

With two adjacent classes, the midpoint between the two means is the
threshold of decision (see figure 4.2).

x

92(X)

(X- m2)2
ml + m2

2

When the variances are different, there are two thresholds (see fig
ure 4.3), which can be calculated easily (exercise 4). If the priors are
different, this has the effect of moving the threshold of decision toward
the mean of the less likely class.

Here we use the maximum likelihood estimators for the parameters
but if we have some prior information about them, for example, for the
means, we can use a Bayesian estimate of p (x ICi) with prior on /..li.
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Figure 4.3 Likelihood functions and the posteriors with equal priors for two
classes when the input is one-dimensional. Variances are unequal and the pos
teriors intersect at two points.

One note of caution is necessary here: When x is continuous, we should
not immediately rush to use Gaussian densities for p (x IC;). The classifi
cation algorithm-that is, the threshold points-will be wrong if the den
sities are not Gaussian. In statistical literature, tests exist to check for
normality, and such a test should be used before assuming normality.
In the case of one-dimensional data, the easiest test is to plot the his
togram and to check visually whether the density is bell-shaped, namely,
unimodal and symmetric around the center.

This is the likelihood-based approach to classification where we use
data to estimate the densities, calculate posterior densities using Bayes'
rule, and then get the discriminant. In later chapters, we discuss the
discriminant-based approach where we bypass the estimation of densities
and directly estimate the discriminants.
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Figure 4.4 Regression assumes 0 mean Gaussian noise added to the model;
here, the model is linear.

4.6 Regression

In regression, we would like to write the numeric output, called the depen
dent variable, as a function of the input, called the independent variable.
We assume that the numeric output is the sum of a deterministic function
of the input and random noise:

r=f(x)+€

where f(x) is the unknown function, which we would like to approximate
by our estimator, g(xI8), defined up to a set of parameters 8. If we
assume that € is zero mean Gaussian with constant variance (52, namely,
€ ~ N(O, (52), and placing our estimator g(.) in place of the unknown
function f(·), we have (figure 4.4)

(4.30) p(rlx) ~ N(g(xI8), (52)

We again use maximum likelihood to learn the parameters 8. The pairs
(x t , r t ) in the training set are drawn from an unknown joint probability
density p(x, r), which we can write as

p(x, r) = p(rlx)p(x)
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p(rlx) is the probability of the output given the input, and p(x) is the
input density. Given an tid sample X = {XC, r CW= I' the log likelihood is

N

log 0 p(XC
, r C

)

C=I

N N

log 0 p(rtlxC) + log np(XC)
C=I t=1

We can ignore the second term since it does not depend on our estima
tor, and we have

I ON 1 [[rc- g(x C1 e)]2]
(4.31) L(eIX) og IF exp - 2 2

C=1 VL.TTey ey

log(~(J exp [- 2~' ,t [r' - g(X'IO)]']

1 N
-Nlog(.J21T"ey) - 2ey2 c~[rC -g(xCle)]2

The first term is independent of the parameters eand can be dropped,
as can the factor 1/ey2. Maximizing this is equivalent to minimizing

N

(4.32) E(eIX) = ~ 2)rC
- g(xCle)]2

t=I

which is the most frequently used error function, and e that minimize it
LEAST SQUARES are called the least squares estimates. This is a transformation frequently

ESTIMATE done in statistics: When the likelihood I contains exponents, instead of
maximizing I, we define an error function, E = -log I, and minimize it.

LINEAR REGRESSION In linear regression, we have a linear model

g(XCIWl, wo) = WIXt + Wo

and taking the derivative of the sum of squared errors (equation 4.32),
we have two equations in two unknowns

Lrt Nwo + WI LXC

C C

LrtxC woLxc+wIL(xt )2
C t t

which can be written in vector-matrix form as Aw = y where

A = [ ~C XC ~:~:C)2]' w = [ :~ ], y = [ ~: ~:xc ]
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and can be solved as w = A-I y.
POLYNOMIAL In the general case of polynomial regression, the model is a polynomial
REGRESSION of order k

and taking the derivative, we get k + 1 equations in k + 1 unknowns, which
can be written in vector matrix form Aw = y where we have

[ N

It x t It(X t )2 It(xt)k

]It xt It(x t )2 It(xt )3 It (xt)k+ I

A

~dxt)k It(xt)k+l It(x t )k+2 It(x t )2k

WQ It rt

WI It rtxt

w W2 ,y= It r t (x t )2

Wk It r t (xt)k

We can write A = OTO and y = OTr where

[

1 Xl

1 x2

0= .

1 xN

(4.33)

RELATIVE SQUARE

ERROR

(4.34)

and we can then solve for the parameters as

Assuming Gaussian distributed error and maximizing likelihood corre
sponds to minimizing the sum of squared errors. Another measure is the
relative square error (RSE)

It[rt - g(x t IB)]2
ERSE = ~ (t )2

L..t r - r

If ERSE is close to I, then our prediction is as good as predicting by the
average; as it gets closer to 0, we have better fit.

Remember that for best generalization, we should adjust the complex
ity of our learner model to the complexity of the data. In polynomial
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regression, the complexity parameter is the order of the fitted polyno
mial. and therefore we need to find a way to choose the best order that
minimizes the generalization error. that is. tune the complexity of the
model to best fit the complexity of the function inherent in the data.

4.7 Tuning Model Complexity: BiasjVariance Dilemma

Let us say that a sample X = {x t , r t } is drawn from unknown joint prob
ability density p(x, r). Using this sample, we construct our estimate g(.).
The expected square error (over the joint density) at x can be written as
(using equation 4.17)

(4.35) E[(r - g(x))2Ix] = E[(r - E[rlx])2Ix] + (E[rlx] - g(x))2
I I \ I

noise
.

squared error

The first term on the right is the variance of r given x; it does not
depend on g ( .) or X. It is the variance of noise added, (T

2 . This is the
part of error that can never be removed. no matter what estimator we use.
The second term quantifies how much g(x) deviates from the regression
function, E[rlx]. This does depend on the estimator and the training set.
It may be the case that for one sample, g(x) may be a very good fit; and
for some other sample, it may make a bad fit. To quantify how well an
estimator g(.) is, we average over possible datasets.

The expected value (average over samples X, all of size N and drawn
from the same joint density p(r, x)) is (using equation 4.11)

(4.36) Ex [(E[rlx] -g(x))2Ix] = ,(E[rlx] - Ex[g(x)])2, + ,Ex [ (g(x) - Ex[g(x)])2 ],.
bias variance

As we discussed before, bias measures how much g(x) is wrong disre
garding the effect of varying samples, and variance measures how much
g(x) fluctuate around the expected value. E[g(x)], as the sample varies.

Let us see a didactic example: To estimate the bias and the variance,
we generate a number of datasets Xi = {xLrlLi = 1•...• M, from some
known f (.) with added noise. use each dataset to form an estimator gi ( .),
and calculate bias and variance. Note that in real life, we cannot do this
because we do not know f(·) or the parameters of the added noise. Then
E[g(x)] is estimated by the average over gi (.):

1 M
g(x) = M L gi(X)

i=1
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Estimated bias and variance are

77

Variance(g)

BIAS/VARIANCE

DILEMMA

UNDERFITIING

OVERFITIING

~ .2:)g(xt ) - {(x t )]2
Nt

N~ ~ ~[gj(xt) - g(X
t
)]2

Let us see some models of different complexity: The simplest is a con
stant fit

gj(X) = 2

This has no variance because we do not use the data and all gj(x) are the
same. But the bias is high, unless of course ((x) is close to 2 for all x. If
we take the average of rt in the sample

gj(x) = L rUN
(

instead of the constant 2, this decreases the bias because we would ex
pect the average in general to be a better estimate than the constant. But
this increases the variance because the different samples Xj would have
different average values. Normally in this case the decrease in bias would
be larger than the increase in variance, and error would decrease.

In the context of polynomial regression, an example is given in fig
ure 4.5. As the order of the polynomial increases, small changes in the
dataset cause a greater change in the fitted polynomials; thus variance
increases. But a complex model allows a better fit to the underlying func
tion; thus bias decreases (see figure 4.6). This is called the bias/variance
dilemma and is true for any machine learning system and not only for
polynomial regression (Geman, Bienenstock, and Doursat 1992). To de
crease bias, the model should be flexible, at the risk of having high vari
ance. If the variance is kept low, we may not be able to make a good fit to
data and have high bias. The optimal model is the one that has the best
trade-off between the bias and the variance.

If there is bias, this indicates that our model class does not contain
the solution; this is underfitting. If there is variance, the model class is
too general and also learns the noise; this is overfitting. If g (.) is of the
same hypothesis class with {( . ), for example, a polynomial of the same
order, we have an unbiased estimator, and estimated bias decreases as
the number of models increase. This shows the error-reducing effect of
choosing the right model (which we called inductive bias in chapter 2
the two uses of "bias" are different but not unrelated). As for variance, it
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(a) Function and data (b) Order 1
5 5

+

++ +
+

0 t+!t.+ +
++

+

-5 -5
0 2 3 4 5 0 2 3 4 5

(c) Order 3 (d) Order 5
5

Figure 4.5 (a) Function, f(x) = 2 sin(l.Sx), and one noisy (.'N(O, 1) dataset
sampled from the function. Five samples are taken, each containing twenty in
stances. (b), (c), (d) are five polynomial fits, namely, g;(.), of order 1, 3, and 5.
For each case, dotted line is the average of the five fits, namely, g(.).

also depends on the size of the training set; the variability due to sample
decreases as the sample size increases. To sum up, to get a small value of
error, we should have the proper inductive bias (to get small bias in the
statistical sense) and have a large enough dataset so that the variability
of the model can be constrained with the data.

Note that when the variance is large, bias is low: This indicates that
g(x) is a good estimator. So to get a small value of error, we can take
a large number of high-variance models and use their average as our
estimator. We will discuss such approaches for model combination in
chapter 15.
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Figure 4.6 In the same setting as that of figure 4.5, using one hundred models
instead of five, bias, variance, and error for polynomials of order 1 to 5. Order
1 has the smallest variance. Order 5 has the smallest bias. As the order is
increased, bias decreases but variance increases. Order 3 has the minimum error.

4.8 Model Selection Procedures

There are a number of procedures we can use to fine-tune model com
plexity.

CROSS-VALIDATION In practice, the method we use to find the optimal complexity is cross-
validation. We cannot calculate bias and variance for a model, but we can
calculate the total error. Given a dataset, we divide it into two parts as
training and validation sets, train candidate models of different complex
ities, and test their error on the validation set left out during training.
As the model complexity increases, training error keeps decreasing. The
error on the validation set decreases up to a certain level of complexity,
then stops decreasing or does not decrease further significantly, or even
increases if there is significant noise. This "elbow" corresponds to the
optimal complexity level (see figure 4.7).

REGUlARIZATION Another approach that is used frequently is regularization (Breiman
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Figure 4.7 In the same setting as that of figure 4.5, training and validation
sets (each containing 50 instances) are generated. (a) Training data and fitted
polynomials of order from 1 to 8. (b) Training and validation errors as a function
of the polynomial order. The "elbow" is at 3.

1998a). In this approach, we write an augmented error function

(4.37) E' = error on data + .\ . model complexity

This has a second term that penalizes complex models with large vari
ance, where .\ gives the weight of penalty. When we minimize the aug
mented error function instead of the error on data only, we penalize com
plex models and thus decrease variance. If .\ is taken too large, only very
simple models are allowed and we risk introducing bias. ,\ is optimized
using cross-validation.

STRUCTURAL RISK Structural risk minimization (SRM) (Vapnik 1995) uses a set of models
MINIMIZATION ordered in terms of their complexities. An example is polynomials of in-
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MINIMUM

DESCRJPTION LENGTH

BAYESIAN MODEL

SELECTION

(4.38)

creasing order. The complexity is generally given by the number of free
parameters. VC dimension is another measure of model complexity. In
equation 4.37, we can have a set of decreasing Ai to get a set of models
ordered in increasing complexity. Model selection by SRM then corre
sponds to finding the model simplest in terms of order and best in terms
of empirical error on the data.

Minimum description length (MDL) (Rissanen 1978) uses an information
theoretic measure. Kolmogorov complexity of a dataset is defined as the
shortest description of the data. If the data is simple, it has a short
complexity; for example, if it is a sequence of 'a's, we can just write 'a'
and the length of the sequence. If the data is completely random, then
we cannot have any description of the data shorter than the data itself.
If a model is appropriate for the data, then it has a good fit to the data,
and instead of the data, we can send/store the model description. Out
of all the models that describe the data, we want to have the simplest
model so that it lends itself to the shortest description. So we again have
a trade-off between how simple the model is and how well it explains the
data.

Bayesian model selection is used when we have some prior knowledge
about the appropriate class of approximating functions. This prior know
ledge is defined as a prior distribution over models, p(model). Given the
data and assuming a model, we can calculate p(modelldata) using Bayes'
rule:

( d lid )
_ p(datalmodel)p(model)

p mo e ata - (d)
p ata

p(modelldata) is the posterior probability of the model given our prior
subjective knowledge about models, namely, p(model), and the objec
tive support provided by the data, namely, p(datalmodel). We can then
choose the model with the highest posterior probability, or take an aver
age over all models weighted by their posterior probabilities. When the
prior is chosen such that we give higher probabilities to simpler models
(following Occam's razor), the Bayesian approach, regularization, SRM,
and MDL are equivalent.

Cross-validation is different from all other methods for model selection
in that it makes no prior assumption about the model. If there is a large
enough validation dataset, it is the best approach. The other models
become useful when the data sample is small.
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4.9 Notes

A good source on the basics of maximum likelihood and Bayesian estima
tion is Ross 1987. Many pattern recognition textbooks discuss classifica
tion with parametric models (e.g., MacLacWan 1992; Devroye, Gy6rfi, and
Lugosi 1996; Webb 1999; Duda, Hart, and Stork 2001). Tests for checking
univariate normality can be found in Rencher 1995.

Geman, Bienenstock, and Doursat (1992) discuss bias and variance de
composition for several learning models, which we discuss in later chap
ters. Bias/variance decomposition is for regression; various researchers
proposed different definitions of bias and variance for classification; see
Kong and Dietterich 1995 and Breiman 1998b for examples.

4.10 Exercises

1. Write the code that generates a Bernoulli sample with given parameter p, and
the code that calculates p from the sample.

2. Write the log likelihood for a multinomial sample and show equation 4.6.

3. Write the code that generates a normal sample with given /1 and (T, and the
code that calculates m and s from the sample. Do the same using the Bayes'
estimator assuming a prior distribution for /1.

4. Given two normal distributions p(xIC1) - N(/11, (T[) and p(xICz ) - N(/1z, (Ti)

and P(CJl and P(Cz)' calculate the Bayes' discriminant points analytically.

5. What is the likelihood ratio

p(xlCJl
p(xICz)

in the case of Gaussian densities?

6. For a two-class problem, generate normal samples for two classes with differ
ent variances, then use parametric classification to estimate the discriminant
points. Compare these with the theoretical values.

7. Assume a linear model and then add O-mean Gaussian noise to generate a
sample. Divide your sample into two as training and validation sets. Use
linear regression using the training half. Compute error on the validation set.
Do the same for polynomials of degrees 2 and 3 as well.

8. When the training set is small, the contribution of variance to error may be
more than that of bias and in such a case, we may prefer a simple model even
though we know that it is too simple for the task. Can you give an example?
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9. Let us say, given the samples Xi = {xl, rl}, we define g/ (x) = r/ , namely, our
estimate for any x is the r value of the first instance in the (unordered) dataset
Xj. What can you say about its bias and variance, as compared with g/(x) = 2
and gj (x) = Ll rl / N? What if the sample is ordered, so that g;(x) = minI rl?
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5 Multivariate Methods

In chapter 4, we discussed the parametric approach to classifica
tion and regression. Now, we generalize this to the multivariate
case where we have multiple inputs and where the output, that is,
class code or continuous output, is a function of these multiple in
puts. These inputs may be discrete or numeric. We will see how such
functions can be learned from a labeled multivariate sample and
also how the complexity of the learner can be fine-tuned to the data
at hand.

5.1 Multivariate Data

IN MANY APPLICATIONS, several measurements are made on each in
dividual or event generating an observation vector. The sample may be
viewed as a data matrix

[

xl
x 2

1x= .
X N

1 xfj

INPUT

FEATURE

ATTRIBUTE

OBSERVATION

EXAMPLE
INSTANCE

where the d columns correspond to d variables denoting the result of
measurements made on an individual or event. These are also called in
puts, features, or attributes. The N rows correspond to independent and
identically distributed observations, examples, or instances on N individ
uals or events.

For example, in deciding on a loan application, an observation vector
is the information associated with a customer and is composed of age,
marital status, yearly income, and so forth, and we have N such past
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customers. These measurements may be of different scales, for example,
age in years and yearly income in monetary units. Some like age may be
numeric, and some like marital status may be discrete.

Typically these variables are correlated. If they are not, there is no need
for a multivariate analysis. Our aim may be simplification, that is, sum
marizing this large body of data by means of relatively few parameters.
Or our aim may be exploratory, and we may be interested in generating
hypotheses about data. In some applications, we are interested in pre
dicting the value of one variable from the values of other variables. If the
predicted variable is discrete, this is multivariate classification, and if it
is numeric, this is a multivariate regression problem.

5.2 Parameter Estimation

MEAN VECTOR The mean vector J.l is defined such that each of its elements is the mean
of one column of X:

The variance of Xi is denoted as a}, and the covariance of two variables
Xi and Xj is defined as

(5.2) aij == COV(Xi,Xj) = E[(Xi -lli)(Xj -Ilj)] = E[XiXj] -Ilillj

with uij = Uji, and when i = j, Uii = U? With d variables, there are d
variances and d(d - 1) /2 covariances, which are generally represented as

COVARIANCE MATRIX a d x d matrix, named the covariance matrix, denoted as 1:, whose (i, j)th
element is uij:

~ ~ [:: :: ::: ::]
The diagonal terms are the variances, the off-diagonal terms are the

covariances, and the matrix is symmetric. In vector-matrix notation

If two variables are related in a linear way, then the covariance will be
positive or negative depending on whether the relationship has a positive
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CORRELATION

(5.4)

SAMPLE MEAN

(5.5)

SAMPLE COYARIANCE

(5.6)

(5.7)

SAMPLE CORRELATION

(5.8)

or negative slope. But the size of the relationship is difficult to interpret
because it depends on the units in which the two variables are measured.
The correlation between variables Xi and Xj is a statistic normalized be
tween -1 and +1, defined as

(Yij
Corr(Xj,Xj) == Pij = -

(Yi(Yj

If two variables are independent, then their covariance, and hence their
correlation, is zero. However, the converse is not true: The variables may
be dependent (in a nonlinear way), and their correlation may be zero.

Given a multivariate sample, estimates for these parameters can be
calculated: The maximum likelihood estimator for the mean is the sample
mean, m. Its ith dimension is the average of the ith column of X:

L.~=l Xl . h L.~=l xf . dm = N WIt mi = N ,I = 1, ... ,

The estimator of 2: is S, the sample covariance matrix, with entries

L.~=l (xf - mi)2

N

L.~=l (xf - mi)(X) - mj)

N

These are biased estimates, but if in an application the estimates vary
significantly depending on whether we divide by N or N - 1, we are in
serious trouble anyway.

The sample correlation coefficients are

Sij
rij =

SiSj

and the sample correlation matrix R contains rij.

5.3 Estimation of Missing Values

Frequently values of certain variables may be missing in observations.
The best strategy is to discard those observations all together, but gen
erally we do not have large enough samples to be able to afford this and
we do not want to lose data as the non-missing entries do contain infor
mation. We try to fill in the missing entries by estimating them. This is

IMPUTATION called imputation.
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In mean imputation, for a numeric variable, we substitute the mean (av
erage) of the available data for that variable in the sample. For a discrete
variable, we fill in with the most likely value, that is, the value most often
seen in the data.

In imputation by regression, we try to predict the value of a missing
variable from other variables whose values are known for that case. De
pending on the type of the missing variable, we define a separate re
gression or classification problem that we train by the data points for
which such values are known. If many different variables are missing, we
take the means as the initial estimates and the procedure is iterated until
predicted values stabilize. If the variables are not highly correlated, the
regression approach is equivalent to mean imputation.

Depending on the context, however, sometimes the fact that a certain
attribute value is missing may be important. For example, in a credit
card application, if the applicant does not declare his or her telephone
number, that may be a critical piece of information. In such cases, this is
represented as a separate value to indicate that the value is missing and
is used as such.

5.4 Multivariate Normal Distribution

In the multivariate case where x is d-dimensional and normal distributed,
we have

(5.9) p(x) = (27T)d;21~ll/2 exp [-~(x -1l)T~-l(X -11)]

and we write x - Nd (Il,~) where 11 is the mean vector and ~ is the
covariance matrix (see figure 5.1). Just as

(X-Jl)2
~~- = (x - Jl) (U 2)-1 (x - Jl)

u 2

is the squared distance from x to Jl in standard deviation units, normal
MAHALANOBIS izing for different variances, in the multivariate case the Mahalanobis

DISTANCE distance is used:

(x -11) T~-l (x -11) = c2 is the d-dimensional hyperellipsoid centered at
11, and its shape and orientation are defined by ~. Because of the use of
the inverse of ~, if a variable has a larger variance than another, it receives
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Figure S.l Bivariate Donna! distribution.
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less weight in the Mahalanobis distance. Slmilarly, two highly correlated
variables do not conrrtbute as much as two less correlated variables. The
use of the inverse of the covariance matrix thus has the effect of stan
dardizing all variables to unit variance and eliminating correlations.

Let us consider the bivariate case where d == 2 for visualization pur
poses (see figure 5.2). When the variables are independent, the major
axes of the densiry are parallel to the input axes. The densiry becomes
an ellipse if the vaIiances are different. The density rotates depending on
the sign of the covariance (correlation). The mean vector is J1 T == [PI, J.l2],
and the covariance matrix is usually expressed as

(5.11)

Z·NORJl,fALlZATION

The joint bivariate density can be expressed in the fonn (see exercise I)

P(Xj,X2) = 1~exP[-2( ~ 2)(zl-2PZ1Z2+2~)]
2m)\ 0"2\ 1 - p2 1 P

where Zj = (Xi - pd/al,i = 1,2, are standardized variables; this is called
z-normalization. Remember that

zr + 2PZtZ2 + z~ = constant
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Cov(x"x2)=o, Var(x,)=Var(x,) Cov(x"x2)·o, Var(x,»Var(x,)

~ ~c=>~

x,

Cov(X"X2»o Cov(x"x2)<o

~ ~
Figure 5.2 Isoprobability contour plot of the bivariate normal distribution. Its
center is given by the mean, and its shape and orientation depend on the covari
ance matrix.

for Ipl < 1, is the equation of an ellipse. When p > 0, the major axis of
the ellipse has a positive slope and if p < 0, the major axis has a negative
slope.

In the expanded Mahalanobis distance of equation 5.11, each variable
is normalized to have unit variance, and there is the cross-term that cor
rects for the correlation between the two variables.

The density depends on five parameters: the two means, the two vari
ances, and the correlation. ~ is nonsingular, and hence positive definite,
provided that variances are nonzero and Ipi < 1. If p is +1 or -I, the
two variables are linearly related, the observations are effectively one
dimensional, and one of the two variables can be disposed of. If p = 0,
then the two variables are independent, the cross-term disappears, and
we get a product of two univariate densities.

In the multivariate case, a small value of I~I indicates samples are close
to Il, just as in the univariate case where a small value of u 2 indicates
samples are close to p. Small I~I may also indicate that there is high
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(5.12)

correlation between variables. ~ is a symmetric positive definite matrix;
this is the multivariate way of saying that Var(X) > 0. If not so, ~ is sin
gular and its determinant is zero. This is either due to linear dependence
between the dimensions or because one of the dimensions has zero vari
ance. In such a case, dimensionality should be reduced to a get a positive
definite matrix; methods for this are discussed in chapter 6.

If x ~ Nd (11, ~), then each dimension of x is univariate normal. (The
converse is not true: Each Xi may be univariate normal and X may not
be multivariate normal.) Actually any k < d subset of the variables is
k-variate normal. A special case is where the components of x are inde
pendent and COV(Xi,Xj) = 0, for i f J, and Var(Xi) = (Il, Vi. Then the
covariance matrix is diagonal and the joint density is the product of the
individual univariate densities:

d [d 2]1 1 x'-Ji
p(x) = nPi (x;) = d exp -- L (-'-.-')

i=l (2rr)d/2 ni=l (Ii 2 i=l (II

Now let us see another property we make use of in later chapters. Let
us say x ~ Nd(Jl,~) and w E ~d, then

given that

(5.13) E[wT x]

Var(w Tx)

(5.14)

wTE[x] = w T11

E[(wTX - w T11)2] = E[(wTX - w Tl1)(wTX - w T11)]

E[wT(x -I1)(x -11) Tw] = w TE[ (x -I1)(x - 11)T]W

wT~w

That is, the projection of a d-dimensional normal on the vector w is
univariate normal. In the general case, if W is a d x k matrix with rank
k < d, then the k-dimensional WT x is k-variate normal:

That is, if we project a d-dimensional normal distribution to a space
that is k-dimensional, then it projects to a k-dimensional normal.
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5.5 Multivariate Classification

When x E ~d, if the class-conditional densities, p (x ICi ), are taken as
normal density, Nd(Pi'~;)' we have.

(5.16) P(XICi) = (21T)dl;l~iI1/2 exp [-~(X -p;)T~il(X -P;)]

The main reason for this is its analytical simplicity (Duda, Hart, and Stork
2001). Besides, the normal density is a model for many naturally occur
ring phenomena in that examples of most classes can be seen as mildly
changed versions of a single prototype, Pi, and the covariance matrix,
~i, denotes the amount of noise in each variable and the correlations of
these noise sources. While real data may not often be exactly multivari
ate normal, it is a useful approximation. In addition to its mathematical
tractability, the model is robust to departures from normality as is shown
in many works (e.g., McLachlan 1992). However, one clear requirement is
that the sample of a class should form a single group; if there are multiple
groups, one should use a mixture model (chapter 7).

Let us say we want to predict the type of a car that a customer would be
interested in. Different cars are the classes and x are observable data of
customers, for example, age and income. P; is the vector of mean age and
income of customers who buy car type i and ~i is their covariance matrix:
a-ii and a-;~ are the age and income variances, and a-il2 is the covariance
of age and income in the group of customers who buy car type i.

When we define the discriminant function as

9;(x) = logp(xICi) + logP(C;)

Si

F(Ci)

(5.17)

(5.18)

and assuming p(xIC;) - Nd(Pi,~i), we have

d lIT 1
9i(X)=-2Iog21T-2Iogl~;I-2(X-Pi) ~i (x-Pi)+logP(C;)

Given a training sample for K ~ 2 classes, X = {Xl, rl }, where rf = 1
if Xl E C; and 0 otherwise, estimates for the means and covariances are
found using maximum likelihood separately for each class:

II rf
N

II rfx l

II rf
It rf(x l - m;)(x t - m;)T

II rf
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(5.19)

QUADRATIC

DISCRIMINANT

(5.20)

These are then plugged into the discriminant function to get the esti
mates for the discriminants. Ignoring the first constant term, we have

liT 1 ~
9i(X) = -2log IS;! - 2(X - mi) Sj (x - mi) + logP(Cd

Expanding this, we get

9i(X) = -~ log IS;! - ~ (XTSjI X - 2xTS;lmi + mTS;1 mi) + logP(Cd

which defines a quadratic discriminant (see figure 5.3) that can also be
written as

9i(X) = XTWi X + wTx + W;o

where

Wi

Wi

W;o

1 -I--So2 I

S-l
i mi
1 Til ~

-2mi Sj mi - 2 log IS;! +logP(Ci)

The number of parameters to be estimated are K . d for the means and
K . d(d + 1)/2 for the covariance matrices. When d is large and samples
are small, Si may be singular and inverses may not exist. Or, IS;! may be
nonzero but too small in which case it will be unstable; small changes in
Si will cause large changes in S; I. For the estimates to be reliable on small
samples, one may want to decrease dimensionality, d, by redesigning the
feature extractor and select a subset of the features or somehow combine
existing features. We discuss such methods in chapter 6.

Another possibility is to pool the data and estimate a common covari
ance matrix for all classes:

(5.21) S = IP(Ci)Si

(5.22)

In this case of equal covariance matrices, equation 5.19 reduces to

1 T 1 ~
9i(X) = -2(x - mi) S- (x - mi) + logP(Ci)

The number of parameters is K . d for the means and d (d + 1) / 2 for the
shared covariance matrix. If the priors are equal, the optimal decision
rule is to assign input to the class whose mean's Mahalanobis distance to
the input is the smallest. As before, unequal priors shift the boundary
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Figure 5.3 Classes have different covariance matrices. likelihood densities and
the posterior probabiJity for one of the classes (top). Class distributions are
indicated by isoprobability contours and the discriminant is drawn (boltom).
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Figure 5.4 Covariances may be arbitary but shared by both classes.
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toward the less likely class. Note that in this case, the quadratic term
XTS-1X cancels since it is common in all discriminants, and the decision

LINEAR DlSCRIMINANT boundaries are linear, leading to a linear discriminant (figure 5.4) that can
be written as

(5.23) Bi(X) = wTx + WiO

where

Wi S-lmi

1 T 1 ~
WiO -2mi S- mi + logP(Cd

Decision regions of such a linear classifier are convex; namely, when
two points are chosen arbitrarily in one decision region and are connected
by a straight line, all the points on the line will lie in the region.

Further simplication may be possible by assuming all off-diagonals of
the covariance matrix to be zero, thus assuming independent variables.

NAIVE BAYES' This is the naive Bayes' classifier where p (x j ICj) are univariate Gaussian.
CLASSIFIER S and its inverse are diagonal, and we get

1 ~ (X) - mij) 2 ~
(5.24) B;(X) = -2 L . + logP(C;)

j=l sJ

The term (X) - mij) / Sj ) 2 has the effect of normalization and measures
the distance in terms of standard deviation units. Geometrically speak-
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Figure 5.5 All classes have equal, diagonal covariance matrices but variances
are not equal.

ing, classes are hyperellipsoidal and, because the covariances are zero,
are axis-aligned (see figure 5.5). The number of parameters is K . d for
the means and d for the variances. Thus the complexity of S is reduced
from {)(d2 ) to {)(d).

Simplifying even further, if we assume all variances to be equal, the
EUCLIDEAN DISTANCE Mahalanobis distance reduces to Euclidean distance. Geometrically, the

distribution is shaped spherically, centered around the mean vector m;
(see figure 5.6). Then lSI = S2d and S-l = (1/s2 )1. The number of param
eters in this case is K . d for the means and one for S2.

If the priors are equal, we have g;(x) = -llx - m;11 2. This is named the
NEAREST MEAN nearest mean classifier because it assigns the input to the class of the

CLASSIFIER nearest mean. If each mean is thought of as the ideal prototype or tem
TEMPLATE MATCHING plate for the class, this is a template matching procedure. This can be

expanded as

(5.26)

-lix - m;ll2 = -(x - m;)T(x - m;)

- (x T x - 2mTx + mTm;)
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Figure 5.6 All classes have equal, diagonal covariance matrices of equal vari
ances on both dimensions.

The first term, xTx, is shared in all 9i(X) and can be dropped, and we
can write the discriminant function as

(5.27) 9i(X) = wTx + WiQ

where Wi = mi and WiO = -(l/2)llmillz. If all mi have similar norms,
then this term can also be ignored and we can use

(5.28) 9i(X) = mTx

When the norms of mi are comparable, dot product can also be used
as the similarity measure instead of the (negative) Euclidean distance.

We can actually think of finding the best discriminant function as the
task of finding the best distance function. This can be seen as another
approach to classification: Instead of learning the discriminant functions,
9i(X), we want to learn the suitable distance function D(x I, xz), such that
for any Xl, XZ, X3, where Xl and Xz belong to the same class, and Xl and
X3 belong to two different classes, we would like to have
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5.6

REGULARIZED

DISCRIMINANT

ANALYSIS

(5.29)

5 Multivariate Methods

Tuning Complexity

In table 5.1, we see how the number of parameters of the covariance ma
trix may be reduced, trading off the comfort of a simple model with gen
erality. This is another example of bias/variance dilemma. When we make
simplifying assumptions about the covariance matrices and decrease the
number of parameters to be estimated, we risk introducing bias. On the
other hand, if no such assumption is made and the matrices are arbitrary,
the quadratic discriminant may have large variance on small datasets.
The ideal case depends on the complexity of the problem represented by
the data at hand and the amount of data we have. When we have a small
dataset, even if the covariance matrices are different, it may be better to
assume a shared covariance matrix; a single covariance matrix has fewer
parameters and it can be estimated using more data, that is, instances of
all classes. This corresponds to using linear discriminants, which is very
frequently used in classification and which we discuss in more detail in
chapter 10.

Note that when we use Euclidean distance to measure similarity, we
are assuming that all variables have the same variance and that they are
independent. In many cases, this does not hold; for example, age and
yearly income are in different units, and are dependent in many contexts.
In such a case, the inputs may be separately z-normalized in a prepro
cessing stage (to have zero mean and unit variance), and then Euclidean
distance can be used. On the other hand, sometimes even if the variables
are dependent, it may be better to assume that they are independent
and to use the naive Bayes' classifier, if we do not have enough data to
calculate the dependency accurately.

Friedman (1989) proposed a method that combines all these as spe
cial cases, named regularized discriminant analysis (RDA). We remember
that regularization corresponds to approaches where one starts with high
variance and constrains toward lower variance, at the risk of increasing
bias. In the case of parametric classification with Gaussian densities, the
covariance matrices can be written as a weighted average of the three
special cases:

S; = c<a 21+ /3S + (1 - c< - /3)S;

When c< = /3 = 0, this leads to a quadratic classifier. When c< = 0 and
/3 = I, the covariance matrices are shared, and we get linear classifiers.
When c< = 1 and /3 = 0, the covariance matrices are diagonal with a 2 on
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Table 5.1 Reducing variance through simplifying assumptions.
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(5.31)

Assumption Covariance matrix No. of parameters
Shared, Hyperspheric 5i = 5 = s~I 1
Shared, Axis-aligned 5i = 5, with Si} = 0 d
Shared, Hyperellipsoidal Si = 5 d(d+1)/2
Different, Hyperellipsoidal Si K· (d(d + 1)/2)

the diagonals, and we get the nearest mean classifier. In between these
extremes, we get a whole variety of classifiers where ex,13 are optimized
by cross-validation.

Another approach to regularization, when the dataset is small, is one
that uses a Bayesian approach by defining priors on Pi and 5; or that uses
cross-validation to choose the best of the four cases given in table 5.1.

5.7 Discrete Features

In some applications, we have discrete attributes taking one of n different
values. For example, an attribute may be color E {red, blue, green, black},
or another may be pixel E {on, off}. Let us say x} are binary (Bernoulli)
where

Pi} =p(x} = 1IC;)

If x} are independent binary variables, we have

d

p(xIC;) = n P~j(l - Pij)(l-Xj)
}=l

This is another example of the naive Bayes' classifier where P(x) IC;)
are Bernoulli. The discriminant function is

g;(x) logp(xIC;) + logP(C;)

(5.30) = I[x}logp;}+(l-x})IOg(l-Pij)]+IOgP(C;)
}

which is linear. The estimator for Pi} is

't xtrt
A L. J I

Pi} = It rt
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In the general case, let us say we have the multinomial x j chosen from
the set {VI, V2, ... , vnj }. We define new 0/1 dummy variables as

t {I if xj = Vk
Zjk = 0 otherwise

Let Pijk denote the probability that Xj belonging to class Ci takes value
Vk·

Pijk == p(Zjk = llCi) = p(Xj = vklCi)

If the attributes are independent, we have

d nj

nn Z·k
(5.32) P(XICi) = Pilk

j=lk=1

The discriminant function is then

(5.33) gi(X) = 2:2:zjklogpijk +logP(Ci )

j k

(5.34)

The maximum likelihood estimator for Pijk is

'" C C~ L..C Zjkri
Pijk = '" t

L..t ri

which can be plugged into equation 5.33 to give us the discriminant.

5.8 Multivariate Regression

MULTIVARIATE LINEAR In multivariate linear regression, the numeric output r is assumed to be
REGRESSION written as a linear function, that is, a weighted sum, of several input

variables, Xl. ... , Xd, and noise. Actually in statistical literature, this is
called multiple regression; statisticians use the term multivariate when
there are multiple outputs. The multivariate linear model is

(5.35) r C = g(xcIwo, WI, ... , Wd) + € = Wo + WIXl + W2X~ + ... + WdX~ + €

As in the univariate case, we assume € to be normal with mean zero
and constant variance, and maximizing the likelihood is equivalent to
minimizing the sum of squared errors:

(5.36) E(wo, wI, ... ,wdlX) = ~ 2:(rt - Wo - WIXl - W2X~ - ... - WdX~)2
C
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Taking the derivative with respect to the parameters, Wj, j = 0, ... ,d,
we get the normal equations:

(5.37) :L rt

t

:L x~rt
t

:L x~rt
t

Nwo + WI :Lx~ + Wz :Lx~ + ... + Wd :Lx~
t t t

,t ,t ( '( ()z , t (
Wo LXz + WI LXIXZ + Wz L Xz + ... + Wd LXZxd

( t ( (

X~
x~

Let us define the following vectors and matrix:

x=[~
~ xf xlj

Then the normal equations can be written as

(5.38) XTXw = XTr

(5.39)

MULTIVARIATE

POLYNOMIAL

REGRESSION

and we can solve for the parameters as

w = (XTX)-IXTr

This method is the same as we used for polynomial regression using
one input. The two problems are the same if we define the variables
as XI = X, Xz = xz , ... , Xk = xk• This also gives us a hint as to how we
can do multivariate polynomial regression if necessary (exercise 5), but
unless d is small, in multivariate regression, we rarely use polynomials
of an order higher than linear. One advantage of linear models is that
after the regression, looking at the Wj,j = 1.... , d, values, we can extract
knowledge: First, by looking at the signs of Wj. we can see whether Xj

have a positive or negative effect on the output. Second, if all Xj are in
the same range, by looking at the absolute values of Wj, we can get an
idea about how important a feature is, rank the features in terms of their
importances, and even remove the features whose Wj are close to zero.

When there are multiple outputs, this can equivalently be defined as a
set of independent single-output regression problems.
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5.9 Notes

Agood text to brush up on one's knowledge of linear algebra is Strang 1988.
Harville 1997 is another excellent book that looks at matrix algebra from
a statistical point of view.

One inconvenience with multivariate data is that when the number of
dimensions is large, one cannot do a visual analysis. There are methods
proposed in the statistical literature for displaying multivariate data; a
review is given in Rencher 1995. One possibility is to plot variables two
by two as bivariate scatter plots: If the data is multivariate normal, then
the plot of any two variables should be roughly linear; this can be used
as a visual test of multivariate normality. Another possibility that we
discuss in chapter 6 is to project them to one or two dimensions and
display there.

Most work on pattern recognition is done assuming multivariate nor
mal densities. Sometimes such a discriminant is even called the Bayes'
optimal classifier, but this is generally wrong; it is only optimal if the
densities are indeed multivariate normal and if we have enough data to
calculate the correct parameters from the data. Rencher 1995 discusses
tests for assessing multivariate normality as well as tests for checking for
equal covariance matrices. McLachlan 1992 discusses classification with
multivariate normals and compares linear and quadratic discriminants.

One obvious restriction of multivariate normals is that it does not al
low for data where some features are discrete. A variable with n pos
sible values can be converted into n dummy 0/1 variables, but this in
creases dimensionality. One can do a dimensionality reduction in this
n-dimensional space by a method explained in chapter 6 and thereby not
increase dimensionality. Parametric classification for such cases of mixed
features is discussed in detail in McLachlan 1992.

5.10 Exercises

1. Show equation 5.11.

2. Generate a sample from a multivariate normal density N(II,~), calculate m
and S, and compare them with II and ~. Check how your estimates change as
the sample size changes.

3. Generate samples from two multivariate normal densities N(lIi, ~i), i = 1,2,
and calculate the Bayes' optimal discriminant for the four cases in table 5.1.
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4. For a two-class problem, for the four cases of Gaussian densities in table 5.1,
derive

I P(C1Ix)
og P(Czlx)

5. Let us say we have two variables Xl and Xz and we want to make a quadratic
fit using them, namely

How can we find Wi, i = 0, ... ,5, given a sample of X = {xL x~, r t )?
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6 Dimensionality Reduction

The complexity of any classifier or regressor depends on the num
ber of inputs. This determines both the time and space complexity
and the necessary number of training examples to train such a clas
sifier or regressor. In this chapter, we discuss various methods for
decreasing input dimensionality without losing accuracy.

6.1 Introduction

IN AN APPLICAnON, whether it is classification or regression, observa
tion data that we believe contain information are taken as inputs and fed
to the system for decision making. Ideally, we should not need feature
selection or extraction as a separate process; the classifier (or regressor)
should be able to use whichever features are necessary, discarding the
irrelevant. However, there are several reasons why we are interested in
reducing dimensionality as a separate preprocessing step:

• In most learning algorithms, the complexity depends on the number of
input dimensions, d, as well as on the size of the data sample, N, and
for reduced memory and computation, we are interested in reducing
the dimensionality of the problem. Decreasing d also decreases the
complexity of the inference algorithm during testing.

• When an input is decided to be unnecessary, we save the cost of ex
tracting it.

• Simpler models are more robust on small datasets. Simpler models
have less variance, that is, they vary less depending on the particulars
of a sample, including noise, outliers, and so forth.
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• When data can be explained with fewer features, we get a better idea
about the process that underlies the data, which allows knowledge
extraction.

• When data can be represented in a few dimensions without loss of
information, it can be plotted and analyzed visually for structure and
outliers.

There are two main methods for reducing dimensionality: feature se-
FEATURE SELECTION lection and feature extraction. In feature selection, we are interested in

finding k of the d dimensions that give us the most information and we
discard the other (d - k) dimensions. We are going to discuss subset
selection as a feature selection method.

FEATURE EXTRACTION In feature extraction, we are interested in finding a new set of k di-
mensions that are the combination of the original d dimensions. These
methods may be supervised or unsupervised depending on whether or
not they use the output information. The best known and most widely
used feature extraction methods are Principal Components Analysis (PCA)
and Linear Discriminant Analysis (LDA), which are both linear projection
methods, unsupervised and supervised respectively. PCA bears much
similarity to two other unsupervised linear projection methods, which we
also discuss-namely, Factor Analysis (FA) and Multidimensional Scaling
(MDS).

6.2 Subset Selection

SUBSET SELECTION In subset selection, we are interested in finding the best subset of the
set of features. The best subset contains the least number of dimensions
that most contribute to accuracy. We discard the remaining, unimportant
dimensions. Using a suitable error function, this can be used in both
regression and classification problems. There are 2d possible subsets
of d variables, but we cannot test for all of them unless d is small and
we employ heuristics to get a reasonable (but not optimal) solution in
reasonable (polynomial) time.

FORWARD SELECTION There are two approaches: In forward selection, we start with no vari-
ables and add them one by one, at each step adding the one that de
creases the error the most, until any further addition does not decrease

BACKWARD SELECTION the error (or decreases it only sightly). In backward selection, we start
with all variables and remove them one by one, at each step removing
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the one that decreases the error the most (or increases it only slightly),
until any further removal increases the error significantly. In either case,
checking the error should be done on a validation set distinct from the
training set because we want to test the generalization accuracy. With
more features, generally we have lower training error, but not necessarily
lower validation error.

Let us denote by F, a feature set of input dimensions, Xi, i = 1, ... ,d.
E(F) denotes the error incurred on the validation sample when only the
inputs in F are used. Depending on the application, the error is either the
mean square error or misclassification error.

In sequential forward selection, we start with no features: F = 0. At
each step, for all possible Xi, we train our model and calculate E(F U Xi)

on the validation set. Then, we choose that input X j that causes the least
error

(6.1) j = argminE(F U Xi)
I

and we

(6.2) add Xj to F if E(F U Xj) < E(F)

We stop if adding any feature does not decrease E. We may even de
cide to stop earlier if the decrease in error is too small, where there is a
user-defined threshold that depends on the application constraints, trad
ing off the importance of error and complexity. Adding another feature
introduces the cost of observing the feature, as well as making the clas
sifier/regressor more complex.

This process may be costly because to decrease the dimensions from d
to k, we need to train and test the system d + (d -1) + (d - 2) + ... + (d - k)
times, which is O(d2 ). This is a local search procedure and does not
guarantee finding the optimal subset, namely, the minimal subset causing
the smallest error. For example, Xi and X j by themselves may not be good
but together may decrease the error a lot, but because this algorithm is
greedy and adds attributes one by one, it may not be able to detect this.
It is possible to generalize and add m features at a time, instead of one,
at the expense of more computation. We can also backtrack and check
which previously added feature can be removed after a current addition,
thereby increasing the search space but this increases complexity. In

FLOATING SEARCH floating search methods (Pudil, Novovicova, and Kittler 1994), the number
of added features and removed features can also change at each step.
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In sequential backward selection, we start with F containing all features
and do a similar process except that we remove one attribute from F as
opposed to adding to it, and we remove the one that causes the least
error

(6.3) j = argm,inE(F - Xi)
I

and we

(6.4) remove Xj from F if E(F - Xj) < E(F)

We stop if removing a feature does not decrease the error. To decrease
complexity, we may decide to remove a feature if its removal causes only
a slight increase in error.

All the variants possible for forward search are also possible for back
ward search. The complexity of backward search has the same order of
complexity as forward search except that training a system with more
features is more costly than training a system with fewer features, and
forward search may be preferable especially if we expect many useless
features.

Subset selection is supervised in that outputs are used by the regressor
or classifier to calculate the error, but it can be used with any regression
or classification method. In the particular case of multivariate normals
for classification, remember that if the original d-dimensional class den
sities are multivariate normal, then any subset is also multivariate normal
and parametric classification can still be used with the advantage of k x k
covariance matrices instead of d x d.

In an application like face recognition, feature selection is not a good
method for dimensionality reduction because individual pixels by them
selves do not carry much discriminative information; it is the combina
tion of values of several pixels together that carry information about the
face identity. This is done by feature extraction methods which we dis
cuss next.

6.3 Principal Components Analysis

In projection methods, we are interested in finding a mapping from the
inputs in the original d-dimensional space to a new (k < d)-dimensional
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(6.6)

space, with minimum loss of information. The projection of x on the
direction of W is

Z = wTx

Principal components analysis (PCA) is an unsupervised method in that
it does not use the output information; the criterion to be maximized is
the variance. The principal component is WI such that the sample, after
projection on to WI, is most spread out so that the difference between
the sample points becomes most apparent. For a unique solution and to
make the direction the important factor, we require IlwI11 = 1. We know
from equation 5.14 that if ZI = w[x with Cov(x) = ~, then

Var(zI) = W[~WI

We seek WI such that Var(zI) is maximized subject to the constraint
that w[WI = 1. Writing this as a Lagrange problem, we have

maxw[~wI - De(W[WI - 1)
WI

Taking the derivative with respect to WI and setting it equal to 0, we
have

2~wI - 2DeWI = 0, and therefore ~WI = DeWI

which holds if WI is an eigenvector of ~ and De the corresponding eigen
value. Because we have

T~ TWI ",WI = DeW I WI = De

we choose the eigenvector with the largest eigenvalue for the variance
to be maximum. Therefore the principal component is the eigenvector
of the covariance matrix of the input sample with the largest eigenvalue,
Al = De.

The second principal component, wz, should also maximize variance,
be of unit length, and be orthogonal to WI. This latter requirement is so
that after projection Zz = wIx is uncorrelated with ZI. For the second
principal component, we have

(6.7) max wI~wz - De(wIWz - 1) -13(wIWI - 0)
Wz

Taking the derivative with respect to Wz and setting it equal to 0, we
have
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Premultiply by w[ and we get

2W[~w2-2aw[w2-~W[WI=0

Note that w[W2 = O. W[~W2 is a scalar, equal to its transpose Wr~WI
where, because WI is the leading eigenvector of ~, ~WI = Al WI- There
fore

Then ~ = 0 and equation 6.8 reduces to

~W2 = aW2

which implies that W2 should be the eigenvector of ~ with the second
largest eigenvalue, A2 = a. Similarly, we can show that the other dimen
sions are given by the eigenvectors with decreasing eigenvalues.

Because ~ is symmetric, for two different eigenvalues, the eigenvectors
are orthogonal. If ~ is positive definite (XT~X > 0, for all nonnull x), then
all its eigenvalues are positive. If ~ is singular, then its rank, the effective
dimensionality, is k with k < d and Ai, i = k + 1, ... ,dare 0 (Ai are sorted
in descending order). The k eigenvectors with nonzero eigenvalues are
the dimensions of the reduced space. The first eigenvector (the one with
the largest eigenvalue), WI, namely, the principal component, explains
the largest part of the variance; the second explains the second largest;
and so on.

We define

(6.9) z = WT(x - m)

where the k columns of Ware the k leading eigenvectors of 5, the esti
mator to~. We subtract the sample mean m from x before projection
to center the data on the origin. After this linear transformation, we get
to a k-dimensional space whose dimensions are the eigenvectors, and the
variances over these new dimensions are equal to the eigenvalues (see
figure 6.1). To normalize variances, we can divide by the square roots of
the eigenvalues.

Let us see another derivation: We want to find a matrix W such that
when we have z = WT x (assume without loss of generality that x are al
ready centered), we will get Cov(z) = D f where DJ is any diagonal matrix,
that is, we would like to get uncorrelated Zi.
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Figure 6.1 Principal components analysis centers the sample and then rotates
the axes to line up with the directions of highest variance. If the variance on 22

is too small, it can be ignored and we have dimensionality reduction from two to
one.

If we form a (d x d) matrix e whose ith column is the normalized
eigenvector c; of S, then eTc = I and

(6.10)

S secT

S(Cl,C2, ... ,Cd)eT

(SCI, SC2, .. " SCd)CT

(AI Cl, A2C2, , AdCd )CT

Alclcr + + AdCdCJ

eDeT

where D is a diagonal matrix whose diagonal elements are the eigenval
SPECTRAL ues, AI, ... , Ad. This is called the spectral decomposition of S. Since e is

DECOMPOSITION orthogonal and eeT= eTc = I, we can multiply on the left by eTand on
the right by e to obtain

(6.11) eTse = D

We know that if z = WTX, then Cov(z) = WTSW, which we would like
to be equal to a diagonal matrix. Then from equation 6.11, we see that
we can set W = C.

Let us see an example to get some intuition (Rencher 1995): Assume
we are given a class of students with grades on five courses and we want
to order these students. That is, we want to project the data onto one
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dimension, such that the difference between the data points become most
apparent. We can use PCA. The eigenvector with the highest eigenvalue
is the direction that has the highest variance, that is, the direction on
which the students are most spread out. This works better than taking
the average because we take into account correlations and differences in
variances.

In practice even if all eigenvalues are greater than zero, if 151 is small,
remembering that 151 = Of=1 Ai, we understand that some eigenvalues
have little contribution to variance and may be discarded. Then, we take
into account the leading k components that explain more than, for exam
ple, 90 percent, of the variance. When Ai are sorted in descending order,

PROPORTION OF the proportion of variance explained by the k principal components is
VARIANCE

If the dimensions are highly correlated, there will be a small number of
eigenvectors with large eigenvalues and k will be much smaller than d and
a large reduction in dimensionality may be attained. This is typically the
case in many image and speech processing tasks where nearby inputs (in
space or time) are highly correlated. If the dimensions are not correlated,
k will be as large as d and there is no gain through PCA.

SCREE GRAPH Scree graph is the plot of variance explained as a function of the num-
ber of eigenvectors kept (see figure 6.2). By visually analyzing it, one can
also decide on k. At the "elbow," adding another eigenvector does not
Significantly increase the variance explained.

Another possibility is to ignore the eigenvectors whose eigenvalues are
less than the average input variance. Given that Li Ai = Li sl (equal to
the trace of S, denoted as tr(S)), the average eigenvalue is equal to the
average input variance. When we keep only the eigenvectors with eigen
values greater than the average eigenvalue, we keep only those which
have variance higher than the average input variance.

If the variances of the original Xi dimensions vary considerably, they
affect the direction of the principal components more than the correla
tions, so a common procedure is to preprocess the data so that each
dimension has 0 mean and unit variance, before using PCA. Or, one may
use the eigenvectors of the correlation matrix, R, instead of the covari
ance matrix, S, for the correlations to be effective and not the individual
variances.
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Figure 6.2 (a) Scree graph. (b) Proportion of variance explained is given for the
Optdigits dataset from the UeI Repository. This is a handwritten digit dataset
with ten classes and sixty-four dimensional inputs. The first twenty eigenvectors
explain 90 percent of the variance.

peA explains variance and is sensitive to outliers: A few points distant
from the center would have a large effect on the variances and thus the
eigenvectors. Robust estimation methods allow calculating parameters in
the presence of outliers. A simple method is to calculate the Mahalanobis
distance of the data points, discarding the isolated data points that are
far away.

If the first two principal components explain a large percentage of the
variance, we can do visual analysis: We can plot the data in this two di
mensional space (figure 6.3) and search visually for structure, groups,
outliers, normality, and so forth. This plot gives a better pictorial de
scription of the sample than a plot of any two of the original variables.
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Optdigits after peA
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Figure 6.3 Optdigits data plotted in the space of two principal components.
Only the labels of hundred data points are shown to minimize the ink-to-noise
ratio.

By looking at the dimensions of the principal components, we can also
try to recover meaningful underlying variables that describe the data. For
example, in image applications where the inputs are images, the eigen
vectors can also be displayed as images and can be seen as templates for

EIGENFACES important features; they are typically named "eigenfaces," eigendigits,"
EIGENDIGlTS and so forth (Turk and Pentland 1991).

When d is large, calculating, storing, and processing S may be tedious.
It is possible to calculate the eigenvectors and eigenvalues directly from
data without explicitly calculating the covariance matrix (Chatfield and
Collins 1980).

We know from equation 5.15 that if x ~ Nd (J.l, ~), then after projection
WTx ~ Nk (WT1.1, WT~W). If the sample contains d-variate normals, then
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it projects to k-variate normals allowing us to do parametric discrimi
nation in this hopefully much lower dimensional space. Because z j are
uncorrelated, the new covariance matrices will be diagonal, and if they
are normalized to have unit variance, Euclidean distance can be used in
this new space, leading to a simple classifier.

Instance Xl is projected to the z-space as

Zl = WT(x l -IJ)

When W is an orthogonal matrix such that WWT = I, it can be backpro
jected to the original space as

Xl = Wz I + IJ

Xl is the reconstruction of Xl from its representation in the z-space.
It is known that among all orthogonal linear projections, PCA minimizes
the reconstruction error, which is the distance between the instance and
its reconstruction from the lower dimensional space:

L Ilx l
- xl1 2

I

The reconstruction error depends on how many of the leading com
ponents are taken into account. In a visual recognition application-for
example, face recognition-displaying Xl allows a visual check for infor
mation loss during PCA.

PCA is unsupervised and does not use output information. It is a one
group procedure. However, in the case of classification, there are multiple
groups. Karhunen-Loeve expansion allows using class information; for ex
ample, instead of using the covariance matrix of the whole sample, we can
estimate separate class covariance matrices, take their average (weighted
by the priors) as the covariance matrix, and use its eigenvectors.

In common principal components (Flury 1988), we assume that the prin
cipal components are the same for each class whereas the variances of
these components differ for different classes:

Si = CDiCT

This allows pooling data and is a regularization method whose com
plexity is less than that of a common covariance matrix for all classes,
while still allowing differentiation of Si. A related approach is flexible
discriminant analysis (Hastie, Tibshirani, and Buja 1994), which does a
linear projection to a lower-dimensional space where all features are un
correlated and then uses a minimum distance classifier.
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6.4 Factor Analysis

In PCA, from the original dimensions Xi, i = 1, ... ,d, we form a new set
of variables z that are linear combinations of Xi:

z = W T (X -IJ)

FACTOR ANALYSIS In factor analysis (FA), we assume that there is a set of unobservable,
LATENT FACTORS latent factors Zj, j = 1, ... , k, which when acting in combination generate

x. Thus the direction is opposite that of PCA (see figure 6.4). The goal is
to characterize the dependency among the observed variables by means
of a smaller number of factors.

Suppose there is a group of variables that have high correlation among
themselves and low correlation with all the other variables. Then there
may be a single underlying factor that gave rise to these variables. If the
other variables can be similarly grouped into subsets, then a few factors
can represent these groups of variables. Though factor analysis always
partitions the variables into factor clusters, whether the factors mean
anything, or really exist, is open to question.

FA, like PCA, is a one-group procedure and is unsupervised. The aim is
to model the data in a smaller dimensional space without loss of infor
mation. In FA, this is measured as the correlation between variables.

As in PCA, we have a sample X = {XC} t drawn from some unknown
probability density with E[x] = IJ and Cov(x) = ~. We assume that
the factors are unit normals, E[zj] = O,Var(zj) = 1, and are uncorre
lated, COV(Zi, Zj) = 0, i f= j. To explain what is not explained by the
factors, there is an added source for each input which we denote by Ei.
It is assumed to be °mean, E[E;] = 0, and have some unknown vari
ance, Var(E;) = !/Ji. These specific sources are uncorrelated among them
selves, COV(Ei, Ej) = 0, i f= j, and are also uncorrelated with the factors,
COV(Ei,Zj) = 0, Vi,j.

FA assumes that each input dimension, Xi, i = 1, ... , d, can be written
as a weighted sum of the k < d factors, Zj,j = 1, ... , k, plus the residual
term (see figure 6.5):

Xi - Pi VnZl + Vi2z2 + ... + VikZk + Ei, Vi = 1, ... ,d
k

(6.13) Xi - Pi L VijZj + Ei
j~l

This can be written in vector-matrix form as

(6.14) x-IJ=Vz+€
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Figure 6.4 Principal components analysis generates new variables that are lin
ear combinations of the original input variables. In factor analysis, however,
we posit that there are factors that when linearly combined generate the input
variables.

where V is the d x k matrix of weights, called factor loadings. From now
on, we are going to assume that 11 = 0 without loss of generality; we can
always add 11 after projection. Given that Var(zj) = 1 and Var(€i) = l/Ji

(6.15) Var(xi) = Vi
2
1 + vl2 + ... + vlk + l/Ji

2'.~=1 v0 is the part of the variance explained by the common factors and
l/Ji is the variance specific to Xi.

In vector-matrix form, we have

(6.16) ~ = Cov(x)

(6.17)

Cov(Vz + €)

Cov(Vz) + Cov(€)

VCov(z)VT + 'Y

VVT + 'Y

where 'Y is a diagonal matrix with l/Ji on the diagonals. Because the fac
tors are uncorrelated unit normals, we have Cov(z) = I. With two factors,
for example,

If Xl and X2 have high covariance, then they are related through a fac
tor. If it is the first factor, then VII and V21 will be both high; if it is the
second factor, then Vl2 and V22 will be both high. In either case, the sum
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x,

Figure 6.5 Factors are independent unit normals that are stretched, rotated,
and translated to make up the inputs.

Vll VZI + VIZVZZ will be high. If the covariance is low, then XI and Xz de
pend on different factors and in the products in the sum, one term will
be high and the other will be low and the sum will be low.

We see that

COV(Xl,ZZ) = COV(VIZZZ,ZZ) = vlzVar(zz) = VIZ

Thus Cov(x, z) = V, and we see that the loadings represent the corre
lations of variables with the factors.

Given 5, the estimator of ~, we would like to find V and '¥ such that

5 = VVT + '¥

If there are only a few factors, that is, if V has few columns, then we
have a simplified structure for 5, as V is d x k and'¥ has d values, thus
reducing the number of parameters from d Z to d . k + d.

Since '¥ is diagonal, covariances are represented by V. Note that PCA
does not allow a separate '¥ and it tries to account for both the covari
ances and the variances. When all l/Ji are equal, namely, '¥ = l/JI, we get

PROBABILISTIC PCA probabilistic peA (Tipping and Bishop 1997) and the conventional PCA is
when l/Ji are O.

Let us now see how we can find the factor loadings and the specific
variances: Let us first ignore '¥. Then, from its spectral decomposition,
we know that we have

5 = CDCT = CD1/zD1/ZC = (CD1/Z)(CD1/Z)T

where we take only k of the eigenvectors by looking at the proportion of
variance explained so that C is the d x k matrix of eigenvectors and D I/Z
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is the k x k diagonal matrix with the square roots of the eigenvalues on
its diagonals. Thus we have

(6.18) y = CD1/ 2

We can find t/Jj from equation 6.15 as

k

(6.19) t/Ji = s1 - L Vi~
j=l

Note that when Y is multiplied with any orthogonal matrix, namely,
having the property TIT = I, that is another valid solution and thus the
solution is not unique.

S = (VT) (VT) T = VITTyT = VIyT = VVT

If T is an orthogonal matrix, the distance to the origin does not change.
If z = Tx, then

ZTZ = (TX)T(Tx) = xTTTTx = xTx

Multiplying with an orthogonal matrix has the effect of rotating the
axes which allows us to choose the set of axes most interpretable (Rencher
1995). In two dimensions,

T = ( C?s 1> - sin 1> )
sm1> cos 1>

rotates the axes by 1>. There are two types of rotation: In orthogonal
rotation the factors are still orthogonal after the rotation, and in oblique
rotation the factors are allowed to become correlated. The factors are
rotated to give the maximum loading on as few factors as possible for
each variable, to make the factors interpretable. However, interpretability
is subjective and should not be used to force one's prejudices on the data.

There are two uses of factor analysis: It can be used for knowledge
extraction when we find the loadings and try to express the variables
using fewer factors. It can also be used for dimensionality reduction
when k < d. We already saw how the first one is done. Now, let us see
how factor analysis can be used for dimensionality reduction.

When we are interested in dimensionality reduction, we need to be able
to find the factor scores, Zj, from Xi. We want to find the loadings Wji

such that
d

(6.20) Zj = LWjiXi + fi,j = 1, ... , k
;=1
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where Xi are centered to have 0 mean. In vector form, for observation t,
this can be written as

Zl = wT Xl + €, 'lit = 1, ... , N

This is a linear model with d inputs and k outputs. Its transpose can
be written as

(ZI)T = (XI)TW + €T, 'lit = 1, ... ,N

Given that we have a sample of N observations, we write

(6.21) Z = XW + 3

where Z is N x k of factors, X is N x d of (centered) observations, and 3
is N x k of zero mean noise. This is multivariate linear regression with
multiple outputs, and we know from section 5.8 that W can be found as

W = (XTX)-lXTZ

but we do not know Z; it is what we would like to calculate. We multiply
and divide both sides by N - 1 and obtain

W = (N - 1) (XTX)-1 XTZ
N-l

(
XTx )-1~
N-l N-l

(6.22) S-1V

and placing equation 6.22 in equation 6.21, we write

(6.23) Z = XW = XS-1V

assuming that S is nonsingular. One can use R instead of S when Xi are
normalized to have unit variance.

For dimensionality reduction, FA offers no advantage over peA ex
cept the interpretability of factors allowing the identification of common
causes, a simple explanation, and knowledge extraction. For example, in
the context of speech recognition, x corresponds to the acoustic signal,
but we know that it is the result of the (nonlinear) interaction of a small
number of articulators, namely, jaw, tongue, velum, lips, and mouth,
which are positioned appropriately to shape the air as it comes out of the
lungs and generate the speech sound. If a speech signal could be trans
formed to this articulatory space, then recognition would be much easier.
This is one of the current research directions for speech recognition.
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Let us say for N points, we are given the distances between pairs of
points, dij, i, j = 1, ... , N. We do not know the exact coordinates of
the points, or their dimensionality, or how the distances are calculated.

MULTIDIMENSIONAL Multidimensional scaling (MDS) is the method for placing these points
SCALING in a low-for example, two-dimensional-space such that the Euclidean

distance between them in the two-dimensional space is as close as pos
sible to dij, the given distances in the original space. Thus it requires a
projection from some unknown dimensional space to for example, two
dimensions.

In the archetypical example of multidimensional scaling, we take the
road travel distances between cities, and after applying MDS, we get an
approximation to the map. The map is distorted such that in parts of
the country with geographical obstacles like mountains and lakes where
the road travel distance deviates much from the direct bird-flight path
(Euclidean distance), the map is stretched out to accommodate longer
distances (see figure 6.6). The map is centered on the origin, but the so
lution is still not unique. We can get any rotated or mirror image version.

MDS can be used for dimensionality reduction by calculating pairwise
Euclidean distances in the d-dimensional x space and giving this as input
to MDS, which then projects it to a lower-dimensional space so as to
preserve these distances.

Let us say we have a sample X = {Xl}f:,l as usual, where Xl E 2td . For
two points rand s, the squared Euclidean distance between them is

(6.24)

d d d d

Ilxr - xS ll 2 = "(x~ - XS )2 = "(Xr)2 - 2 " xrxs + "(XS )2LJ J LJ LJJ LJ
j=I j=l j=l j=l

brr + bss - 2brs

where brs is defined as

d

(6.25) brs = 2: xjxj
j=l

To constrain the solution, we center the data at the origin and assume

N

2: xj = 0, V j = 1, ... , d
1= I
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Figure 6.6 Map of Europe drawn by MDS. Cities include Athens, Berlin, Dublin,
Helsinki, Istanbul, Lisbon, London, Madrid, Moscow, Paris, Rome, and Zurich.
Pairwise road travel distances between these cities are given as input, and MDS
places them in two dimensions such that these distances are preserved as well
as possible.

Then, summing up equation 6.24 on r, 5, and both r, 5, and defining

N

T= 'Lbtt = 'L'L(xj)2
1=1 1 j

we get

'Ld;s T + Nbss
r

'Ld;s Nbrr + T
s

'L'Ld;s 2NT
r s



6.5 Multidimensional Scaling 123

(6.26)

(6.27)

(6.28)

SAMMON MAPPING

(6.29)

When we define

2 1" 2 2 1" 2 2 1 "" 2d. s = N L drs , dr. = N L drs , d•• = N2 L L drs
r s r s

and using equation 6.24, we get

b rs = ~ (d;. + d;s - d;. - d;s)

Having now calculated brs , and knowing that B = XXT as defined in
equation 6.25, we look for an approximation. We know from the spectral
decomposition that X = C01/ 2 can be used as an approximation for X,
where C is the matrix whose columns are the eigenvectors of Band 0 1/ 2

is a diagonal matrix with square roots of the eigenvalues on the diagonals.
Looking at the eigenvalues of B, we decide on a dimensionality k lower
than d (and N), as we did in PCA and FA. Let us say C j are the eigenvectors
with Aj as the corresponding eigenvalues. Note that Cj is N-dimensional.
Then we get the new dimensions as

zj = jA;cj,j = 1, ... ,k,t = 1, ... ,N

That is, the new coordinates of instance t are given by the tth elements
of the eigenvectors, C j, j = 1, ... , k, after normalization.

It has been shown (Chatfield and Collins 1980) that the eigenvalues of
XXT (N x N) are the same as those of XTX (d x d) and the eigenvectors
are related by a simple linear transformation. This shows that PCA does
the same work with MDS and does it more cheaply. PCA done on the cor
relation matrix rather than the covariance matrix equals doing MDS with
standardized Euclidean distances where each variable has unit variance.

In the general case, we want to find a mapping z = g(xI8), where
z E ~~k, X E ~d, and 9 (x I8) is the mapping function from d to k dimen
sions defined up to a set of parameters 8. Classical MDS we discussed
previously corresponds to a linear transformation

z=g(xIW)=WTx

but in a general case, a nonlinear mapping can also be used; this is called
Sammon mapping. The normalized error in mapping is called the Sam
mon stress and is defined as

(1lzr - zS11 - Ilxr - xSII)2
EWIX) L Ilxr _ xSl1 2

r,s

L (1Ig(xr I8) - g(xSI8)11 - Ilxr - xSII)2
Ilxr - xS ll 2

r,s
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One can use any regression method for g( ·Ie) and estimate e to mini
mize the stress on the training data X. If g(.) is nonlinear in x, this will
then correspond to a nonlinear dimensionality reduction.

In the case of classification, one can include class information in the
distance (see Webb 1999) as

d~s = (1 - ex)drs + excrs

where Crs is the "distance" between the classes x r and XS belong to. This
inter-class distance should be supplied subjectively and ex is optimized
using cross-validation.

6.6 linear Discriminant Analysis

(6.31) m2

UNEAR DISCRIMINANT Linear discriminant analysis (LDA) is a supervised method for dimension-
ANALYSIS ality reduction for classification problems. We start with the case where

there are two classes, then generalize to K > 2 classes.
Given samples from two classes Cl and C2, we want to find the direc

tion, as defined by a vector w, such that when the data are projected onto
w, the examples from the two classes are as well separated as possible.
As we saw before,

(6.30) z = w T X

is the projection of x onto wand thus is a dimensionality reduction from
d to l.

ml and ml are the means of samples from Cl before and after projec
tion, respectively. Note that ml E \}td and ml E \}t. We are given a sample
X = {xt,rt } such that rt = 1 if x t E Cl and rt = 0 if x t E C2.

Lt wTxtrt T
'\' I = W ml
L.t r

Lt w TXt(l - rt ) T
Lt(l - rt) = w m2

SCAITER The scatter of samples from Cl and C2 after projection are

sf .z.':rWTxt - ml)2 rt

t

(6.32) I(w T xt - m2)2(l- rt )
t
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Figure 6.7 Two-dimensional, two-class data projected on w.

125

FISHER'S LINEAR

DISCRIMINANT

(6.33)

(6.34)

After projection, for the two classes to be well separated, we would like
the means to be as far apart as possible and the examples of classes be
scattered in as small a region as possible. So we want 1m1 - mzl to be
large and sf + s~ to be small (see figure 6.7). Fisher's linear discriminant
is w that maximizes

J(w) = (ml - m2)Z

sf + s~

Rewriting the numerator, we get

(w T ml - w T mz)z

w T(ml-mZ)(ml-m2)Tw

WTSBW

BETWEEN-CLASS where SB = (m I - mz) (ml - mz) T is the between-class scatter matrix. The
SCATfER MATRIX denominator is the sum of scatter of examples of classes around their

means after projection and can be rewritten as

sf L(wTxt -mdZrt

t

L wT(x t - ml)(xt - ml)Twrt
t
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(6.35)

(6.37)

(6.38)

where

(6.36) SI = Lrt(xt - md(xt - mdT

I

WITHIN-ClASS is the within-class scatter matrix for CI. SI/ It rt is the estimator of ~I.

SCATTER MATRIX Similarly s~ = WTS2W with Sz = I,(l - rl)(x t - mz)(xt - mz)T, and we
get

sf + s~ = wTSww

where Sw = SI + S2 is the total within class scatter. Note that sf + s~

divided by the total number of samples is the variance of the pooled
data. Equation 6.33 can be rewritten as

J(w) = WTSBW = Iw
T

(ml - m2) IZ
wTSww wTSww

Taking the derivative of J with respect to wand setting it equal to 0, we
get

W
T

(m I -m2)(2( ) wT(ml-mz)S ) 0
TS m1 - m2 - TS WW =

W wW w wW

Given that w T (ml - mz) /wTSww is a constant, we have

w = cS»hml - mz)

where c is some constant. Because it is the direction that is important for
us and not the magnitude, we can just take c = 1 and find w.

Remember that when P(XICi) ~ N(lIi' ~), we have a linear discrimi
nant where w = ~-l (Ill - liz), and we see that Fisher's linear discrimi
nant is optimal if the classes are normally distributed. Under the same
assumption, a threshold, wo, can also be calculated to separate the two
classes. But Fisher's linear discriminant can be used even when the classes
are not normal. We have projected the samples from d dimensions to one,
and any classification method can be used afterward.

In the case of K > 2 classes, we want to find the matrix W such that

(6.39) z = WT
X

where z is k-dimensional and W is d x k. The within-class scatter matrix
for Ci is

(6.40) Sj = L r{ (Xl - mi )(x t - m;) T

r
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(6.42)

where rl = 1 if xt E C; and 0 otherwise. The total within-class scatter is

K

(6.41) Sw = IS;
;=1

When there are K > 2 classes, the scatter of the means is calculated as
how much they are scattered around the overall mean

1 K
m = - Im;

K ;=1

and the between-class scatter matrix is
K

(6.43) SB = I N;(m; - m)(m; - m)T
;=1

(6.44)

6.7

with N; = It rl. The between-class scatter matrix after projection is
WTSBW and the within-class scatter matrix after projection is WTSwW.
These are both k x k matrices. We want the first scatter to be large, that
is, after the projection, in the new k-dimensional space we want class
means to be as far apart from each other as possible. We want the sec
ond scatter to be small, that is, after the projection, we want samples
from the same class to be as close to their mean as possible. For a scatter
(or covariance) matrix, a measure of spread is the determinant, remem
bering that the determinant is the product of eigenvalues and that an
eigenvalue gives the variance along its eigenvector (component). Thus we
are interested in the matrix W that maximizes

](W) = IWTSBWI
IWTSwWI

The largest eigenvectors of S~y1SB are the solution. SB is the sum of K
matrices of rank 1, namely, (m; - m)(m; - m)T, and only K - 1 of them
are independent. Therefore, SB has a maximum rank of K - 1 and we
take k = K - 1. Thus we define a new lower, (K - I)-dimensional space
where the discriminant is then to be constructed (see figure 6.8). Though
LDA uses class separability as its goodness criterion, any classification
method can be used in this new space for estimating the discriminants.

Notes

A survey of feature selection algorithms is given in Devijer and Kittler
1982. Subset selection in regression is discussed in Miller 1990. The for-
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Figure 6.8 Optdigits data plotted in the space of the first two dimensions found
by LOA. Comparing this with figure 6.3, we see that LOA, as expected, leads to a
better separation of classes than PCA. Even in this two-dimensional space (there
are nine), we can discern separate clouds for different classes.

ward and backward search procedures we discussed are local search pro
cedures. Fukunaga and Narendra (1977) proposed a branch and bound
procedure. At considerably more expense, one can use a stochastic pro
cedure like simulated aImealing or genetic algorithms to search more
widely in the the search space. In the case of classification, instead of
training a classifier and testing it at each step, one can use heuristics,
like the one used in linear discriminant analysis, to measure the quality
of the new space in separating classes from each other (McLachlan 1992).

Projection methods work with numeric inputs, and discrete variables
should be represented by 0/1 dummy variables, whereas subset selection
can use discrete inputs directly. Finding the eigenvectors and eigenvalues
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is quite straightforward; an example of a code is given in Press et al. 1992.
Factor analysis was introduced by the British psychologist Charles Spear
man to find the single factor for intelligence which explains the correla
tion between scores on various intelligence tests. The existence of such
a single factor, called 9, is subject to discussion. More information on
multidimensional scaling can be found in Cox and Cox 1994.

The projection methods we discussed are batch procedures in that they
require that the whole sample be given before the projection directions
are found. Mao and Jain (1995) discuss online procedures for doing PCA
and LDA, where instances are given one by one and updates are done as
new instances arrive.

The linear projection methods discussed in this chapter have a limited
scope. In many applications, features interract in a nonlinear manner,

PRINCIPAL CURVES requiring nonlinear feature extraction methods. Principal curves (Hastie
and Stuetzle 1989) allow a nonlinear projection and find a smooth curve,
as opposed to a line, that passes through the "middle" of a group of data.
Another possibility in doing a nonlinear projection is when the estimator
in Sammon mapping is taken as a nonlinear function, for example, a mul
tilayer perceptron (section 11.11) (Mao and Jain 1995). It is also possible
but much harder to do nonlinear factor analysis. When the models are
nonlinear, it is difficult to come up with the right nonlinear model. One
also needs to use complicated optimization and approximation methods
to solve for the model parameters.

There is a trade-off between feature extraction and decision making.
If the feature extractor is good, the task of the classifier (or regressor)
becomes trivial, for example, when the class code is extracted as a new
feature from the existing features. On the other hand, if the classifier
is good enough, then there is no need for feature extraction; it does its
automatic feature selection or combination internally. We live between
these two ideal worlds.

There exist algorithms that do some feature selection internally, though
in a limited way. Decision trees (chapter 9) do feature selection while
generating the decision tree, and multilayer perceptrons (chapter 11) do
nonlinear feature extraction in the hidden nodes. We expect to see more
development along this line in coupling feature extraction and the later
step of classification/regression.
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6.8 Exercises

1. Assuming that the classes are normally distributed, in subset selection, when
one variable is added or removed, how can the new discriminant be calculated
quickly? For example, how can the new S~Jw be calculated from S~/~?

2. Using Optdigits from the UCI repository, implement PCA. For various number
of eigenvectors, reconstruct the digit images and calculate the reconstruction
error (equation 6.12).

3. Plot the map of your state/country using MDS, given the road travel distances
as input.

4. In Sammon mapping, if the mapping is linear, namely, g{xIW) = WTX, how
can W that minimizes the Sammon stress be calculated?
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7 Clustering

In the parametric approach, we assumed that the sample comes
from a known distribution. In cases when such an assumption is
untenable, we relax this assumption and use a semiparametric ap
proach which allows a mixture ofdistributions to be used for estimat
ing the input sample. Clustering methods allow learning the mixture
parameters from data. In addition to probabilistic modeling, we dis
cuss vector quantization and hierarchical clustering.

7.1 Introduction

IN CHAPTERS 4 and 5, we discussed the parametric method for density
estimation where we assumed that the sample X is drawn from some
parametric family, for example, Gaussian. In parametric classification,
this corresponds to assuming a certain density for the class densities
p (x IC; ). The advantage of any parametric approach is that given a model,
the problem reduces to the estimation of a small number of parameters,
which, in the case of density estimation, are the sufficient statistics of the
density, for example, the mean and covariance in the case of Gaussian
densities.

Though parametric approaches are used quite frequently, assuming a
rigid parametric model may be a source of bias in many applications
where this assumption does not hold. We thus need more flexible models.
In particular, assuming Gaussian density corresponds to assuming that
the sample, for example, instances of a class, forms one single group in
the d-dimensional space, and as we saw in chapter 5, the center and the
shape of this group is given by the mean and the covariance respectively.

In many applications, however, the sample is not one group; there may
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7 Clustering

be several groups. Consider the case of optical character recognition:
There are two ways of writing the digit 7; the American writing is '7',
whereas the European writing style has a horizontal bar in the middle (to
tell it apart from the European '1' which keeps the small stroke on top in
handwriting). In such a case, when the sample contains examples from
both continents, the class for the digit 7 should be represented as the
disjunction of two groups. If each of these groups can be represented by
a Gaussian, the class can be represented by a mixture of two Gaussians,
one for each writing style.

A similar example is in speech recognition where the same word can be
uttered in different ways, due to different pronounciation, accent, gender,
age, and so forth. Thus when there is not a single, universal prototype,
all these different ways should be represented in the density to be statis
tically correct.

We call this approach semiparametric density estimation, as we still
assume a parametric model for each group in the sample. We discuss
the nonparametric approach in chapter 8, which is used when there is no
structure to the data and even a mixture model is not applicable. In this
chapter, we focus on density estimation and defer supervised learning to
chapter 12.

Mixture Densities

The mixture density is written as

k

p(x) = I p(xlydP(Yi)
i=1

where Yi are the mixture components. They are also called group or clus
ters. p (x IYi) are the component densities and P(y;) are the mixture pro
portions. k, the number of components, is a hyperparameter and should
be specified beforehand. Given a sample and k, learning corresponds to
estimating the component densities and proportions. When we assume
that the component densities obey a parametric model, we need only
estimate their parameters. If the component densities are multivariate
Gaussian, we have p(x!y;) ~ .N(lJi'~;)'and <I> = {P(Yi),lJi,~;}7=1 are the
parameters that should be estimated from the iid sample X = {xt}t.
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Si

mi

(7.2) F(C;)

Parametric classification is a bona fide mixture model where groups,
Yi, correspond to classes, Ci, component densities p(xlYd correspond to
class densities P(XICi) and P(Yi) correspond to class priors, P(Ci):

K

p(x) = L P(XICi)P(Ci)
i=l

In this supervised case, we know how many groups there are and learn
ing the parameters is trivial because we are given the labels, namely,
which instance belongs to which class (component). We remember from
chapter 5 that when we are given the sample X = {x t , r t }~=1' where r[ = 1
if xt E Ci and 0 otherwise, the parameters can be calculated using max
imum likelihood. When each class is Gaussian distributed, we have a
Gaussian mixture, and the parameters are estimated as

Lt r[
N

Lt r[ xt
Lt r[

Lt r[ (x t - mi)(xt - mi)T

Lt r[

The difference in this chapter is that the sample is X = {x t } t: We have
an unsupervised learning problem. We are given only x t and not the labels
r t , that is, we do not know which x t comes from which component. So we
should estimate both: First, we should estimate the labels, r[. the compo
nent that a given instance belongs to; and second, once we estimate the
labels, we should estimate the parameters of the components given the
set of instances belonging to them. We are first going to discuss a simple
algorithm, k-means clustering, for this purpose and later on show that it
is a special case of the Expectation-Maximization algorithm.

7.3 k-Means Clustering

Let us say we have an image that is stored with 24 bits/pixel and can have
up to 16 million colors. Assume we have a color screen with 8 bits/pixel
that can display only 256 colors. We want to find the best 256 colors
among all 16 million colors such that the image using only the 256 colors

COLOR QUANTIZATION in the palette looks as close as possible to the original image. This is color
quantization where we map from high to lower resolution. In the general
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case, the aim is to map from a continuous space to a discrete space; this
VECTOR process is called vector quantization.

QUANTIZATION Of course we can always quantize uniformly but this wastes the col-
ormap by assigning entries to colors not existing in the image, or would
not assign extra entries to colors frequently used in the image. For ex
ample if the image is a seascape, we expect to see many shades of blue
and maybe no red. So the distribution of the colormap entries should
reflect the original density as close as possible placing many entries in
high-density regions, discarding regions where there is no data.

REFERENCE VECTORS Let us say we have a sample of X = {Xl W=l' We have k reference
vectors, mj,j = 1, ... , k. In our example of color quantization, Xl are the
image pixel values in 24 bits and mj are the color map entries also in 24
bits, with k = 256.

Assume for now that we somehow have the m j values; we will discuss
how to learn them shortly. Then in displaying the image, given the pixel,
Xl, we represent it with the most similar entry, mi in the color map,
satisfying

IIxl
- mill = min Ilxl

- mjll
J

CODEBOOK VECTORS

CODE WORDS

COMPRESSION

RECONSTRUCTION

ERROR

(7.3)

That is, instead of the original data value, we use the closest value we
have in the alphabet of reference vectors. mi are also called codebook
vectors or code words, because this is a process of encoding/decoding
(see figure 7.1): Going from Xl to i is a process of encoding the data using
the codebook of mi, i = 1, ... , k and on the receiving end, generating mi
from i is decoding. Quantization also allows compression: For example,
instead of using 24 bits to store (or transfer over a communication line)
each Xl, we can just store/transfer its index i in the colormap using 8 bits
to index anyone of 256, and we get a compression rate of almost 3; there
is also the color map to store/transfer.

Let us see how we can calculate m;: When Xl is represented by mi, there
is an error that is proportional to the distance, Ilx l - mill. For the new
image to look like the original image, we should have these distances as
small as possible for all pixels. The total reconstruction error is defined
as

E({md}=lIX) = L 2:)f Ilxl
- mill 2

I i
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Figure 7.1 Given x, the encoder sends the index of the closest code word and
the decoder generates the code word with the received index as x'. Error is
IIx' - x11 2•

where

(7.4) bf = {
1 if IIx t - mill = minj IIx t - mjll° otherwise

k-MEANS CLUSTERING

(7.5)

The best reference vectors are those that minimize the total reconstruc
tion error. bf also depend on mi and we cannot solve this optimization
problem analytically. We have an iterative procedure named k-means
clustering for this: First, we start with some mi initialized randomly.
Then at each iteration, we first use equation 7.4 and calculate bf for all
xt, which are the estimated labels; if bf is 1, we say that xt belongs to the
group of mi. Then, once we have these labels, we minimize equation 7.3.
Taking its derivative with respect to mi and setting it to 0, we get

Lt bfxt
mi = Ltbf

The reference vector is set to the mean of all the instances that it rep
resents. Note that this is the same as the formula for the mean in equa
tion 7.2, except that we place the estimated labels bf in place of the labels
rt. This is an iterative procedure because once we calculate the new mi,
bf change and need to be recalculated which in turn affect mi. These two
steps are repeated until mi stabilize (see figure 7.2). The pseudocode of
the k-means algorithm is given in figure 7.3.

One disadvantage is that this is a local search procedure and the fi
nal mi highly depend on the initial mi. There are various methods for
initialization:

• One can simply take randomly selected k instances as the initial mi.
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Figure 7.2 Evolution of k-means, Crosses indicate center positions. Data points
are marked depending on the closest center.

• The mean of all data can be calculated and small random vectors may
be added to the mean to get the k initial mi,

• One can calculate the principal component, divide its range into k
equal intervals. partitioning the data into k groups, and then take the
means of these groups as the initial centers,

After convergence, all the centers should cover some subset of the data
instances and be useful, therefore it is best to initialize centers where we
believe there is data.

There are also algorithms for adding new centers incrementally or delet
LEADER CLUSTER ing empty ones, In leader cluster algorithm, an instance that is far away

ALGORITHM from existing centers (defined by a threshold value) causes the creation of
a new center at that point (We discuss such a neural network algorithm,
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Initialize mi, i = 1, ... , k, for example, to k random x t

Repeat
For all xt EX

b~ _ {I if [Ixt - mill = minj Ilxt
- mjll

I 0 otherwise
For all mj,i = 1, ... ,k

mi - Ltbfxt / Ltbf
Until mi converge

Figure 7.3 k-means algorithm.
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ART, in chapter 12). Or, a center that covers a large number of instances
(Lt bf / N > B) can be split into two (by adding a small random vector to
one of the two copies to make them different). Similarly, a center that
covers too few instances can be removed and restarted from some other
part of the input space.

k-means algorithm is for clustering, that is, for finding groups in the
data, where the groups are represented by their centers, which are the
typical representatives of the groups. Vector quantization is one applica
tion of clustering, but clustering is also used for preprocessing before a
later stage of classification or regression. Given x t , when we calculate bf,

we do a mapping from the original space to the k-dimensional space, that
is, to one of the corners of the k-dimensional hypercube. A regression or
discriminant function can then be learned in this new space; we discuss
such methods in chapter 12.

7.4 Expectation-Maximization Algorithm

In k-means, we approached clustering as the problem of finding codebook
vectors that minimize the total reconstruction error. In this section, our
approach is probabilistic and we look for the component density parame
ters that maximize the likelihood of the sample. Using the mixture model
of equation 7.1, the log likelihood of sample X = {xt}t is

(7.6)

L(<I>IX) lognp(x t I<I»
t

k

Llog L P(Xtl(ji)P«(j;)
t i=l
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where <I> includes the priors P((ji) and also the sufficient statistics of the
component densities p (Xl I(j;). Unfortunately, we cannot solve for the
parameters analytically and need to resort to iterative optimization.

ExPECTATlON- The Expectation-Maximization (EM) algorithm (Dempster, Laird, and Ru-
MAxIMIZATION bin 1977; Redner and Walker 1984) is used in maximum likelihood esti

mation where the problem involves two sets of random variables of which
one, X, is observable and the other, Z, is hidden. The goal of the algo
rithm is to find the parameter vector <I> that maximizes the likelihood of
the observed values of X, L(<I>IX). But in cases where this is not feasi
ble, we associate the extra hidden variables Z and express the underlying
model using both, to maximize the likelihood of the joint distribution of
X and Z, the complete likelihood Lc(<I>IX, Z).

Since the Z values are not observed, we cannot work directly with the
complete data likelihood L c , instead we work with its expectation, Q,
given X and the current parameter values <1>/, where I indexes iteration.
This is the expectation (E) step of the algorithm. Then in the maximization
(M) step, we look for the new parameter values, <1>/+ 1, that maximize this.
Thus

E-step

M-step

Q (<I> 1<1>/) = E[Lc (<I> IX, Z) IX, <1>/]

<1>/+1 = argmaxQ(<I>I<I>l)
<I>

Dempster, Laird, and Rubin (1977) proved that an increase in Q implies
an increase in the incomplete likelihood

In the case of mixtures, the hidden variables are the sources of ob
servations, namely, which observation belongs to which component. If
these were given, for example, as class labels in a supervised setting, we
would know which parameters to adjust to fit that data point. The EM
algorithm works as follows: In the E-step we estimate these labels given
our current knowledge of components, and in the M-step we update our
class knowledge given the labels estimated in the E-step. These two steps
are the same as the two steps of k-means; calculation of bf (E-step) and
reestimation of mi (M-step).

We define a vector of indicator variables Zl = {z\, ... ,zkJ where zf = 1
if Xl belongs to cluster (jj, and 0 otherwise. z is a multinomial distribu-
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tion from k categories with prior probabilities IT;. shorthand for P(y; ).

Then

k

(7.7) P(zt) = Il IT:!
;=1

The likelihood of an observation Xl is equal to its probability specified by
the component that generated it:

k

(7.8) p(xt Iz t ) = np;(xt)zf
;=1

p; (x t ) is shorthand for p(x t Iy;). The joint density is

p(xt,zt) = P(zt)p(xtlz t )

and the complete data likelihood of the iid sample X is

L log p(x t , zt 1<1»
t

LlogP(ztl<l» + logp(xtlzt,<I»
t

LLzf[log IT; + log p; (x t
I<1» ]

t ;

E-step: We define

Q (<I> 1<1>1) _ E [log P(X, Z) IX, <1>1]

E [Lc (<I>IX,Z)IX,<I>I)]

L L E[zf IX, <1>' ][log IT; + log p; (x t l<l>I)]
t ;

where

E[zf Ix t , <1>1] x t are iid

p(zf = llxt ,<I>I) zf is a 0/1 random variable

p(xtlzf = 1,<I>I)p(zf = 11<1>1)
P(x t 1<1>1) Bayes' rule

p; (x t 1<1>/) IT;

Ij Pj(Xt l<l>I)ITj
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(7.9)

(7.10)

(7.11)

(7.12)

(7.13)
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p(x t I(,]i, <l>1)P«(,]d
L.j p(X t l(,]j,<I>I)P«(,]j)

P«(']i1X t
, <1>1) == h~

We see that the expected value of the hidden variable, E[zfJ, is the
posterior probability that xt is generated by component (,]i. Because this
is a probability, it is between 0 and 1 and is a "soft" label, as opposed to
the 0/1 "hard" label of k-means.

M-step: We maximize Q to get the next set of parameter values <1>1+ I:

<1>1+1 = argmax Q(<I>I<I>I)
<I>

which is

I I h~ [log IT; + log Pi (x t
1<1>') ]

t i

I I h~ log ITi + I I h~ log Pi (Xl 1<1>/)
tit i

The second term is independent of ITi and using the constraint that
L.; ITi = 1 as the Lagrangian, we solve for

'V IT< ~ PPOg IT; - ,\ ( ~ IT; - 1) ~ 0
and get

L.t h}
IT; =--

N

which is analogous to the calculation of priors in equation 7.2.
Similarly, the first term of equation 7.10 is independent of the compo

nents and can be dropped while estimating the parameters of the com
ponents. We solve for

V' <I> I I h}logp; (x t
1<1» = 0

t ;

If we assume Gaussian components, Pi (Xl 1<1> ) ~ N (mi, Si), the M-step
is

L.t h~xt
L.t h}

L.t h~(xt - ml+1)(x t - ml+1)T

L.t h~
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Figure 7.4 Data points and the fitted Gaussians by EM, initialized by one k
means iteration of figure 7.2. Unlike in k-means, as can be seen, EM allows
estimating the covariance matrices. The data points labeled by greater hi, the
contours of the estimated Gaussian densities, and the separating curve of hi =
0.5 (dashed line) are shown.

where, for Gaussian components in the E-step, we calculate

(7.14)
h t = 7T;lS;I-1/2 exp[ -(lj2)(x t - m;)TSjl(X t - m;)]

I 'Ij 7TjISjl-1/2 exp[ -(lj2)(x t - mj)TSjl (x t - mj)]

Again, the similarity between equations 7.13 and 7.2 is not accidental;
the estimated soft labels hf replace the actual (unknown) labels rl.

EM is initalized by k-means. After a few iterations of k-means, we get
the estimates for the centers m; and using the instances covered by each
center, we estimate the S; and 'It bf j N give us the 7T;. We run EM from
that point on, as shown in figure 7.4.

Just as in parametric classification (section 5.5), with small samples and
large dimensionality we can regularize by making simplifying assump
tions. When p;(x t 1<1» - N(m;, S), the case of a shared covariance matrix,
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(7.15)

(7.16)

(7.17)

7.5

(7.18)

1 Clustering

equation 7.12 reduces to

min L2: hi (x t - mdTS- 1 (x t - m;)
mi,S t ;

When p;(xtl<l» ~ N(mi,s2I), the case of a shared diagonal matrix, we
have

. '" '" ht IIx t
- m;ll2

nunLL I 2
mJ,s t ; s

which is the reconstruction error we defined in k-means clustering (equa
tion 7.3). The difference is that now

h t = exp [-(1/2s 2
) Ilxt

- m;11 2 ]

I Lj exp [-(1/2s2)llx t - mjll2]

is a probability between 0 and 1. bf of k-means clustering makes a hard
0/1 decision, whereas hi is a soft label that assigns the input to a cluster
with a certain probability. When hi are used instead of bf, an instance
contributes to the update of parameters of all components, to each with
a certain probability. This is especially useful if the instance is close to
the midpoint between two centers. We thus see that k-means clustering
is a special case of EM applied to Gaussian mixtures where inputs are
assumed independent with equal and shared variances and where labels
are hardened. k-means thus pave the input density with circles, whereas
EM in the general case uses ellipses of arbitrary shapes and orientations.

Mixtures of Latent Variable Models

When full covariance matrices are used with Gaussian mixtures, even if
there is no singularity, one risks overfitting if the input dimensionality
is high and the sample is small. To decrease the number of parameters,
assuming a common covariance matrix may not be right since clusters
may really have different shapes. Assuming diagonal matrices is even
more risky because it removes all correlations. The alternative is to do
dimensionality reduction in the clusters. This decreases the number of
parameters while still capturing the correlations. The number of free pa
rameters is controlled through the dimensionality of the reduced space.

When we do factor analysis in the clusters, we look for latent or hidden
variables or factors that generate the data in the clusters (Bishop 1999):

p(x t l(7;) ~ N(m;,V;VT + '1';)
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7.6

where Vi and 'Y; are the factor loadings and specific variances of cluster
(j;. Rubin and Thayer (1982) give EM equations for factor analysis. It
is possible to extend this in mixture models to find mixtures of factor
analyzers (Ghahramani and Hinton 1997). Similarly, one can also do PCA
in groups, which is called mixtures of probabilistic principal component
analyzers (Tipping and Bishop 1999).

We can of course use EM to learn S; and then do FA or PCA separately
in each cluster, but doing EM is better because it couples these two steps
and does a soft partitioning. An instance contributes to the calculation
of the latent variables of all groups, weighted by h}.

Supervised Learning after Clustering

Clustering, like the dimensionality reduction methods discussed in chap
ter 6, can be used for two purposes: It can be used for data exploration,
to understand the structure of data. Dimensionality reduction methods
are used to find correlations between variables and thus group variables.
Clustering methods are used to find similarities between instances and
thus group instances.

If such groups are found, these may be named (by application experts)
and their attributes be defined. One can choose the group mean as the
representative prototype of instances in the group, or the possible range
of attributes can be written. This allows a simpler description of the
data. For example, if the customers of a company seem to fall in one
of k groups, customers being defined in terms of their demographic at
tributes and transactions with the company, then a better understanding
of the customer base will be provided which will allow the company to
provide different strategies for different types of customers. likewise,
the company will also be able to develop strategies for those customers
who do not fall in any large group, and who may require attention, for
example, churning customers.

Frequently, clustering is also used as a preprocessing stage. Just like
the dimensionality reduction methods of chapter 6 allowed us to make
a mapping to a new space, after clustering, we also map to a new k
dimensional space where the dimensions are h; (or b; at the risk of loss of
information). In a supervised setting, we can then learn the discriminant
or regression function in this new space. The difference from dimension-
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ality reduction methods like PCA however is that k, the dimensionality of
the new space, can be larger than d, the original dimensionality.

When we use a method like PCA, where the new dimensions are combi
nations of the original dimensions, to represent any instance in the new
space, all dimensions contribute, that is, all Zj are nonzero. In the case of
a method like clustering where the new dimensions are defined locally,
there are many more new dimensions, bj , but only one (or if we use hj,
few) of them have a nonzero value. In the former case, there are few di
mensions but all contribute to the representation; in the latter case, there
are many dimensions but few contribute.

One advantage of preceding a supervised learner with unsupervised
clustering or dimensionality reduction is that the latter does not need
labeled data. Labeling the data is costly. We can use a large amount of
unlabeled data for learning the cluster parameters and then use a smaller
labeled data to learn the second stage of classification or regression. Un
supervised learning is called "learning what normally happens" (Barrow
1989). When followed by a supervised learner, we first learn what nor
mally happens and then learn what that means. We discuss such methods
in chapter 12.

In the case of classification, when each class is a mixture model com
MIXTURE OF MIXTURES posed of a number of components, the whole density is a mixture of

mixtures:

p(xICi )

p(x)

k;

L P(XIYij)P(Yij)
j=l

K

L P(XICi)P(C;)
i=l

where k i is the number of components making up p (x ICi) and Yij is
the component j of class i. Learning the parameters of components is
done separately for each class (probably after some regularization) as we
discussed previously. This is better than fitting many components to data
from all classes and then labeling them later with classes.

7.7 Hierarchical Clustering

We discussed clustering from a probabilistic point of view as fitting a
mixture model to the data, or in terms of finding code words minimizing
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reconstruction error. There are also methods for clustering that only use
similarities of instances, without any other requirement on the data; the
aim is to find groups such that instances in a group are more similar to
each other than instances in different groups. This is the approach taken

HIERARCHICAL by hierarchical clustering.
CLUSTERING This needs the use of a similarity, or equivalently a distance, measure

defined between instances. Generally Euclidean distance is used, where
one needs to make sure that all attributes have the same scale. This is a
special case of the Minkowksi distance with p = 2:

dm(xr, XS ) = [± (x) _ Xj)p] lip
J=l

City-block distance is easier to calculate:

d

dcb(xr,xs ) = L Ix} -xjl
j=l

AGGLOMERATIVE An agglomerative clustering algorithm starts with N groups, each ini-
CLUSTERING tially containing one training instance, merging similar groups to form

DIVISIVE CLUSTERING larger groups, until there is a single one. A divisive clustering algorithm
goes in the other direction, starting with a single group and dividing large
groups into smaller groups, until each group contains a single instance.

At each iteration of an agglomerative algorithm, we choose the two
SINGLE-LINK closest groups to merge. In single-link clustering, this distance is defined
CLUSTERING as the smallest distance between all possible pair of elements of the two

groups:

Consider a weighted, completely connected graph with nodes corre
sponding to instances and edges between nodes with weights equal to
the distances between the instances. Then the single-link method corre
sponds to constructing the minimal spanning tree of this graph.

COMPLETE-LINK In complete-link clustering, the distance between two groups is taken as
CLUSTERING the largest distance between all possible pairs:

These are the two most frequently used measures to choose the two
closest groups to merge. Other possibilities are the average-link method
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Figure 7.5 A two-dimensional dataset and the dendrogram showing the result
of single-link clustering is shown. Note that leaves of the tree are ordered so
that no branches cross. The tree is then intersected at a desired value of h to get
the clusters.

that uses the average of distances between all pairs and the centroid dis
tance that measures the distance between the centroids (means) of the
two groups.

Once an agglomerative method is run, the result is generally drawn as
DENDROGRAM a hierarchical structure known as the dendrogram. This is a tree where

leaves correspond to instances, which are grouped in the order they are
merged. An example is given in figure 7.5. The tree can be then inter
sected at any level to get the wanted number of groups.

Single-link and complete-link methods calculate the distance between
groups differently that affect the clusters and the dendrogram: In the
single-link method, two instances are grouped together at level h if the
distance between them is less than h, or if there is an intermediate se
quence of instances between them such that the distance between con
secutive instances is less than h. On the other hand, in the complete-link
method, all instances in a group have a distance less than h between
them. Single-link clusters may be elongated due to this "chaining" effect.
(In figure 7.5, what if there were an instance halfway between e and c?)
Complete-link clusters tend to be more compact.
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Like any learning method, clustering also has its knob to adjust complex
ity; it is k, the number of clusters. Given any k, clustering will always find
k centers, whether they really are meaningful groups, or whether they
are imposed by the method we use. There are various ways we can use to
fine-tune k:

• In some applications such as color quantization, k is defined by the
application.

• Plotting the data in two dimensions using peA may be used in uncov
ering the structure of data and the number of clusters in the data.

• An incremental approach may also help: Setting a maximum allowed
distance is equivalent to setting a maximum allowed reconstruction
error per instance.

• In some applications, validation of the groups can be done manually
by checking whether clusters actually code meaningful groups of the
data. For example, in a data mining application, application experts
may do this check. In color quantization, we may inspect the image
visually to check its quality (despite the fact that our eyes and brain
do not analyze an image pixel by pixel).

Depending on what type of clustering method we use, we can plot the
reconstruction error or log likelihood as a function of k, and look for the
"elbow." After a large enough k, the algorithm will start dividing groups,
in which case there will not be a large decrease in the reconstruction error
or large increase in the log likelihood. Similarly in hierarchical clustering,
by looking at the differences between levels in the tree, we can decide on
a good split.

7.9 Notes

Mixture models are frequently used in statistics. Dedicated textbooks are
those by Titterington, Smith, and Makov (1985) and McLachlan and Bas
ford (1988). McLachlan and Krishnan (1997) discuss recent developments
in EM algorithm, how its convergence can be accelerated, and various vari
ants. In signal processing, k-means is called the Linde-Buzo-Gray (LBG)
algorithm (Gersho and Gray 1992). It is frequently used in both statistics
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and signal processing in a large variety of applications and has many vari-
FUZZY k-MEANS ants, one of which is fuzzy k-means. The fuzzy membership of an input

to a component is also a number between 0 and 1 (Bezdek and Pal 1995).
Alpaydm (1998) compares k-means, fuzzy k-means, and EM on Gaussian
mixtures. A comparison of EM and other learning algorithms for the
learning of Gaussian mixture models is given by Xu and jordan (1996).
On small data samples, an alternative to simplifying assumptions is to
use a Bayesian approach (Ormoneit and Tresp 1996). Moerland (1999)
compares mixtures of Gaussians and mixtures of latent variable models
on a set of classification problems, showing the advantage of latent vari
able models empirically. A book on clustering methods is by jain and
Dubes (1988) and a survey article is by jain, Murty, and Flynn (1999).

7.10 Exercises

1. In image compression, k-means can be used as follows: The image is divided
into nonoverlapping ex c windows and these c2-dimensional vectors make up
the sample. For a given k, which is generally a power of two, we do k-means
clustering. The reference vectors and the indices for each window is sent over
the communication line. At the receiving end, the image is then reconstructed
by reading from the table of reference vectors using the indices. Write the
computer program that does this for different values of k and c. For each
case, calculate the reconstruction error and the compression rate.

2. We can do k-means clustering, partition the instances, and then calculate Si
separately in each group. Why is this not a good idea?

3. Derive the M-step equations for S in the case of shared arbitrary covariance
matrix S (equation 7.15) and S2, in the case of shared diagonal covariance
matrix (equation 7.16).

4. Define a multivariate Bernoulli mixture where inputs are binary and derive
the EM equations.
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8 Nonparametric Methods

In the previous chapters, we discussed the parametric and semipara
metric approaches where we assumed that the data is drawn (rom
one or a mixture o( probability distributions o( known (orm. Now,
we are going to discuss the nonparametric approach that is used
when no such assumption can be made on the input density and the
data speaks (or itself We consider the nonparametric approaches
(or density estimation, classification, and regression and see how the
time and space complexity can be checked.

8.1 Introduction

IN PARAMETRIC methods, whether for density estimation, classifica
tion, or regression, we assume a model valid over the whole input space.
In regression, for example, when we assume a linear model, we assume
that for any input, the output is the same linear function of the input.
In classification when we assume a normal density, we assume that all
examples of the class are drawn from this same density. The advantage
of a parametric method is that it reduces the problem of estimating a
probability density function, discriminant, or regression function to esti
mating the values of a small number of parameters. Its disadvantage is
that this assumption does not always hold and we may incur a large error
if it does not.

If we cannot make such assumptions and cannot come up with a para
metric model, one possibility is to use a semiparametric mixture model
as we saw in chapter 7 where the density is written as a disjunction of

NON PARAMETRIC a small number of parametric models. In nonparametric estimation, all
ESTIMATION we assume is that similar inputs have similar outputs. lills is a reason-
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able assumption: The world is smooth and functions, whether they are
densities, discriminants, or regression functions, change slowly. Similar
instances mean similar things. We all love our neighbors because they
are so much like us.

Therefore, our algorithm is composed of finding the similar past in
stances from the training set using a suitable distance measure and in
terpolating from them to find the right output. Different nonparametric
methods differ in the way they define similarity or interpolate from the
similar training instances. In a parametric model, all of the training in
stances affect the final global estimate, whereas in the nonparametric
case, there is no single global model; local models are estimated as they
are needed, affected only by the training instances closeby.

In machine learning literature, nonparametric methods are also called
instance-based or memory-based learning algorithms, since what they do
is store the training instances in a lookup table and interpolate from
these. This implies that all of the training instances should be stored
and storing all requires memory of ()(N). Furthermore, given an input,
similar ones should be found, and finding them requires computation of
(!) (N). Such methods are also called lazy learning algorithms, because
unlike the eager parametric models, they do not compute a model when
they are given the training set but postpone the computation of the model
until they are given a test instance. In the case of a parametric approach,
the model is quite simple and has a small number of parameters, of or
der ()(d), or ()(d2 ), and once these parameters are calculated from the
training set, we keep the model and no longer need the training set to
calculate the output. N is generally much larger than d (or d 2), and this
increased need for memory and computation is the disadvantage of the
nonparametric methods.

We start by estimating a density function, and discuss its use in classi
fication. We then generalize the approach to regression.

Nonparametric Density Estimation

As usual in density estimation, we assume that the sample X = (Xl W=I is
drawn independently from some unknown probability density p(.). p(.)

is our estimator of p(.). We start with the univariate case where Xl are
scalars and later generalize to the multidimensional case.

The nonparametric estimator for the cumulative distribution function,
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(8.1)

F(x), at point x is the proportion of sample points that are less than or
equal to x

F(x) = #{x
t

.:s: x}
N

where #{x t .:s: x} denotes the number of training instances whose x t is
less than or equal to x. Similarly, the nonparametric estimate for the
density function can be calculated as

(8.2) p(x) = ~ [ #{x
t

.:s: x + h~ - #{x
t

.:s: X}]

h is the length of the interval and instances x t that fall in this in
terval are assumed to be "close enough." The techniques given in this
chapter are variants where different heuristics are used to determine the
instances that are close and their effects on the estimate.

8.2.1

HISTOGRAM

(8.3)

NAIVE ESTIMATOR

(8.4)

Histogram Estimator

The oldest and most popular method is the histogram where the input
space is divided into equal sized intervals named bins. Given an origin X o
and a bin width h, the bins are the intervals [x o + mh, X o + (m + l)h) for
positive and negative integers m and the estimate is given as

~() #{xtinthesamebinasx}
p x =

Nh

In constructing the histogram, we have to choose both an origin and
a bin width. The choice of origin affects the estimate near boundaries
of bins, but it is mainly the bin width that has an effect on the estimate:
With small bins, the estimate is spiky, and with larger bins, the estimate
is smoother (see figure 8.1). The estimate is 0 if no instance falls in a bin
and there are discontinuities at bin boundaries. Still, one advantage of
the histogram is that once the bin estimates are calculated and stored,
we do not need to retain the training set.

The naive estimator (Silverman 1986) frees us from setting an origin. It
is defined as

~( ) _ #{x-h <x t .:s:x+h}
p x - 2Nh
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Histogram: h = 2
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Figure 8.1 Histograms for various bin lengths. 'x' denote data points.

and is equal to the histogram estimate where x is always at the center of
a bin of size 2h (see figure 8.2). The estimator can also be written as

with the weight function defined as

w(u) = {~ if lui <.1
o otherWIse

This is as if each Xl has a symmetric region of influence of size 2h around
it and contributes ~ for an x falling in its region. Then the nonparamet
ric estimate is just the sum of influences of Xl whose regions include x.
Because this region of influence is "hard" (0 or ~), the estimate is not a
continuous function and has jumps at Xl ± h.
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Naive estimator: h "" 2
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Figure 8.2 Naive estimate for various bin lengths.

8.2.2 Kernel Estimator

KERNEL FUNCTION

(8.6)

KERNEL ESTIMATOR

PARZEN WINDOWS

(8.7)

To get a smooth estimate, we use a smooth weight function, called a
kernel function. The most popular is the Gaussian kernel:

K (u) = vk exp [ _ ~2 ]

The kernel estimator, also called Parzen windows, is defined as

1 N (x -xt)
p(x) = - 2.K --

Nh t=1 h

The kernel function K ( .) determines the shape of the influences and
the window width h determines the ""idth. Just like the naive estimate is
the sum of "boxes," the kernel estimate is the sum of "bumps." All the x t

have an effect on the estimate at x and this effect decreases smoothly as
Ix - x t I increases.

To simplify calculation, K(·) can be taken to be 0 if Ix -xtl > 3h. There
exist other kernels easier to compute that can be used, as long as K(u) is
maximum for u = 0 and decreasing symmetrically as Iu I increases.
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Kernel estimator: h =1
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Figure 8.3 Kernel estimate for various bin lengths.

When h is small, each training instance has a large effect in a small
region and no effect on distant points. When h is larger, there is more
overlap of the kernels and we get a smoother estimate (see figure 8.3).
If K(·) is everywhere nonnegative and integrates to 1, namely, if it is a
legitimate density function, so will p(.) be. Furthermore, p(.) will inherit
all the continuity and differentiability properties of the kernel K ( .), so
that, for example, if K ( .) is Gaussian, then p(.) will be smooth having all
the derivatives.

One problem is that the window width is fixed across the entire input
space. Various adaptive methods have been proposed to tailor h as a
function of the density around x.

8.2.3 k-Nearest Neighbor Estimator

The nearest neighbor class of estimators adapts the amount of smoothing
to the local density of data. The degree of smoothing is controlled by k,
the number of neighbors taken into account, which is much smaller than
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k-NEAREST NEIGHBOR

ESTIMATE

(8.8)

(8.9)

N, the sample size. Let us define a distance between a and b, for example,
la - bl, and for each x, we define

dl (x) ~ d 2(x) ~ ... ~ dN(x)

to be the distances arranged in ascending order, from x to the points
in the sample: ddx) is the distance to the nearest sample, d2(X) is the
distance to the next nearest, and so on. If x t are the data points, then we
define d1 (x) = minl Ix - xli and if i is the index of the closest sample,
namely, i = argminllx - xli, then d 2(x) = minjji Ix - xii, and so forth.

The k-nearest neighbor (k-nn) density estimate is

p(x) = 2N:dX)

This is like a naive estimator with h = ddx), the difference being that
instead of fixing h and checking how many samples fall in the bin, we fix
k, the number of observations to fall in the bin, and compute the bin size.
Where density is high, bins are small, and where density is low, bins are
larger (see figure 8.4).

The k-nn estimator is not continuous; its derivative has a discontinuity
at all ~(xU) +xU+k) where xU) are the order statistics of the sample. The
k-nn is not a probability density function since it integrates to 00, not l.

To get a smoother estimate, we can use a kernel function whose effect
decreases with increasing distance

p(x) = Nd:(X) t~ K (~~:;)
This is like a kernel estimator with adaptive smoothing parameter h =

ddx). K ( .) is typically taken to be the Gaussian kernel.

8.3 Generalization to Multivariate Data

Given a sample of d-dimensional observations X = {xt }~=1' the multivari
ate kernel density estimator is

(8.10) p(x)= N~dl~K(X~xt)

with the requirement that

f K(x)dx = 1
2l. d
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Figure 8.4 k-nearest neighbor estimate for various k values.

The obvious candidate is the multivariate Gaussian kernel:

(8.11) K(u) = (~) d exp [ _"~"2]

However, care should be applied to using nonparametric estimates in
CURSE OF high-dimensional spaces because of the curse of dimensionality: Let us

DIMENSIONALITY say x is eight-dimensional, and we use a histogram with ten bins per
dimension, then there are 108 bins, and unless we have lots of data, most
of these bins will be empty and the estimates in there will be O. In high
dimensions, the concept of "close" also becomes blurry so one should be
careful in choosing h.

For example, the use of a single smoothing parameter h in equation 8.11
implies that the kernel is scaled equally on all dimensions. If the inputs
are on different scales, they should be normalized to have the same vari
ance. Still, this does not take correlations into account and better results
are achieved when the kernel has the same form as the underlying distri
bution

(8.12) K(u) = (21T)d~2ISI1/2 exp [_~UTS-IU]
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where S is the sample covariance matrix. This corresponds to using Ma
halanobis distance instead of the Euclidean distance.

It is also possible to have the distance metric local where S is calculated
from instances in the vicinity of x, for example, some k closest instances.
Note that S calculated locally may be singular and PCA (or LDA, in the
case of classification) may be needed.

HAMMING DISTANCE When the inputs are discrete, we can use Hamming distance, which
counts the number of nonmatching attributes

d

(8.13) HD(x,x t ) = I l(Xj !- X)
j=1

where

{
I ifxj !-X)

1(x j !- X) = 0 otherwise

HD(x,x t ) is then used in place of Ilx - xtll or (x - Xt )TS-l(x - xt) for
kernel estimation or for finding the k closest neighbors.

8.4 Nonparametric Classification

When used for classification, we use the nonparametric approach to esti
mate the class-conditional densities, P(XICi). The kernel estimator of the
class-conditional density is given as

(8.14)

(8.15)

I N ( t)~ x-x t
P(XICi) = Nhd I K -h- ri

1 t=1

where rl is 1 if xt E C; and 0 otherwise. Ni is the number of labeled
instances belonging to Ci: Ni = It rl. The MLE of the prior density is
P(Ci) = N;/N. Then, the discriminant can be written as

P(XICi)P(C;)

N~d t~ K (x ~ x

t

) rl

and x is assigned to the class for which the discriminant takes its max
imum. The common factor 1/ (N hd ) can be ignored. So each training
instance votes for its class and has no effect on other classes; the weight
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of vote is given by the kernel function K(·), typically giving more weight
to closer instances.

For the special case of k-nn estimator, we have

(8.16) p(xICi ): Ni:~(X)

where k i is the number of neighbors out of the k nearest that belong to
C and V k (x) is the volume of the d-dimensional hypersphere centered
at x, with radius r = Ilx - X(k) II where X(k) is the k-th nearest observation
to x (among all neighbors from all classes of x): V k = rdcd with Cd as
the volume of the unit sphere in d dimensions, for example, Cl = 2, C2 =

TT, C3 = 4TT /3, and so forth. Then

F(C'I ) = p(xIC)F(Cd = ki

I x p(x) k

k-NN CLASSIFIER

DISCRIMINANT

ADAPTIVE NEAREST

NEIGHBOR

NEAREST NEIGHBOR

CLASSIFIER

VORONOI

TESSELATION

8.5

CONDENSED NEAREST

NEIGHBOR

The k-nn classifier assigns the input to the class having most examples
among the k neighbors of the input. All neighbors have equal vote, and
the class haVing the maximum number of voters among the k neighbors
is chosen. Ties are broken arbitrarily or a weighted vote is taken. k is
generally taken an odd number to minimize ties: Confusion is generally
between two neighboring classes.

Again, the use of Euclidean distance corresponds to assuming uncorre
lated inputs with equal variances and when this is not the case, a suitable
metric should be used. One example is discriminant adaptive nearest
neighbor (Hastie and Tibshirani 1996) where the optimal distance to sep
arate classes is estimated locally.

A special case of k-nn is the nearest neighbor classifier where k = 1 and
the input is assigned to the class of the nearest pattern. This divides the
space in the form of a Voronoi tesselation (see figure 8.5).

Condensed Nearest Neighbor

Time and space complexity of nonparametric methods are proportional
to the size of the training set, and condensing methods have been pro
posed to decrease the number of stored instances without degrading per
formance. The idea is to select the smallest subset Z of X such that when
Z is used in place of X, error does not increase (Dasarathy 1991).

The best-known and earliest method is condensed nearest neighbor
where I-nn is used as the nonparametric estimator for classification (Hart
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Figure 8.5 Dotted lines are the Voronoi tesselation and the straight line is the
class discriminant. In condensed nearest neighbor, those instances that do not
participate in defining the discriminant (marked by "<') can be removed without
increasing the training error.

1968). l-nn approximates the discriminant in a piecewise linear manner,
and only the instances that define the discriminant need be kept; an in
stance inside the class regions need not be stored as its nearest neighbor
is of the same class and its absence does not cause any error (on the
training set) (figure 8.5). Such a subset is called a consistent subset, and
we would like to find the minimal consistent subset.

Hart proposed a greedy algorithm to find Z (figure 8.6): The algorithm
starts with an empty Z and passing over the instances in X one by one in
a random order, checks if they can be classified correctly by I-nn using
the instances already stored in Z. If an instance is misclassified, it is
added to Z; if it is correctly classified, Z is unchanged. One should pass
over the training set a few times until no further instances are added.
The algorithm does a local search and depending on the order in which
the training instances are seen, different subsets may be found, which
may have different accuracies on the validation data. Thus it does not
guarantee finding the minimal consistent subset, which is known to be
NP-complete (Wilfong 1992).
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Z-0
Repeat

For all x E X (in random order)
Find x' E Z such that Ilx - x' II = minXjEZ IIx - xi II
If c1ass(x)f;c1ass(x') add x to Z

Until Z does not change

Figure 8.6 Condensed nearest neighbor algorithm.

Condensed nearest neighbor is a greedy algorithm which aims to min
imize training error and complexity, measured by the size of the stored
subset. We can write an augmented error function

(8.18) E' (ZIX) = E(XIZ) + AIZI

where E(XIZ) is the error on X storing Z. IZI is the cardinality of Z, and
the second term penalizes complexity. As in any regularization scheme,
A represents the trade-off between the error and complexity such that
for small A, error becomes more important, and as ,\ gets larger, complex
models are penalized more. Condensed nearest neighbor is one method
to minimize equation 8.18, but other algorithms to optimize it can also
be devised.

8.6 Nonparametric Regression: Smoothing Models

In regression, given the training set X = {x t , r t } where r t E 2t, we assume

In parametric regression, we assume a polynomial of a certain order
and compute its coefficients that minimize the sum of squared error on
the traiIting set. Nonparametric regression is used when no such poly
nomial can be assumed; we only assume that close x have close g(x)
values. As in nonparametric density estimation, given x, our approach is
to find the neighborhood of X and average the r values in the neighbor
hood to calculate g(x). Nonparametric regression estimator is also called

SMOOTHER a smoother and the estimate is called a smooth (HardIe 1990). There
are various methods for defining the neighborhood and averaging in the
neighborhood, similar to methods in density estimation. We discuss the
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8.6.1

REGRESSOGRAM

(8.19)

Regressogram smoother: h = 6
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Figure 8.7 Regressograms for various bin lengths. 'x' denote data points.

methods for the univariate x; they can be generalized to the multivariate
case in a straightforward manner using multivariate kernels, as in density
estimation.

Running Mean Smoother

If we define an origin and a bin width and average the r values in the bin
as in the histogram, we get a regressogram (see figure 8.7)

~() L,~=1 b(x,xt)rt
9 x = N

L,t=1 b(x,xt )

where

{
I if XC is the same bin with x

b(x,xc) = 0 otherwise

Having discontinuities at bin boundaries is disturbing as is the need to
RUNNING MEAN fix an origin. As in the naive estimator, in the running mean smoother,

SMOOTHER we define a bin symmetric around x and average in there (figure 8.8).
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Running mean smoother: h = 6
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Figure 8.8 Running mean smooth for various bin lengths.

(8.20)
,>;,N (X-XI) t

" L.t=l W -h- r
g(X)= ,>;,N (X-XI)

L.t=l W h

where

W ( u) = {01 if Iu I < 1
otherwise

This method is especially popular with evenly spaced data, for example,
time series. In applications where there is noise, one can use the median
of the r t in the bin instead of their mean.

8.6.2 Kernel Smoother

g(x) =(8.21)

As in the kernel estimator, we can use a kernel giving less weight to fur
KERNEL SMOOTHER ther points, and we get the kernel smoother (see figure 8.9):

It K (~) rt

IrK (x-t)
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Kernel smooth: h = 1
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Figure 8.9 Kernel smooth for various bin lengths.
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k-NN SMOOTHER

8.6.3

RUNNING LINE

SMOOTHER

LOCAllY WEIGHTED

RUNNING LINE

SMOOTHER

Typically a Gaussian kernel K ( .) is used. Instead of fixing h, we can fix
k, the number of neighbors, adapting the estimate to the density around
x, and get the k-nn smoother.

Running line Smoother

Instead of taking an average and giving a constant fit at a point, we can
take into account one more term in the Taylor expansion and calculate
a linear fit. In the running line smoother, we can use the data points in
the neighborhood, as defined by h or k, and fit a local regression line (see
figure 8.10).

In the locally weighted running line smoother, known as loess, instead
of a hard definition of neighborhoods, we use kernel weighting such that
distant points have less effect on error.
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Running line smooth: h =6
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Figure 8.10 Running line smooth for various bin lengths.

8.7 How to Choose the Smoothing Parameter

In nonparametric methods, for density estimation or regression, the crit
ical parameter is the smoothing parameter as used in bin width or kernel
spread h, or the number of neighbors k. The aim is to have an estimate
that is less variable than the data points. As we have discussed previ
ously, one source of variability in the data is noise and the other is the
variability in the unknown underlying function. We should smooth just
enough to get rid of the effect of noise-not less, not more. With too
large h or k, many instances contribute to the estimate at a point and we
also smooth the variability due to the function and there is oversmooth
ing; with too small h or k, single instances have a large effect, we do
not even smooth over the noise and there is undersmoothing. In other
words, small h or k leads to small bias but large variance. Larger h or k
decreases variance but increases bias. Geman, Bienenstock, and Doursat
(1992) discuss bias and variance for nonparametric estimators.

This requirement is explicitly coded in a regularized cost function as
SMOOTHING SPUNES used in smoothing splines
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The first term is the error of fit. [a, b] is the input range; g" (.) is
the curvature of the estimated function g(') and as such measures the
variability. Thus the second term penalizes fast varying estimates. ,\
trades off variability and error where, for example, with large '\, we get
smoother estimates.

Cross-validation is used to tune h, k, or'\. In density estimation, we
choose the parameter value that maximizes the likelihood of the valida
tion set. In a supervised setting, trying a set of candidates on the training
set, we choose the parameter value that minimizes the error on the vali
dation set.

8.8 Notes

k-nearest neighbor and kernel-based estimation were proposed fifty years
ago, but because of the need for large memory and computation, the
approach was not popular until recently (Aha, Kibler, and Albert 1991).
With advances in parallel processing and with memory and computation
getting cheaper, such methods have recently become more widely used.
Textbooks on nonparametric estimation are Silverman 1986 and Scott
1992. Dasarathy 1991 is a collection of many papers on k-nn and edit
ing/condensing rules; Aha 1997 is a collection of more recent work.

The nonparametric methods are very easy to parallelize on a Single In
struction Multiple Data (SIMD) machine; each processor stores one train
ing instance in its local memory and in parallel computes the kernel
function value for that instance (Stanfill and Waltz 1986). Multiplying
with a kernel function can be seen as a convolution, and we can use
Fourier transformation to calculate the estimate more efficiently (Silver
man 1986). It has also been shown that spline smoothing is equivalent to
kernel smoothing.

The most critical factor in nonparametric estimation is the distance
metric used. With discrete attributes, we can simply use the Hamming
distance where we just sum up the number of nonmatching attributes.
More sophisticated distance functions are discussed in Wettschereck, Aha,
and Mohri 1997 and Webb 1999.

CASE-BASED In artificial intelligence, the nonparametric approach is called case
REASONING based reasoning. The output is found by interpolating from known sim-
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ilar past "cases." This also allows for some knowledge extraction: The
given output can be justified by listing these similar past cases.

Due to its simplicity, k-nn is the most widely used nonparametric clas
sification method and is quite successful in practice in a variety of appli
cations. It has been shown (Cover and Hart 1967; reviewed in Duda, Hart,
and Stork 2001) that in the large sample case when N ~ 00, the risk of
nearest neighbor (k = 1) is never worse than twice the Bayes' risk (which
is the best that can be achieved) and in that respect, it is said that "half of
the available information in an infinite collection of classified samples is
contained in the nearest neighbor" (Cover and Hart 1967, 21). In the case
of k-nn, it has been shown that the risk asymptotes to the Bayes' risk as
k goes to infinity.

Nonparametric regression is discussed in detail in HardIe 1990. Hastie
ADDITIVE MODELS and Tibshirani (1990) discuss smoothing models and propose additive

models where a multivariate function is written as a sum of univariate es
timates. Locally weighted regression is discussed in Atkeson, Moore, and
Schaal 1997. These models bear much similarity to radial basis functions
and mixture of experts that we will discuss in chapter 12.

8.9 Exercises

1. Show equation 8.17.

2. How does condensed nearest neighbor behave if k > I?

3. In a regressogram, instead of averaging in a bin and doing a constant fit, one
can use the instances falling in a bin and do a linear fit (see figure 8.11). Write
the code and compare this with the regressogram proper.

4. Write the error function for loess discussed in section 8.6.3.

5. Propose an incremental version of the running mean estimator, which, like
the condensed nearest neighbor, stores instances only when necessary.

6. Generalize kernel smoother to multivariate data.
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9 Decision Trees

A decision tree is a hierarchical data structure implementing the
divide-and-conquer strategy. It is an efficient nonparametric method,
which can be used both for classification and regression. We discuss
learning algorithms that build the tree from a given labeled training
sample, as well as how the tree can be converted to a set of simple
rules that are easy to understand.

9.1 Introduction

IN PARAMETRIC estimation, we define a model over the whole input
space and learn its parameters from all of the training data. Then we
use the same model and the same parameter set for any test input. In
nonparametric estimation, we divide the input space into local regions,
defined by a distance measure like the Euclidean norm, and for each in
put, the corresponding local model computed from the training data in
that region is used. In nonparametric models, given an input, identifying
the local data defining the local model is costly; it requires calculating
the distances from the given input to all of the training instances, which
is I9(N).

DECISION TREE A decision tree is a hierarchical model for supervised learning whereby
the local region is identified in a sequence of recursive splits in a smaller
number of steps. A decision tree is composed of internal decision nodes

DECISION NODE and terminal leaves (see figure 9.1). Each decision node m implements a
test function fm (x) with discrete outcomes labeling the branches. Given
an input, at each node, a test is applied and one of the branches is taken
depending on the outcome. This process starts at the root and is repeated

LEAF NODE recursively until a leaf node is hit, at which point the value written in the
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Figure 9.1 Example of a dataset and the corresponding decision tree. Oval
nodes are the decision nodes and rectangles are leaf nodes. The univariate de
cision node splits along one axis, and successive splits are orthogonal to each
other. After the first split, {xlxl < WIO} is pure and is not split further.

leaf constitutes the output.
Each fm(x) defines a discriminant in the d-dimensional input space

dividing it into smaller regions which are further subdivided as we take
a path from the root down. fm(') is a simple function and when written
down as a tree, a complex function is broken down into a series of simple
decisions. Different decision tree methods assume different models for
fm('), and the model class defines the shape of the discriminant and the
shape of regions. Each leaf node has an output label, which in the case of
classification is the class code and in regression is a numeric value. A leaf
node defines a localized region in the input space where instances falling
in this region have the same output. The boundaries of the regions are
defined by the discriminants that are coded in the internal nodes on the
path from the root to the leaf node.

The hierarchical placement of decisions allows a fast localization of the
region covering an input. For example, if the decisions are binary, then
in the best case, each decision eliminates half of the cases. If there are b
regions, then in the best case, the correct region can be found in logz b
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decisions. Another advantage of the decision tree is interpretability: As
we will see shortly, the tree can be converted to a set of IF-THEN rules that
are easily understandable. For this reason, decision trees are very pop
ular and sometimes preferred over more accurate but less interpretable
methods.

We start with univariate trees where the test in a decision node uses
only one input variable and we see how such trees can be constructed
for classification and regression. We later generalize this to multivariate
trees where all inputs can be used in an internal node.

9.2 Univariate Trees

UNIVARIATE TREE In a univariate tree, in each internal node, the test uses only one of the
input dimensions. If the used input dimension, x}, is discrete, taking one
of n possible values, the decision node checks the value of x} and takes
the corresponding branch, implementing an n-way split. For example, if
an attribute is color with possible values {red, blue, green}, then a node
on that attribute has three branches, each one corresponding to one of
the three possible values of the attribute.

A decision node has discrete branches and a numeric input should be
discretized. If x} is numeric (ordered), the test is a comparison

(9.1) fm(x) : x} ~ Wmo

where Wmo is a suitably chosen threshold value. The decision node di
vides the input space into two: Lm = {xix} ~ wmo} and Rm = {xix} <

BINARY SPLIT wmo}; this is called a binary split. Successive decision nodes on a path
from the root to a leaf further divide these into two using other attributes
and generating splits orthogonal to each other. The leaf nodes define hy
perrectangles in the input space (see figure 9.1).

Tree induction is the construction of the tree given a training sample.
For a given training set, there exists many trees that code it with no er
ror, and, for simplicity, we are interested in finding the smallest among
them, where tree size is measured as the number of nodes in the tree
and the complexity of the decision nodes. Finding the smallest tree is
NP-complete (Quinlan 1986), and we are forced to use local search proce
dures based on heuristics that give reasonable trees in reasonable time.

Tree learning algorithms are greedy and, at each step, starting at the
root with the complete training data, we look for the best split. This
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ENTROPY

(9.3)
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splits the training data into two or n, depending on whether the chosen
attribute is numeric or discrete. We then continue splitting recursively
with the corresponding subset until we do not need to split anymore, at
which point a leaf node is created and labeled.

Classification Trees

In the case of a decision tree for classification, namely, a classification
tree, the goodness of a split is quantified by an impurity measure. A
split is pure if after the split, for all branches, all the instances choosing
a branch belong to the same class. Let us say for node m, Nm is the
number of training instances reaching node m. For the root node, it is N.
N!n of Nm belong to class Ci, with Li N!n = Nm . Given that an instance
reaches node m, the estimate for the probability of class Ci is

. . Ni

P(C;lx, m) == p:n = N:

Node m is pure if p!n for all i are either 0 or 1. It is 0 when none of the
instances reaching node m are of class Cj, and it is 1 if all such instances
are of Ci. If the split is pure, we do not need to split any further and can
add a leaf node labeled with the class for which p!n is 1. One possible
function to measure impurity is entropy (Quinlan 1986) (see figure 9.2)

K

1m = - L p~ logz p~
i=I

where 0 log 0 == O. Entropy in information theory specifies the minimum
number of bits needed to encode the classification accuracy of an in
stance. In a two-class problem, if pI = 1 and pZ = 0, all examples are
of CI, and we do not need to send anything, and the entropy is O. If
pI = pZ = 0.5, we need to send a bit to signal one of the two cases, and
the entropy is 1. In between these two extremes, we can devise codes
and use less than a bit per message by having shorter codes for the more
likely class and longer codes for the less likely. When there are K > 2
classes, the same discussion holds and the largest entropy is logz K when
pi = 11K.

But entropy is not the only possible measure. For a two-class problem
where pI == P and pZ = 1 - p, cP(p,l - p) is a nonnegative function
measuring the impurity of a split if it satisfies the following properties
(Devroye, Gybrfi, and Lugosi 1996):
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Figure 9.2 Entropy function for a two-class problem.

• cj>(1/2, 1/2) ~ cj>(p, 1 - p), for any p E [0,1].

• cj>(0, 1) == cj>(l, 0) == 0.

• cj>(p, 1-p) is increasing in p on [0, 1/2] and decreasing in p on [1/2,1].

Examples are

1. Entropy

(9.4) cj> (p, 1 - p) == - p logz p - (l - p) logz (1 - p)

Equation 9.3 is the generalization to K > 2 classes.

GINI INDEX 2. Gini index (Breiman et al. 1984)

(9.5) cj>(p,1 - p) == 2p(1 - p)

3. Misclassification error

(9.6) cj>(p,1 - p) == 1 - max(p, 1 - p)
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These can be generalized to K > 2 classes, and the misclassification er
ror can be generalized to minimum risk given a loss function (exercise 1).
Research has shown that there is not a significant difference between
these three measures.

If node m is not pure, then the instances should be split to decrease
impurity, and there are multiple possible attributes on which we can split.
For a numeric attribute, multiple split positions are possible. Among all,
we look for the split that minimizes impurity after the split because we
want to generate the smallest tree. If the subsets after the split are closer
to pure, fewer splits (if any) will be needed afterward. Of course this is
locally optimal, and we have no guarantee of finding the smallest decision
tree.

Let us say at node m, Nmj of N m take branch j; these are xt for which
the test fm(x t ) returns outcome j. For a discrete attribute with n values,
there are n outcomes, and for a numeric attribute, there are two outcomes
(n = 2), in either case satisfying 2,]=1 Nmj = N m. N~j of Nmj belong to

class Ci : 2,f=l N~j = Nmj' Similarly, 2,]=1 N~j = Nin·
Then given that at node m, the test returns outcome j, the estimate for

the probability of class Ci is

~ . _ i _ N~j
P(Cilx,m,J) = Pmj - -N.

mJ

and the total impurity after the split is given as

n N K

l ' '" mj '" iiim = - L..... N L..... Pmj ogpmj
j=l m i=l

In the case of a numeric attribute, to be able to calculate P~j using
equation 9.1, we also need to know Wmo for that node. There are N m - 1
possible Wmo between N m data points: We do not need to test for all
(possibly infinite) points; it is enough to test, for example, at halfway
between points. Note also that the best split is always between adjacent
points belonging to different classes. So we try them, and the best in
terms of purity is taken for the purity of the attribute. In the case of a
discrete attribute, no such iteration is necessary.

So for all attributes, discrete and numeric, and for a numeric attribute
for all split positions, we calculate the impurity and choose the one that
has the minimum entropy, for example, as measured by equation 9.8.
Then tree construction continues recursively and in parallel for all the
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GenerateTree(X)
If NodeEntropy(X)< (h /* equation 9.3 */

Create leaf labelled by majority class in X
Return

i - SplitAttribute(X)
For each branch of Xi

Find Xi falling in branch
GenerateTree(Xi)

SpIitAttribute(X)
MinEnt- MAX
For all attributes i = 1, ... , d

If Xi is discrete with n values
SplitX intoXl,oo.,Xn by Xi
e - SplitEntropy(XI, 00" X n) /* equation 9.8 */
If e<MinEnt MinEnt - e; bestf - i

Else /* Xi is numeric */
For all possible splits

Split X into Xl,X2 on Xi
e-SplitEntropy(XI. X2)

If e<MinEnt MinEnt - e; bestf - i
Return bestf

Figure 9.3 Classification tree construction.
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CLASSIFICATION AND branches that are not pure. until all are pure. This is the basis of the Clas-
REGRESSION TREES sification and Regression Trees (CART) algorithm (Breiman et al. 1984),

TD3 ID3 algorithm (Quinlan 1986), and its extension C4.5 (Quinlan 1993). The
(4·5 pseudocode of the algorithm is given in figure 9.3.

It can also be said that at each step during tree construction. we choose
the split that causes the largest decrease in impurity, which is the differ
ence between the impurity of data reaching node m (equation 9.3) and the
total entropy of data reaching its branches after the split (equation 9.8).

One problem is that such splitting favors attributes with many values.
When there are many values, there are many branches, and the impurity
can be much less. For example. if we take training index t as an attribute,
the impurity measure will choose that because then the impurity of each
branch is 0, although it is not a reasonable feature. Nodes with many
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branches are complex and go against our idea of splitting class discrim
inants into simple decisions. Methods have been proposed to penalize
such attributes and to balance the impurity drop and the branching fac
tor.

When there is noise, growing the tree until it is purest, we may grow
a very large tree and it overfits; for example, consider the case of a mis
labeled instance amid a group of correctly labeled instances. To alle
viate such overfitting, tree construction ends when nodes become pure
enough, namely, a subset of data is not split further if 1 < OJ. This im
plies that we do not require that P~j be exactly 0 or 1 but close enough,
with a threshold Op. In such a case, a leaf node is created and is labeled
with the class having the highest P~j'

OJ (or Op) is the complexity parameter, like h or k of nonparametric
estimation. When they are small, the variance is high and the tree grows
large to reflect the training set accurately, and when they are large, vari
ance is lower and a smaller tree roughly represents the training set and
may have large bias. The ideal value depends on the cost of misclassifi
cation, as well as the costs of memory and computation.

It is generally advised that in a leaf, one stores the posterior proba
bilities of classes, instead of labeling the leaf with the class having the
highest posterior. These probabilities may be required in later steps,
for example, in calculating risks. Note that we do not need to store the
instances reaching the node or the exact counts; just ratios suffice.

Regression Trees

A regression tree is constructed in almost the same manner as a clas
sification tree, except that the impurity measure that is appropriate for
classification is replaced by a measure appropriate for regression. Let us
say for node m, X m is the subset of X reaching node m, namely, it is the
set of all x E X satisfying all the conditions in the decision nodes on the
path from the root until node m. We define

b (x) = {I if x E ~m: X reaches node m
m 0 otherWIse

In regression, the goodness of a split is measured by the mean square
error from the estimated value. Let us say gm is the estimated value in
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node m.

1 '" t 2b t(9.10) Em = N L(r - gm) m(x)
m t
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(9.11)

(9.12)

(9.13)

(9.14)

where Nm = IXml = It bm(xt ).

In a node, we use the mean (median if there is too much noise) of the
required outputs of instances reaching the node

It bm(xt)rt

gm = It bm(xt)

Then equation 9.10 corresponds to the variance at m. If at a node, the
error is acceptable, that is, Em < (Jr, then a leaf node is created and it
stores the gm value. Just like the regressogram of chapter 8, this creates
a piecewise constant approximation with discontinuities at leaf bound
aries.

If the error is not acceptable, data reaching node m is split further
such that the sum of the errors in the branches is minimum. As in clas
sification, at each node, we look for the attribute (and split threshold
for a numeric attribute) that minimizes the error, and then we continue
recursively.

Let us define Xmj as the subset of X m taking branch j: U)=l Xmj = X m.

We define

b -(x) = {1 if x E ~m/ x reaches node m and takes branch j
mJ 0 othefWlse

gmj is the estimated value in branch j of node m.

It bmj(xt)rt

gmj = It b mj (xC)

and the error after the split is

E~ = N
1 I 2:(rt - gmj)2bmj (x t )
m j t

The drop in error for any split is given as the difference between equa
tion 9.10 and equation 9.14. We look for the split such that this drop is
maximum or, equivalently, where equation 9.14 takes its minimum. The
code given in figure 9.3 can be adapted to training a regression tree by
replacing entropy calculations with mean square error and class labels
with averages.
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Mean square error is one possible error function; another is worst pos
sible error

using which we can guarantee that the error for any instance is never
larger than a given threshold.

The acceptable error threshold is the complexity parameter; when it is
small, we generate large trees and risk overfitting; when it is large, we
underfit and smooth too much (see figures 9.4 and 9.5).

Similar to going from running mean to running line in nonparametric
regression, instead of taking an average at a leaf that implements a con
stant fit, we can also do a linear regression fit over the instances choosing
the leaf:

(9.16) gm(x) = w~x + Wmo

This makes the estimate in a leaf dependent on x and generates smaller
trees but there is the expense of extra computation at a leaf node.

9.3 Pruning

Frequently, a node is not split further if the number of training instances
reaching a node is smaller than a certain percentage of the training set,
for example,S percent, regardless of the impurity or error. The idea is
that any decision based on too few instances causes variance and thus
generalization error. Stopping tree construction early on before it is full

PREPRUNING is called prepruning the tree.
POSTPRUNING Another possibility to get simpler trees is postpruning, which in prac-

tice works better than prepruning. We saw before that tree growing is
greedy where at each step, we make a decision, namely, generate a deci
sion node, and continue further on, never backtracking and trying out an
alternative. The only exception is postpruning where we try to find and
prune unnecessary subtrees.

In postpruning, we grow the tree full until all leaves are pure and we
have zero training error. We then find subtrees that cause overfitting and

PRUNING SET we prune them. From the initial labeled set, we set aside a pruning set,
unused during training. For each subtree, we replace it by a leaf node
labeled with the training instances covered by the subtree (appropriately
for classification or regression). If the leaf node does not perform worse
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Figure 9.4 Regression tree smooths for various values of er. The corresponding
trees are given in figure 9.5.

than the subtree on the pruning set, we prune the subtree and keep the
leaf node because the additional complexity of the subtree is not justified;
otherwise, we keep the subtree.

For example, in the third tree of figure 9.5, there is a subtree starting
with condition x < 6.31. This subtree can be replaced by a leaf node of
y = 0.9 (as in the second tree) if the error on the pruning set does not
increase during the substitution. Note that the pruning set should not be
confused with (and is distinct from) the validation set.

Comparing prepruning and postpruning, we can say that prepruning is
faster but postpruning generally leads to more accurate trees.
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Figure 9.5 Regression trees implementing the smooths of figure 9.4 for various
values of er .
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Yes No

XI: Age
xl : Years in job
x3 : Gender
x4 : Job type

185

'A' 'C'

Figure 9.6 Example of a (hypothetical) decision tree. Each path from the root to
a leaf can be written down as a conjunctive rule, composed of conditions defined
by the decision nodes on the path.

9.4 Rule Extraction from Trees

A decision tree does its own feature extraction. The univariate tree only
uses the variables that are necessary, and it may be the case that after
the tree is built, certain features are not used at all. We can also say that
features closer to the root are more important globally. For example,
the decision tree given in figure 9.6 uses x}, X2, and X4, but not X3. It
is possible to use a decision tree for feature extraction: We build a tree
and then take only those features used by the tree as inputs to another
learning method.

INTERPRETABILITY Another main advantage of decision trees is interpretability: The de-
cision nodes carry conditions that are simple to understand. Each path
from the root to a leaf corresponds to one conjunction of tests, as all
those conditions should be satisfied to reach to the leaf. These paths to-

IF-THEN RULES gether can be written down as a set of IF-THEN rules, called a rule base.
One such method is C4.5Rules (Quinlan 1993).

For example, the decision tree of figure 9.6 can be written down as the
following set of rules:

Rl: IF (age>38.5) AND (years-in-job>2.5) THEN y =0.8
R2: IF (age>38.5) AND (years-in-job::s2.5) THEN y =0.6
R3: IF (age::s38.5) AND Uob-type='A') THEN y =0.4
R4: IF (age::s38.5) AND Uob-type='B') THEN y =0.3
R5: IF (age::s38.5) AND Uob-type='C') THEN y =0.2
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KNOWLEDGE Such a rule base allows knowledge extraction; it can be easily under
EXTRACTION stood and allows experts to verify the model learned from data. For each

rule, one can also calculate the percentage of training data covered by the
RULE SUPPORT rule, namely, rule support. The rules reflect the main characteristics of

the dataset: They show the important features and split positions. For ex
ample, in this (hypothetical) example, we see that in terms of our purpose
(Y), people who are thirty-eight years old or less are different from people
who are thirty-nine or more years old. And among this latter group, it is
the job type that makes them different, whereas in the former group, it is
the number of years in a job that is the best discriminating characteristic.

In the case of a classification tree, there may be more than one leaf
labeled with the same class. In such a case, these multiple conjunctive
expressions corresponding to different paths can be combined as a dis
junction (OR). The class region then corresponds to a union of these mul
tiple patches, each patch corresponding to the region defined by one leaf.
For example, class Cl of figure 9.1 is written as

IF (x ~ WlO) OR «Xl> WlO) AND (xz ~ wzo» THEN CI

PRUNING RULES Pruning rules is possible for simplification. Pruning a subtree corre-
sponds to pruning terms from a number of rules at the same time. It
may be possible to prune a term from one rule without touching other
rules. For example, in the previous rule set, for R3, if we see that all
whose job-type=' A' have outcomes close to 0.4, regardless of age, R3
can be pruned as

R3' : IF Uob-type='A') THEN y =0.4

Note that after the rules are pruned, it may not be possible to write
them back as a tree anymore.

9.5 Learning Rules from Data

As we have just seen, one way to get IF-THEN rules is to train a decision
RULE INDUCTION tree and convert it to rules. Another is to learn the rules directly. Rule

induction works similar to tree induction except that rule induction does
a depth-first search and generates one path (rule) at a time, whereas tree
induction goes breadth-first and generates all paths simultaneously.

Rules are learned one at a time. Each rule is a conjunction of condi
tions on discrete or numeric attributes (as in decision trees) and these
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SEQUENTIAL

COVERING

RIPPER

IREP

FOIL

(9.17)

RULE VALUE METRIC

(9.18)

conditions are added one at a time, to optimize some criterion, for exam
ple, minimize entropy. A rule is said to cover an example if the example
satisfies all the conditions of the rule. Once a rule is grown and pruned,
it is added to the rule base and all the training examples covered by the
rule are removed from the training set, and the process continues until
enough rules are added. This is called sequential covering. There is an
outer loop of adding one rule at a time to the rule base and an inner loop
of adding one condition at a time to the current rule. These steps are
both greedy and do not guarantee optimality. Both loops have a pruning
step for better generalization.

One example of a rule induction algorithm is Ripper (Cohen 1995),
based on an earlier algorithm Irep (Fiirnkrantz and Widmer 1994). We
start with the case of two classes where we talk of positive and negative
examples, then later generalize to K > 2 classes. Rules are added to ex
plain positive examples such that if an instance is not covered by any
rule, then it is classified as negative. So a rule when it matches is either
correct (true positive), or it causes a false positive. The pseudocode of
the outer loop of Ripper is given in figure 9.7.

In Ripper, conditions are added to the rule to maximize an information
gain measure used in Quinlan's (1990) Foil algorithm. Let us say we have
rule R and R' is the candidate rule after adding a condition. Change in
gain is defined as

Gain(R',R) = s· (logz ~~ -logz ~)

where N is the number of instances that are covered by Rand N + is the
number of true positives in them. N' and N~ are similarly defined for R'.
s is the number of true positives in R, which are still true positives in R',
after adding the condition. In terms of information theory, the change in
gain measures the reduction in bits to encode a positive instance.

Conditions are added to a rule until it covers no negative example.
Once a rule is grown, it is pruned back by deleting conditions in reverse
order, to find the rule that maximizes the rule value metric

p-n
rvm(R) =--

p+n

where p and n are the number of true and false positives respectively, on
the pruning set, which is one-third of the data, having used two-thirds as
the growing set.
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Ripper(Pos,Neg,k)
RuleSet - LearnRuleSet(Pos,Neg)
For k times

RuleSet - OptimizeRuleSet(RuleSet,Pos,Neg)
Learn Ru leSet(Pos,Neg)

RuleSet - 0
DL - DescLen(RuleSet,Pos,Neg)
Repeat

Rule - LearnRule(Pos,Neg)
Add Rule to RuleSet
DL' - DescLen(RuleSet,Pos,Neg)
If DL'>DL+64

PruneRuleSet(RuleSet,Pos,Neg)
Return RuleSet

If DL'<DL DL - DL'
Delete instances covered by Rule from Pos and Neg

Until Pos = 0
Return RuleSet

Pru neRu leSet(Ru leSet,Pos, Neg)
For each Rule E RuleSet in reverse order

DL - DescLen(RuleSet,Pos,Neg)
DL' - DescLen(RuleSet-Rule,Pos,Neg)
IF DL'<DL Delete Rule from RuleSet

Return RuleSet
Optim izeRu leSet(Ru IeSet, Pos, Neg)

For each Rule E RuleSet
DLO - DescLen(RuleSet,Pos,Neg)
DL1 - DescLen(RuleSet-Rule+

ReplaceRule(RuleSet,Pos,Neg),Pos,Neg)
DL2 - DescLen(RuleSet-Rule+

ReviseRule(RuleSet,Rule,Pos,Neg),Pos,Neg)
If DL1=min(DLO,DL1,DL2)

Delete Rule from RuleSet and
add ReplaceRule(RuleSet,Pos,Neg)

Else If DL2=min(DLO,DL1,DL2)
Delete Rule from RuleSet and

add ReviseRule(RuleSet,Rule,Pos,Neg)
Return RuleSet

Figure 9.7 Ripper algorithm for learning rules. Only the outer loop is given; the
inner loop is similar to adding nodes in a decision tree.
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PROPOSITIONAL RULES

FIRST-ORDER RULES

Once a rule is grown and pruned, all positive and negative training ex
amples covered by the rule are removed from the training set. If there
are remaining positive examples, rule induction continues. In the case of
noise, we may stop early, namely, when a rule does not explain enough
number of examples. To measure the worth of a rule, minimum descrip
tion length (section 4.8) is used (Quinlan 1995). Typically, we stop if the
description of the rule is not shorter than the description of instances
it explains. The description length of a rule base is the sum of the de
scription lengths of all the rules in the rule base, plus the description of
instances not covered by the rule base. Ripper stops adding rules when
the description length of the rule base is more than 64 bits larger than
the best description length so far. Once the rule base is learned, we pass
over the rules in reverse order to see if they can be removed without
increasing the description length.

Rules in the rule base are also optimized after they are learned. Ripper
considers two alternatives to a rule: One, called the replacement rule,
starts from an empty rule, is grown, and is then pruned. The second,
called the revision rule, starts with the rule as it is, is grown, and is then
pruned. These two are compared with the original rule, and the shortest
of three is added to the rule base. This optimization of the rule base can
be done k times, typically twice.

When there are K > 2 classes, they are ordered in terms of their prior
probabilities such that CI has the lowest prior probability and CK has
the highest. Then a sequence of two-class problems are defined such
that first, instances belonging to C1 are taken as positive examples and
instances of all other classes are taken as examples. Then, having learned
Cl and all its instances removed, it learns to separate C2 from C3,.'" CK.
This process is repeated until only CK remains. The empty default rule is
then labeled CK, so that if an instance is not covered by any rule, it will
be assigned to CK.

For a training set of size N, Ripper's complexity is O(Nlog2 N) and
is an algorithm that can be used on very large training sets (Dietterich
1997). The rules we learn are propositional rules. More expressive, first
order rules have variables in conditions, called predicates. A predicate is
a function that returns true or false depending on the value of its argu
ment. Predicates therefore allow defining relations between the values of
attributes, which cannot be done by propositions (Mitchell 1997):

IF Father(y, x) AND Female(y) THEN Daughter(x, y)
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Such rules can be seen as programs in a logic programming language,
INDUCTIVE LOGIC such as Prolog, and learning them from data is called inductive logic pro-

PROGRAMMING gramming. One such algorithm is Foil (Quinlan 1990).
BINDING Assigning a value to a variable is called binding. A rule matches if

there is a set of bindings to the variables existing in the training set.
Learning first-order rules is similar to learning propositional rules with
an outer loop of adding rules, and an inner loop of adding conditions to
a rule, with prunings at the end of each loop. The difference is in the
inner loop, where at each step we consider one predicate to add (instead
of a proposition) and check the increase in the performance of the rule
(Mitchell 1997). To calculate the performance of a rule, we consider all
possible bindings of the variables, count the number of positive and neg
ative bindings in the training set, and use, for example, equation 9.17. In
this first-order case, we have predicates instead of propositions, so they
should be previously defined. and the training set is a set of predicates
known to be true.

9.6 Multivariate Trees

In the case of a univariate tree, only one input dimension is used at a
MULTIVARIATE TREE split. In a multivariate tree, at a decision node, all input dimensions can

be used and thus it is more general. When all inputs are numeric, a binary
linear multivariate node is defined as

(9.19) fm(x) : w~x + WmO > 0

Because the linear multivariate node takes a weighted sum, discrete
attributes should be represented by 0/1 dummy numeric variables. Equa
tion 9.19 defines a hyperplane with arbitrary orientation (see figure 9.8).
Successive nodes on a path from the root to a leaf further divide these
and leaf nodes define polyhedra in the input space. The univariate node
with a numeric feature is a special case when all but one of Wmj are O.
Thus the univariate numeric node of equation 9.1 also defines a linear
discriminant but one that is orthogonal to axis x j, intersecting it at WmO

and parallel to all other Xi. We therefore see that in a univariate node
there are d possible orientations (w m) and N m - 1 possible thresholds
(-wmo), making an exhaustive search possible. In a multivariate node,

there are 2d ( ~m ) possible hyperplanes (Murthy, Kasif, and Salzberg

1994) and an exhaustive search is no longer possible.
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Figure 9.8 Example of a linear multivariate decision tree. The linear multivari
ate node can place an arbitrary hyperplane thus is more general, whereas the
univariate node is restricted to axis-aligned splits.

When we go from a univariate node to a linear multivariate node, the
node becomes more flexible. It is possible to make it even more flexible
by using a nonlinear multivariate node. For example, with a quadratic, we
have

(9.20) fm(x): xTWmx + wi"nx + wmo > 0

Guo and Gelfand (1992) propose to use a multilayer perceptron (chap
ter 11) that is a linear sum of nonlinear basis functions, and this is an
other way of having nonlinear decision nodes. Another possibility is a

SPHERE NODE sphere node (Devroye, Gyorfi, and Lugosi 1996)

(9.21) fm(x) : Ilx - cm II ::; ()(m

where C m is the center and ()(m is the radius.
There are a number of algorithms proposed for learning multivariate

decision trees for classification: The earliest is the multivariate version of
CART the CART algorithm (Breiman et al. 1984), which fine-tunes the weights

Wmj one by one to decrease impurity. CART also has a preprocessing
stage to decrease dimensionality through subset selection (chapter 6) and
reduce the complexity of the node. An algorithm with some extensions
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OCI to CART is the GC1 algorithm (Murthy, Kasif, and Salzberg 1994). One
possibility (Loh and Vanichsetakul1988) is to assume that all classes are
Gaussian with a common covariance matrix, thereby having linear dis
criminants separating each class from the others (chapter 5). In such a
case, with K classes, each node has K branches and each branch carries
the discriminant separating one class from the others. Brodley and Ut
goff (1995) propose a method where the linear discriminants are trained
to minimize classification error (chapter 10). Guo and Gelfand (1992)
propose a heuristic to group K > 2 classes into two supergroups, and
then binary multivariate trees can be learned. Loh and Shih (1997) use 2
means clustering (chapter 7) to group data into two. YIldlZ and Alpaydm
(2000) use LDA (chapter 6) to find the discriminant once the classes are
grouped into two.

Any classifier approximates the real (unknown) discriminant choosing
one hypothesis from its hypothesis class. When we use univariate nodes,
our approximation uses piecewise, axis-aligned hyperplanes. With linear
multivariate nodes, we can use arbitrary hyperplanes and do a better ap
proximation using fewer nodes. If the underlying discriminant is curved,
nonlinear nodes work better. The branching factor has a similar effect
in that it specifies the number of discriminants that a node defines. A
binary decision node with two branches defines one discriminant sepa
rating the input space into two. An n-way node separates into n. Thus,
there is a dependency among the complexity of a node, the branching
factor, and tree size. With simple nodes and low branching factors, one
may grow large trees, but on the other hand, such trees, for example,
with univariate binary nodes, are more interpretable. Linear multivariate
nodes are more difficult to interpret. More complex nodes also require
more data and are prone to overfitting as we get down the tree and have
less and less data. If the nodes are complex and the tree is small, we also
lose the main idea of the tree, which is that of dividing the problem into
a set of simple problems. After all, we can have a very complex classifier
in the root that separates all classes from each other, but then this will
not be a tree!

9.7 Notes

Divide-and-conquer is a frequently used heuristic that has been used
since the days of Caesar to break a complex problem, for example, Gaul,
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into a group of simpler problems. Trees are frequently used in computer
science to decrease complexity from linear to log time. Decision trees
were made popular in statistics in Breiman et al. 1984 and in machine
learning in Quinlan 1986, 1993. Multivariate tree induction methods be
came popular more recently; a review and comparison on many datasets
are given in YIldlZ and Alpaydm 2000. Many researchers (e.g., Guo and
Gelfand 1992), proposed to combine the simplicity of trees with the accu
racy of multilayer perceptrons (chapter 11). Many studies, however, have
concluded that the univariate trees are quite accurate and interpretable,
and the additional complexity brought by linear (or nonlinear) multivari
ate nodes is hardly justified.

OMNIVARIATE The omnivariate decision tree (YIldlZ and Alpaydm 2001) is a hybrid
DECISION TREE tree architecture where the tree may have univariate, linear multivariate,

or nonlinear multivariate nodes. The idea is that during construction, at
each decision node, which corresponds to a different subproblem defined
by the subset of the training data reaching that node, a different model
may be appropriate and the appropriate one should be found and used.
Using the same type of nodes everywhere corresponds to assuming that
the same inductive bias is good in all parts of the input space. In an omni
variate tree, at each node, candidate nodes of different types are trained
and compared using a statistical test (chapter 14) on a validation set to
determine which one generalizes the best. The simpler one is chosen
unless a more complex one is shown to have significantly higher accu
racy. Results show that more complex nodes are used early in the tree,
closer to the root, and as we go down the tree, simple univariate nodes
suffice. As we get closer to the leaves, we have simpler problems and, at
the same time, we have less data. In such a case, complex nodes overfit
and are rejected by the statistical test. The number of nodes increases
exponentially as we go down the tree; therefore, a large majority of the
nodes are univariate and the overall complexity does not increase much.

Decision trees are used more frequently for classification than for re
gression. They are very popular: They learn and respond quickly, and
are accurate in many domains (Murthy 1998). It is even the case that a
decision tree is preferred over more accurate methods, because it is in
terpretable. When written down as a set of IF-THEN rules, the tree can be
understood and the rules can be validated by human experts who have
knowledge of the application domain.

It is generally recommended that a decision tree be tested and its ac
curacy be taken as a benchmark before more complicated algorithms are
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employed. Analysis of the tree also allows an understanding of the im
portant features, and the univariate tree does its own automatic feature
extraction. Another big advantage of the univariate tree is that it can use
numeric and discrete features together, without needing to convert one
type into the other.

The decision tree is a nonparametric method, similar to the methods
discussed in chapter 8, but there are a number of differences:

• Each leaf node corresponds to a "bin," except that the bins need not
be the same size (as in Parzen windows) or contain an equal number
of training instances (as in k-nearest neighbor).

• The bin divisions are not done based only on similarity in the input
space, but the required output information through entropy or mean
square error is also used.

• Another advantage of the decision tree is that the leaf ("bin") is found
much faster with smaller number of comparisons.

• The decision tree, once it is constructed, does not store all the training
set but only the structure of the tree, the parameters of the decision
nodes, and the output values in leaves; this implies that the space
complexity is also much less, as opposed to kernel- or neighbor-based
nonparametric methods, which need to store all of the training exam
ples.

With a decision tree, a class need not have a single description to which
all instances should match. It may have a number of possible descrip
tions that can even be disjoint in the input space.

The tree is different from the statistical models discussed in previous
chapters. The tree codes directly the discriminants separating class in
stances without caring much for how those instances are distributed in
the regions. The decision tree is discriminant-based, whereas the statisti
cal methods are likelihood-based in that they explicitly estimate p(xIC;)
before using Bayes' rule and calculating the discriminant. Discriminant
based methods directly estimate the discriminants, bypassing the estima
tion of class densities. We further discuss discriminant-based methods
in the chapters ahead.
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1. Generalize the Gini index (equation 9.5) and the rnisclassification error (equa
tion 9.6) for K > 2 classes. Generalize rnisclassification error to risk, taking a
loss function into account.

2. For a numeric input, instead of a binary split, one can use a ternary split with
two thresholds and three branches as

Propose a modification of the tree induction method to learn the two thresh
olds, W ma ' Wmb. What are the advantages and the disadvantages of such a
node over a binary node?

3, Propose a tree induction algorithm with backtracking.

4. In generating a univariate tree, a discrete attribute with n possible values
can be represented by n 0/1 dummy variables and then treated as n sepa
rate numeric attributes. What are the advantages and disadvantages of this
approach?

5, Derive a learning algorithm for sphere trees (equation 9.21). Generalize to
ellipsoid trees.

6. In a regression tree, we discussed that in a leaf node, instead of calculating
the mean, we can do a linear regression fit and make the response at the leaf
dependent on the input. Propose a similar method for classification trees.

7. Propose a rule induction algorithm for regression.
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10 Linear Discrimination

In linear discrimination, we assume that instances of a class are lin
early separable from instances ofother classes. This is a discriminant
based approach that estimates the parameters of the discriminant
directly, without first estimating probabilities. In this chapter, we
see different learning algorithms with different inductive biases for
learning such linear discriminants from a given labeled training
sample.

10.1 Introduction

WE REMEMBER from the previous chapters that in classification we de
fine a set of discriminant functions gj (x), j = 1, ... ,K, and then we

. K
choose Cj If gi(X) = maxgj(x)

j=I

Previously, when we discussed methods for classification, we first es
timated the prior probabilities, P(C;), and the class likelihoods, P(x ICj ),
then used Bayes' rule to calculate the posterior densities. We then defined
the discriminant functions in terms of the posterior, for example,

gi(X) = logP(C;lx)

LIKELIHOOD-BASED This is called likelihood-based classification, and we have previously
CLASSIFlCATION discussed the parametric (chapter 5), semiparametric (chapter 7), and

nonparametric (chapter 8) approaches to estimating the class likelihoods,
p(xIC;).

DISCRIMINANT-BASED We are now going to discuss discriminant-based classification where we
CLASSIFICATION assume a model directly for the discriminant, bypassing the estimation of
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likelihoods or posteriors. The discriminant-based approach makes an as
sumption on the form of the discriminant between the classes and makes
no assumption about, or requires no knowledge of the densities, for ex
ample, whether they are Gaussian, or whether the inputs are correlated,
and so forth. The discriminant-based approach is said to be nonpara
metric, parameters in this sense referring to the parameters of the class
likelihood densities.

We define a model for the discriminant

gi (x I<Pi )

explicitly parameterized with the set of parameters <Pi, as opposed to
a likelihood-based scheme that has implicit parameters in defining the
likelihood densities. This is a different inductive bias: Instead of making
an assumption on the form of the densities, we make an assumption on
the form of the discriminants.

Learning is the optimization of the model parameters <Pi to maximize
the classification accuracy on a given labeled training set. This differs
from the likelihood-based methods that search for the parameters that
maximize sample likelihoods, separately for each class.

In the discriminant-based approach, we do not care about correctly es
timating the densities inside class regions; all we care about is the correct
estimation of the boundaries between the class regions. Those who advo
cate the discriminant-based approach (e.g., Cherkassky and Mulier 1998)
state that estimating the class densities is a harder problem than estimat
ing the class discriminants, and it does not make sense to solve a hard
problem to solve an easier problem. This is of course true only when the
discriminant can be approximated by a simple function.

In this chapter, we concern ourselves with the simplest case where the
discriminant functions are linear in x:

d

(10.1) g;(XIWi, w;o) = wT x + WiQ = I W;jXj + WiQ

j=!

LINEAR DISCRIMINANT The linear discriminant is used frequently mainly due to its simplicity,
namely, both the space and time complexities are O(d). The linear model
is easy to understand: The final output is a weighted sum of several fac
tors. The magnitute of the weights show the importance of these factors
and their sign show if the effect is positive or negative. Most functions are
additive in that the output is the sum of the effects of several attributes
where the weights may be positive (enforcing) or negative (inhibiting). For
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example, when a customer applies for credit, financial institutions calcu
late the applicant's credit score which is generally written as a sum of the
effects of various attributes; for example, yearly income has a positive
effect (higher incomes increase the score).

In many applications, the linear discriminant is also quite accurate. We
know, for example, that when classes are Gaussian with a shared covari
ance matrix, the optimal discriminant is linear. The linear discriminant,
however, can be used even when this assumption does not hold and the
model parameters can be calculated without maldng any assumptions
on the class densities. We should always use the linear discriminant be
fore trying a more complicated model to make sure that the additional
complexity is justified.

As always, we formulate the problem of finding a linear discriminant
function as a search for the parameter values that minimize an error
function. In particular, we concentrate on gradient methods for optimiz
ing a criterion function.

10.2 Generalizing the linear Model

When a linear model is not flexible enough, we can increase complexity
QUADRATIC and write the quadratic discriminant function

DISCRIMINANT

(10.2) gj(XIWi, Wi, WiO) = XTWiX + WiX + WiO

but this approach is 0 (d 2 ) and we again have the bias/variance dilemma:
The quadratic model, though is more general, requires much larger train
ing sets, and may overfit on small samples.

HIGHER-ORDER TERMS An eqUivalent way is to preprocess the input by adding higher-order
PRODUCT TERMS terms, also called product terms. For example, with two inputs Xl and X2,

we can define new variables

and take z = [ZI,Z2,Z3,Z4,ZSV as the input. The linear function defined
in the five-dimensional z space corresponds to a nonlinear function in
the two-dimensional x space. Instead of defining a nonlinear function
(discriminant or regression) in the original space, what we do is to define
a suitable nonlinear transformation to a new space where the function
can be written in a linear form.
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We write the discriminant as
k

00.3) gi(X) = L Wjcf>ij(X)
j=l

BASIS FUNCTION where cf>ij (x) are basis functions. Examples are

• sin (Xl )

• exp( -(Xj - m)z Ie)

• exp( -llx - mll zIe)

• log(xz)

• l(xj > c)

• l(axj + bxz > c)

where m, a, b, c are scalars, m is a d-dimensional vector, and 1(b) returns
1 if b is true and returns a otherwise. The idea of writing a nonlinear
function as a linear sum of nonlinear basis functions is an old idea and

POTENTIAL FUNCTION was originally called potential functions (Aizerman, Braverman, and Rozo
noer 1964). In section 10.9, we discuss support vector machines that use
such basis functions. Multilayer perceptrons (chapter 11) and radial basis
functions (chapter 12) have the further advantage that the parameters of
the basis functions can be fine-tuned to the data during learning.

10.3 Geometry of the linear Discriminant

10.3.1 Two Classes

Let us start with the simpler case of two classes. In such a case, one
discriminant function is sufficient:

g(x)

and we

choose {

gdx) - gz(x)

(wix + WlO) - (wIx + WZO)

(WI - WZ)T X + (WlO - WZO)

w T x + Wo

Cj if g(x) > a
Cz otherwise
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Figure 10.1 In the two-dimensional case, the linear discriminant is a line that
separates the examples from two classes.

WEIGHT VECTOR This defines a hyperplane where w is the weight vector and Wo is the
THRESHOLD threshold. This latter name comes from the fact that the decision rule

can be rewritten as follows: Choose CI if w T x> -Wo, and choose C2 oth
erwise. The hyperplane divides the input space into two half-spaces: The
decision region RI for CI and R2 for C2. Any x in RI is on the posiHve
side of the hyperplane and any x in R2 is on its negative side. When x is
0, g (x) = Wo and we see that if Wo > 0, the origin is on the positive side
of the hyperplane and if Wo < 0, the origin is on the negative side and if
Wo = 0, the hyperplane passes through the origin (see figure 10.1).

Take two points x I and X2 both on the decision surface, that is, g (x I) =

g(X2) = 0, then

w T
XI + Wo

W T (XI-X2)

and we see that w is normal to any vector lying on the hyperplane. Let us
rewrite x as (Duda, Hart, and Stork 2001)

w
x = xp + r Ilwll
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Figure 10.2 The geometric interpretation of the linear discriminant.

where xp is the normal projection of x onto the hyperplane and r gives
us the distance from x to the hyperplane, negative if x is on the negative
side, and positive if x is on the positive side (see figure 10.2). Calculating
g(x) and noting that g(xp ) = 0, we have

g(x)
r = IIwll

We see then that the distance to origin is

WO
Yo = IIwll

Thus WD determines the location of the hyperplane with respect to the
origin, and w determines its orientation.

10.3.2 Multiple Classes

When there are K > 2 classes, there are K discriminant functions. When
they are linear, we have

(10.6) gi(xlwi, WiO) = wTx + WiD
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Figure 10.3 In linear classification, each hyperplane Hi separates the examples
of Ci from the examples of all other classes. Thus for it to work, the classes
should be linearly separable. Dotted lines are the induced boundaries of the
linear classifier.

We are going to talk about learning later on but for now, we assume
that the parameters, Wi. WiD. are computed so as to have

{
> 0 if x E Ci

(l0.7) 9i(xlwi, WiD) = :::; 0 otherwise

for all x in the training set. Using such discriminant functions corre
LINEARLY SEPARABLE sponds to assuming that all classes are linearly separable; that is, for

ClASSES each class Cit there exists a hyperplane Hi such that on its positive side
lie all x E Ci and on its negative side lie all x E Cj,j =1= i (see figure 10.3).

During testing, given x, ideally, we should have only one 9j (x), j =

1, .... K greater than 0 and all others should be less than 0, but this is
not always the case: The positive half-spaces of the hyperplanes may
overlap, or, we may have a case where all 9j(X) < O. These may be taken
as reject cases, but the usual approach is to assign x to the class having
the highest discriminant:

(l0.8) Choose Ci if 9i(X) = maxf=l 9j(X)

Remembering that 19i(x)l/lIw;l1 is the distance from the input point to
the hyperplane, assuming that all Wi have similar length, this assigns the
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Figure 10.4 In pairwise linear separation, there is a separate hyperplane for
each pair of classes. For an input to be assigned to CI, it should be on the
positive side of H1z and H13 (which is the negative side of H3!l; we do not care
for the value of HZ3. In this case, Cl is not linearly separable from other classes
but is pairwise linearly separable.

point to the class (among all 9j (x) > 0) to whose hyperplane the point is
I.INEAR CLASSIFIER most distant. This is called a linear classifier and geometrically, it divides

the feature space into K convex decision regions R.i (see figure 10.3),

10.4 Pairwise Separation

If the classes are not linearly separable, one approach is to divide it into
PAIRWISE SEPARATION a set of linear problems. One possibility is pairwise separation of classes

(Duda, Hart, and Stork 2001). It uses K(K - 1)/2 linear discriminants,
9ij(X), one for every pair of distinct classes (see figure lOA):

9ij(X!Wij, wijo) = wljx + WijO

The parameters Wij,j ~ i are computed during training so as to have

(10.9)
{

> 0
9ij(X) = ~ 0

don't care

if x E C
ifxECj i,j=l, ... ,Kandi~j
otherwise

that is, if xt E Ck where k ~ i, k ~ j, then x t is not used during training
of 9ij(X).
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(10.11)

During testing, we

choose C; if Vj -/= i, gij(X) > 0

In many cases, this may not be true for any i and if we do not want to
reject such cases, we can relax the conjunction by using a summation

(10.10) gi(X) = L gij(X)
Hi

Even if the classes are not linearly separable, if the classes are pairwise
linearly separable, which is much more likely, then pairwise separation
can be used, leading to nonlinear separation of classes (see figure 10.4).
This is another example of breaking down a complex, for example, non
linear, problem, into a set of simpler, for example, linear, problems. We
have already seen decision trees (chapter 9) that use this idea, and we
will see more examples of this in chapter 15 on combining multiple mod
els, for example, error-correcting output codes, and mixture of experts,
where the number of linear models is less than O(K 2 ).

10.5 Parametric Discrimination Revisited

In chapter 5, we saw that if the class densities, p(xIC;), are Gaussian and
share a common covariance matrix, the discriminant function is linear

Tgi(X) = Wi X + WiQ

where the parameters can be analytically calculated as

Wi ~-llli

1 T -1 I(10.12) WiD -21li ~ IIi + ogP(C;)

Given a dataset, we first calculate the estimates for IIi and ~ and then
plug the estimates, mi, 5, in equation 10.12 and calculate the parameters
of the linear discriminant.

Let us again see the special case where there are two classes: We define
y == P(Cllx) and p(C2Ix) = 1 - y. Then in classification, we

{

y> 0.5

choose C1 if 0 > 1 and C2 otherwise
log0 > 0

LOGIT logy/(l - y) is known as the logit transformation or log odds of y. In
LOG ODDS
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the case of two normal classes sharing a common covariance matrix, the
log odds is linear:

. P(Cllx) P(Cllx)
10glt(P(Cllx» = log 1 _ P(Cllx) = log P(Cz!x)

p(xlCd P(Cd
log p(xICz) + log P(Cz)

1 (21T)-dIZI~I-I/Zexp[-(l/2)(x-PI)T~-I(x-PI)] 1 P(Cd
og (21T)-dIZI~I-I/Zexp[ -(1/2)(x _ Pz)T~-1 (x _ pz)] + og P(Cz)

00.13) w T x + Wo

00.14)

LOGISTIC

SIGMOID

(10.15)

where

w ~-I(PI-P2)

1 T I P(CI)
Wo -"2(PI + P2) ~- (PI - pz) + log P(C2)

The inverse of logit

1 P (CI Ix) = W T X + Wo
og 1 - P(Cllx)

is the logistic function, also called the sigmoid function (see figure 10.5):

P(Cllx) = sigmoid(wT
x + wo) = [ (1 T )]

1 + exp - w x + Wo

During training, we estimate ml, mz, S and plug these estimates in
equation 10.14 to calculate the discriminant parameters. During testing,
given x, we can either

1. calculate g(x) = w T x + Wo and choose CI if g(x) > 0, or

2. calculate y = sigmoid(w T x + wo) and choose CI if y > 0.5,

because sigmoid(O) = 0.5. In this latter case, sigmoid transforms the
discriminant value to a posterior probability. This is valid when there
are two classes and one discriminant; we see in section 10.7 how we can
estimate posterior probabilities for K > 2.

10.6 Gradient Descent

In likelihood-based classification, the parameters were the sufficient statis
tics of p(xIC;) and P(C;) and the method we used to estimate the param
eters is maximum likelihood. In the discriminant-based approach, the
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GRADIENT DESCENT

GRADIENT VECTOR

(10.16)

(10.17)

Figure 10.5 The logistic, or sigmoid, function.

parameters are those of the discriminants, and they are optimized to
minimize the classification error on the training set. When w denotes
the set of parameters and E(wIX) is the error with parameters won the
given training set X, we look for

w* = argminE(wIX)
w

In many cases, some of which we will see shortly, there is no analyti
cal solution and we need to resort to iterative optimization methods; the
most commonly employed is that of gradient descent: When E(w) is a dif
ferentiable function of a vector of variables, we have the gradient vector
composed of the partial derivatives

'VwE = [,="OE , ;;oE , ... , ;;oE ] T
vWj vW2 vWd

and the gradient descent procedure to minimize E, starts from a random
w, and at each step, updates w. in the opposite direction of the gradient

A oE 1.-/.
UWi -rJ- vI

ow;'
Wi Wi +~W;

where rJ is called the stepsize, or learning factor and determines how
much to move in that direction. Gradient-ascent is used to maximize a
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10 Linear Discrimination

function and goes in the direction of the gradient. When we get to a min
imum (or maximum), the derivative is 0 and the procedure terminates.
This indicates that the procedure finds the nearest minimum that can
be a local minimum, and there is no guarantee of finding the global mini
mum unless the function has only one minimum. The use of a good value
for 11 is also critical; if it is too small, the convergence may be too slow,
and a large value may cause oscillations and even divergence.

Throughout this book, we use gradient methods that are simple and
quite effective. We keep in mind, however, that once a suitable model and
an error function is defined, the optimization of the model parameters to
minimize the error function can be done by using one of many possible
techniques. There are second-order methods and conjugate-gradient that
converge faster, at the expense of more memory and computation. More
costly methods like simulated annealing and genetic algorithms allow a
more thorough search of the parameter space and do not depend as much
on the initial point.

Logistic Discrimination

Two Classes

In logistic discrimination, we do not model the class-conditional densities,
p(xIC;), but rather their ratio. Let us again start with two classes and
assume that the log likelihood ratio is linear:

P(XICI) T a
log P(XIC2) = w X + Wo

This indeed holds when the class-conditional densities are normal (equa
tion 10.13). But logistic discrimination has a wider scope of applicability;
for example, x may be composed of discrete attributes or may be a mix
ture of continuous and discrete attributes.

Using Bayes' rule, we have

(10.19)

logit(P(Cllx))
P(C1Ix)

log 1 - P(Cllx)

p(xlCd P(Cd
log P(XIC2) + log P(C2)

wTx + Wo
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00.21)

00.20)

(10.24) ~wo

o P(Cl)
Wo = Wo + log P(C2)

Rearranging terms, we get the sigmoid function again:

~ 1
Y = P(Cllx) = 1 + exp[ -(wTx + wo)]

as our estimator of P(Cllx).
Let us see how we can learn w and Wo: We are given a sample of two

classes, X = {xt,rt }, where r t = 1 if x E Cl and r t = 0 if x E C2.
We assume r t , given xt, is Bernoulli with probability yt == P(Cllx t ) as
calculated in equation 10.21:

rtlx t - Bernoulli(yt)

Here, we see the difference from the likelihood-based methods where
we modeled p(xICj); in the discriminant-based approach, we model di
rectly rlx. The sample likelihood is

(10.22) l(w, wolX) = n(yt)(r t )(1_ yt)(l-r t
)

t

We know that when we have a likelihood function to maximize, we can
always turn it into an error function to be minimized as E = -log I, and

CROSS-ENTROPY in our case, we have cross-entropy:

(10.23) E(w, wolX) = - L r t logyt + (1 - r t ) log(l _ yt)
t

We use gradient-descent to minimize cross-entropy, equivalent to max
imizing the likelihood or the log likelihood. If y = sigmoid(a) = 1/(1 +
exp( -a)), its derivative is given as

dy = y(1 _ y)
da
and we get the following update equations:

aE L (r t
1 - rt

) t t t~Wj -11- = 11 - - -- y (1 - y )x·
aWj t yt 1 - yt J

11 L(rt - yt)xj,j = 1, ... ,d
t

aE
-11- = 11 L(rt - yt)

awo t
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For j = 0, ... , d
Wj -rand(-O.Ol ,0.01)

Repeat
For j = 0, .. . ,d

~Wj -0
For t = 1, ... ,N

0-0
For j = 0,,, .,d

t0- 0 + WjXj

Y - sigmoid(o)
~Wj - ~Wj + (r t - y)X)

For j = 0,,,. ,d
Wj - Wj + I7~Wj

Until convergence

Figure 10.6 Logistic discrimination algorithm implementing gradient-descent
for the single output case with two classes. For wo, we assume that there is an
extra input xo, which is always +1: Xb == +1, '<it.

It is best to initialize Wj with random values close to 0; generally they
are drawn uniformly from the interval [-0.01,0.01]. The reason for this
is that if the initial Wj are large in magnitude, the weighted sum may
also be large and may saturate the sigmoid. We see from figure 10.5
that if the initial weights are close to 0, the sum will stay in the middle
region where the derivative is nonzero and an update can take place. If
the weighted sum is large in magnitude (smaller than -5 or larger than
+5), the derivative of the sigmoid will be almost 0 and weights will not
be updated.

Pseudocode is given in figure 10.6. We see an example in figure 10.7
where the input is one-dimensional. Both the line wx + Wo and its value
after the sigmoid are shown as a function of learning iterations. We see
that to get outputs of 0 and 1, the sigmoid hardens, which is achieved by
increasing the magnitude of w.

Once training is complete and we have the final wand wo, during test
ing, given x, we calculate y = sigmoid(wTx + wo) and we choose C1 if
y> 0.5 and choose C2 otherwise. This implies that to minimize the num
ber of misclassifications, we do not need to continue learning until yare
oor 1, but only until y is less than or greater than 0.5. If we continue
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Figure 10.7 For a univariate two-class problem (shown with 'a' and 'x' ), the
evolution of the line wx + Wo and the sigmoid output after 10, 100, and 1,000
iterations over the sample.

training beyond this point, cross-entropy will continue decreasing (Iwj I
will continue increasing to harden the sigmoid), but the number of mis
classifications will not decrease. Generally, we continue training until the
number of misclassifications does not decrease (which will be 0 if the
classes are linearly separable).

Note that though we assumed the log ratio of the class densities are
linear to derive the discriminant, we estimate directly the posterior and
never explicitly estimate P(XICi) or P(Ci ).

10.7.2 Multiple Classes

(10.25)

Let us now generalize to K > 2 classes: We take one of the classes, for
example, CK, as the reference class and assume that

I p(xICj} T 0

og P(XICK) = Wi X + WiD
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(10.26)
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Then we have

P(C;!x) T
P(CKlx) = exp[wi x + WiO]

with WiO = wiG + 10gP(C;)/P(CK).
We see that

(10.27)

and also that
P(C;lx)

P(CK Ix)
exp[wTx + WiO]

(10.28)

(10.29)

SOFTMAX

(10.30)

(10.31)

(10.32)

exp[wTx + WiO] .
~ P(C;lx) = K-l T ' 1= 1, ... ,K-l

1 + 2: j =1 exp[wjx + Wjo]

To treat all classes uniformly, we can write

. = p"(C'1 ) = exp[wTx + WiO]Y, I x K T ' ; = 1, ... , K
2: j =l exp[w j x + Wjo]

which is called the softmax function (Bridle 1990). If the weighted sum
for one class is sufficiently larger than for the others, after it is boosted
through exponentiation and normalization, its corresponding Yi will be
close to 1 and the others will be close to O. Thus it works like taking a
maximum, except that it is differentiable; hence the name softmax. 50ft
max also guarantees that 2:; Yi = 1.

Let us see how we can learn the parameters: In this case of K > 2
classes, each sample point is a multinomial trial with one draw, that is,
ytlxt ~ Multk(l,yt), where yf == P(C;lx t ). The sample likelihood is

I({Wi, wio};IX) = fl fl (y[)rf
t i

and the error function is again cross-entropy:

E( {Wi, WiO} ;IX) = - L. L. rflog yf
t i

We again use gradient-descent. If Yi = exp(ai)/ 2: j exp(aj), we have

oy
oar. = Yi(6ij - Yj)

J
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where Oij is the Kronecker delta, which is 1 if i = j and 0 if i =1= j (exer
cise 3). Given that Ii rl = 1, we have the following update equations, for
j = 1, ... ,K

00.33) ~WjD

ry~ [~ ';'8ij - Y)~ ':]x'
11 L(rJ - yJ)x t

t

11 L(rJ - yJ)
t

(10.34)

Note that because of the normalization in softmax, W j and WjD are af
fected not only by x t E Cj but also by x t E Ci, i =1= j. The discriminants
are updated so that the correct class has the highest weighted sum af
ter softmax, and the other classes have their weighted sums as low as
possible. Pseudocode is given in figure 10.8. For a two-dimensional ex
ample with three classes, the contour plot is given in figure 10.9, and the
discriminants and the posterior probabilities in figure 10.10.

During testing, we calculate all Yk, k = 1, ... ,K and choose Ci if Yi =

maxk Yk. Again we do not need to continue training to minimize cross
entropy as much as possible; we train only until the correct class has
the highest weighted sum, and therefore we can stop training earlier by
checking the number of misclassifications.

When data are normally distributed, the logistic discriminant has com
parable error rate to the parametric, normal-based linear discriminant
(McLachlan 1992). Logistic discrimination can still be used when the
class-conditional densities are nonnormal or when they are not unimodal,
as long as classes are linearly separable.

The ratio of class-conditional densities is of course not restricted to be
linear (Anderson 1982; McLachlan 1992). Assuming a quadratic discrimi
nant, we have

p(xIC;) T T
log P(XICk) = x Wi X + Wi X + WiD

corresponding to and generalizing parametric discrimination with mul
tivariate normal class-conditionals having different covariance matrices.
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For i = I, ... ,K, For j = O, ... ,d, wij - rand(-O.OI,O.Ol)
Repeat

For i = I, ,K, For j = O, ... ,d, ~wij - °
For t = 1, ,N

For i = I, ... ,K

0; - °
For j = 0, .. . ,d

t
0; - Oi + WijXj

For i = 1, .. . ,K
Yi - exp(o;) / ~k exp(ok)

For i = 1, ... ,K
For j = 0, .. . ,d

~Wij - ~Wij + (rl- Yi)Xj

For i = I, ... ,K
For j = 0, .. . ,d

Wij - wij + '7~wij

Until convergence

Figure 10.8 Logistic discrimination algorithm implementing gradient-descent
for the case with K > 2 classes. For generality, we take xb =1, '<:It.

05

00'-------::0':-5-~---:'::..5--'---:'2.5,------~~-----::3-:-.5-~.

"

Figure 10.9 For a two-dimensional problem with three classes, the solution
found by logistic discrimination. Thin lines are where g;(x) = 0, and the thick
line is the boundary induced by the linear classifier choosing the maximum.
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Figure 10.10 For the same example in figure 10.9, the linear discriminants
(top), and the posterior probabilities after the sofrmax (bottom).
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(10.35)
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When d is large, just as we can simplify (regularize) ~i, we can equally do
it on Wi by taking only its leading eigenvectors into account.

As discussed in section 10.2, any specified function of the basic vari
ables can be included as x-variates. One can, for example, write the dis
criminant as a linear sum of nonlinear basis functions

P(XICi) T
log P(XICk) = Wi cJ>(x) + WiD

where cJ>(.) are the basis functions, which can be viewed as transformed
variables. In neural network terminology, this is called a multilayer per
ceptron (chapter 11) and sigmoid is the most popular basis function.
When a Gaussian basis function is used, the model is called radial ba
sis functions (chapter 12). We can even use a completely nonparametric
approach, for example, Parzen windows (chapter 8).

(10.37)

10.8 Discrimination by Regression

In regression, the probabilistic model is

(10.36) rt = yt + €

where € - N(O, ( 2). If r t E {O, 1}, yt can be constrained to lie in this
range using the sigmoid function. Assuming a linear model and two
classes, we have

t . "d( T t) 1y = slgmOl W x + Wo = 1 [( T t )]+ exp - W x + Wo

Then the sample likelihood in regression, assuming rlx - N(y, ( 2 ), is

(10.38)

(10.39)

1 [(rt _ yt)2]
l(w, wolX) = I/ J'[iiu exp - 2u2

Maximizing the log likelihood is minimizing the sum of square errors:

1
E(w, wolX) = 2" I(rt - yt)2

t

Using gradient-descent, we get

~w '1 I(rt - yt)yt(l_ yt)xt

t

(10.40) ~wo '1 I(rt - yt)yt(l _ yt)
t
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This method can also be used when there are K > 2 classes. The prob
abilistic model is

(l0.41) r t = yt + £

where £ ~ NK (0, a-2IK). Assuming a linear model for each class, we have

(l0.42) t " "d( T t) 1Yi = slgmOl Wi x + WiD = T
1 + exp[ -(Wi xt + WiO)]

Then the sample likelihood is

and the error function is

(10.44)

The update equations for i = 1, ... ,K, are

~Wi '1 L.(r[ - y[)yf(l - y[)x t

t

(10.45) ~WiO '1 L. (r[ - y[)yf (l - y[)
t

But note that in doing so, we do not make use of the information that
only one of Yi needs to be 1 and all others are 0, or that Li Yi = 1. The
softmax function of equation 10.29 allows us to incorporate this extra
information we have due to the outputs' estimating class posterior prob
abilities. Using sigmoid outputs in K > 2 case, we treat Yi as if they are
independent functions.

Note also that for a given class, if we use the regression approach, there
will be updates until the right output is 1 and all others are 0. This is not
in fact necessary because during testing, we are just going to choose the
maximum anyway; it is enough to train only until the right output is
larger than others, which is exactly what the softmax function does.

So this approach with multiple sigmoid outputs is more appropriate
when the classes are not mutually exclusive and exhaustive. That is, for
an xt , all r[ may be 0, namely, xt does not belong to any of the classes, or
more than one r[ may be I, when classes overlap.
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10.9 Support Vector Machines

10.9.1 Optimal Separating Hyperplane

We now discuss a different approach to learning the linear discriminant.
We should not be surprised to have so many different methods even
for the simple case of linear classification. Each method has a differ
ent inductive bias, makes different assumptions, and defines a different
objective function and thus may find a different linear discriminant.

Let us start again with two classes and use labels -1/ + 1 for the two
classes. The sample is X = {Xl, r l } where r l = +1 if Xl E C, and r l = -1
if Xl E Cz. We would like to find wand Wo such that

W TXI +WO:?+1

wT Xl + wo ~ -1

for r l = +1

for r l = -1

which can be rewritten as

(10.46) rl(wTx l + wo):?' +1

Note that we do not simply require

rl(wTx l +wo):?' 0

We do not only want the instances to be on the right side of the hyper
plane, but we also want them some distance away, for better generaliza
tion. The distance from the hyperplane to the instances closest to it on

MARGIN either side is called the margin, which we want to maximize for best gen-
OPTIMAL SEPARATING eralization. The optimal separating hyperplane is the one that maximizes

HYPERPLANE the margin.
We remember from section 10.3 that the distance of Xl to the discrimi

nant is

IWTXI + wol
Ilwll

(10.47)

which, when r l E {-1, +1}, can be written as

r l (wT Xl + wo)

Ilwll
which we would like to be at least some value p.

rl(wTx l + wo)
Ilwll :? p, Vt
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g(x)=+1

o

\\~ C
J

0

Q\O

g(x)= -1

2/lIwll

Figure 10.11 On both sides of the optimal separating hyperplance, the in
stances are at least l/llwil away and the total margin is 2/11wll.

We would like to maximize p but there are an infinite number of so
lutions that we can get by scaling wand for a unique solution, we fix
pllwll = 1 and thus, to maximize the margin, we minimize Ilwll. The task
can therefore be defined (see Cortes and Vapnik 1995; Vapnik 1995) as
to

(10.48) min ~IIWIl2 subject to rt(wT x t + wo) ~ +1, 'Vt

This is a standard quadratic optimization problem, whose complexity
depends on d, and it can be solved directly to find wand woo Then, on
both sides of the hyperplane, there will be instances that are 1/ Ilw II away
from the hyperplane and the total margin will be 2/ II w II (see figure 10.11).

We saw in section 10.2 that if the problem is not linearly separable,
instead of fitting a nonlinear function, one trick we can do is to map the
problem to a new space by using nonlinear basis functions. It is generally
the case that this new space has many more dimensions than the original
space, and in such a case, we are interested in a method whose complexity
does not depend on the input dimensionality.

In finding the optimal hyperplane, we can convert the optimization
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(10.49)

(10.50)

(l0.51)

(l0.52)
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problem to a form whose complexity depends on N, the number of train
ing instances, and not on d. Another advantage of this new formulation
is that it will allow us to rewrite the basis functions in terms of kernel
functions, as we see in section 10.9.3.

To get the new formulation, we first write equation 10.48 as an uncon
strained problem using Lagrange multipliers a l :

1 N
L p = '2llwI12-Lal[rl(wTxl+wo)-1]

1=1

1
-lIwlI 2

- L a l r l (w T Xl + wo) + L a l
2 I I

This should be minimized with respect to w, Wo and maximized with
respect to a l ~ O. The saddle point gives the solution.

This is a convex quadratic optimization problem because the main term
is convex and the linear constraints are also convex. Therefore, we can
equivalently solve the dual problem, making use of the Karush-Kuhn
Tucker conditions. The dual is to maximize Lp with respect to aI, subject
to the constraints that the gradient of Lp with respect to wand Wo are 0
and also that a l ~ 0:

aLp 0 ~ w = '"' alrlxl
ow = L

I

aLp = 0 ~ L a l r l = 0
owo I

Plugging these into equation 10.49, we get the dual
1

Ld = -(wT w) - w T L alrlxl - Wo L alrl + L a l
2 I I t

1
- - (wT w) + Lat

2 I

1-- 2: L a l aSrl rS(Xl) T XS+ 2: a l
2 I S I

which we maximize with respect to a l only, subject to the constraints

L a l r l = 0, and at ~ 0, '\It
I

This can be solved using quadratic optimization methods. The size of
the dual depends on N, sample size, and not on d, the input dimensional
ity. The upper bound for time complexity is (9(N3), and the upper bound
for space complexity is (9(N2).
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Once we solve for c/, we see that though there are N of them, most
vanish with (XI = 0 and only a small percentage have (XI > 0. The set of
Xl whose (Xt > °are the support vectors, and as we see in equation 10.50,
w is written as the weighted sum of these training instances that are
selected as the support vectors. These are the Xl, which satisfy

rt(wTx t + wo) = 1

and lie on the margin. We can use this fact to calculate Wo from any
support vector as

(10.53) Wo = r t - w Tx t

For numerical stability, it is advised that this is done for all support
vectors and an average is taken. The discriminant thus found is called

SUPPORT VECTOR the support vector machine (SVM).
MACI-IINE The majority of the (Xt are 0, for which r t (w Tx t + wo) > 1. These are

the Xl that lie further inside of the margin and have no effect on the
hyperplane. From this perspective, this algorithm can be likened to the
condensed nearest neighbor algorithm (section 8.5), which stores only
the instances defining the class discriminant. Being a discriminant-based
method, the SVM cares only about the instances close to the boundary
and discards those that lie in the interior. Using this idea, it is possible to
use a simpler classifier before the SVM to filter out a large portion of such
instances thereby decreasing the complexity of the optimization step of
the SVM.

During testing, we do not enforce a margin. We calculate g(x) = w T X +
wo, and choose according to the sign of g(x):

Choose CI if g(x) > °and Cz otherwise

When there are K > 2 classes, the straightforward way is to define K
two-class problems, each one separating one class from all other classes
combined and learn K support vector machines gi (x), i = 1, ... ,K. During
testing, we calculate all gi(X) and choose the maximum.

10.9.2 The Nonseparable Case: Soft Margin Hyperplane

If the data is not linearly separable, the algorithm we discussed earlier
will not work. In such a case, if the two classes are not linearly separa
ble such that there is no hyperplane to separate them, we look for the
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o

o

(10.55)

Figure 10.12 In classifying an instance, there are three possible cases: In (1),
~ = 0; it is on the right side and sufficiently away. In (2), ~ = 1 + g(x) > 1; it is
on the wrong side. In (3), ~ = 1 - g(x), 0 < ~ < 1; it is on the right side but is in
the margin and not sufficiently away.

SLACK VARIABLES one that incurs the least error. We define slack variables, ~I ;:::. 0, which
store the deviation from the margin. There are two types of deviation:
An instance may lie on the wrong side of the hyperplane and be misclas
sified. Or, it may be on the right side but may lie in the margin, namely,
not sufficiently away from the hyperplane. Relaxing equation 10.46, we
require

(10.54) r l (wT Xl + wo) ;:::. 1 _ ~I

If ~I = 0, there is no problem with Xl. If 0 < ~I < 1, Xl is correctly classi
fied but it is in the margin. If ~I ;:::. 1, xt is misclassified (see figure 10.12).
The number of misclassifications is # (~t > I}, and the number of non

SOFT ERROR separable points is #{~I > OJ. We define soft error as

L~I
I

and add this as a penalty term to the primal of equation 10.49:
1

Lp = zllwl12 + CL ~t - L (Xt[rt(w T x t + wo) -1 + ~I] - LJ/~t
I I t

where Ilt are the new Lagrange parameters to guarantee the positivity of
~I. C is the penalty factor as in any regularization scheme trading off



10.9 Support Vector Machines 223

(10.56)

complexity (number of support vectors) and data misfit (number of non
separable points). Note that we are penalizing not only the misclassified
points but also the ones in the margin for better generalization, though
these latter would be correctly classified during testing.

The dual problem is

1
Ld = Loct - - LLoctocsrtrS(xt)TxS

f 2 t S

subject to

L oct rt = 0 and 0 ::; oct ::; C, Vt
t

As in the separable case, instances that are not support vectors vanish
with their oct = 0 and the remaining define w. Wo is then solved for
similarly.

10.9.3 Kernel Functions

Section 10.2 demonstrated that if the problem is nonlinear, instead of
trying to fit a nonlinear model, we can map the problem to a new space
by doing a nonlinear transformation using suitably chosen basis func
tions and then use a linear model in this new space. The linear model
in the new space corresponds to a nonlinear model in the original space.
This approach can be used in both classification and regression prob
lems, and in the special case of classification, it can be used with any
scheme. In the particular case of support vector machines, it leads to
certain simplifications as we see here.

Let us say we have the new dimensions calculated through the basis
functions

z = c/J(x) wherezj = c/Jj(x),j = 1, ... ,k

mapping from the d-dimensional x space to the k-dimensional z space
where we write the discriminant as

(l0.57)

g(z)

g(x)

wTz

w Tc/J(x)
k

L WjcPj(x)
j=l
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where we do not use a separate wo; we assume that Zl = cPl (x) == l.
Generally, k is much larger than d and k is also larger than N, and there
is the advantage of using the dual form whose complexity depends on
N, whereas if we used the primal it would depend on k. We also use the
more general case of the soft margin hyperplane here because we have
no guarantee that the problem is linearly separable in this new space.
However, it is critical here, as in any regularization scheme, that a proper
value is chosen for C, the penalty factor. If it is too large, we have a high
penalty for nonseparable points and we may store many support vectors
and overfit. If it is too small, we may have underfitting.

The solution is

(10.58) w = L.cirtzt = L.c/rtcP(xt)
t t

and the discriminant is

(10.59) g(x) = w T cP(x) = L. 0/ r t cP(x t )T cP(x)
t

KERNEL MACHINE The idea in kernel machines is to replace the inner product of basis
KERNEL FUNCTION functions, cP(Xt)TcP(X), by a kernel function, K(xf,x), between the sup

port vectors and the input in the original input space:

(10.60) g(x) = L.ocfrfK(xf,x)
f

The most popular kernel functions are

• polynomials of degree q:

where q is selected by the user. For example, when q = 2 and d = 2,

K(x, y) (xTy + 1)2

(XIYl + X2Y2 + 1)2

1 + 2XIYl + 2X2Y2 + 2XIX2YIY2 + XTYf + X~Y~

which corresponds to the inner product of the basis function (Cherkassky
and Mulier 1998):
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• radial-basis functions:

K( I) [IIX I
- xII 2

]x,x =exp - 2
U
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which defines a spherical kernel as in Parzen windows (chapter 8)
where Xl is the center and u, supplied by the user, defines the radius.
This is similar to radial basis functions that we discuss in chapter 12.

• sigmoidal functions:

where tanh( .) has the same shape with sigmoid, except that it ranges
between -1 and + 1. This is similar to multilayer perceptrons that we
discuss in chapter 11.

Other kernel functions are also possible, subject to certain conditions
(Vapnik 1995; Cherkassky and Mulier 1998).

Cortes and Vapnik (1995) report excellent results with the SYM on a
handwritten digit recognition application. Inputs are 16 x 16 bitmaps and
thus are 256-dimensional. In this case, using a polynomial kernel with
q = 3 implies a feature space of 106 dimensions. The results indicate no
overfitting on a training set of 7,300 instances, with on the average 148
instances chosen as support vectors.

Vapnik (1995) has shown that the expected test error rate is

E [P( )]
EN[# of support vectors]

N error ::s; N

where EN['] denotes expectation over training sets of size N. Therefore,
the error rate depends on the number of support vectors and not on the
input dimensionality.

10.9.4 Support Vector Machines for Regression

Although this chapter is on classification, it is instructive to briefly dis
cuss how support vector machines can be generalized to regression. We
use a linear model:

f(x)=wTX+WQ
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Figure 10.13 Quadratic and €-sensitive error functions. We see that €-sensitive
error function is not affected by small errors and also is affected less by large
errors and thus is more robust to outliers.

In regression, we use the square of the difference as error:

whereas in support vector regression, we use the E-sensitive loss func
tion:

t t {O iflrt-((xt)I<E
(10.61) eE(r ,f(x )) = Irt _ ((x t )1- E otherwise

which means that we tolerate errors up to E and also that errors beyond
have a linear effect and not quadratic. This error function is therefore

ROBUST REGRESSION more tolerant to noise and is thus more robust (see figure 10.13).
Analogous to the soft margin hyperplane, we introduce slack variables

to account for deviations out of the E-zone and we get (Vapnik 1995)

(10.62) min ~IIWI12 + C~(~~ + ~~)
t

subject to

r t - (wT X + wo)

(w T X + wo) - rt

~~,~~

~ E + ~~

~ E + ~~

~ 0
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where we used two types of slack variables, for positive and negative
deviations, to keep them positive. This formulation corresponds to the
E-sensitive loss function given in equation 10.6l.

As given in Vapnik (1995), one can write this as a Lagrange function
and then take its dual. Kernel functions can also be used here. As in
classification, the result will choose certain training instances as support
vectors, and the regression line is written as a weighted sum of them.

10.10 Notes

Linear discriminant due to its simplicity, is the topic most worked on
in pattern recognition (Duda, Hart, and Stork 2001; McLachlan 1992).
We discussed the case of Gaussian distributions with a common covari
ance matrix in chapter 4 and Fisher's linear discriminant in chapter 6,
and in this chapter, we surveyed other approaches up to the most re
cent approach of support vector machines. In chapter 11, we discuss
the perceptron that is the neural network implementation of the linear
discriminant.

Logistic discrimination is discussed in more detail in Anderson 1982
and in McLacWan 1992. Logistic (sigmoid) is the inverse of logit, which
is the canonical link in case of Bernoulli samples. Softmax is its gener-

GENERAUZED LINEAR alization to multinomial samples. More information on such generalized
MODELS linear models is given in McCullogh and NeIder 1989.

More information on support vector machines can be found in books
by Vapnik (1995; 1998). The chapter on SVM in Cherkassky and Mulier
1998 is very readable. Burges 1998 and Smola and Scholkopf 1998 are
good tutorials on SVM classification and regression, respectively. There
are also two dedicated Web sites that contain example applets and links
to tutorials and papers on SVM, at http://svm.research.bell-Iabs.com and
http://www.kernel-machines.org

10.11 Exercises

1. For each of the following basis function, describe where it is nonzero:

a. Sin(Xl)

b. exp(-(xj - a)2/ c )

c. exp(-lIx-aI1 2 /c)



228 10 Linear Discrimination

d. log(x2)

e. l(XI > c)

f. l(axI + bX2 > c)

2. For the two-dimensional case of figure 10.2, show equations 10.4 and 10.5.

3. Show that the derivative of the softmax, Y/ = exp(a/) / Lj exp(aj), is aYi/aaj =
Yi(Djj - Yj), where Dij is 1 if i = j and 0 otherwise.

4. With K = 2, show that using two softmax outputs is equal to using one sig
moid output.

5. How can we learn Wi in equation 10.34?
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11 Multilayer Perceptrons

The multilayer perceptron is an artificial neural network structure
and is a nonparametric estimator that can be used for classification
and regression. We discuss the backpropagation algorithm to train
a multilayer perceptron for a variety of applications.

11.1 Introduction

ARTIFICIAL NEURAL network models, one of which is the perceptron
we discuss in this chapter, take their inspiration from the brain. There
are cognitive scientists and neuroscientists whose aim is to understand
the functioning of the brain (Posner 1989), and toward this aim, build
models of the natural neural networks in the brain and make simulation
studies.

However, in engineering, our aim is not to understand the brain per
ARTIFICIAL NEURAL se, but to build useful machines. We are interested in artificial neural

NETWORKS networks because we believe that they may help us build better computer
systems. The brain is an information processing device that has some
incredible abilities and surpasses current engineering products in many
domains, for example; vision, speech recognition, and learning, to name
three. These applications have evident economic utility if implemented
on machines. If we can understand how the brain performs these func
tions, we can define solutions to these tasks as formal algorithms and
implement them on computers.

The human brain is quite different from a computer. Whereas a com
puter generally has one processor, the brain is composed of a very large

NEURONS (l011 ) number of processing units, namely, neurons, operating in parallel.
Though the details are not known, the processing units are believed to be
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much simpler and slower than a processor in a computer. What also
makes the brain different, and is believed to provide its computational
power, is the large connectivity: Neurons in the brain have connections,

SYNAPSES called synapses, to around 104 other neurons, all operating in parallel.
In a computer, the processor is active and the memory is separate and
passive, but it is believed that in the brain, both the processing and mem
ory are distributed together over the network; processing is done by the
neurons, and the memory is in the synapses between the neurons.

11.1.1 Understanding the Brain

According to Marr (1982), understanding an information processing sys-
LEVELS OF ANALYSIS tern has three levels, called the levels of analysis:

1. Computational theory corresponds to the goal of computation and an
abstract definition of the task.

2. Representation and algorithm is about how the input and the output
are represented and about the specification of the algorithm for the
transformation from the input to the output.

3. Hardware implementation is the actual physical realization of the sys
tem.

One example is sorting: The computational theory is to order a given
set of elements. The representation may use integers, and the algorithm
may be Quicksort. After compilation, the executable code for a particular
processor sorting integers represented in binary is one hardware imple
mentation.

The idea is that for the same computational theory, there may be mul
tiple representations and algorithms manipulating symbols in that repre
sentation. Similarly, for any given representation and algorithm, there
may be multiple hardware implementations. We can use one of vari
ous sorting algorithms, and even the same algorithm can be compiled
on computers with different processors and lead to different hardware
implementations.

To take another example, '6', 'VI', and '110' are three different repre
sentations of the number six. There is a different algorithm for addition
depending on the representation used. Digital computers use binary rep
resentation and have circuitry to add in this representation, which is one
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particular hardware implementation. Numbers are represented differ
ently, and addition corresponds to a different set of instructions on an
abacus, which is another hardware implementation. When we add two
numbers in our head, we use another representation and an algorithm
suitable to that representation, which is implemented by the neurons.
But all these different hardware implementations-for example, we, aba
cus, digital computer-implement the same computational theory which
is addition.

The classic example is the difference between natural and artificial fly
ing machines: A sparrow flaps its wings; a commercial airplane does not
flap its wings but uses jet engines. The sparrow and the airplane are
two hardware implementations built for different purposes, satisfying
different constraints. But they both implement the same theory, which is
aerodynamics.

The brain is one hardware implementation for learning or pattern recog
nition. If from this particular implementation, we can do reverse engi
neering and extract the representation and the algorithm used, and if
from that in turn, we can get the computational theory, we can then use
another representation and algorithm, and in turn a hardware implemen
tation more suited to the means and constraints we have. One hopes our
implementation will be cheaper, faster, and more accurate.

Just as the initial attempts to build flying machines looked very much
like birds until we discovered aerodynamics, it is also expected that the
first attempts to build structures possessing brain's abilities will look
like the brain with networks of large numbers of processing units, until
we discover the computational theory of intelligence. So it can be said
that in understanding the brain, when we are working on artificial neural
networks, we are at the representation and algorithm level.

Just as the feathers are irrelevant to flying, in time we may discover
that neurons and synapses are irrelevant to intelligence. But until that
time there is one other reason why we are interested in understanding
the functioning of the brain, and that is related to parallel processing.

11.1.2 Neural Networks as a Paradigm for Parallel Processing

Since the 1980s, computer systems with thousands of processors have
been commercially available. The software for such parallel architectures,
however, has not advanced as quickly as hardware. The reason for this
is that almost all our theory of computation up to that point was based
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on serial, one processor machines. We are not able to use the parallel
machines we have efficiently because we cannot program them efficiently.

PARAllEL PROCESSING There are mainly two paradigms for parallel processing: In Single In-
struction Multiple Data (SIMD) machines, all processors execute the same
instruction but on different pieces of data. In Multiple Instruction Mul
tiple Data (MIMD) machines, different processors may execute different
instructions on different data. SIMD machines are easier to program be
cause there is only one program to write. However, problems rarely have
such a regular structure that they can be parallelized over a SIMD ma
chine. MIMD machines are more general, but it is not an easy task to write
separate programs for all the individual processors; additional problems
are related to synchronization, data transfer between processors, and so
forth. SIMD machines are also easier to build, and machines with more
processors can be constructed if they are SIMD. In MIMD machines, pro
cessors are more complex, and a more complex communication network
should be constructed for the processors to exchange data arbitrarily.

Assume now that we can have machines where processors are a lit
tle bit more complex than SIMD processors but not as complex as MIMD
processors. Assume we have simple processors with a small amount of
local memory where some parameters can be stored. Each processor im
plements a fixed function and executes the same instructions as SIMD
processors; but by loading different values into the local memory, they
can be doing different things and the whole operation can be distributed
over such processors. We will then have what we can call Neural Instruc
tion Multiple Data (NIMD) machines, where each processor corresponds
to a neuron, local parameters correspond to its synaptic weights, and the
whole structure is a neural network. If the function implemented in each
processor is simple and if the local memory is small, then many such
processors can be fitted on a single chip.

The problem now is to distribute a task over a network of such proces
sors and to determine the local parameter values. This is where learning
comes into play: We do not need to program such machines and deter
mine the parameter values ourselves if such machines can learn from
examples.

Thus, artificial neural networks are a way to make use of the parallel
hardware we can build with current technology and-thanks to learning
they need not be programmed. Therefore, we also save ourselves the
effort of programming them.

In this chapter, we discuss such structures and how they are trained.
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Figure 11.1 Simple perceptron. Xj, j = 1, ... ,d are the input units. XQ is the
bias unit that always has the value 1. y is the output unit. Wj is the weight of
the directed connection from input x j to the output.

Keep in mind that the operation of an artificial neural network is a math
ematical function that can be implemented on a serial computer-as it
generally is-and training the network is not much different from statisti
cal techniques that we have discussed in the previous chapters. Thinking
of this operation as being carried out on a network of simple processing
units is meaningful only if we have the parallel hardware, and only if the
network is so large that it cannot be simulated fast enough on a serial
computer.

11.2 The Perceptron

PERCEPTRON The perceptron is the basic processing element. It has inputs that may
come from the environment or may be the outputs of other perceptrons.

CONNECTION WEIGHT Associated with each input, Xj E <'R, j = 1, ... , d, is a connection weight,
SYNAPTIC WEIGHT or synaptic weight Wj E <'R, and the output, y, in the simplest case is a

weighted sum of the inputs (see figure 11.1):

d

(11.1) Y = I WjXj + Wo
j=l

Wo is the intercept value to make the model more general; it is generally
BIAS UNIT modeled as the weight coming from an extra bias unit, Xo, which is always
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+1. We can write the output of the perceptron as a dot product

01.2) y = w T x

where W = [WO,Wl, ..• ,WdV and x = [1,Xl, ... ,Xd]T are augmented vec
tors to include also the bias weight and input.

During testing, with given weights, w, for input x, we compute the
output y. To implement a given task, we need to learn the weights w, the
parameters of the system, such that correct outputs are generated given
the inputs.

When d = 1 and x is fed from the environment through an input unit,
we have

THRESHOLD FUNCTION

(11.3)

y = wx + Wo

which is the equation of a line with w as the slope and Wo as the inter
cept. Thus this perceptron with one input and one output can be used
to implement a linear fit. With more than one input, the line becomes a
(hyper)plane, and the perceptron with more than one input can be used
to implement multivariate linear fit. Given a sample, the parameters Wj

can be found by regression (see section 5.8).
The perceptron as defined in equation 11.1 defines a hyperplane and as

such can be used to divide the input space into two: the half-space where
it is positive and the half-space where it is negative (see chapter 10). By
using it to implement a linear discriminant function, the perceptron can
separate two classes by checking the sign of the output. If we define s(·)

as the threshold function

{
I if a> 0

s(a) = o otherwise

then we can

{
C if s (w T x) > 0

choose C~ otherwise

Remember that using a linear discriminant assumes that classes are
linearly separable. That is to say, it is assumed that a hyperplane W T x = 0
can be found that separates Xl E Cl and Xl E Cz. If at a later stage we
need the posterior probability-for example, to calculate risk-we need
to use the sigmoid function at the output as

o

(11.4) Y

WTx

sigmoid(o) = 1 ~ T]+ exp -w x
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Yi

(11.5) Y

Figure 11.2 K parallel perceptrons. x}, j = 0, ... , d are the inputs and Yi, i =

1, ... ,K are the outputs. Wi} is the weight of the connection from input x} to
output Yi. Each output is a weighted sum of the inputs. When used for K-class
classification problem, there is a postprocessing to choose the maximum, or
softmax if we need the posterior probabilities.

When there are K > 2 outputs, there are K perceptrons, each of which
has a weight vector Wi (see figure 11.2)

d

L WijXj + WiD = wTx
j=!

Wx

where Wij is the weight from input Xj to output Yi. W is the K x (d + 1)
weight matrix of Wij whose rows are the weight vectors of the K percep
trons. When used for classification, during testing, we

choose Ci if Yi = max Yk
k

In the case of a neural network, the value of each perceptron is a local
function of its inputs and its synaptic weights. However in classification,
if we need the posterior probabilities (instead of just the code of the
winner class) and use the softmax, we also need the values of the other
outputs. So, to implement this as a neural network, we can see this as
a two-stage process, where the first stage calculates the weighted sums,
and the second stage calculates the softmax values; but we still denote
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(11.6)

11.3
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this as a single layer of output units:

wTx
I

expo;

Lk expok

Remember that by defining auxiliary inputs, the linear perceptron can
also be used for polynomial approximation, for example, define X3 =

xI,x4 X~,X5 = XIX2 (section 10.2). The same can also be used with
perceptrons (Durbin and Rumelhart 1989). In section 11.5, we see multi
layer perceptrons where such nonlinear functions are learned from data
instead of being assumed a priori.

Any of the methods discussed in chapter 10 on linear discrimination
can be used to calculate W;, i = 1, ... ,K offline and then plugged into the
network. These include parametric approach with a common covariance
matrix, logistic discrimination, discrimination by regression, and support
vector machines. In some cases, we do not have the whole sample at hand
when training starts, and we need to iteratively update parameters as new
examples arrive; we discuss this case of online learning in section 11.3.

Equation n.s defines a linear transformation from ad-dimensional
space to a K -dimensional space and can also be used for dimensional
ity reduction if K < d. One can use any of the methods of chapter 6 to
calculate W offline and then use the perceptrons to implement the trans
formation, for example, PCA. In such a case, we have a two-layer network
where the first layer of perceptrons implements the linear transformation
and the second layer implements the linear regression or classification in
the new space. We note that because both are linear transformations,
they can be combined and written down as a single layer. We will see the
more interesting case where the first layer implements nonlinear dimen
sionality reduction in section n.5.

Training a Perceptron

The perceptron defines a hyperplane, and the neural network perceptron
is just a way of implementing the hyperplane. Given a data sample, the
weight values can be calculated offline and then when they are plugged
in, the perceptron can be used to calculate the output values.

In training neural networks, we generally use online learning where we
are not given the whole sample, but we are given instances one by one
and would like the network to update its parameters after each instance,



11.3 Training a Perceptron 237

adapting itself slowly in time. Such an approach is interesting for a num
ber of reasons:

1. It saves us from storing the training sample in an external memory and
storing the intermediate results during optimization. An approach like
support vector machines (section 10.9) may be quite costly with large
samples, and in some applications, we may prefer a simpler approach
where we do not need to store the whole sample and solve a complex
optimization problem on it.

2. The problem may be changing in time, which means that the sample
distribution is not fixed, and a training set cannot be chosen a priori.
For example, we may be implementing a speech recognition system
that adapts itself to its user.

3. There may be physical changes in the system. For example, in a robotic
system, the components of the system may wear out, or sensors may
degrade.

ONLINE LEARNING In online learning, we do not write the error function over the whole
sample but on individual instances. Starting from random initial weights,
at each iteration we adjust the parameters a little bit to minimize the
error, without forgetting what we have previously learned. If this error
function is differentiable, we can use gradient descent.

For example, in regression the error on the single instance pair with
index t, (xt,rt ), is

1 1
Et(wlxt,r t ) = 2(rt - yt)2 = 2[rt - (wTxt)]2

and for j = 0, ... ,d, the online update is

(11.7) LlwJ = I1(r t - yt)xj

where 11 is the learning factor, which is gradually decreased in time for
STOCHASTIC convergence. This is known as stochastic gradient descent.

GRADIENT DESCENT Similarly, update rules can be derived for classification problems using
logistic discrimination where updates are done after each pattern, instead
of summing them and doing the update after a complete pass over the
training set. With two classes, for the single instance (x t , r t ) where rt = 1
if xt E CI and rt = 0 if xt E C2, the single output is

yt = sigmoid(wT xt)
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and the cross-entropy is

Et ({wdilx t
, r t ) = - 'L rlIog y[ + (1 - r[) logO - yf)

Using gradient descent, we get the following online update rule j
O, ... ,d:

(11.8) ~wj = t1(rt - yt)X)

When there are K > 2 classes, for the single instance (x t , r t ) where
r[ = 1 if xt E Ci and 0 otherwise, the outputs are

expwTxt
yt = I

I Lkexpwkxt

and the cross-entropy is

Et({wdilxt,rt ) = - 'LrlIogy[

Using gradient descent, we get the following online update rule, for
i = 1, ... ,K, j = O, ... ,d:

(11 9) A t (t t) t
• U Wi} = t1 r i - Yi X j

which is the same as the equations we saw in section 10.7 except that we
do not sum over all of the instances but update after a single instance.
The pseudocode of the algorithm is given in figure 11.3, which is the
online version of figure 10.8.

Both equations 11.7 and 11.9 have the form

(11.10) Update = LearningFactor· (DesiredOutput - ActualOutput) . Input

Let us try to get some insight into what this does: First, if the actual
output is equal to the desired output, no update is done. When it is
done, the magnitude of the update increases as the difference between
the desired output and the actual output increases. We also see that if
the actual output is less than the desired output, update is positive if
the input is positive and negative if the input is negative. This has the
effect of increasing the actual output and decreasing the difference. If
the actual output is greater than the desired output, update is negative if
the input is positive and positive if the input is negative; this decreases
the actual output and makes it closer to the desired output.



11.4 Learning Boolean Functions

For i = 1, ... ,K
For j = 0, ... , d

Wij - rand(-O.OI,O.Ol)
Repeat

For all (Xl, r l ) E X in random order
For i = 1, ... ,K

Oi - °
For j = O, ... ,d

I
OJ - OJ + WijX j

For i = 1, ... ,K
Yi - exp(oj)/ IkexP(Ok)

For i = 1, ... ,K
For j = O, ... ,d

Wi} - Wi} + 11(r/ - Yi)X)

Until convergence
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Figure 11.3 Percepton training algorithm implementing stochastic online
gradient-descent for the case with K > 2 classes. This is the online version
of the algorithm given in figure 10.8.

When an update is done, its magnitude depends also on the input. If
the input is close to 0, its effect on the actual output is small and there
fore its weight is also updated by a small amount. The greater an input,
the greater the update of its weight.

Finally, the magnitude of the update depends on the learning factor, 11.
If it is too large, updates depend too much on recent instances; it is as if
the system has a very short memory. If this factor is small, many updates
may be needed for convergence. In section 11.8.1, we discuss methods to
speed up convergence.

11.4 Learning Boolean Functions

In a Boolean function, the inputs are binary and the output is 1 if the
corresponding function value is true and °otherwise. Therefore, it can
be seen as a two-class classification problem. As an example, for learning
to AND two inputs, the table of inputs and required outputs is given in
table 11.1. An example of a perceptron that implements AND and its
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Table 11.1 Input and output for the AND function.

Xl Xz r

0 0 0
0 1 0
1 0 0
1 1 1

(0,1)

(0,0)

.(1,1)

x

(1,0) 1.5

Figure 11.4 The perceptron that implements AND and its geometric interpre
tation.

geometric interpretation in two dimensions is given in figure 11.4. The
discriminant is

y = S(XI + Xz - 1.5)

that is, X = [1,xl,xz]T and w = [-1.5,1, l]T. Note that y = Xl + Xz - 1.5
satisfies the four constraints given by the definition of AND function in
table 11.1, for example, for Xl = 1,xz = 0, Y = s(-0.5) = O. Similarly it
can be shown that y = S(Xl + Xz - 0.5) implements OR.

Though Boolean functions like AND and OR are linearly separable and
are solvable using the perceptron, certain functions like XOR are not. The
table of inputs and required outputs for XOR is given in table 11.2. As
can be seen in figure 11.5, the problem is not linearly separable. This
can also be proved by noting that there are no Wo, WI, and Wz values that
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Table 11.2 Input and output for the XOR function.

Xl X2 r
0 0 0
0 1 1
1 0 1
1 1 0

o
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Figure 11.5 XOR problem is not linearly separable. We cannot draw a line where
the empty circles are on one side and the filled circles on the other side.

satisfy the following set of inequalities:

Wo :s;0
W2+ Wo >0

WI + Wo >0
WI+ w2+ Wo :s;0

This result should not be very surprising to us since the VC dimension
of a line (in two dimensions) is three. With two binary inputs there are
four cases and thus we know that there exist problems with two inputs
that are not solvable using a line; XOR is one of them.

11.5 Multilayer Perceptrons

A perceptron that has a single layer of weights can only approximate lin
ear functions of the input and cannot solve problems like the XOR, where
the discrimininant to be estimated is nonlinear. Similarly a perceptron
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cannot be used for nonlinear regression. This limitation does not apply
HIDDEN LAYERS to feedforward networks with intermediate or hidden layers between the

MULTILAYER input and the output layers. If used for classification, such multilayer
PERCEPTRONS perceptrons (MLP) can implement nonlinear discriminants and, if used

for regression, can approximate nonlinear functions of the input.
Input x is fed to the input layer (including the bias), the "activation"

propagates in the forward direction, and the values of the hidden units
Zh are calculated (see figure 11.6). Each hidden unit is a perceptron by
itself and applies the nonlinear sigmoid function to its weighted sum:

01.11) Zh = sigmoid(w~x) = [ ( d 1 )]' h = 1, ... ,H
1 + exp - Lj=l WhjXj + WhO

The output Yi are perceptrons in the second layer taking the hidden
units as their inputs

H

(11.12) Yi = vTZ = L VihZh + Via

h=l

where there is also a bias unit in the hidden layer, which we denote by Zo,
and ViO are the bias weights. The input layer of x j is not counted since
no computation is done there and when there is a hidden layer, this is a
two-layer network.

As usual, in a regression problem, there is no nonlinearity in the output
layer in calculating y. In a two-class discrimination task, there is one sig
moid output unit and when there are K > 2 classes, there are K outputs
with softmax as the output nonlinearity.

If the hidden units' outputs were linear, the hidden layer would be of no
use: Linear combination of linear combinations is another linear combi
nation. Sigmoid is the continuous, differentiable version of thresholding.
We need differentiability because the learning equations we will see are
gradient-based. Another sigmoid (S-shaped) nonlinear basis function that
can be used is the hyperbolic tangent function, tanh, which ranges from
-1 to +1, instead of a to +1. In practice, there is no difference between
using the sigmoid and the tanh. Still another possibility is the Gaussian,
which uses Euclidean distance instead of the dot product for similarity;
we discuss such radial basis function networks in chapter 12.

The output is a linear combination of the nonlinear basis function val
ues computed by the hidden units. It can be said that the hidden units
make a nonlinear transformation from the d-dimensional input space to
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Figure 11.6 The structure of a multilayer perceptron. Xj,j = 0, . .. ,d are the
inputs, Zh, h = 1, ... , H are the hidden units where H is the dimensionality of this
hidden space. Zo is the bias of the hidden layer. Yi, i = 1, ... , K are the output
units. Whj are weights in the first layer, and Vih are the weights in the second
layer.

the H-dimensional space spanned by the hidden units, and in this space,
the second output layer implements a linear function.

One is not limited to having one hidden layer, and more hidden layers
with their own incoming weights can be placed after the first hidden layer
with sigmoid hidden units, thus calculating nonlinear functions of the
first layer of hidden units and implementing more complex functions of
the inputs. In practice, people rarely go beyond one hidden layer since
analyzing a network with many hidden layers is quite complicated; but
sometimes when the hidden layer contains too many hidden units, it may
be sensible to go to multiple hidden layers, preferring "long and narrow"
networks to "short and fat" networks.
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11.6 MLP as a Universal Approximator

UNIVERSAL

APPROXIMATION

PIECEWISE CONSTANT

APPROXIMATION

We can represent any Boolean function as a disjunction of conjunctions,
and such a Boolean expression can be implemented by a multilayer per
ceptron with one hidden layer. Each conjunction is implemented by one
hidden unit and the disjunction by the output unit. For example,

Xl XOR X2 = (Xl AND ~ X2) OR (~Xl AND X2)

We have seen previously how to implement AND and OR using percep
trons. So two perceptrons can in parallel implement the two AND, and
another perceptron on top can OR them together (see figure 11.7). We see
that the first layer maps inputs from the (XJ,X2) to the (ZI,Z2) space de
fined by the first-layer perceptrons. Note that both inputs, (0,0) and (1,1),
are mapped to (0,0) in the (Zl, Z2) space, allowing linear separability in
this second space.

Thus in the binary case, for every input combination where the output
is 1, we define a hidden unit that checks for that particular conjunction of
the input. The output layer then implements the disjunction. Note that
this is just an existence proof, and such networks may not be practical
as up to 2d hidden units may be necessary when there are d inputs. Such
an architecture implements table lookup and does not generalize.

We can extend this to the case where inputs are continuous to show
that similarly, any arbitrary function with continuous input and outputs
can be approximated with a multilayer perceptron. The proof of universal
approximation is easy with two hidden layers: For every input case or
region, that region can be delimited by hyperplanes on all sides using
hidden units on the first hidden layer. A hidden unit in the second layer
then ANDs them together to bound the region. We then set the weight
of the connection from that hidden unit to the output unit equal to the
desired function value. This gives a piecewise constant approximation
of the function; it corresponds to ignoring all the terms in the Taylor
expansion except the constant term. Its accuracy may be increased to
the desired value by increasing the number of hidden units and placing
a finer grid on the input. Note that no formal bounds are given on the
number of hidden units required. This property just reassures us that
there is a solution; it does not help us in any other way. It has been proven
that an MLP with one hidden layer (with an arbitrary number of hidden
units) can learn any nonlinear function of the input (Hornik, Stinchcombe,
and White 1989).
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Figure 11.7 The multilayer perceptron that solves the XOR problem. The hid
den units and the output have the threshold activation function with threshold
at o.

11.7 Backpropagation Algorithm

Training a multilayer perceptron is the same as training a perceptron;
the only difference is that now the output is a nonlinear function of the
input thanks to the nonlinear basis function in the hidden units. Con
sidering the hidden units as inputs, the second layer is a perceptron and
we already know how to update the parameters, Vij, in this case, given
the inputs hj. For the first layer weights, Whj, we use the chain rule to
calculate the gradient:

oE oE OYi OZh

OWhj = OYi OZh OWhj
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It is as if the error propagates from the output y back to the inputs
BACKPROPAGATION and hence the name backpropagation was coined (Rumelhart, Hinton, and

Williams 1986a).

11.7.1 Nonlinear Regression

Let us first take the case of nonlinear regression (with a single output)
calculated as

H

(11.13) yt = L vhzh + Vo
h=l

(11.14)

with Zh computed by equation 11.11. The error function over the whole
sample in regression is

1
E(W, vIX) = 2" L(rt - yt)2

t

The second layer is a perceptron with hidden units as the inputs, and
we use the least-squares rule to update the second-layer weights:

(11.15) ~Vh = 11 L(rt - yI)zh
t

The first layer are also perceptrons with the hidden units as the output
units but in updating the first-layer weights, we cannot use the least
squares rule directly as we do not have a desired output specified for the
hidden units. This is where the chain rule comes into play. We write

oE
-11-

OWhj

_ oEi oyt oZh
11 L oyt ozt OWh'

t h J

-11 L _(r t - yt) Vh zhO - zh)x t

t ' • ''-v-', • J,

oEl loY' OY' /ozh OZh/OWhj

(11.16) '7 L(rt - yt)vhzh(l- zh)xj
t

The product of the first two terms (r t - yt )Vh acts like the error term for
hidden unit h. This error is backpropagated from the error to the hidden
unit. (r t - yt) is the error in the output, weighted by the "responsibility"
of the hidden unit as given by its weight Vh. In the third term, Zh (1 - Zh)
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is the derivative of the sigmoid and X) is the derivative of the weighted
sum with respect to the weight Whj. Note that the change in the first
layer weight, /).Whj, makes use of the second-layer weight, Vh. Therefore,
we should calculate the changes in both layers and update the first-layer
weights, making use of the old value of the second-layer weights, then
update the second-layer weights.

Weights, Whj, Vh are started from small random values initially, for ex
ample, in the range [-0.01,0.01], so as not to saturate the sigmoids. It is
also a good idea to normalize the inputs so that they all have 0 mean and
unit variance and have the same scale, since we use a single '1 parameter.

With the learning equations given here, for each pattern, we compute
the direction in which each parameter needs be changed and the magni-

BATCH LEARNING tude of this change. In batch learning, we accumulate these changes over
all patterns and make the change once after a complete pass over the
whole training set is made, as shown in the previous update equations. A

EPOCH complete pass over all the patterns in the training set is called an epoch.
It is also possible to have online learning, by updating the weights af
ter each pattern, thereby implementing stochastic gradient descent. The
learning factor, '1, should be chosen smaller in this case and patterns
should be scanned in a random order. Online learning converges faster
because there may be similar patterns in the dataset, and the stochastic
ity has an effect like adding noise and may help escape local minima.

An example of training a multilayer perceptron for regression is shown
in figure 11.8. As training continues, the MLP fit gets closer to the under
lying function and error decreases (see figure 11.9). Figure 11.10 shows
how the MLP fit is formed as a sum of the outputs of the hidden units.

It is also possible to have multiple output units, in which case a number
of regression problems are learned at the same time. We have

H

(11.17) yf = L VihZJ, + Vw
h=l

and the error is

(11.18) E(W,VIX) = ~ ~~(rf - yf)2

The batch update rules are then

(11.19) /).Vih = '1L(rf-yf)zJ,
t
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Figure 11.8 Sample training data shown as '+', where Xl - U( -0.5,0.5), and
yl = ((Xl) + N(O,O.l). ((X) = sin(6x) is shown by a dashed line. The evolution
of the fit of an MLP with two hidden units after 100, 200, and 300 epochs is
drawn.

q~ [~('f -Y!)Vjh] zhO - zh)x~

2.i(rt - yt)Vih is the accumulated backpropagated error of hidden unit
h from all output units. Pseudocode is given in figure 11.11. Note that
in this case, all output units share the same hidden units and thus use
the same hidden representation. An alternative is to train separate mul
tilayer perceptrons for the separate regression problems, each with its
own separate hidden units.

11.7.2 Two-Class Discrimination

When there are two classes, one output unit suffices:

(11.21) yt = sigmoid (f VhZ~ + vo)
h=!



11.7 Backpropagation Algorithm 249

1.41------,r--------,------,------,--------.,:=~===::::;l

1.2

~ 0.8 ~~~:
e -=:
'" -g
~ 0.6
::;

0.4

300250200150
Training Epochs

10050

0.2L·~~·····~·~.-- - - ,- .
oo

Figure 11.9 The mean square error on training and validation sets as a function
of training epochs.

which approximates P(Cllx t ) and .P(Czlx t ) == 1 - yt. We remember from
section 10.7 that the error function in this case is

(11.22) E(W, vlX) = - 2.>t logyt + (1 - r t )log(l _ yt)
t

The update equations implementing gradient descent are

(11.23) I3.Vh

(11.24) I3.Whj

TJ I (r t
- yl )Zh

r

TJ I(rt
- yl)Vhzh(l - Zh)xj

t

As in the simple perceptron, the update equations for regression and
classification are identical (which does not mean that the values are).
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Figure 11.10 (a) The hyperplanes of the hidden unit weights on the first layer,
(b) hidden unit outputs, and (c) hidden unit outputs multiplied by the weights on
the second layer. Two sigmoid hidden units slightly displaced, one multiplied
by a negative weight, when added, implement a bump. With more hidden units,
a better approximation is attained (see figure 11.12).

11.7.3 Multiclass Discrimination

In a (K > 2)-class classification problem, there are K outputs

H

01.25) or = I V;hZh + ViO

h=l

and we use softmax to indicate the dependency between classes, namely,
they are mutually exclusive and exhaustive:

01.26)
t

t expo;
Y=

I Lk expoi
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Initialize all Vih and Whj to rand( -0.01,0.01)
Repeat

For all (x t , r t ) E X in random order
For h = 1, ... ,H

Zh - sigmoid (wJ:Xl)

For i = 1, ... ,K

Yi = vTz
For i = 1, ... ,K

6Vi = I'](rl - yf)z
For h = 1, ... ,H

6Wh = I']CL.i(rl - yf)vih)zh(1 - Zh)X t

For i = 1.... ,K
Vi - Vi + 6Vi

For h = 1, ... ,H

wh - Wh + 6Wh
Until convergence

251

Figure 11.11 Backpropagation algorithm for training a multilayer perceptron
for regression with K outputs. This code can easily be adapted for two-class
classification (by setting a single sigmoid output) and to K > 2 classification (by
using softmax outputs).

where Yi approximates P(Ci Ix t ). The error function is

(11.27) E(W, VIX) = - L L rpog yf
t i

and we get the update equations using gradient descent:

(11.28) 6 Vih

(11.29) 6Whj

I'] L (rf - Y[)Zh
t

ry~ [~(rl- Y!IV'}h(l - zhlxj

lGchard and Lippmann (1991) have shown that given a network of
enough complexity and sufficient training data. a suitably trained mul
tilayer perceptron estimates posterior probabilities.
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11.7.4 Multiple Hidden Layers

As we saw before, it is possible to have multiple hidden layers each with
its own weights and applying the sigmoid function to its weighted sum.
For regression, let us say, if we have a multilayer perceptron with two
hidden layers, we write

d

Zlh sigmoid(w[hx) = L WlhjXj + WlhO, h = 1, ... ,HI

j=l

HI

ZZ/ sigmoid(wI/Zl) = L wZlh Z lh + W2/0, 1 = 1, ... , H2
h=O

Hz

Y v T Z2 = L V/Z2/ + Vo
/=1

where Wlh and W2/ are the first- and second-layer weights, Zlh and Z2h

are the units on the first and second hidden layers, and v are the third
layer weights. Training such a network is similar except that to train the
first-layer weights, we need to backpropagate one more layer (exercise 5).

11.8 Training Procedures

11.8.1 Improving Convergence

Gradient descent has various advantages. It is simple. It is local, namely,
the change in a weight uses only the values of the presynaptic and postsy
naptic units and the error (SUitably backpropagated). When online train
ing is used, it does not need to store the training set and can adapt as
the task to be learned changes. Because of these reasons, it can be (and
is) implemented in hardware. But by itself, gradient descent converges
slowly. When learning time is important, one can use more sophisticated
optimization methods (Battiti 1992). Bishop (1995) discusses in detail
the application of conjugate gradient and second-order methods to the
training of multilayer perceptrons. However, there are two frequently
used simple techniques that improve the performance of the gradient
descent considerably, making gradient-based methods feasible in real ap
plications.
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Momentum
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MOMENTUM

(11.30)

(11.31)

Let us say Wi is any weight in a multilayer perceptron in any layer, includ
ing the biases. At each parameter update, successive /),w/ values may be
so different that large oscillations may occur and slow convergence. t is
the time index that is the epoch number in batch learning and the itera
tion number in online learning. The idea is to take a running average by
incorporating the previous update in the current change as if there is a
momentum due to previous updates:

oEt
/),w t = -11- + lX/),W!-1'ow; I

lX is generally taken between 0.5 and 1.0. This approach is especially
useful when online learning is used, where as a result we get an effect of
averaging and smooth the trajectory during convergence. The disadvan
tage is that the past /),w/- l values should be stored in extra memory.

Adaptive Learning Rate

In gradient descent, the learning factor 11 determines the magnitude of
change to be made in the parameter. It is generally taken between 0.0
and 1.0, mostly less than or equal to 0.2. It can be made adaptive for
faster convergence, where it is kept large when learning takes place and
is decreased when learning slows down:

{
+a if £f+T < Et

/),11 =
- b 11 otherwise

Thus we increase 11 by a constant amount if the error on the training set
decreases and decrease it geometrically if it increases. Because E may
oscillate from one epoch to another, it is a better idea to take the average
of the past few epochs as Et .

11.8.2 Overtraining

A multilayer perceptron with d inputs, H hidden units, and K outputs
has H(d + 1) weights in the first layer and K(H + 1) weights in the second
layer. Both the space and time complexity of an MLP is (!)(H . (K + d».
When e denotes the number of training epochs, training time complexity
is (!)(e . H . (K + d».
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In an application, d and K are predefined and H is the parameter that
we play with to tune the complexity of the model. We know from pre
vious chapters that an overcomplex model memorizes the noise in the
training set and does not generalize to the validation set. For example,
we have previously seen this phenomenon in the case of polynomial re
gression where we noticed that in the presence of noise or small samples,
increasing the polynomial order leads to worse generalization. Similarly
in an MLP, when the number of hidden units is large, the generalization
accuracy deteriorates (see figure 11.12), and the bias/variance dilemma
also holds for the MLP, as it does for any statistical estimator (Geman,
Bienenstock, and Doursat 1992).

A similar behavior happens when training is continued too long: As
more training epochs are made, the error on the training set decreases,
but the error on the validation set starts to increase beyond a certain
point (see figure 11.13). Remember that initially all the weights are close
to 0 and thus have little effect. As training continues, the most impor
tant weights start moving away from 0 and are utilized. But if training
is continued further on to get less and less error on the training set,
almost all weights are updated away from 0 and effectively become pa
rameters. Thus as training continues, it is as if new parameters are added
to the system, increasing the complexity and leading to poor generaliza
tion. Learning should be stopped before too late to alleviate the prob-

OVERTRAINING lem of overtraining. The optimal point to stop training, and the optimal
number of hidden units, is determined through cross-validation, which
involves testing the network's performance on validation data unseen
during training.

Because of the nonlinearity, the error function has many minima and
gradient descent converges to the nearest minimum. To be able to assess
expected error, the same network is trained a number of times start
ing from different initial weight values, and the average of the validation
error is computed.

11.8.3 Structuring the Network

In some applications, we may believe that the input has a local structure.
For example, in vision we know that nearby pixels are correlated and
there are local features like edges and corners; any object, for example,
a handwritten digit, may be defined as a combination of such primitives.
Similarly, in speech, locality is in time and inputs close in time can be
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Figure 11.12 As complexity increases, training error is fixed but the validation
error starts to increase and the network starts to overfit.
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Figure 11.13 As training continues, the validation error starts to increase and
the network starts to overfit.
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Figure 11.14 A structured MLP. Each unit is connected to a local group of units
below it and checks for a particular feature-for example, edge, corner, and so
forth-in vision. Only one hidden unit is shown for each region; typically there
are many to check for different local features.

grouped as speech primitives. By combining these primitives, longer ut
terances, for example, speech phonemes, may be defined. In such a case
when designing the MLP, hidden units are not connected to all input units
because not all inputs are correlated. Instead, we define hidden units that
define a window over the input space and are connected to only a small
local subset of the inputs. This decreases the number of connections and
therefore the number of free parameters (Le Cun et al. 1989).

We can repeat this in successive layers where each layer is connected
to a small number of local units below and checks for a more compli
cated feature by combining the features below in a larger part of the
input space until we get to the output layer (see figure 11.14). For ex
ample, the input may be pixels. By looking at pixels, the first hidden
layer units may learn to check for edges of various orientations. Then
by combining edges, the second hidden layer units can learn to check for
combinations of edges-for example, arcs, corners, line ends-and then
combining them in upper layers, the units can look for semi-circles, rect
angles, or in the case of a face recognition application, eyes, mouth, and

HIERARCmCAL CONE so forth. This is the example of a hierarchical cone where features get
more complex, abstract, and fewer in number as we go up the network
until we get to classes.

In such a case, we can further reduce the number of parameters by
WEIGHT SHARING weight sharing. Taking the example of visual recognition again, we can
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Figure 11.15 In weight sharing, different units have connections to different
inputs but share the same weight value (denoted by line type). Only one set of
units is shown; there should be multiple sets of units, each checking for different
features.

see that when we look for features like oriented edges, they may be
present in different parts of the input space. So instead of defining in
dependent hidden units learning different features in different parts of
the input space, we can have copies of the same hidden units looking at
different parts of the input space (see figure 11.15). During learning, we
calculate the gradients by taking different inputs, then we average these
up and make a single update. This implies a single parameter that de
fines the weight on multiple connections. Also, because the update on a
weight is based on gradients for several inputs, it as if the training set is
effectively multiplied.

11.8.4 Hints

The knowledge of local structure allows us to prestructure the multilayer
network and with weight sharing, it has fewer parameters. The alterna
tive of an MLP with completely connected layers has no such structure
and is more difficult to train. Knowledge of any sort related to the ap
plication should be built into the network structure whenever possible.

HINTS These are called hints (Abu-Mostafa 1995) and are the properties of the
target function that are known to us independent of the training exam
ples.

In image recognition, there are invariance hints: The identity of an
object does not change when it is rotated, translated, or scaled (see fig
ure 11.16). Hints are auxiliary information that can be used to guide the
learning process and are especially useful when the training set is limited.
There are different ways in which hints can be used:
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Figure 11.16 The identity of the object does not change when it is translated,
rotated, or scaled. Note that this may not always be true, or may be true up to a
point: 'b' and 'q' are rotated versions of each other. These are hints that can be
incorporated into the learning process to make learning easier.

VIRTUAL EXAMPLES 1. Hints can be used to create virtual examples. For example, knowing
that the object is invariant to scale, from a given training example,
we can generate multiple copies at different scales and add them to
the training set with the same label. TIlls has the advantage that we
increase the training set and do not need to modify the learner in any
way. The problem may be that too many examples may be needed for
the learner to learn the invariance.

2. The invariance may be implemented as a preprocessing stage. For
example, optical character readers have a preprocessing stage where
the input character image is centered and normalized for size and
slant. This is the easiest solution, when it is possible.

3. The hint may be incorporated into the network structure. Local struc
ture and weight sharing, which we saw in section 11.8.3, is one exam
ple where we get invariance to small translations and rotations.

4. The hint may also be incorporated by modifying the error function. Let
us say we know that x and x' are the same from the application's point
of view, where x' may be a "virtual example" of x. That is, f(x) = f(x'),
when f(x) is the function we would like to approximate. Let us denote
by g(xle), our approximation function, for example, an MLP where e
are its weights. Then, for all such pairs (x, x'), we define the penalty
function

Eh = [g(xle) - g(x' le)]2

and add it as an extra term to the usual error function:
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This is a penalty term penalizing the cases where our predictions do
not obey the hint, and Ah is the weight of such a penalty (Abu-Mostafa
1995).

Another example is the approximation hint: Let us say that for x, we
do not know the exact value, f(x), but we know that it is in the interval,
[ax, bx]. Then our added penalty term is

{

0 if g(xltl) E [ax,bxJ
Eh = (g(x) - ax)2 if g(xltl) < ax

(g(x) - bx )2 if g(xltl) > bx

This is similar to the error function used in support vector regression
(section 10.9.4), which tolerates small approximation errors.

TANGENT PROP Still another example is the tangent prop (Simard et al. 1992) where
the transformation against which we are defining the hint, for exam
ple, rotation by an angle, is modeled by a function. The usual error
function is modified (by adding another term) so as to allow param
eters to move along this line of transformation without changing the
error.

11.9 Tuning the Network Size

Previously we saw that when the network is too large and has too many
free parameters, generalization may not be well. To find the optimal
network size, the most common approach is to try many different ar
chitectures, train them all on the training set, and choose the one that
generalizes best to the validation set. Another approach is to incorporate

STRUCTURAL this structural adaptation into the learning algorithm. There are two ways
ADAPTATION this can be done:

1. In the destructive approach, we start with a large network and gradu
ally remove units and/or connections that are not necessary.

2. In the constructive approach, we start with a small network and grad
ually add units and/or connections to improve performance.

WEIGHT DECAY One destructive method is weight decay where the idea is to remove un-
necessary connections. Ideally to be able to determine whether a unit or
connection is necessary, we need to train once with and once without and
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(11.32)

(11.33)

DYNAMIC NODE

CREATION

CASCADE

CORRElATION
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check the difference in error on a separate validation set. This is costly
since it should be done for all combinations of such units/connections.

Given that a connection is not used if its weight is 0, we give each
connection a tendency to decay to 0 so that it disappears unless it is
reinforced explicitly to decrease error. For any weight Wi in the network,
we use the update rule:

oE
~Wi = -11- - AWi

OWi

This is equivalent to doing gradient descent on the error function with
an added penalty term, penalizing networks with many nonzero weights:

E' = E+ ~ 'w 2
2 L I

I

Simpler networks are better generalizers is a hint that we implement by
adding a penalty term. Note that we are not saying that simple networks
are always better than large networks; we are saying that if we have two
networks that have the same training error, the simpler one-namely, the
one with fewer weights-has a higher probability of better generalizing
to the validation set.

The effect of the second term in equation 11.32 is like that of a spring
that pulls each weight to O. Starting from a value close to 0, unless the
actual error gradient is large and causes an update, due to the second
term, the weight will gradually decay to O. Ais the parameter that deter
mines the relative importances of the error on the training set and the
complexity due to nonzero parameters and thus determines the speed of
decay: With large A, weights will be pulled to 0 no matter what the train
ing error is; with small A, there is not much penalty for nonzero weights.
A is fine-tuned using cross-validation.

Instead of starting from a large network and pruning unnecessary con
nections or units, one can start from a small network and add units and
associated connections should the need arise (figure 11.17). In dynamic
node creation (Ash 1989), an MLP with one hidden layer with one hidden
unit is trained and after convergence, if the error is still high, another
hidden unit is added. The incoming weights of the newly added unit and
its outgoing weight are initialized randomly and trained with the previ
ously existing weights that are not reinitialized and continue from their
previous values.

In cascade correlation (Fahlman and Lebiere 1990), each added unit
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Figure 11.17 Two examples of constructive algorithms: Dynamic node creation
adds a unit to an existing layer. Cascade correlation adds each unit as new
hidden layer connected to all the previous layers. Dashed lines denote the newly
added unit/connections. Bias units/weights are omitted for clarity.

is a new hidden unit in another hidden layer. Every hidden layer has
only one unit that is connected to all of the hidden units preceding it
and the inputs. The previously existing weights are frozen and are not
trained; only the incoming and outgoing weights of the newly added unit
are trained.

Dynamic node creation adds a new hidden unit to an existing hidden
layer and never adds another hidden layer. Cascade correlation always
adds a new hidden layer with a single unit. The ideal constructive method
should be able to decide when to introduce a new hidden layer and when
to add a unit to an existing layer. This is an open research problem.

Incremental algorithms are interesting because they correspond to mod
ifying not only the parameters but also the model structure during learn
ing. An analogy would be a setting in polynomial regression where high
order terms are added/removed during training automatically, fitting
model complexity to data complexity. As the cost of computation gets
lower, such automatic model selection should be a part of the learning
process done automatically without any user interference.
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11.10 Bayesian View of Learning

(11.34)

The Bayesian approach in training neural networks considers the param
eters, namely, connection weights, Wi, as random variables drawn from
a prior distribution p(wd and computes the posterior probability given
the data

( IX) = p(Xlw)p(w)
p w p(X)

where w is the vector of all weights of the network. The MAP estimate w
is the mode of the posterior

(11.35) WMAP = argmaxlogp(wIX)
w

Taking the log of equation 11.34, we get

10gp(wIX) = 10gp(Xlw) + logp(w) + C

The first term on the right is the log likelihood, and the second is the
log of the prior. If the weights are independent and the prior is taken as
Gaussian, N(O, 1/2i\)

(11.36) p(w) = r; p(wd where P(Wi) = c· exp [ - 2(~i:i\)]

the MAP estimate minimizes the augmented error function

(11.37) E' = E + i\lIw11 2

where E is the usual classification or regression error (negative log like
lihood). This augmented error is exactly the error function we used in
weight decay (equation 11.33). Using a large i\ assumes small variability
in parameters, puts a larger force on them to be close to 0, and takes
the prior more into account than the data; if i\ is small, then the allowed
variability of the parameters is larger. This approach of removing unnec-

RIDGE REGRESSION essary parameters is known as ridge regression in statistics.
REGULARIZATION This is another example of regularization with a cost function, combin-

ing the fit to data and model complexity

(11.38) cost = data-misfit + i\ . complexity

The use of Bayesian estimation in training multilayer perceptrons is
treated in MacKay 1992a, b.
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Empirically, it has been seen that after training, most of the weights
of a multilayer perceptron are distributed normally around 0, justifying
the use of weight decay. But this may not always be the case. Nowlan

SOFT WEIGHT SHARING and Hinton (1992) proposed soft weight sharing where weights are drawn
from a mixture of Gaussians, allowing them to form multiple clusters, not
one. Also, these clusters may be centered anywhere and not necessarily
at 0, and have variances that are modifiable. This changes the prior of
equation 11.36 to a mixture of M ~ 2 Gaussians

M

01.39) p(Wj) = L IXjPj(Wj)
j=I

where IXj are the priors and Pj(w;) - N(mj,s;) are the component Gaus
sians. M is set by the user and IXj, mj, sj are learned from the data.
Using such a prior and augmenting the error function with its log dur
ing training, the weights converge to decrease error and also are grouped
automatically to increase the log prior.

11.11 Dimensionality Reduction

In a multilayer perceptron, if the number of hidden units is less than the
number of inputs, the first layer performs a dimensionality reduction.
The form of this reduction and the new space spanned by the hidden
units depend on what the MLP is trained for. If the MLP is for classifica
tion with output units following the hidden layer, then the new space is
defined and the mapping is learned to minimize classification error (see
figure 11.18).

We can get an idea of what the MLP is doing by analyzing the weights.
We know that the dot product is maximum when the two vectors are
identical. So we can think of each hidden unit as defining a template in
its incoming weights, and by analyzing these templates, we can extract
knowledge from a trained MLP. If the inputs are normalized, weights tell
us of their relative importance. Such analysis is not easy but gives us
some insight as to what the MLP is doing and allows us to peek into the
black box.

AUTOASSOCIATOR An interesting architecture is the autoassociator (Cottrell, Munro, and
Zipser 1987), which is an MLP architecture where there are as many out
puts as there are inputs, and the required outputs are defined to be equal
to the inputs (see figure 11.19). To be able to reproduce the inputs again
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Hidden Representation
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Figure 11.18 Optdigits data plotted in the space of the two hidden units of
an MLP trained for classification. Only the labels of one hundred data points are
shown. This MLP with sixty-four inputs, two hidden units, and ten outputs has 80
percent accuracy. Because of the sigmoid, hidden unit values are between a and
1 and classes are clustered around the corners. This plot can be compared with
the plots in chapter 6, which are drawn using other dimensionality reduction
methods on the same dataset.

at the output layer, the MLP is forced to find the best representation of
the inputs in the hidden layer. When the number of hidden units is less
than the number of inputs, this implies dimensionality reduction. Once
the training is done, the first layer from the input to the hidden layer
acts as an encoder, and the values of the hidden units make up the en
coded representation. The second layer from the hidden units to the
output units acts as a decoder, reconstructing the original signal from its
encoded representation.

It has been shown (Bourlard and Kamp 1988) that an MLP with one
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SAMMON MAPPING

(11.40)

Figure 11.19 In the autoassociator, there are as many outputs as there are
inputs and the desired outputs are the inputs. When the number of hidden units
is less than the number of inputs, the MLP is trained to find the best coding of
the inputs on the hidden units, performing dimensionality reduction. On the
left, the first layer acts as an encoder and the second layer acts as the decoder.
On the right, if the encoder and decoder are multilayer perceptrons with sigmoid
hidden units, the network performs nonlinear dimensionality reduction.

hidden layer of units implements principal components analysis (sec
tion 6.3), except that the hidden unit weights are not the eigenvectors
sorted in importance using the eigenvalues, but span the same space as
the H principal eigenvectors. If the encoder and decoder are not one
layer but multilayer perceptrons with sigmoid nonlinearity in the hidden
units, the encoder implements nonlinear dimensionality reduction.

Another way to use an MLP for dimensionality reduction is through
multidimensional scaling (section 6.5). Mao and Jain (1995) show how an
MLP can be used to learn the Sammon mapping. Recalling equation 6.29,
Sammon stress is defined as

EWIX) = L [119(xrle) - g(xSle)11 - Ilxr - X
SII]2

r,s Ilxr-xsll

An MLP with d inputs, H hidden units, and k < d output units is used to
implement g(xle), mapping the d-dimensional input to a k-dimensional
vector, where ecorresponds to the weights of the MLP. Given a dataset of
X = {Xl} I, we can use gradient descent to minimize the Sammon stress
directly to learn the MLP, namely, g(xle), such that the distances be-
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tween the k-dimensional representations are as close as possible to the
distances in the original space.

11.12 Learning Time

Until now, we have been concerned with cases where the input is fed
once, all together. In some applications, the input is temporal where we
need to learn a temporal sequence. In others, the output may also change
in time. Examples are

• Sequence recognition. This is the assignment of a given sequence to
one of several classes. Speech recognition is one example where the
input signal sequence is the spoken speech and the output is the code
of the word spoken. That is, the input changes in time but the output
does not.

• Sequence reproduction. Here, after seeing part of a given sequence, the
system should predict the rest. Time-series prediction is one example
where the input is given but the output changes.

• Temporal association. This is the most general case where a particular
output sequence is given as output after a specific input sequence. The
input and output sequences may be different. Here both the input and
the output change in time.

11.12.1 Time Delay Neural Networks

The easiest way to recognize a temporal sequence is by converting it to a
spatial sequence. Then any method discussed up to this point can be uti-

TIME DELAY NEURAL lized for classification. In a time delay neural network (Waibel et al. 1989),
NETWORK previous inputs are delayed in time so as to synchronize with the final in

put, and all are fed together as input to the system (see figure 11.20).
Backpropagation can then be used to train the weights. To extract fea
tures local in time, one can have layers of structured connections and
weight sharing to get translation invariance in time. The main restriction
of this architecture is that the size of the time window we slide over the
sequence should be fixed a priori.



11.12 Learning Time

~ ... dela

o

X'

267

Figure 11.20 A time delay neural network. Inputs in a time window of length T
are delayed in time until we can feed all T inputs as the input vector to the MLP.

11.12.2 Recurrent Networks

RECURRENT NETWORK In a recurrent network, additional to the feedforward connections, units
have self-connections or connections to units in the previous layers. This
recurrency acts as a short-term memory and lets the network remember
what happened in the past.

Most frequently, one uses a partially recurrent network where a lim
ited number of recurrent connections are added to a multilayer percep
tron (see figure 11.21). This combines the advantage of the nonlinear
approximation ability of a multilayer perceptron with the temporal rep
resentation ability of the recurrency, and such a network can be used to
implement any of the three temporal association tasks. It is also possible
to have hidden units in the recurrent backward connections, these being
known as context units. No formal results are known to determine how
to choose the best architecture given a particular application.

UNFOLDING IN TIME If the sequences have a small maximum length, then unfolding in time
can be used to convert an arbitrary recurrent network to an equivalent
feedforward network (see figure 11.22). A separate unit and connection
is created for copies at different times. The resulting network can be
trained with backpropagation with the additional requirement that all
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(c)

Figure 11.21 Examples of MLP with partial recurrency. Recurrent connections
are shown with dashed lines: (a) self-connections in the hidden layer, (b) self
connections in the output layer, and (c) connections from the output to the
hidden layer. Combinations of these are also possible.

copies of each connection should remain identical. The solution, as in
weight sharing, is to sum up the different weight changes in time and

BACKPROPAGATION change the weight by the average. This is called backpropagation through
THROUGH TIME time (Rumelhart, Hinton, and Willams 1986b). The problem with this ap

proach is the memory requirement if the length of the sequence is large.
REAL TIME RECURRENT Real time recurrent learning (Williams and Zipser 1989) is an algorithm

LEARNING for training recurrent networks without unfolding and has the advantage
that it can use sequences of arbitrary length.

11.13 Notes

Research on artificial neural networks is as old as the digital computer.
McCulloch and Pitts (1943) proposed the first mathematical model for the
artificial neuron. Rosenblatt (1962) proposed the perceptron model and a
learning algorithm in 1962. Minsky and Papert (1969) showed the limita
tion of single-layer perceptrons, for example, the XOR problem, and since
there was no algorithm to train a multilayer perceptron with a hidden
layer at that time, the work on artificial neural networks almost stopped
except at a few places. The renaissance of neural networks came with
the paper by Hopfield (1982). This was followed by the two-volume Paral
lel Distributed Processing (PDP) book written by the PDP Research Group
(Rumelhart and McClelland 1986). It seems as though backpropagation
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(b)

Figure 11.22 Backpropagation through time: (a) recurrent network and (b) its
equivalent unfolded network that behaves identically in four steps.

was invented independently in several places almost at the same time
and the limitation of a single-layer perceptron no longer held.

Starting in the mid-1980s, there has been a huge explosion of work on
artificial neural network models from various disciplines: physics, statis
tics, psychology, cognitive science, neuroscience, and lingustics, not to
mention computer science, electrical engineering, and adaptive control.
Perhaps the most important contribution of research on artificial neu
ral networks is this synergy that bridged various disciplines, especially
statistics and engineering. It is thanks to this that the field of machine
learning is now well-established.

The field is much more mature now; aims are more modest and better
defined. One of the criticisms of backpropagation was that it was not
biologically plausible! Though the term "neural network" is still widely
used, it is generally understood that neural network models, for example,
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multilayer perceptrons, are nonparametric estimators and that the best
way to analyze them is by using statistical methods.

For example, a statistical method similar to the multilayer perceptron
PROJECTION PURSUIT is projection pursuit (Friedman and Stuetzle 1981), which is written as

H

y = I <Ph(WhX )
h=l

the difference being that each "hidden unit" has its own separate func
tion, <Ph('), though in an MLP, all are fixed to be sigmoid. In chapter 12,
we will see another neural network structure, named radial basis func
tions, which uses the Gaussian function at the hidden units.

There are various textbooks on artificial neural networks: Hertz, Krogh,
and Palmer 1991, the earliest, is still readable. Bishop 1995 has a pattern
recognition emphasis and discusses in detail various optimization algo
rithms that can be used for training, as well as the Bayesian approach,
generalizing weight decay. Ripley 1996 analyzes neural networks from a
statistical perspective.

Artificial neural networks, for example, multilayer perceptrons, have
various successful applications. In addition to their various successful
applications in adaptive control, speech recognition, and vision, two are
noteworthy: Tesauro's TD-Gammon program (Tesauro 1994) uses rein
forcement learning (chapter 16) to train a multilayer perceptron and plays
backgammon at a master level. Pomerleau's ALVINN is a neural network
that autonomously drives a van up to 20 miles per hour after learning by
observing a driver for five minutes (Pomerleau 1991).

11.14 Exercises

1. Show the perceptron that calculates NOT of its input.

2. Show the perceptron that calculates NAND of its two inputs.

3. Show the perceptron that calculates the parity of its three inputs.

4. Derive the update equations when the hidden units use tanh, instead of the
sigmoid. Use the fact that tanh' = (l - tanh2

).

5. Derive the update equations for an MLP with two hidden layers.

6. Parity is cyclic shift invariant, for example, "0101" and "1010" have the same
parity. Propose a multilayer perceptron to learn the parity function using this
hint.
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7. In cascade correlation, what are the advantages of freezing the previously
existing weights?

8. Derive the update equations for an MLP implementing Sammon mapping that
minimizes Sammon stress (equation 11.40).
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12 Local Models

We continue our discussion of multilayer neural networks with mod
els where the first layer contains locally receptive units that respond
to instances in a localized region of the input space. The second layer
on top learns the regression or classification function for these local
regions. We discuss learning methods for finding the local regions of
importance as well as the models responsible in there.

12.1 Introduction

ONE WAY to do function approximation is to divide the input space into
local patches and learn a separate fit in each local patch. In chapter 7,
we discussed statistical methods for clustering that allowed us to group
input instances and model the input distribution. Competitive methods
are neural network methods for online clustering. In this chapter, we
discuss the online version of k-means, as well as two neural network
extensions, adaptive resonance theory (ART), and the self-organizing map
(SaM).

We then discuss how supervised learning is implemented once the in
puts are localized. If the fit in a local patch is constant, then the technique
is named the radial basis function (REF) network; if it is a linear function
of the input, it is called the mixture of experts (MoE). We discuss both
regression and classification, and also compare this approach with MLP,
which we discussed in chapter 11.
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12.2 Competitive Learning

In chapter 7, we used the semiparametric Gaussian mixture density, which
assumes that the input comes from one of k Gaussian sources. In this
section, we make the same assumption that there are k groups (or clus
ters) in the data, but our approach is not probabilistic in that we do not
enforce a parametric model for the sources. Another difference is that
the learning methods we propose are online: We do not have the whole
sample at hand during training; we receive instances one by one and up-

COMPETITIVE date model parameters as we get them. The term competitive learning
LEARNING is used because it is as if these groups, or rather the units representing

these groups, compete among themselves to be the one responsible for
WINNER-TAKE-ALL representing an instance. The model is also called winner-take-al1; it is as

if one group wins and gets updated, and the others are not updated at
all.

These methods can be used by themselves for online clustering, as
opposed to the batch methods discussed in chapter 7. An online method
has the usual advantages that (1) we do not need extra memory to store
the whole training set; (2) updates at each step are simple to implement,
for example, in hardware; and (3) the input distribution may change in
time and the model adapts itself to these changes automatically. If we
were to use a batch algorithm, we would need to collect a new sample
and run the batch method from scratch over the whole sample.

Starting in section 12.3, we will also discuss how such an approach can
be followed by a supervised method to learn regression or classification
problems. This will be a two-stage system that can be implemented by a
two-layer network, where the first stage (-layer) models the input density
and finds the responsible local model, and the second stage is that of the
local model generating the final output.

12.2.1 Online k-Means

In equation 7.3, we defined the reconstruction error as

(12.1) E({md~=lIX) = ~ I I b~ IIxt
- m;ll2

t i

where

(12.2) b~ = {
1 if IIx t

- mill = minIllx t
- mIll

o otherwise
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(12.3)

ONLINE k-MEANS

(12.4)

(12.5)

STABILITY-PLAST!CITY

DILEMMA

(12.6)

x = {xt}t is the sample and mi,i = 1, ... ,k are the cluster centers. bf
is 1 if mi is the closest center to xt in Euclidean distance. It is as if all
ml, I = 1, ... , k compete and m; wins the competition because it is the
closest.

The batch algorithm, k-means, updates the centers as

It bfxt

mi = Itbf

which minimizes equation 12.1, once the winners are chosen using equa
tion 12.2. As we saw before, these two steps of calculation of bf and
update of mi are iterated until convergence.

We can obtain online k-means by doing stochastic gradient descent,
considering the instances one by one, and doing a small update at each
step, not forgetting the effect of the previous updates. The reconstruc
tion error for a single instance is

d

Et ({mdf=llx t ) = ~ Lbfllxt - m;ll2 = ~ L L bf(x5 - mij)2
I I J=1

where bf is defined as in equation 12.2. Using gradient descent on this,
we get the following update rule for each instance x t :

aEt t t
~mij = -'1-- = '1b; (x· - mij)

amij J

This moves the closest center (for which bf = 1) toward the input by
a factor given by '1. The other centers have their bf, I -1= i equal to 0 and
are not updated (see figure 12.1). A batch procedure can also be defined
by summing up equation 12.5 over all t. Uke in any gradient descent
procedure, a momentum term can also be added. For convergence, '1 is
gradually decreased to 0. But this implies the stability-plasticity dilemma:
If '1 is decreased toward 0, the network becomes stable but we lose adap
tivity to novel patterns that may occur in time because updates become
too small. If we keep '1 large, mi may oscillate.

The pseudocode of online k-means is given in figure 12.2. This is the
online version of the batch algorithm given in figure 7.3.

The competitive network can be implemented as a one-layer recurrent
network as shown in figure 12.3. The input layer contains the input vector
x; note that there is no bias unit. The values of the output units are the
bi and they are perceptrons:

bi = mTx
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Figure 12.1 Shaded circles are the centers and the empty circle is the input
instance. The online version of k-means moves the closest center along the di
rection of (x - mil by a factor specified by 11.

Then we need to choose the maximum of the h; and set it equal to
1, and set the others, hi, I -/= i to O. If we would like to do everything
purely neural, that is, using a network of concurrently operating process
ing units, the choosing of the maximum can be implemented through

LATERAL INHIBITION lateral inhibition. As shown in figure 12.3, each unit has an excitatory
recurrent connection (Le., with a positive weight) to itself, and inhibitory
recurrent connections (Le., with negative weights) to the other output
units. With an appropriate nonlinear activation function and positive
and negative recurrent weight values, such a network, after some itera
tions, converges to a state where the maximum becomes 1 and all others
become 0 (Grossberg 1980; Feldman and Ballard 1982).

The dot product used in equation 12.6 is a similarity measure, and we
saw in section 5.5 (equation 5.26) that if mi have the same norm, then
the unit with the minimum Euclidean distance, 11m; - xii, is the same as
the one with the maximum dot product, mTx.

Here, and later when we discuss other competitive methods, we use
the Euclidean distance, but we should keep in mind that using the Eu
clidean distance implies that all input attributes have the same variance
and that they are not correlated. If this is not the case, this should be
reflected in the distance measure, that is, by using the Mahalanobis dis
tance, or suitable normalization should be done, for example, by PCA, at
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Initialize mi, i = 1, ... , k, for example, to k random Xl

Repeat
For all Xl E X in random order

i - argminj Ilx l
- mjll

mj - m; + '7(x l
- mj)

Until m; converge
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Figure 12.2 Online k-means algorithm. The batch version is given in figure 7.3.

a preprocessing stage before the Euclidean distance is used.
We can rewrite equation 12.5 as

(12.7) ~mij = '7 bfx) - '7bfmij

Let us remember that mij is the weight of the connection from Xj to bi.
An update of the form, as we see in the first term

(12.8) ~mij = '7bfx)

HEBBIAN LEARNING is Hebbian learning, which defines the update as the product of the values
of the presynaptic and postsynaptic units. It was proposed as a model for
neural plasticity: A synapse becomes more important if the units before
and after the connection fire simultaneously, indicating that they are cor
related. However, with only Hebbian learning, the weights grow without
bound (X) ~ 0), and we need a second force to decrease the weights that
are not updated. One possibility is to explicitly normalize the weights to
have Ilmill = 1; if ~mij > 0 and ~mil = 0, I :1= i, once we normalize mj
to unit length, mil decrease. Another possibility is to introduce a weight
decay term (Oja 1982), and the second term of equation 12.7 can be seen
as such. Hertz, Krogh, and Palmer (1991) discuss competitive networks
and Hebbian learning in more detail and show, for example, how such
networks can learn to do PCA. Mao and Jain (1995) discuss online algo
rithms for PCA and LDA.

As we saw in chapter 7, one problem is to avoid dead centers, namely,
the ones that are there but are not effectively utilized. In the case of com
petitive networks, this corresponds to centers that never win the com
petition because they are initialized far away from any input. There are
various ways we can avoid this:

1. We can initialize mi by randomly chosen input instances, and make
sure that they start from where there is data.
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Figure 12.3 The winner-take-all competitive neural network, which is a network
of k perceptrons with recurrent connections at the output. Dashed lines are reo
current connections, of which the ones that end with an arrow are excitatory and
the ones that end with a circle are inhibitory. Each unit at the output reinforces
its value and tries to suppress the other outputs. Under a suitable assignment of
these recurrrent weights, the maximum suppresses all the others. This has the
net effect that the one unit whose mj is closest to x ends up with its bi equal to
1 and all others, namely, bJ,i1- i are O.

2. We can use a leader-cluster algorithm and add units one by one, always
adding them at a place where they are needed. One example is the ART
model, which we discuss in section 12.2.2.

3. When we update, we do not update only the center of the closest unit
but some others as well. As they are updated, they also move toward
the input, move gradually toward parts of the input space where there
are inputs, and eventually win the competition. One example that we
discuss in section 12.2.3 is SOM.

4. Another possibility is to introduce a conscience mechanism (DeSieno
1988): A unit that has won the competition recently feels guilty and
allows others to win.
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Figure 12.4 The distance from x Q to the closest center is less than the vigilance
value p and the center is updated as in online k-means. However, x b is not close
enough to any of the centers and a new group should be created at that position.

12.2.2 Adaptive Resonance Theory

The number of groups, k, should be known and specified before the pa
rameters can be calculated. Another approach is incremental, where one
starts with a single group and adds new groups as they are needed. We

ADAPTIVE RESONANCE discuss the adaptive resonance theory (ART) algorithm (Carpenter and
THEORY Grossberg 1988) as an example of an incremental algorithm. In ART,

given an input, all of the output units calculate their values and the one
most similar to the input is chosen. This is the unit with the maximum
value if the unit uses the dot product as in equation 12.6, or it is the unit
with the minimum value if the unit uses the Euclidean distance.

Let us assume that we use the Euclidean distance. If the minimum value
VIGILANCE is smaller than a certain threshold value, named the vigilance, the update

is done as in online k-means. If this distance is larger than vigilance, a
new output unit is added and its center is initialized with the instance.
This defines a hypersphere whose radius is given by the vigilance defining
the volume of scope of each unit; we add a new unit whenever we have
an input that is not covered by any unit (see figure 12.4).
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(12.9)

12 Local Models

Denoting vigilance by p, we use the following equations at each update:

k
b i = II mj - XC II = min II ml - XC II

1=1

{

mk+l - XC if bi > P
~mi = 1](x - mi) otherwise

Putting a threshold on distance is equivalent to putting a threshold on
the reconstruction error per instance, and if the distance is Euclidean and
the error is defined as in equation 12.4, this indicates that the maximum
reconstruction error allowed per instance is the square of Vigilance.

12.2.3 Self-Organizing Maps

One way to avoid having dead units is by updating not only the win-
SELF-ORGANIZING MAP ner but also some of the other units as well. In the self-organizing map

(SaM) proposed by Kohonen (1990, 1995), unit indices, namely, i as in
mi, define a neighborhood for the units. When mi is the closest center,
in addition to mi, its neighbors are also updated. For example, if the
neighborhood is of size 2, then mi-2, mi-l, mi+l, mi+2 are also updated
but with less weight as the neighborhood increases. If i is the index of
the closest center, the centers are updated as

(12.10) ~ml = 1] e(l, i)(x t - m[)

where e(l, i) is the neighborhood function. e(l, i) = 1 when 1 = i and
decreases as 11 - i I increases, for example, as a Gaussian, :N (i, (T):

(12.11) e(l, i) = ~(T exp [ - (l2~ir]

For convergence, the support of the neighborhood function decreases
in time, for example, (T decreases, and at the end, only the winner is
updated.

Because neighboring units are also moved toward the input, we avoid
dead units since they get to win competition sometime later, after a little
bit of initial help from their neighboring friends (see figure 12.5).

Updating the neighbors has the effect that, even if the centers are ran
domly initialized, because they are moved toward the same input to
gether, once the system converges, units with neighboring indices will
also be neighbors in the input space.
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Figure 12.5 In the SOM, not only the closest unit but also its neighbors, in
terms of indices, are moved toward the input. Here, neighborhood is 1; mi and
its I-nearest neighbors are updated. Note here that mi+\ is far from mi, but as
it is updated with mi, and as mj will be updated when mi+ 1 is the winner, they
will become neighbors in the input space as well.

In most applications, the units are organized as a two-dimensional
map. That is, each unit will have two indices, mi,}, and the neighbor
hood will be defined in two dimensions. If mi,} is the closest center, the
centers are updated as

where the neighborhood function is now in two dimensions. After con-
TOPOGRAPHICAL MAP vergence, this forms a two-dimensional topographical map of the original

d-dimensional input space. The map contains many units in parts of
the space where density is high, and no unit will be dedicated to parts
where there is no input. Once the map converges, inputs that are close
in the original space are mapped to units that are close in the map. In
this regard, the map can be interpreted as doing a nonlinear form of
multidimensional scaling, mapping from the original x space to the two
dimensions, (i,j). Similarly, if the map is one-dimensional, the units are
placed on the curve of maximum density in the input space, as a principal
curve.
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12.3

DISTRIBUTED

REPRESENTATJON

LOCAL

REPRESENTATION

RECEPTIVE FIELD

(12.13)

12 Local Models

Radial Basis Functions

In a multilayer perceptron (chapter 10 where hidden units use the dot
product, each hidden unit defines a hyperplane and with the sigmoid
nonlinearity, a hidden unit has a value between 0 and 1, coding the po
sition of the instance with respect to the hyperplane. Each hyperplane
divides the input space in two, and typically for a given input, many of
the hidden units have nonzero output. This is called a distributed repre
sentation because the input is encoded by the simultaneous activation of
many hidden units.

Another possibility is to have a local representation where for a given
input, only one or a few units are active. It is as if these locally tuned
units partition the input space among themselves and are selective to
only certain inputs. The part of the input space where a unit has nonzero
response is called its receptive field. The input space is then paved with
such units.

Neurons with such response characteristics are found in many parts
of the cortex. For example, cells in the visual cortex respond selectively
to stimulation that is both local in retinal position and local in angle
of visual orientation. Such locally tuned cells are typically arranged in
topogrophical cortical maps in which the values of the variables to which
the cells respond vary by their position in the map, as in a SaM.

The concept of locality implies a distance function to measure the simi
larity between the given input x and the position of unit h, mho Frequently
this measure is taken as the Euclidean distance, IIx - mhll. The response
function is chosen to have a maximum where x = mh and decreasing
as they get less similar. Commonly we use the Gaussian function (see
figure 12.6):

t [llxt -m h I1 2
]Ph = exp - 2

2sh

Strictly speaking, this is not Gaussian density, but we use the same
name anyway. mj and Sj respectively denote the center and the spread
of the local unit j, and as such define a radially symmetric basis func
tion. One can use an elliptic one with different spreads on different di
mensions, or even use the full Mahalanobis distance to allow correlated
inputs, at the expense of using a more complicated model.

The idea in using such local basis functions is that in the input data,
there are groups or clusters of instances and for each such cluster, we
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Figure 12.6 The one-dimensional form of the bell-shaped function used in the
radial basis function network. This one has m = 0 and s = 1. It is like a Gaussian
but it is not a density; it does not integrate to 1. It is nonzero between (m 
3s, m + 3s), but a more conservative interval is (m - 2s, m + 2s).

define a basis function, p~, which becomes nonzero if instance Xl be
longs to cluster h. One can use any of the online competitive methods
discussed in section 12.2 to find the centers, mho There is a simple and
effective heuristic to find the spreads: Once we have the centers, for each
cluster, we find the most distant instance covered by that cluster and set
Sh to half its distance from the center. We could have used one-third,
but we prefer to be conservative. We can also use the statistical cluster
ing method, for example, EM on Gaussian mixtures, that we discussed in
chapter 7 to find the cluster parameters, namely, means, variances (and
covariances).

p~, h = 1, ... ,H define a new H -dimensional space and form a new
representation of Xl. We can also use b~ (equation 12.2) to code the
input but b~ are 0/1; p~ have the additional advantage that they code the
distance to their center by a value in (0,1). How fast the value decays
to 0 depends on Sh. Figure 12.7 gives an example and compares such
a local representation with a distributed representation as used by the
multilayer perceptron. Because Gaussians are local, typically we need
many more local units than what we would need if we were to use a
distributed representation, especially if the input is high-dimensional.

In the case of supervised learning, we can then use this new local rep-
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x

Local representation in the
space of (P I' P2' P3)

xQ
: (1.0, 0.0, 0.0)

x b : (0.0, 0.0, 1.0)
xc: (1.0, 1.0, 0.0)

Distributed representation in the
space of (hI' h2)

xQ
: (1.0, 1.0)

xb : (0.0, 1.0)
XC: (1.0,0.0)

Figure 12.7 The difference between local and distributed representations. The
values are hard, 0/1, values. One can use soft values in (0,1) and get a more in
formative encoding. In the local representation, tills is done by the Gaussian RBF
that uses the distance to the center, mi, and in the distributed representation,
this is done by the sigmoid that uses the distance to the hyperplane, Wi.

resentation as the input. If we use a perceptron, we have

H

(12.14) yt = L WhP~ + Wo
h=l

where H is the number of basis functions. This structure is called a
RADIAL BASIS radial basis function (REF) network (Broomhead and Lowe 1988; Moody

FUNCTION and Darken 1989). Normally, people do not use RBF networks with more
than one layer of Gaussian units. H is the complexity parameter, like
the number of hidden units in a multilayer perceptron. Previously we
denoted it by k, when it corresponded to the number of centers in the
case of unsupervised learning.

Here, we see the advantage of using Ph instead of bh. Because bh are
0/1, if equation 12.14 contained bh instead of the Ph, it would give a
piecewise constant approximation with discontuinities at the unit region
boundaries. Ph values are soft and lead to a smooth approximation, tak
ing a weighted average while passing from one region to another. We can
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easily see that such a network is a universal approximator in that it can
approximate any function with desired accuracy, given enough units: We
can form a grid in the input space to our desired accuracy, define a unit
that will be active for each grid, and set its outgoing weight, Wh, to the
desired output value.

This architecture bears much similarity to the nonparametric estima
tors, for example, Parzen windows, we saw in chapter 8, and Ph may be
seen as kernel functions. The difference is that now we do not have a
kernel function over all training instances but group them using a clus
tering method to make do with fewer kernels. H, the number of units,
is the complexity parameter, trading off simplicity and accuracy. With
more units, we approximate the training data better, but we get a com
plex model and risk overfitting; too few may underfit. Again, the optimal
value is determined by cross-validation.

Once mh and Sh are given and fixed, Ph are also fixed. Then Wh can be
trained easily batch or online. In the case of regression, this is a linear
regression model (with Ph as the inputs) and the Wh can be solved analyt
ically without any iteration (section 4.6). In the case of classification, we
need to resort to an iterative procedure. We discussed learning methods
for this in chapter 10 and do not repeat them here.

What we do here is a two-stage process: We use an unsupervised method
for determining the centers, then build a supervised layer on top of that.

HYBRID LEARNING This is called hybrid learning. We can also learn all parameters, including
mh and Sh, in a supervised manner. The radial basis function of equa
tion 12.13 is differentiable and we can backpropagate, just as we back
propagated in a multilayer perceptron to update the first-layer weights.
The structure is similar to a multilayer perceptron with Ph as the hidden
units, mh and Sh as the first-layer parameters, the Gaussian as the activa
tion function in the hidden layer, and Wh as the second-layer weights (see
figure 12.8).

But before we discuss this, we should remember that training a two
layer network is slow. Hybrid learning trains one layer at a time and is

ANCHOR faster. Another technique, called the anchor method, sets the centers to
the randomly chosen patterns from the training set without any further
update. It is adequate if there are many units.

On the other hand, the accuracy normally is not as high as when a
completely supervised method is used. Consider the case when the in
put is uniformly distributed. Then k-means clustering places the units
uniformly. If the function is changing Significantly in a small part of the
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Figure 12.8 The REF network where Ph are the hidden units using the bell
shaped activation function. mh, Sh are the first-layer parameters, and Wj are the
second-layer weights.

space, it is a better idea to have as many centers in places where the the
function changes fast, to make the error as small as possible; this is what
the completely supervised method would do.

Let us discuss how all of the parameters can be trained in a fully su
pervised manner. The approach is the same as backpropagation applied
to multilayer perceptrons. Let us see the case of regression with multiple
outputs. The batch error is

(12.15) E({mh, Sh, Wih};,hI X ) = ~ LL(rl - yn 2

t i

where

H

(12.16) yl = L WihP~ + WiQ

h=l

Using gradient descent, we get the following update rule for the second-



(12.17)
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layer weights:

~Wih = '12)rF - yl)Ph
I
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(12.18)

(12.19)

(12.20)

(12.21)

This is the usual perceptron update rule, with Ph as the inputs. Typ
ically, Ph do not overlap much and at each iteration, only a few Ph are
nonzero and only their Wh are updated. That is why REF networks learn
very fast, and faster than multilayer perceptrons that use a distributed
representation.

Similarly, we can get the update equations for the centers and spreads
by backpropagation (chain rule):

'" [", I I ] I (xj - mhj)
~mhj = '1 L L(ri - Yi )Wih Ph 2

I i Sh

ASh = '" ["'( I I) ] I Ilx
l

- mhl1
2

u '1 L L ri - Yi Wih Ph 3
I i Sh

Let us compare equation 12.18 with equation 12.5: First, here we use
Ph instead of bh, which means that not only the closest one but all units
are updated, depending on their centers and spreads. Second, here the
update is supervised and contains the backpropagated error term. The
update depends not only on the input but also on the final error (rF - yl),
the effect of the unit on the output, Wih, the activation of the unit, Ph, and
the input, (x - mi).

In the case of classification, we have

I _ exp [L.h WihPh + WiO J
Yi - L.k exp [L.h WkhPh + WkO J

and the cross-entropy error is

E((mh,sh,wih}i,hI X ) = - I IrtIogyF
I i

Update rules can similarly be derived using gradient descent (exer
cise 2).

Let us look again at equation 12.14: For any input, if Ph is nonzero,
then it contributes Wh to the output. Its contribution is a constant fit, as
given by Who Normally Gaussians do not overlap much, and one or two of
them have a nonzero Ph value. In any case, only few units contribute to
the output. Wo is the constant offset and is added to the weighted sum
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of the active (nonzero) units. We also see that y = Wo if all Ph are O. We
can therefore view Wo as the "default" value of y: If no Gaussian is active,
then the output is given by this value. So a possibility is to make this
"default model" more powerful. For example, we can write

H

(12.22) yC = L whPh + v T
XC + Vo

h=l

In this case, the default model is linear: v T XC + Yo. When they are
nonzero, Gaussians work as "exceptions" and modify the output to make
up for the difference between the desired output and the output of the
default model. Such a model can be trained in a supervised manner, and
the default model can be trained together with the Wh (exercise 3).

12.4 Incorporating Rule-Based Knowledge

The training of any learning system can be much simpler if we manage to
PRIOR KNOWLEDGE incorporate prior knowledge to initialize the system. For example, prior

knowledge may be available in the form of a set of rules that specify the
input/output mapping that the model, for example, the RBF network, has
to learn. This occurs frequently in industrial and medical applications
where rules can be given by experts. Similarly, once a network has been
trained, rules can be extracted from the solution in such a way as to
better understand the solution to the problem.

The inclusion of prior knowledge has the additional advantage that if
the network is required to extrapolate into regions of the input space
where it has not seen any training data, it can rely on this prior know
ledge. Furthermore, in many control applications, the network is required
to make reasonable predictions right from the beginning. Before it has
seen sufficient training data, it has to rely primarily on this prior know
ledge.

In many applications we are typically told some basic rules that we try
to follow in the beginning but that are then refined and altered through
experience. The better our initial knowledge of a problem, the faster we
can achieve good performance and the less training that is required.

Such inclusion of prior knowledge or extraction of learned knowledge
is easy to do with RBF networks because the units are local. This makes

RULE EXTRACTION rule extraction easier (Tresp, Hollatz, and Ahmad 1997). An example is

(12.23) IF ((Xl;::; a) AND (X2 ;::; b» OR (X3 ;::; c) THEN y = 0.1
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where XI ~ a means "XI is approximately a." In the RBF framework, this
rule is encoded by two Gaussian units as

PI exp [- (Xl - a)Z] . exp [_ (xz - b)Z] with WI = 0.1
2s¥ 2s~

PZ exp [- (X3 -ZC)Z] with Wz = 0.1
2s3

"Approximately equal to" is modeled by a Gaussian where the center
is the ideal value and the spread denotes the allowed difference around
this ideal value. Conjunction is the product of two univariate Gaussians
that is a bivariate Gaussian. Then, the first product term can be handled
by a two-dimensional, namely, X = [XI,XZJ, Gaussian centered at (a,b),
and the spreads on the two dimensions are given by Sl and Sz. Disjunc
tion is modeled by two separate Gaussians, each one handling one of the
disjuncts.

Given labeled training data, the parameters of the REF network so con
structed can be fine-tuned after the initial construction, using a small
value of '7.

This formulation is related to the fuzzy logic approach where equa-
FUZZY RULE tion 12.23 is named a fuzzy rule. The Gaussian basis function that checks

FUZZY MEMBERSHIP for approximate equality corresponds to a fuzzy membership function
FUNCTION (Berthold 1999; Cherkassky and Mulier 1998).

12.5 Normalized Basis Functions

(12.24)

In equation 12.14, for an input, it is possible that all of the Ph are O. In
some applications, we may want to have a normalization step to make
sure that the values of the local units sum up to 1, thus making sure that
for any input there is at least one nonzero unit:

I Ph exp[-llxl-mhllz/2s~J9 - - -...::.....::.-----------':-----'-'-;;.-
h - If:l pf - II exp[ -llx l - mJlIZ /2s1J

An example is given in figure 12.9. Taking Ph as p(xlh), gh correspond
to p(hlx), the posterior probability that x belongs to unit h. It is as if
the units divide the input space among themselves. We can think of gh
as a classifier in itself, choosing the responsible unit for a given input.
This classification is done based on distance, as in a parametric Gaussian
classifier (chapter 5).
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(12.25)

(12.26)

Figure 12.9 (-) Before and (- -) after normalization for three Gaussians whose
centers are denoted by '*'. Note how the nonzero region of a unit depends also on
the positions of other units. If the spreads are small, normalization implements
a harder split; with large spreads, units overlap more.

The output is a weighted sum

H

t '" tYi = L wihgh
h=l

where there is no need for a bias term because there is at least one
nonzero gh for each x. Using gh instead of Ph does not introduce any
extra parameters; it only couples the units together: Ph depends only on
mh and Sh, but gh, because of normalization, depends on the centers and
spreads of all of the units.

In the case of regression, we have the following update rules using
gradient descent:

T] 2. (rr - yf)g~
r



(12.27)
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12.6

(12.28)

COMPETITIVE BASIS

FUNCTIONS

(12.29)

The update rule for Sh as well as the rules for classification can similarly
be derived. Let us compare these with the update rules for the RBF with
unnormalized Gaussians (equation 12.17). Here, we use 9h instead of Ph,

which makes a unit's update dependent not only on its own parameters,
but also on the centers and spreads of other units as well. Comparing
equation 12.27 with equation 12.18, we see that instead of Wih, we have
(Wih - Yn, which shows the role of normalization on the output. The
"responsible" unit wants to decrease the difference between its output,
Wih, and the final output, yl, proportional to its responsibility, 9h.

Competitive Basis Functions

As we have seen up until now, in an REF network the final output is
determined as a weighted sum of the contributions of the local units.
Though the units are local, it is the final weighted sum that is important
and that we want to make as close as possible to the required output. For
example, in regression we minimize equation 12.15, which is based on
the probabilistic model

1 [(r l
1)2 ]p(yllx l ) = n--exp - i - Yi

i J2iiu 2u 2

where yl is given by equation 12.16 (unnormalized) or equation 12.25
(normalized). In either case, we can view the model as a cooperative one
since the units cooperate to generate the final output, yl. We now discuss
the approach using competitive basis functions where we assume that the
output is drawn from a mixture model

1-1

p(yl Ixl ) = 2: p(hlxl)p(yl Ih, Xl)
h=l

p(hlxC
) are the mixture proportions and p(yllh,x C) are the mixture com

ponents generating the output if that component is chosen. Note that
both of these terms depend on the input x.

The mixture proportions are

(12.30) p(hlx)
p(xlh)p(h)

L,I p(xll)p(1)



(12.31)

(12.35) p(hlr, x)

(12.34) fh
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ah exp[ -llx t - mh liz /2s~]

LI al exp[ -llx t - m/li Z/2sl]

We generally assume ah to be equal and ignore them. Let us first take
the case of regression where the components are Gaussian. In equa
tion 12.28, noise is added to the weighted sum; here, one component
is chosen and noise is added to its output, yfh'

Using the mixture model of equation 12.29, the log likelihood is

(12.32) .£({mh,sh, Wih};,hIX) = ,2)og:Z=ghexP [-~ :z=(rf - Yfh)Z]
t h i

where yfh = Wih is the constant fit done by component h for output i,
which, strictly speaking, does not depend on x. (In section 12.8.2, we
discuss the case of competitive mixture of experts where the local fit is
a linear function of x.) We see that if gh is 1, then it is responsible for
generating the right output and needs to minimize the squared error of
its prediction, Li (rf - yfh)z,

Using gradient ascent to maximize the log likelihood, we get

(12.33) ~Wih = 11 :Z=(rf - yfh)fh
t

where

gh exp[-i Li(rf - yfh)Z]

LI gf exp[-i Li(rf - yf/)Z]

p(hlx)p(rlh,x)

LI p(llx)p(rll, x)

gh == p(hlx t ) is the posterior probability of unit h given the input, and
it depends on the centers and spreads of all of the units. fh == p(hlr, x t ) is
the posterior probability of unit h given the input and the desired output,
also taking the error into account in choosing the responsible unit.

Similarly, we can derive a rule to update the centers:

fh is the posterior probability of unit h also taking the required output
into account, whereas gh is the posterior probability using only the input
space information. Their difference is the error term for the centers. ~Sh
can be similarly derived. In the cooperative case, there is no force on the
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Wjh =

(12.38)

(12.39)

(12.40)

(12.41)

(12.42)

(12.43)

units to be localized. To decrease the error, means and spreads can take
any value; it is even possible sometimes for the spreads to increase and
flatten out. In the competitive case, however, to increase the likelihood,
units are forced to be localized with more separation between them and
smaller spreads.

In classification, each component by itself is a multinomial. Then the
log likelihood is

2: log 2: 9h n(yfhY[
I h

2: log 2: 9h exp [2: rI log Yfh]
1 h j

where
I eXpWjh

Yjh = Lk exp Wkh

Update rules for Wih, mh, and Sh can be derived using gradient ascent,
which will include

f [" t t(I _ gh exp L.i rj log Yih]
h - LI gf exp[Lj rI log yId

In chapter 7, we discussed the EM algoritlun for fitting Gaussian mix
tures to data. It is possible to generalize EM for supervised learning as
well. Actually, calculating fh corresponds to the E-step. fh == p(rlh,x t )

replaces p(hlx l ), which we used in the E-step in chapter 7 when the ap
plication was unsupervised. In the M-step for regression, we update the
parameters as

Lt fh xt

Lcfh
Lcfh(x l - mh)(x l - mh)T

Lcfh

LcfhrI
Lcfh

We see that Wjh is a weighted average where weights are the posterior
probabilities of units, given the input and the desired output. In the case
of classification, the M-step has no analytical solution and one needs to
resort to an iterative procedure, for example, gradient ascent (Jordan and
Jacobs 1994).
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12.7

(12.44)

LEARNING VECTOR

QUANTIZATION

12.8

12 Local Models

Learning Vector Quantization

Let us say we have H units for each class, already labeled by those classes.
These units are initialized with random instances from their classes. At
each iteration, we find the unit, m;, that is closest to the input instance
in Euclidean distance and use the following update rule:

{
t.m; = '1(x l - m;) if Xl and m; have the same class label
t.m; = -'1(x l - m;) otherwise

If the closest center has the correct label, it is moved toward the input
to better represent it. If it belongs to the wrong class, it is moved away
from the input in the expectation that if it is moved sufficiently away, a
center of the correct class will be the closest in a future iteration. This
is the learning vector quantization (LVQ) model proposed by Kohonen
(1990,1995).

The LVQ update equation is analogous to equation 12.36 where the
direction in which the center is moved depends on the difference between
two values: our prediction of the winner unit based on the input distances
and what the winner should be based on the required output.

Mixture of Experts

In RBFs, corresponding to each local patch we give a constant fit. In
the case where for any input, we have one gh 1 and all others 0, we get
a piecewise constant approximation where for output i, the local fit by
patch h is given by W;h. From the Taylor expansion, we know that at each
point, the function can be written as

(12.45) f(x) = f(a) + (x - a)f' (a) + ...

Thus a constant approximation is good if x is close enough to a and
f'(a) is close to a-that is, if f(x) is flat around a. If this is not the
case, we need to divide the space into a large number of patches, which
is particularly serious when the input dimensionality is high, due to the
curse of dimensionality.

PIECEWISE LINEAR An alternative is to have a piecewise linear approximation by taking into
APPROXIMATION account the next term in the Taylor expansion, namely, the linear term.

MIXTURE OF EXPERTS This is what is done by mixture of experts (Jacobs et al. 1991). We write
H

(12.46) yf = L w;hg~
h=l
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(12.48)

Figure 12.10 The mixture of experts can be seen as an RBF network where the
second-layer weights are outputs of linear models. Only one linear model is
shown for clarity.

which is the same as equation 12.25 but here, Wih, the contribution of
patch h to output i is not a constant but a linear function of the input:

t T twih = vihx

Vih is the parameter vector that defines the linear function and includes
a bias term, making the mixture of experts a generalization of the RBF
network. The unit activations can be taken as normalized RBFs:

t exp[-llxt-mhI12/2s~]g -
h - LI exp[ -llx t - ml1l 2 /2s1]

This can be seen as an RBF network except that the second-layer weights
are not constants but are outputs of linear models (see figure 12.10). Ja
cobs et al. (1991) view this in another way: They consider Wh as linear
models, each taking the input, and call them experts. gh are considered
to be the outputs of a gating network. The gating network works as a
classifier does with its outputs summing to 1, assigning the input to one
of the experts (see figure 12.11).
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(12.49)

Figure 12.11 The mixture of experts can be seen as a model for combining
multiple models. Wh are the models and the gating network is another model
determining the weight of each model, as given by gh. Viewed in this way, neither
the experts nor the gating are restricted to be linear.

Considering the gating network in this manner, any classifier can be
used in gating. When x is high-dimensional, using local Gaussian units
may require a large number of experts and Jacobs et al. (1991) propose
to take

exp[m T x t ]gt _ h
h - II exp[mTxt]

which is a linear classifier. Note that mh are no longer centers but hy
perplanes, and as such include bias values. This gating network is imple
menting a classification where it is dividing linearly the input region for
which expert h is responsible from the expertise regions of other experts.
As we will see again in chapter 15, the mixture of experts is a general
architecture for combining multiple models; the experts and the gating
may be nonlinear, for example, contain multilayer perceptrons, instead
of linear perceptrons (exercise 5).

An architecture similar to the mixture of experts and running line
smoother (section 8.6.3) has been proposed by Bottou and Vapnik (1992).
In their approach, no training is done initially. When a test instance is
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given, a subset of the data close to the test instance is chosen from the
training set (as in the k-nearest neighbor, but with a large k), a simple
model, for example, a linear classifier, is trained with this local data, the
prediction is made for the instance, and then the model is discarded. For
the next instance, a new model is created, and so on. On a handwritten
digit recognition application, this model has less error than the multilayer
perceptron, k-nearest neighbor, and Parzen windows; the disadvantage is
the need to train a new model on the fly for each test instance.

12.8.1 Cooperative Experts

In the cooperative case, yf is given by equation 12.46, and we would like
to make it as close as possible to the required output, r[. In regression,
the error function is

1~,,\, 1 1202.50) E({mh,sh,wih};,hI X ) = 2" L.L.(ri - Yi)
t i

Using gradient descent, second-layer (expert) weight parameters are
updated as

(12.51) t.Vih = '7 L(rf - Y[)Bh xl
1

Compared with equation 12.26, we see that the only difference is that
this new update is a function of the input.

If we use softmax gating (equation 12.49), using gradient descent we
have the following update rule for the hyperplanes:

(12.52) t.mhj = '7 LL(rl- yf)(wfh - yf)Bh X5
t i

If we use radial gating (equation 12.48), only the last term, OPh/omhj,

differs.
In classification, we have

(12.53)

with Wih = vi"hx, and update rules can be derived to minimize the cross
entropy using gradient descent (exercise 6).



300 12 Local Models

12.8.2 Competitive Experts

just like the competitive RBFs, we have

(12.54) L( (mh, Sh, W;h);.h IX) ~ ~ log~ Bh exp [ -~ ~ (r;' - yrh)']

where yfh = w/h = VihX t . Using gradient ascent, we get

(12.55) ~Vih

(12.56) ~mh

17 L(r/ - yfh)fh xt
t

(12.58)

assuming softmax gating as given in equation 12.49.
In classification, we have

L log L9h n(yfh rf
t h

L log L9~ exp [L rllog Yfh]
t h i

where

(12.59)
exp[Vihxt ]

Ik exp[vkhxt ]

jordan and jacobs (1994) generalize EM for the competitive case with
local linear models. Alpaydm and jordan (1996) compare cooperative
and competitive models for classification tasks and see that the coopera
tive model is generally more accurate but the competitive version learns
faster. This is because in the cooperative case, models overlap more and
implement a smoother approximation, and thus it is preferable in regres
sion problems. The competitive model makes a harder split; generally
only one expert is active for an input and therefore learning is faster.

12.9 Hierarchical Mixture of Experts

In figure 12.11, we see a set of experts and a gating network that chooses
HIERARCHICAL one of the experts as a function of the input. In a hierarchical mixture

MIXTURE OF EXPERTS of experts, we replace each expert with a complete system of mixture of
experts in a recursive manner Uordan and jacobs 1994). This architecture
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may be seen as a decision tree (chapter 9) where gating networks can be
seen as decision nodes. When the gating network is linear, this is like the
linear multivariate decision tree discussed in section 9.6. The difference
is that the gating network does not make a hard decision but takes a
weighted sum of contributions coming from the children. Leaf nodes are
linear models, and their predictions are averaged and propagated up the
tree. The root gives the final output, which is a weighted average of all of
the leaves. This is a soft decision tree as opposed to the decision trees we
saw before where only one path from the root to a leaf is taken.

Once an architecture is chosen-namely, the depth, the experts, and
the gating models-the whole tree can be learned from a labeled sample.
Jordan and Jacobs (l994) derive both gradient descent and EM learning
rules for such an architecture.

12.10 Notes

An REF network can be seen as a neural network, implemented by a net
work of simple processing units. It differs from a multilayer perceptron
in that the first and second layers implement different functions. Omo
hundro (1987) discusses how local models can be implemented as neural
networks and also addresses hierarchical data structures for fast local
ization of relevant local units. Specht (1991) shows how Parzen windows
can be implemented as a neural network.

Platt (l991) proposed an incremental version of RBF where new units
are added as necessary. Fritzke (l995) similarly proposed a growing ver
sion of SaM.

Lee (l991) compares k-nearest neighbor, multilayer perceptron, and
RBF network on a handwritten digit recognition application and con
cludes that these three methods all have small error rates. RBF net
works learn faster than backpropagation on a multilayer perceptron but
use more parameters. Both of these methods are superior to the k-NN
in terms of classification speed and memory need. Such practical con
straints like time, memory, and computational complexity may be more
important than small differences in error rate in real-world applications.

Kohonen's SaM (l990, 1995) is one of the most popular neural net
work methods, having been used in a variety of applications including
exploratory data analysis and as a preprocessing stage before a super-
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vised learner. One interesting and successful application is the traveling
salesman problem (Angeniol, Vaubois, and Le Texier 1988).

12.11 Exercises

1. Show an RBF network that implements XOR.

2. Derive the update equations for the REF network for classification (equations
12.20 and 12.21).

3. Show how the system given in equation 12.22 can be trained.

4. Compare the number of parameters of a mixture of experts architecture with
an REF network.

5. Formalize a mixture of experts architecture where the experts and the gating
network are multilayer perceptrons. Derive the update equations for regres
sion and classification.

6. Derive the update equations for the cooperative mixture of experts for clas
sification.

7. Derive the update equations for the competitive mixture of experts for clas
sification.

8. Formalize the hierarchical mixture of experts architecture with two levels.
Derive the update equations using gradient descent for regression and clas
sification.
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13 Hidden Markov Models

We relax the assumption that instances in a sample are independent
and introduce Markov models to model input sequences as generated
by a parametric random process. We discuss how this modeling is
done as well as an algorithm for learning the parameters of such a
model from example sequences.

13.1 Introduction

UNTIL NOW, we assumed that the instances that constitute a sample are
iid. This has the advantage that the likelihood of the sample is simply the
product of the likelihoods of the individual instances. This assumption,
however, is not valid in applications where successive instances are de
pendent. For example, in a word successive letters are dependent; in
English lh' is very likely to follow It' but not 'x'. Such processes where
there is a sequence of observations-for example, letters in a word, base
pairs in a DNA sequence-cannot be modeled as simple probability dis
tributions. A similar example is speech recognition where speech utter
ances are composed of speech primitives called phonemes; only certain
sequences of phonemes are allowed, which are the words of the language.
At a higher level, words can be written or spoken in certain sequences to
form a sentence as defined by the syntactic and semantic rules of the
language.

A sequence can be characterized as being generated by a parametric
random process. In this chapter, we discuss how this modeling is done
and also how the parameters of such a model can be learned from a
training sample of example sequences.
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13.2 Discrete Markov Processes

Consider a system that at any time is in one of a set of N distinct states:
Sl,S2 •... ,SN. The state at time t is denoted as qr,t = 1,2, ... , so for
example qt = Si means that at time t. the system is in state Si. Though we
write "time" as if this should be a temporal sequence, the methodology is
valid for any sequencing. be it in time, space, position on the DNA string,
and so forth.

At regularly spaced discrete times. the system moves to a state with a
given probability, depending on the values of the previous states:

MARKOV MODEL

(13.1)

TRANSITION

PROBABILITIES

(13.2)

(13.3)

STOCHASTIC

AUTOMATON

INITIAL PROBABILITIES

(13.4)

For the special case of a first-order Markov model, the state at time t + 1
depends only on state at time t, regardless of the states in the previous
times:

P(qt+l = Sjlqr = Si.qt-l = Sk,···) = P(qr+l = Sjlqt = Si)

This corresponds to saying that. given the present state, the future
is independent of the past. This is just a mathematical version of the
saying, Today is the first day of the rest of your life.

We further simplify the model-that is, regularize-by assuming that
these transition probabilities are independent of time:

aij == P(qt+l = Sjlqt = Sj}

satisfying

N

aij ~ 0 and L aij = 1
j=l

So, going from Si to Sj has the same probability no matter when it
happens, or where it happens in the observation sequence. A = [aij] is a
N x N matrix whose rows sum to 1.

This can be seen as a stochastic automaton (see figure 13.1). From
each state Si, the system moves to state Sj with probability aij, and this
probability is the same for any t. The only special case is the first state.
We define initial probabilities, ITi, which is the probability that the first
state in the sequence is Si:

IT; == P(ql = Si)
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Figure 13.1 Example of a Markov mode.! \'11th three states is a stochastic au
tomaton. ITl is the probability that the system starts in state 51, and aiJ is the
probability that the system moves from state 5/ to state 5j .

satisfying

N

(l3.S) I Tr/ = 1
i=1

n = [ITj) is a vector of N elements that sum to L
OBSERVABLE MARKov In an observable Markov model. the states are observable. At any time

MODEl t, we ]mow qe, and as the system moves from one state to another, we
get an observation sequence that is a sequence of states. The output of
the process is the set of states at each instant of time where each state
corresponds to a physical observable event.

We have an observation sequence 0 that is the state sequence 0 = Q =

{QlQ2' .. qT}, whose probability is given as

T

03.6) P(O =QIA,m = P(ql) nP(qt!qe-d = Trlljalllll2 ... a llT_1liT

1=2

Tr41 is the probability that the first state is Q1. Q ql42 is the probability of
going from q, to qz, and so on. We multiply these probabilities to get the
probability of the whole sequence.

Let us now see an example (Rabiner and Juang 1986) to help us demon
strate: Assume we have N urns where each urn contains balls of only one
color. So there is an urn of red balls, another of blue balls, and so forth.
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Somebody draws balls from urns one by one and shows us their color.
Let qt denote the color of the ball drawn at time t. Let us say we have
three states:

5 I : red,5z = blue, 53 : green

with initial probabilities:

n = [0.5,0.2,0.3]T

a;j is the probability of drawing from urn j (a ball of color j) after
drawing a ball of color i from urn i. The transition matrix is, for example,

[

0.4 0.3 0.3]
A = 0.2 0.6 0.2

0.1 0.1 0.8

Given n and A, it is easy to generate K random sequences each of
length T. Let us see how we can calculate the probability of a sequence:
Assume that the first four balls are "red, red, green, green." This corre
sponds to the observation sequence 0 = (51,51,53,53}. Its probability
is

PWIA, ll)

(13.7)

(13.8)

(13.9)

ITI . all . al3 . a33

0.5 . 0.4 . 0.3 . 0.8 = 0.048

Now, let us see how we can learn the parameters, n, A: Given K se
quences of length T, where q~ is the state at time t of sequence k, the
initial probability estimate is the number of sequences starting with 5;
divided by the number of sequences:

A #(sequences starting with 5;} L.k l(qt = 5;)
IT; = = =---'-~-'-'--

#(number of sequences} K

where 1(b) is 1 if b is true and 0 otherwise.
As for the transition probabilities, the estimate for aij is the number of

transitions from 5; to 5j divided by the total number of transitions from
5; over all sequences:

#{transitions from 5; to 5j} L.k L.;:/ 1 (q~ = 5; and q~+1 = 5j)aij = -----------"--
#{ transitions from 5;} L.k 2:.;=-/1 (q~ = 5i)

alz is the number of times a blue ball follows a red ball divided by the
total number of red ball draws over all sequences.



13.3

13.3 Hidden Markov Models

Hidden Markov Models

309

HIDDEN MARKOV

MODEL

(13.10)

OBSERVATION

PROBABILITY

EMISSION

PROBABILITY

In a hidden Markov model (HMM), the states are not observable, but when
we visit a state, an observation is recorded that is a probabilistic function
of the state. We assume a discrete observation in each state from the set
{VI, V2, ..• , VM}:

bj(m) == P(Ot = vrnlqt = 5j)

bj(m) is the observation, or emission probability that we observe V rn , m =

1, ... ,M in state 5j. We again assume a homogeneous model in which the
probabilities do not depend on t. The values thus observed constitute
the observation sequence O. The state sequence Q is not observed, that
is what makes the model "hidden," but it should be inferred from the ob
servation sequence O. Note that there are typically many different state
sequences Q that could have generated the same observation sequence
0, but with different probabilities; just as, given an iid sample from a
normal distribution, there are an infinite number of (p, a) value pairs
possible, we are interested in the one having the highest likelihood of
generating the sample.

Note also that in this case of a hidden Markov model, there are two
sources of randomness: Additional to randomly moving from one state
to another, the observation in a state is also random.

Let us go back to our example: The hidden case corresponds to the
urn-and-ball example where each urn contains balls of different colors.
Let b j (m) denote the probability of drawing a ball of color m from urn
j. We again observe a sequence of ball colors but without knowing the
sequence of urns from which the balls were drawn. So it is as if now the
urns are placed behind a curtain and somebody picks a ball at random
from one of the urns and shows us only the ball, without showing us the
urn from which it is picked. The ball is returned to the urn to keep the
probabilities the same. The number of ball colors may be different from
the number of urns. For example, let us say we have three urns and the
observation sequence is

o = {red, red, green, blue, yellow}

In the previous case, knowing the observation (ball color), we knew the
state (urn) exactly because there were separate urns for separate colors
and each urn contained balls of only one color. The observable model is
a special case of the hidden model where M = Nand b j (m) is 1 if j = m
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2 T-l T

Figure 13.2 An HMM unfolded in time as a lattice (or trellis) showing all the
possible trajectories. One path, shown in thicker lines, is the actual (unknown)
state trajectory that generated the observation sequence.

and 0 otherwise. But in the case of a hidden model, a ball could have been
picked from any urn. In this case, for the same observation sequence 0,
there may be many possible state sequences Q that could have generated°(see figure 13.2).

To summarize and formalize, an HMM has the following elements:

I. N: Number of states in the model

2. M: Number of distinct observation symbols in the alphabet

3. State transition probabilities:

4. Observation probabilities:
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5. Initial state probabilities:
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Nand M are implicitly defined in the other parameters so A = (At Btll)
is taken as the parameter set of an HMM. Given A, the model can be
used to generate an arbitrary number of observation sequences of arbi
trary length, but as usual, we are interested in the other direction, that of
estimating the parameters of the model given a training set of sequences.

13.4 Three Basic Problems of HMMs

Given a number of sequences of observations, we are interested in three
problems:

1. Given a model A, we would like to evaluate the probability of any given
observation sequence, 0 = {0102' .. OT}, namely, P(oIA).

2. Given a model Aand an observation sequence 0, we would like to find
out the state sequence Q = {qlq2 ... qT}, which has the highest prob
ability of generating 0, namely, we want to find Q* that maximizes
P(QIO, A).

3. Given a training set of observation sequences, X = {Okh, we would
like to learn the model that maximizes the probability of generating
X, namely, we want to find A* that maximizes P(XIA).

Let us see solutions to these one by one, with each solution used to
solve the next problem, until we get to calculating A, or learning a model
from data.

13.5 Evaluation Problem

Given an observation sequence 0 = {0102 ... OT} and a state sequence
Q = {ql q2 ... qT}, the probability of observing 0 given the state se
quence Q is simply

T

(13.11) P(O IQ, A) = nP(Ot Iqt, A) = bql (OI> . bq2 (02) ... bqT (OT)
t=1
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which we cannot calculate because we do not know the state sequence.
The probability of the state sequence Q is

T

(13.12) P(QIA) = P(qI> nP(qtlqt-d = 1Tqjaqlqz ... aqT_lqT
t=2

Then the joint probability is

P(O, QI'\)

(13.13)

T T

P(qI> nP(qt Iqt-l) nP(Ot Iqt)
t=2 t=1

1Tqj bqj (OI>aqjqZbq2 (02) ... aqT_jqTbqT (OT)

We can compute P(oI'\) by marginalizing over the joint, namely, by
summing up over all possible Q:

P(oI'\) = L P(O, QI'\)
all possible Q

However, this is not practical since there are NT possible Q, assuming
that all the probabilities are nonzero. Fortunately, there is an efficient

FORWARD-BACKWARD procedure to calculate P(O 1'\), which is called the forward-backward pro-
PROCEDURE cedure. It is based on the idea of dividing the observation sequence into

two parts: the first one starting from time 1 until time t, and the second
one from time t + 1 until T.

FORWARD VARIABLE We define the forward variable at (0 as the probability of observing the
partial sequence {01 ... Od until time t and being in Si at time t, given
the model ,\:

The nice thing about this is that it can be calculated recursively by
accumulating results on the way:

• Initialization:

(13.15)

adO - P(OI, ql = S;lA)

P(Ollql = Si, '\)P(ql = S;I'\)

TTibi(Ol )

• Recursion (see figure 13.3(a»:
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(a) Forward
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1+1

(b) Backward

(13.16)

Figure 13.3 Forward-backward procedure: (a) computation of <Xdj) and (b)

computation of {3, (0.

:= P(OI'" O/+t1q/+J = Sj.A)P(q/+l = 5j1A)

P(OI'" Ot/q/+I:= 5J,A)P(O/+1!q/+l = 5j,A)P(qt+1 = SjIA)

P(OI ... 0 1, qr+1 = 5jIA)P(O/+llq/+l = 5j, A)

P(O'+I!q,+1 = 5j, A) ~ P(OI .. ·0" q, =5" q/+l = SjIA)

= P(O/+llq,+1 = 5j, A)

I,P(OI'" OI,qt+J = 5jlq/ = Si,A)P(q, ::. 5i1A)

P(O/+l!q/+l ::. 5j,A)

L P(Ot ... 0tlq/ = 5" A)P(qt+l = 5jlqr = 5/, A)P(q{ = SilA)

= P(Or+llqt+1 = 5j. A)

2:: P(OI .. ·0" q/ = 5;1A)P(q'+1 = Sj!q, = 51, A)
I

[,~ Ci,(i)Qfj] bj(O«,)

ar(i) explains the first t observations and ends in state 5/. We multiply
this by the probability aU to move to state 5j, and because there are



314 13 Hidden Markov Models

N possible previous states, we need to sum up over all such possible
previous S;. bj (Ot+1) then is the probability we generate the (t + l)st
observation while in state Sj at time t + 1.

When we calculate the forward variables, it is easy to calculate the prob
ability of the observation sequence:

N

P(OI,\) = I P(O, qT = S;I'\)
;=1

N

(13.17) I ()(T(i)
;=1

()(T (i) is the probability of generating the full observation sequence and
ending up in state S;. We need to sum up over all such possible final
states.

Computing ()(t(i) is 19(N2n, and this solves our first evaluation prob
lem in a reasonable amount of time. We do not need it now but let us

BACKWARD VARIABLE similarly define the backward variable, 13t (i), which is the probability of
being in S; at time t and observing the partial sequence Ot+1 .. ·OT:

(13.18) 13dO = P(Ot+1 ... OTlqt = S;,'\)

This can again be recursively computed as follows, this time going in
the backward direction:

• Initialization (arbitrarily to 1):

13T(i) = 1

• Recursion (see figure 13.3(b)):

13dO - P(Ot+1'" OTlqr = S;,,\)

I P(Ot+1 ... OT, qt+l = Sjlqt = Sj,,\)
j

Ip(Ot+l'" OTlqt+l = Sj,qt = Sj,'\)P(qt+1 = Sjlqt = S;,'\)
j

Ip(Ot+Iiqt+l = Sj,qt = S;,,\)
j

P(Ot+2'" OTlqt+l = Sj,qt = S;,'\)P(qt+l = Sjlqt = S;,'\)

I P(Ot+I1qt+l = Sj,,\)
j



(13.19)

13.6 Finding the State Sequence

P(Ot+2'" OT!qt+l = Sj,A)P(qt+l = Sjlqt = Si,A)
N

2: aijbj(Ot+dl3t+l (j)
j=1

315

When in state Si, we can go to N possible next states Sj, each with
probability aij. While there, we generate the (t + l)st observation and
I3t+1 (j) explains all the observations after time t + 1, continuing from
there.

One word of caution about implementation is necessary here: Both
at and I3t values are calculated by multiplying small probabilities, and
with long sequences we risk getting underflow. To avoid this, at each
time step, we normalize adi) by dividing it with Ct = 'L.j at (j). We also
normalize I3t (i) by dividing it with the same Ct (l3t (i) do not sum to 1).

13.6 Finding the State Sequence

(13.20)

(13.21)

We now move on to the second problem, that of finding the state se
quence Q = {ql q2 ... qT} having the highest probability of generating
the observation sequence 0 = {0102 ... OT}, given the model A.

Let us define Yt (i) as the probability of being in state Si at time t, given
o and A, which can be computed as

Yr<i) - P(qt = S;lO, A)
P(O Iqt = Si, A)P(qt = S;I'\)

P(O IA)
P(Ol'" Otlqt = Si,A)P(Ot+I'" OTlqt = Si,A)P(qt = S;lA)

'L.J=l P(O, qt = Sj 1'\)

P(Ol'" Ot,qt = SiIA)P(Ot+l'" OTlqt = Si,A)

'L.J=I P(Olqt = Sj, A)P(qt = SjIA)

at (i) 13 r (i)

'L.J=l ar(j)l3t(j)

Here we see how nicely at (i) and I3di) split the sequence between
them: The forward variable at (i) explains the starting part of the se
quence until time t and ends in Si, and the backward variable I3di) takes
it from there and explains the ending part until time T.

The numerator adi)l3di) explains the whole sequence given that at
time t, the system is in state Si. We need to normalize by dividing this
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over all possible intermediate states that can be traversed at time t, and
guarantee that Ii Yt(i) = 1.

To find the state sequence, for each time step t, we can choose the state
that has the highest probability:

(13.22) qi = argmaxYt(i),
but this may choose Si and Sj as the most probable states at time t and
t + 1 even when aij = O. To find the single best state sequence (path), we

VITERBI ALGORITHM use the Viterbi algorithm, based on dynamic programming, which takes
such transition probabilities into account.

Given state sequence Q = q1q2 ... qT and observation sequence a =

01 ... aT, we define 8r(i) as the probability of the highest probability
path at time t that accounts for the first t observations and ends in Si:

Then we can recursively calculate 8t + 1 (i) and the optimal path can be
read by backtracking from T, choosing the most probable at each instant.
The algorithm is as follows:

1. Initialization:

8 1 (i) TTibi(Ot)

lfJ1 (i) 0

2. Recursion:

m~8t-di)aij . bj(od
I

argmax 8t - 1(i)aij
I

3. Termination:

p*

q;
max8T (i)

i

argm~ 8T (i),

4. Path (state sequence) backtracking:
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(J...
I

/
t

a ..
I)

Figure 13.4 Computation of arc probabilities, ~(i,j).

Using the lattice structure of figure 13.2, I./Jr (j) keeps track of the state
that maximizes Ot(j) at time t - I, that is, the best previous state. The
Viterbi algorithm has the same complexity with the forward phase, where
instead of the sum, we take the maximum at each step.

13.7 Learning Model Parameters

We now move on to the third problem, learning an HMM from data.
The approach is maximum likelihood, and we would like to calculate
A* that maximizes the likelihood of the sample of training sequences,
X = (Ok}~=!, namely, P(XIA). We start by defining a new variable that
will become handy later 00.

We define ~r (i, j) as the probability of being in Sj at time t and in 5J at
time t + I, given the whole observation 0 and A:

which can be computed as (see figure 13.4)

~I(i,j) - P(qr = S"qt+l = SjIO,A)

PWlqt == 5"qt+l = 5j,A)P(q, = Si,q/+l == 5j1A)
=:

P(OjA)
PWlqr = 5"q,+J = 5j,A)P(qr+! = 5j lqt = 5 t ,A)P(qr = Sil/\)

P(OIA)
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(13.25)

(13.26)

SOFT COUNTS

BAUM-WELCH

ALGORITHM

(13.27)

13 Hidden Markov Models

(P(~ 1M) P(OI ... Ot Iqt = Si, .\)P(Ot+llqt+! = Sj,.\)

P(Ot+2' .. Orlqt+l = Sj, '\)aijP(qt = s;I.\)

(P(~1.\») P(OI ... Ot, qt = s;I.\)P(Ot+!lqt+l = Sj,.\)

P(Ot+2' .. Orlqt+l = Sj,.\)aij

OI.t (i)bj (Ot+ d {3t+! (j)aij

LkL1P(qt = Sk,qt+! = s/,ol.\)
OI.t(i)aijbj (Ot+l){3t+l (j)

OI.t(i) explains the first t observations and ends in state Si at time t. We
move on to state Sj with probability aij, generate the (t+ l)st observation,
and continue from Sj at time t + 1 to generate the rest of the observation
sequence. We normalize by dividing for all such possible pairs that can
be visited at time t and t + 1.

If we want, we can also calculate the probability of being in state Si
at time t by marginalizing over the arc probabilities for all possible next
states:

N

Yt(i) = I ~t(i,j)
j=!

Note that if the Markov model were not hidden but observable, both
Yt (i) and ~r(i, j) would be 0/1. In this case when they are not, we estimate
them with posterior probabilities that give us soft counts. This is just like
the difference between supervised classification and unsupervised clus
tering where we did and did not know the class labels respectively. In
unsupervised clustering using EM (section 7.4), not knowing the class la
bels, we estimated them first (in the E-step) and calculated the parameters
with these estimates (in the M-step).

Similarly here we have the Baum-Welch algorithm, which is an EM pro
cedure. At each iteration, first in the E-step, we compute ~t (i, j) and Yt (i)
values given the current .\ = (A, B, n), and then in the M-step, we recal
culate.\ given ~r(i,j) and yr(i). These two steps are alternated until con
vergence during which, it has been shown that, P(oIM never decreases.

Assume indicator variables zf as

zt = {I if qt = Si
I a otherwise
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fri

(13.28)

(13.29)

(13.30)

(13.31)

(13.32)

and

Z,t)" = {I if qt = 5i and qt+1 = 5j
o otherwise

These are 0/1 in the case of an observable Markov model and are hid
den random variables in the case of an HMM. In this latter case, we esti
mate them in the E-step as

E[zrJ = }'I (i)

E[zfjl = ~di,j)

In the M-step, we calculate the parameters given these estimated val
ues. The expected number of transitions from 5i to 5j is It ~di,j) and
the total number of transitions from 5i is It }'t (i). The ratio of these two
gives us the probability of transition from 5i to 5j at any time:

- Ii=-l ~di,j)
aij = "T-l (.)

L.t=l }'t I

Note that this is the same as equation 13.9, except that the actual counts
are replaced by estimated soft counts.

The probability of observing V rn in 5j is the expected number of times
V rn is observed when the system is in 5j over the total number of times
the system is in 5/

b""( ) - 'Ii=l }'t(j)l(Ot = vrn )
J m - T

'I t =l }'t (j)

When there are multiple observation sequences

X = {Ok}f=l

which we assume to be independent
K

P(XIA) = np(OklA)
k=l

the parameters are now averages over all observations in all sequences:
"K "Tk-1l:k(. ")
L.k=l L.t=l "'t I,)

"K "Tk-1 k (')
L.k=l L.I=l }'t I

"K "h-l k( ')l(Ok )L.k= 1 L.t=l }'t) I = V rn
"K "Tk-1 k( ')
L.k=l L.t=l }'t )

If=l }'}(i)

K
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13.8 Continuous Observations

In our discussion, we assumed discrete observations modeled as a multi
nomial

M

(13.33) P(Otlqt = Sj,A) = n bj(m)rfr,
m=1

where

(13.34)
1 if Ot = Vm

a otherwise

If the inputs are continuous, one possibility is to discretize them and
then use these discrete values as observations. Typically, a vector quan
tizer (section 7.3) is used for this purpose of converting continuous val
ues to the discrete index of the closest reference vector. For example,
in speech recognition, a word utterance is divided into short speech seg
ments corresponding to phonemes or part of phonemes; after prepro
cessing, these are discretized using a vector quantizer and an HMM is
then used to model a word utterance as a sequence of them.

We remember that k-means used for vector quantization is the hard
version of a Gaussian mixture model:

L

03.35) p(Otlqt =Sj,A) = L.P((jj[)p(Otlqt =Sj,(j/,A)
/=1

where

03.36) P(Ot Iqt = Sj, (j/, A) ~ N(1l1> ~[)

and the observations are kept continuous. In this case of Gaussian mix
tures, EM equations can be derived for the component parameters (with
suitable regularization to keep the number of parameters in check) and
the mixture proportions (Rabiner 1989).

Let us see the case of a scalar continuous observation, Ot E ~. The
easiest is to assume a normal distribution:

(13.37) P(Ot Iqt = Sj, A) ~ N(llj, o-J)
which implies that in state Sj, the observation is drawn from a normal
with mean Ilj and variance o-J. The M-step equations in this case are

(13.38) It Yt(j)Ot
It Yt(j)
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In some applications, additional to the observation sequence Or. we have
an input sequence, X,. We can condition the observation 0 , in state Sj

on the input x', and write P(Ollq, = Sj,x,). In the case when the obser
vations are continuous scalars, we replace equation 13.37 with a general
ized model

(13.39) p(Otlq, = Sj,XIJl\) - N(Bj(x'lej),uj)

where, for example, assuming a linear model, we have

(13.40) Bj(x'lwj, WjO) = WjX ' + WjO

If the observations are discrete and multinomial, we have a classifier
taking x' as input and generating a 1-of-M output, or we can generate
posterior class probabilities and keep the observations continuous.

Similarly, the state transition probabilities can also be conditioned on
the input, namely, P(q'+i = Sjlqr = S;,X,), which is implemented by a
classifier choosing the state at time t + 1 as a function of the state at time

MARKOV MiXTURE OF t and the input. This is a Markov mixture of experts (Meila and Jordan
EXPERTS 1996) and is a generalization of the mixture of experts architecture (sec

tion 12.8) where the gating network keeps track of the decision it made
iNPUT-OUTPUT HMM in the previous time step. Such an architecture is also called an input

output HMM (Bengio and Frasconi 1996) and has the advantage that the
model is no longer homogeneous; different observation and transition
probabilities are used at different time steps. There is still a single model
for each state, parameterized by ej, but it generates different transition
or observation probabilities depending on the input seen. It is possible
that the input is not a single value but a window around time t making
the input a vector; this allows handling applications where the input and
observation sequences have different lengths.

Even if there is no other explicit input sequence, an HMM with input
can be used by generating an "input" through some prespecified function
of previous observations

X, = ((O'-T, ... ,OI-l)

thereby providing a window of size T of contextual input.
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13.10 Model Selection in HMM

Just like any model, the complexity of an HMM should be tuned so as to
balance its complexity with the size and properties of the data at hand.
One possibility is to tune the topology of the HMM. In a fully connected
(ergodic) HMM, there is transition from a state to any other state, which
makes A a full N x N matrix. In some applications, only certain transi
tions are allowed, with the disallowed transitions having their aij = O.
When there are fewer possible next states, N' < N, the complexity of
forward-backward passes and the Viterbi procedure is O(NN'T) instead
of O(N2T).

LEFT-TO-RIGHT HMMs For example, in speech recognition, left-to-right HMMs are used, which
have their states ordered in time so that as time increases, the state in
dex increases or stays the same. Such a constraint allows modeling se
quences whose properties change over time as in speech, and when we
get to a state, we know approximately the states preceding it. There is
the property that we never move to a state with a smaller index, namely,
aij = 0, for j < i. Large changes in state indices are not allowed either,
namely, aij = 0, for j > i + T. The example of the left-to-right HMM given
in figure 13.5 with T = 2 has the state transition matrix

[

an

A= 0o
o

a12 al3 0 J
a22 a23 a24

o a33 a34

o 0 a44

(13.41)

Another factor that determines the complexity of an HMM is the num
ber of states N. Because the states are hidden, their number is not known
and should be chosen before training. This is determined using prior in
formation and can be fine-tuned by cross-validation, namely, by checking
the likelihood of validation sequences.

When used for classification, we have a set of HMMs, each one model
ing the sequences belonging to one class. For example, in spoken word
recognition, examples of each word train a separate model, Ai. Given a
new word utterance 0 to classify, all of the separate word models are
evaluated to calculate P(O!Ai). We then use Bayes' rule to get the poste
rior probabilities

P(A;lO) = P(OIAi)P(Ai)
IjP(OIAj)P(Aj)

where P(Ai) is the prior probability of word i. The utterance is assigned
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to the word having the highest posterior. This is the likelihood-based
approach; there is also work on discriminative HMM trained directly to
maximize the posterior probabilities. When there are several pronuncia
tions of the same word, these are defined as parallel paths in the HMM
for the word.

In the case of a continuous input like speech, the difficult task is that of
Pi-IONES segmenting the signal into small discrete observations. Typically, phones

are used that are taken as the primitive parts, and combining them,
longer sequences (e.g., words) are formed. Each phone is recognized in
parallel (by the vector quantizer), then the HMM is used to combine them
serially. If the speech primitives are simple, then the HMM becomes com
plex and vice versa. In connected speech recognition where the words are
not uttered one by one with clear pauses between them, there is a hierar
chy of HMMs at several levels; one combines phones to recognize words,
another combines words to recognize sentences by building a language
model, and so forth.

In recent years, hybrtd neural network/HMM models became popular
for speech recognition (Morgan and Bourlard 1995). In such a model, a
multilayer perceptron (chapter 11) is used to capture temporally local but
possibly complex and nonlinear primitives, for example, phones, while
the HMM is used to learn the temporal structure. The neural network acts
as a preprocessor and translates the raw observations in a time window
to a form that is easier to model than the output of a vector quantizer.

13.11 Notes

The HMM is a mature technology, and there are HMM-based commer
cial speech recognition systems in acrual use (Rabiner and luang 1993;
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Jelinek 1997). In section 11.12, we discussed how to train multilayer
perceptrons for recognizing sequences. HMMs have the advantage over
time delay neural networks in that no time window needs to be defined
a priori, and they train better than recurrent neural networks. HMMs are
applied to diverse sequence recognition tasks. Applications of HMMs to
bioinformatics is given in Baldi and Brunak 1998, and to natural language
processing in Manning and Schiitze 1999. It is also applied to online
handwritten character recognition, which differs from optical recognition
in that the writer writes on a touch-sensitive pad and the input is a se
quence of (x, y) coordinates of the pen tip as it moves over the pad and is
not a static image. Bengio et al. (1995) explain a hybrid system for online
recognition where an MLP recognizes individual characters, and an HMM
combines them to recognize words.

In any such recognition system, one critical point is to decide how
much to do things in parallel and what to leave to serial processing. In
speech recognition, phonemes may be recognized by a parallel system
that corresponds to assuming that all the phoneme sound is uttered in
one time step. The word is then recognized serially by combining the
phonemes. In an alternative system, phonemes themselves may be de
signed as a sequence of simpler speech sounds, if the same phoneme
has many versions, for example, depending on the previous and follow
ing phonemes. Doing things in parallel is good but only to a degree; one
should find the ideal balance of parallel and serial processing. To be able
to call anyone at the touch of a button, we would need millions of buttons
on our telephone; instead, we have ten buttons and we press them in a
sequence to dial the number.

Various applications of the HMM and several extensions, for example,
discriminative HMMs, are discussed in Bengio 1999. An HMM can be
written as a Bayesian network (section 3.7), and inference and learning
operations on HMMs are analogous to their counterparts in Bayesian net
works (Smyth, Heckerman, and Jordan 1997). There are various recently
proposed extensions to HMMs like factorial HMMs where at each time
step, there are a number of states that collectively generate the obser
vation and tree-structured HMMs where there is a hierarchy of states.
These extensions and the approximation methods for training them are
discussed in the tutorial paper by Ghahramani (2001).
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1. Given the observable Markov model with three states, SI, S2, S3, initial prob
abilities

n = [0.5,0.2,0.3]T

and transition probabilities

[

0.4 0.3 0.3]
A = 0.2 0.6 0.2

0.1 0.1 0.8

generate 100 sequences of 1,000 states.

2. Using the data generated by the previous exercise, estimate n, A and compare
with the parameters used to generate the data.

3. Formalize a second-order Markov model. What are the parameters? How can
we calculate the probability of a given state sequence? How can the parame
ters be learned for the case of a observable model?

4. Show that any second- (or higher-order) Markov model can be converted to a
first-order Markov model.

5. Some researchers define a Markov model as generating an observation while
traversing an are, instead of on arrival to a state. Is this model any more
powerful than what we have discussed?

6. Generate training and validation sequences from an HMM of your choosing.
Then train different HMMs by varying the number of hidden states on the
same training set and calculate the validation likelihoods. Observe how the
validation likelihood changes as the number of states increases.
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14 Assessing and Comparing
Classification Algorithms

Machine learning algorithms induce classifiers that depend on the
training set, and there is a need for statistical testing to (i) assess the
expected error rate of a classification algorithm, and (ii) compare the
expected error rates of two classification algorithms to be able to say
which one is better. We review hypothesis testing and discuss tests
for error rate assessment and comparison.

14.1 Introduction

IN PREVIOUS chapters, we discussed several classification algorithms
and learned that, given a certain application, more than one is applicable.
Now, we are concerned with two questions:

1. How can we assess the expected error rate of a classification algorithm
on a problem? That is, having used a classification algorithm to train
a classifier, can we say with enough confidence that later on when it is
used in real life, its expected error rate will be less than, for example,
2 percent?

2. Given two classification algorithms, how can we say one has less er
ror than the other one, for a given application? The classification al
gorithms compared can be different, for example, parametric versus
nonparametric, or they can use different hyperparameter settings. For
example, given a multilayer perceptron (chapter 11) with four hidden
units and another one with eight hidden units, we would like to be able
say which one has less expected error. Or with the k-nearest neighbor
classifier (chapter 8), we would like to find the best value of k.
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We cannot look at the training set errors and decide based on those.
The error rate on the training set, by definition, is always smaller than
the error rate on a test set containing instances unseen during training.
Similarly, training errors cannot be used to compare two algorithms. This
is because over the training set, the more complex model having more
parameters will almost always give fewer errors than the simple one.

So as we have repeatedly discussed, we need a validation set different
from the training set. Even over a validation set though, just one run
may not be enough. There are two reasons for this: First, the training
and validation sets may be small and may contain exceptional instances,
like noise and outliers, which may mislead us. The second reason is
that the learning method may depend on other random factors affecting
generalization. For example, with a multilayer perceptron trained using
backpropagation, because gradient descent converges to the nearest lo
cal minimum, the initial weights affect the final weights, and given the
exact same architecture and training set, starting from different initial
weights, there may be multiple possible final classifiers having different
error rates on the same validation set. We thus would like to have several
runs to average over such sources of randomness. If we train and vali
date only once, we can not test for the effect of such factors; this is only
admissible if the learning method is so costly that it can be trained and
validated only once.

We use a classification algorithm on a dataset and generate a classifier.
If we do the training once, we have one classifier and one validation error.
To average over randomness (in training data, initial weights, etc.), we use
the same algorithm and generate multiple classifiers. We test these classi
fiers on multiple validation sets and record a sample of validation errors.
(Of course, all the training and validation sets should be drawn from the
same application.) We base our evaluation of the classification algorithm
on the distribution of these validation errors. We can use this distribu-

EXPECTED ERROR RATE tion for assessing the expected error rate of the classification algorithm
for that problem, or compare it with the error rate distribution of some
other classification algorithm.

Before proceeding to how this is done, it is important to stress a num
ber of points:

1. We should keep in mind that whatever conclusion we draw from our
analysis is conditioned on the dataset we are given. We are not com
paring classification algorithms in a domain independent way but on
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No FREE LUNCH

THEOREM

some particular application. We are not saying anything about the ex
pected error rate of a learning algorithm, or comparing one learning
algorithm with another algorithm, in general. Any result we have is
only true for the particular application, and only insofar as that ap
plication is represented in the sample we have. And anyway, there is
no such thing as the "best" learning algorithm. For any learning algo
rithm, there is a dataset where it is very accurate and another dataset
where it is very poor. When we say a classification algorithm is good,
we only quantify how well its inductive bias matches the properties of
the data. This is called the No Free Lunch Theorem (Wolpert 1995).

2. The division of a given dataset into a number of training and validation
set pairs is only for testing purposes. Once all the tests are complete
and we have made our decision as to the final method or hyperparam
eters, to train the final classifier, we can use all the labeled data that
we have previously used for training or validation.

3. Because we also use the validation set(s) for testing purposes, for ex
ample, for choosing the better of two classification algorithms, or to
decide where to stop learning, it effectively becomes part of the data
we use. When after all such tests, we decide on a particular classifica
tion algorithm and want to report its expected error rate, we should
use a separate test set for this purpose, unused during training this fi·
nal system. This data should have never been used before for training
or validation and should be large for the error estimate to be mean
ingful. So, given a dataset, we should first leave some part of it aside
as the test set and use the rest for training and validation. Typically,
we can leave one-third of the sample as the test set, then use the two
thirds for cross-validation to generate multiple training/validation set
pairs, as we see in the next section. So, the training set is used to opti
mize the parameters, given a particular learning algorithm and model
structure; the validation set is used to optimize the hyperparameters
of the learning algorithm or the model structure; and the test set is
used at the end, once both these have been optimized. For example,
with an MLP, the training set is used to optimize the weights, the vali
dation set is used to decide on the number of hidden units, how long
to train, the learning rate, and so forth. Once the best MLP configu
ration is chosen, its final error rate is calculated on the test set. With
k-NN, the training set is stored as the lookup table; we optimize the



330 14 Assessing and Comparing Classification Algorithms

distance measure and k on the validation set and test finally on the
test set.

4. In this chapter, we compare classification algorithms by their error
rates, but it should be kept in mind that in real life, error is only one
of the criteria that affect our decision. Some other criteria are (Turney
2000):

• risks when errors are generalized using loss functions, instead of
0/1 loss (section 3.3),

• training time and space complexity,

• testing time and space complexity,

• interpretability, namely, whether the method allows knowledge ex-
traction which can be checked and validated by experts, and

• easy programmability.

The relative importances of these factors change depending on the ap
plication. For example, if the training is to be done once in the factory,
than training time and space complexity are not important; if adapt
ability during use is required, then they do become important. Most
of the learning algorithms use 0/1 loss and take error as the single

COST-SENSITIVE criterion to be minimized; recently cost-sensitive learning variants of
LEARNING these algorithms have also been proposed to take other cost criteria

into account.

14.2 Cross-Validation and Resampling Methods

Our first need is to get a number of training/validation set pairs from a
dataset X. To get them, if the sample X is large enough, we can randomly
divide it into K parts, then divide each part randomly into two and use
one half for training and the other half for validation. K is typically 10
or 30. Unfortunately, datasets are never large enough to do this. So we
should do our best with small datasets. This is done by repeated use of

CROSS-VALIDATION the same data split differently; this is called cross-validation. The catch is
that this makes the error percentages dependent as these different sets
share data.

So, given a dataset X, we would like to generate K training/validation
set pairs, {'Ti, Ydf=l' from this dataset. We would like to keep the train
ing and validation sets as large as possible so that the error estimates
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are robust, and at the same time, we would like to keep the overlap be
tween different sets as small as possible. We also need to make sure that
classes are represented in the right proportions when subsets of data are

STRATIFICATION held out, not to disturb the class prior probabilities; this is called strat
ification: If a class has 20 percent examples in the whole dataset, in all
samples drawn from the dataset, it should also have approximately 20
percent examples.

14.2.1 K-Fold Cross-Validation

K-FOLD In K-fold cross-validation, the dataset X is divided randomly into K equal-
CROSS-VALIDATION sized parts, Xi, i = 1, ... ,K. To generate each pair, we keep one of the K

parts out as the validation set, and combine the remaining K - 1 parts to
form the training set. Doing this K times, each time leaving out another
one of the K parts out, we get K pairs:

'11 = X2 U X3 U U XK
'12 = Xl U X3 U U XK

There are two problems with this: First, to keep the training set large,
we allow validation sets that are small. Second, the training sets overlap
considerably, namely, any two training sets share K - 2 parts.

K is typically 10 or 30. As K increases, the percentage of training in
stances increases and we get more robust estimators, but the validation
set becomes smaller. Furthermore, there is the cost of training the clas
sifier K times, which increases as K is increased. As N increases, K can
be smaller; if N is small, K should be large to allow large enough training

LEAVE-ONE-OUT sets. One extreme case of K-fold cross-validation is leave-one-out where
given a dataset of N instances, only one instance is left out as the valida
tion set (instance) and training uses the N - 1 instances. We then get N
separate pairs by leaving out a different instance at each iteration. This
is typically used in applications such as medical diagnosis, where labeled
data is hard to find. Leave-one-out does not permit stratification.

14.2.2 5x2 Cross-Validation

5 x 2 Dietterich (1998) proposed the 5 x 2 cross-validation, which uses training
CROSS-VALIDATION
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and validation sets of equal size. We divide the dataset X randomly into
two parts: XiI) and xi2), which gives our first pair of training and vali
dation sets: 'Ii = X?) and 171 = xi2

). Then we swap the role of the two
halves and get the second pair: T2 = xi2) and 172 = xi ll

. This is the first
fold; xi) denotes half j of fold i.

To get the second fold, we shuffle X randomly and divide this new fold
into two, X~l) and X?). This can be implemented by drawing these from
X randomly without replacement, namely, xi ll U Xi2l = X~1) U X~2) = X.
We then swap these two halves to get another pair. We do this for three
more folds and because from each fold, we get two pairs, doing five folds,
we get ten training and validation sets:

ff _ X(l)
.l} - 1
ff _ X(2)
12 - 1
ff _ X(ll
13 - 2
ff _ X(2)
14 - 2

"\, - X(2)
VI - 1

"\, - X(l)
v2 - 1

"\, - X(2)
v3 - 2

"\, - X(l)
v4 - 2

ff _ X(l) "\, - X(2)
19 - 5 v9 - 5

TlO = X~2) \110 = X~I)

Of course, we can do this for more than five folds and get more train
ing/validation sets but Dietterich (1998) points out that after five folds,
the sets share many instances and overlap so much that the statistics
calculated from these sets, namely, validation error rates, become too de
pendent and do not add new information. Even with five folds, the sets
overlap and the statistics are dependent, but we can get away with this
until five folds. On the other hand, if we do have fewer than five folds, we
get fewer data (fewer than ten) and will not have a large enough sample
to fit a distribution to and test our hypothesis on.

14.2.3 Bootstrapping

To generate multiple samples from a single sample, an alternative to
BOOTSTRAP cross-validation is the bootstrap that generates new samples by draw

ing instances from the original sample with replacement. The bootstrap
samples may overlap more than cross-validation samples and hence their
estimates are more dependent; but is considered the best way for very
small datasets.
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Table 14.1 Confusion matrix
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14.3

CONFUSION MATRIX

(14.1)

CLASS CONFUSION

MATRIX

Predicted class
True Class Yes No
Yes TP: True Positive FN: False Negative
No FP: False Positive TN: True Negative

In the bootstrap, we sample N instances from a dataset of size N with
replacement. If we validate once, the original dataset is used as the val
idation set; otherwise we can do this many times to generate multiple
training/validation sets. The probability that we pick an instance is 1/N;
the probability that we do not pick it is 1 - 1/N. The probability that we
do not pick it after N draws is

( 1 _ ~) N ::::: e- I = 0.368

This means that the training data contains approximately 63.2 percent
of the instances; that is, the system will not have been trained on 36.8 per
cent of the data, and the error estimate will be pessimistic. The solution
is to repeat the process many times and take an average.

Measuring Error

When 0/1 loss is used, all errors are equally bad, and our error calcula
tions are based on the confusion matrix (table 14.1). We can then define
error rate as

IFNI + IFPI
error rate = N

where N = ITPI + IFPI + ITNI + IFNI is the total number of instances in
the validation set. In the general case of an arbitrary loss function, this
should be replaced by risk on the validation set (section 3.3).

To analyze errors in the case of K > 2 classes, a class confusion ma
trix is useful. It is a K x K matrix such that its entry (i, j) contains the
number of instances that belong to Ci but are assigned to Cj. Ideally,
all off-diagonals should be 0, for no misclassification. The class confu
sion matrix allows us to pinpoint what types of misclassification occur,
namely, if there are two classes that are frequently confused.
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~ __ .

;:
:E

False alarm rate: lFPI/(IFPI+ITNI)

Figure 14.1 Typical roc curve. Each classifier has a parameter, for example, a
threshold, which allows us to move over this curve, and we decide on a point,
based on the relative importance of hits versus false alarms, namely, true posi
tives and false positives.

RECEIVER OPERATING To fine-tune a classifier, another approach is to draw the receiver oper-
CHARACTERISTICS ating characteristics (ROC) curve, which shows hit rate versus false alarm

rate, namely, ITPI/(ITPI + IFNI) vs IFPI/(IFPI + ITNI), and has a form
similar to figure 14.1. With each classification algorithm, there is a pa
rameter, for example, a threshold of decision, which we can play with to
change the number of true positives versus false positives. Increasing
the number of true positives also increases the number of false alarms;
decreasing the number of false alarms also decreases the number of hits.
Depending on how good/costly these are for the particular application
we have, we decide on a point on this curve.

14.4 Interval Estimation

INTERVAL ESTIMATION Let us now do a quick review of interval estimation that we will use in hy
pothesis testing. A point estimator, for example, the maximum likelihood
estimator, specifies a value for a parameter e. In interval estimation, we
specify an interval within which e lies with a certain degree of confidence.
To obtain such an interval estimator, we make use of the probability dis
tribution of the point estimator.
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Unit Normal Z=N(O.l)
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Figure 14.2 95 percent of the unit normal distribution lies between -1.96 and
1.96.

UNIT NORMAL

DISTRIBUTION

(14.2)

TWO-SIDED

CONFIDENCE

INTERVAL

For example, let us say we are trying to estimate the mean Ji of a normal
density from a sample X = {x t }~= l' m = It x t / N is the sample average
and is the point estimator to the mean. m is the sum of normals and
therefore is also normal, m ~ :N (Ji, a- 2 / N). We define the statistic with a
unit normal distribution:

IN(m- Ji ) ~Z
a-

We know that 95 percent of Z lies in (-1.96,1.96), namely, P{ -1.96 <
Z < 1.96} = 0.95, and we can write (see figure 14.2)

P{-1.96<JN(m;Ji) <1.96} =0.95

or equivalently

P {m - 1.96~ < Ji < m + 1.96~} = 0.95

That is "with 95 percent confidence," Ji wiIllie within 1.96a- / -IN units
of the sample average. This is a two-sided confidence interval. With 99



< ZlX/2} = 1 - 01

(14.4)

ONE-SIDED

CONFIDENCE

INTERVAL
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percent confidence, JJ will lie in (m - 2.58cr / jN, m + 2.58a / jN), that
is if we want more confidence, the interval gets larger. The interval gets
smaller as N, the sample size, increases.

This can be generalized for any required confidence as follows: Let us
denote ZlX such that

p {Z > ZlX} = 01, 0 < 01 < 1

Because Z is symmetric around the mean, Zl-lX/Z = -ZlX/Z, and P{X <
-ZlX/Z} = P{X > ZlX/Z} = 01/2. Hence for any specified level of confidence
1 - 01, we have

P {-ZlX/Z < Z < ZlX/Z} = 1- 01

and

{
(m - JJ)

P -ZlX/2 < -IN a

or

(14.3) P {m - ZlX/2~ < JJ < m + ZlX/Z~} = 1 - 01

Hence a 100(1 - 01) percent two-sided confidence interval for JJ can be
computed for any 01.

Similarly, knowing that P{Z < 1.64} = 0.95, we have (see figure 14.3)

p{-IN(m~JJ) < 1.64} =0.95

or

P {m - 1.64~ < JJ} = 0.95

and (m - 1.64a / jN, 00) is a 95 percent one-sided upper confidence in
terval for JJ, which defines a lower bound. Generalizing, a 100(1 - 01)

percent one-sided confidence interval for JJ can be computed from

P {m - ZlX~ < JJ} = 1 - 01

Similarly, the one-sided lower confidence interval that defines an upper
bound can also be calculated.

In the previous intervals, we used a; that is, we assumed that the vari
ance is known. If it is not, one can plug the sample variance

52 = L(x t - m) Z/ (N - 1)
t



14.4 1nterval Estimation

Unit Normal Z=N(O.I)

337

0.4

0.35

0.3

0.25

x 0.2Ii

0.15

0.1

0.05

0
-5 -4 -3 -2 -1 4

(14.5)

t DISTRIBUTION

Figure 14.3 95 percent of the unit normal distribution lies before 1.64.

instead of 0'2. We know that when Xl ~ N(Ji, 0'2), (N - 1)S2/O'2 is chi
square with N - 1 degrees of freedom. We also know that m and S2 are
independent. Then, .IN(m - Ji)/S is t distributed with N - 1 degrees of
freedom (section A.3.7), denoted as

.IN(m - Ji)
S ~ tN-]

Hence for any (X E (0,1/2), we can define an interval, using the values
specified by the t distribution, instead of the unit normal Z

P {t1- a /2,N-l < .IN (m ~ Ji) < t a /2,N-l } = 1 - (X

or using that tl- a /2,N-l = -ta /2,N-l

P {m - t a /2,N-l iN < Ji < m+ ta /2,N-l iN} = 1 - (X

Similarly, one-sided confidence intervals can be defined. The t distri
bution has larger spread (longer tails) than the unit normal distribution,
and generally the interval given by the t is larger; this should be expected
since additional uncertainty exists due to the unknown variance.
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14.5 Hypothesis Testing

(14.6)

04.7)

TYPE I ERROR

TWO-SIDED TEST

LEVEL OF

SIGNIFICANCE

TYPE II ERROR

Instead of explicitly estimating some parameters, in certain applications
we may want to use the sample to test some particular hypothesis con
cerning the parameters. For example, instead of estimating the mean, we
may want to test whether the mean is less than 0.02. If the random sam
ple is consistent with the hypothesis under consideration, we say that the
hypothesis is "accepted"; othen-vise, we say that it is "rejected." But when
we make such a decision, we are not really saying that it is true but rather
that the sample data appears to be consistent with it to a given degree of
confidence.

HYPOTHESIS TESTING In hypothesis testing, the approach is as follows: We define a statistic
that obeys a certain distribution if the hypothesis is correct. If the statis
tic calculated from the sample has a high enough probability of being
drawn from this distribution, then we accept the hypothesis; otherwise,
we reject it.

Let us say we have a sample from a normal distribution with unknown
mean f.1 and known variance u 2, and we want to test a specific hypothesis
about f.1, for example, whether it is equal to a specified constant f.10. It is

NULL HYPOTHESIS denoted as Ho and is called the null hypothesis

Ho: f.1 = f.1o

against the alternative hypothesis

HI : f.1 i= f.1o

m is the point estimate of f.1, and it is reasonable to accept Ho if m is not
too far from f.1o. This is where the interval estimate is used: We accept the
hypothesis with level of significance a if f.1o lies in the 100(1 - a) percent
confidence interval, namely, Ho is accepted if

.jN(m - f.1o)
---'----'----'---"-'-- E (-Zcx/2, Zcx/2)

u
This is a two-sided test. If we reject when the hypothesis is correct,

this is a type I error and thus a, set before the test, defines how much
type I error we can tolerate, typical values being a = 0.1, 0.05, 0.01 (see
table 14.2). A type II error is if we accept the null hypothesis when the
true mean f.1 is unequal to f.1o. The probability that Ho is accepted when
the true mean is f.1 is a function of f.1 and is given as

{
m - f.1o }

{3(f.1) = P/l -Zcx/2:::; ul.jN :::; Zcx/2
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Table 14.2 Type I error, type II error, and power of a test.

Decision
Truth Accept Reject
True Correct Type I error
False Type II error Correct (Power)
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POWER FUNCTION

ONE-SIDED TEST

(14.8)

(14.9)

(14.10)

t TEST

14.6

1 - {3 (p) is called the power function of the test and is equal to the prob
ability of rejection when P is the true value.

One can also have a one-sided test of the form

Ho P .:<=; Po

HI P > Po

as opposed to the two-sided test when the alternative hypothesis is P =1=

Po. The a level of significance one-sided test defines the 100(1 - a)
confidence interval bounded on one side in which m should lie for the
hypothesis to be accepted. We accept if

-!N
-(m-po) E (-co,za)

(J

If the variance is unknown, just as we did in the interval estimates, we
use the sample variance instead of the population variance and the fact
that
-!N(m - Po)

S ~ tN-l

For example, for Ho : P = Po versus HI : P =1= Po, we accept at signifi
cance level a if

-!N(m - Po)
S E(-ta /2,N-l,ta /2,N-d

This is known as the two-sided t test. A one-sided t test can be defined
similarly.

Assessing a Classification Algorithm's Performance

Now that we have reviewed hypothesis testing, we are ready to see how
it is used in testing error rates. We start with error rate assessment and
in the next section, we discuss error rate comparison.
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14.6.1 Binomial Test

(14.11)

(14.12)

BINOMIAL TEST

Let us start with the case where we have a single training set T and a
single validation set 'Y. We train our classifier on T and test it on 'Y. We
denote by p the probability that the classifier makes a misclassification
error. We do not know p; it is what we would like to estimate or test a
hypothesis about. On the instance with index t from the validation set 'Y,
let us say xt denotes the correctness of the classifier's decision. Then xt

is 0/1; xt is Bernoulli distributed where with probability p, it commits an
error and xt takes the value 1 and with probability 1 - P, it is successful
and xt is O. The point estimate is (section 4.2.1)

" Lt xt
P=--

N

where N = I'YI. But now we would like to test whether the error probabil
ity P is less than or equal to some value Po we specify. The question can
be phrased as follows: Given that the classifier makes e errors on a val
idation set of size N, can we say that the classifier has error probability
Po or less?

We have the hypothesis test

Ho : p ~ Po vs. HI : p > Po

Let X denote the number of errors on a validation set of size N:

N

X= :2>t
t=1

Because xt are independent Bernoulli distributed random variables,
their sum X is binomial. If the probability of error is p, the probability
that the classifier commits j errors out of N is

P{X=j} = (~)pJO-p)N-J

Under the null hypothesis, we assume that p is (at most) Po, and the
probability that there are e errors is

P{X ~ e} = ±(~ )PoJO - PO)N-J
J=1 J

If this probability is less than the allowed probability 1- ()(, the binomial
test accepts the hypothesis; otherwise, we reject it.
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14.6.2 Approximate Normal Test

(14.13)

APPROXIMATE

NORMAL TEST

The binomial test is costly to compute. Because X is the sum of inde
pendent random variables from the same distribution, the central limit
theorem states that for large N and small Po, X is approximately normally
distributed with mean Npo and variance Npo(l - Po). Then

X -Npo :-z
-!Npo(l - Po)

where :- denotes "approximately distributed." Then the approximate nor
mal test accepts the null hypothesis if this value for X = e is less than
or equal to ZI-oc. ZO.95 is 1.64. This test may give erroneous results for
Npo> 20.

14.6.3 Paired t Test

5 ~ tK-1

and the paired t test accepts the null hypothesis that the classification
algorithm has Po or less error percentage at significance level ()( if this
value is less than or equal to toc,K-1. Typically K is taken as 10 or 30.
to.05,9 = 1.83 and to.05,29 = 1.70.

The two tests we discussed earlier use a single validation set. If we run
the algorithm K times, on K training/validation set pairs, we get K error
percentages, Pi, i = 1, ... ,K on the K validation sets. Let x~ be 1 if the
classifier trained on Ti makes a misclassification error on instance t of
'Vi; x~ is 0 otherwise. Then

",N t
L.(~1 XiPi = ----'----=----....:..

N
Given that

m = I:1 Pi 52 = If~l (Pi - m)2
K ' K-l

from equation 14.9, we know that we have

Jl((m - Po)
(14.14)

PAIRED t TEST

14.7 Comparing Two Classification Algorithms

Given two learning algorithms and a training set, we want to compare and
test whether the two algorithms construct classifiers that have the same
expected error rate on a new example.
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14.7.1

CONTINGENCY TABLE

(14.15)

McNEMAR'S TEST

14.7.2

14 Assessing and Comparing Classification Algorithms

McNemar's Test

Given a training set and a validation set, we use two algorithms to train
two classifiers on the training set and test them on the validation set
and compute their errors. A contingency table, like the one shown here,
is an array of natural numbers in matrix form representing counts, or
frequencies:

eOO: Number of examples eOl: Number of examples
misclassified by both misclassified by 1 but not 2
elO: Number of examples ell: Number of examples
misclassified by 2 but not 1 correctly classified by both

Under the null hypothesis that the classification algorithms have the
same error rate, we expect eOI = elO and these to be equal to (eOI + elO) /2.
We have the chi-square statistic with one degree of freedom

(l eOI- elOl-l)2 X 2
- IeOI + elO

and McNemar's test accepts the hypothesis that the two classification
algorithms have the same error rate at significance level ()( if this value is
less than or equal to X~.I· X5.o5.1 = 3.84.

K-Fold Cross-Validated Paired t Test

This set uses K-fold cross-validation to get K training/validation set pairs.
We use the two classification algorithms to train on the training sets
'Ii, i = 1, ... ,K, and test on the validation sets \Ii. The error percent
ages of the classifiers on the validation sets are recorded as pl and pT. If
the two classification algorithms have the same error rate, then we expect
them to have the same mean, or equivalently, that the difference of their
means is O.

The difference in error rates on fold i is Pi = pI - PT. When this is
done K times, we have a distribution of Pi containing K points. Given
that pl and PT are both (approximately) normal, their difference Pi is
also normal. The null hypothesis is that this distribution has 0 mean:

Ho J1 = 0

HI J1 -1= 0

We define

If=l Pi
m= K
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(14.16)

K-FOLD CV PAIRED t
TEST

14.7.3

(14.17)

5 x 2 CV PAIRED t TEST

Under the null hypothesis that J.l = 0, we have a statistic that is t dis
tributed with K - 1 degrees of freedom:

Jl((m-O) Jl(·m
--5-- = 5 - tK-I

Thus the K -fold cv paired t test accepts the hypothesis that two clas
sification algorithms have the same error rate at significance level ex
if this value is in the interval (-ta /2,K-I,ta /2,K-I). to.02S.9 = 2.26 and
to.02S,29 = 2.05.

5 x 2 cv Paired t Test

In the 5 x 2 cv t test, proposed by Dietterich (1998), we perform five
replications of twofold cross-validation. In each replication, the dataset is
divided into two equal-sized sets. pi) is the difference between the error
rates of the two classifiers on fold j = 1,2 of replication i = 1, ... , 5. The
average on replication i is Pi = (pil) + pi2

») /2, and the estimated variance
is sf = (pill - Pi)2 + (pi 2

) - Pi)2.

Under the null hypothesis that the two classification algorithms have
the same error rate, pi)) is the difference of two identically distributed
proportions, and ignoring the fact that these proportions are not inde
pendent, pi)) can be treated as approximately normal distributed with
o mean and unknown variance (j2. Then pi)) / (j is approximately unit
normal. If we assume pil) and pi 2

) are independent normals (which is
not strictly true because their training and test sets are not drawn inde
pendently of each other), then sf /(j2 has a chi-square distribution with
one degree of freedom. If each of the Sf are assumed to be independent
(which is not true because they are all computed from the same set of
available data), then their sum is chi-square with five degrees of freedom:

IS 2
M = i=1 Si _ XS2

(j2

and

giving us a t statistic with five degrees of freedom. The 5 x 2 cv paired
t test accepts the hypothesis that the two classification algorithms have
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the same error rate at significance level DC if this value is in the interval
(-tlX /2,5, t lX /2,5). to.025,5 = 2.57.

We can also define a one-sided version of this test to check if the ex
pected error rate of the first classification algorithm is less than or equal
to that of the second one, namely:

We calculate the same statistic as in equation 14.17 and accept the null
hypothesis if it is less than t a ,5' to.05,5 = 2.02.

14.7.4 5 x 2 cv Paired F Test

(14.18)

(14.19)

5 x 2 CV PAIRED F
TEST

We note that the numerator in equation 14.17, p~l), is arbitrary; actually,
ten different values can be placed in the numerator, namely, pi}), j
1,2, i = 1, ... ,5, leading to ten possible statistics:

(j)
tU) = Pi

I I 5 2
-YLi=1 Si 15

Alpaydm (1999) proposed an extension to the 5 x 2 cv t test that
combines the results of the ten possible statistics. If pi}) lu ~ Z, then

(pi}») 2 I u 2 ~ Xr and their sum is chi-square with ten degrees of free
dom:

Placing this in the numerator of equation 14.17, we get a statistic that
is the ratio of two chi-square distributed random variables. Two such
variables divided by their respective degrees of freedom is F distributed
with ten and five degrees of freedom (section A.3.8):

,,5 ,,2 ((j») 2

f
-_ N /10 __ L..i=l L..}=5 I Pi

--.-..:...,,-----'--:c------'- ~ FlO,S
MIS 2Li=lsf

5 x 2 cv paired F test accepts the hypothesis that the classification algo
rithms have the same error rate at significance level DC if this value is less
than F a ,IO,5. FO.05,IO,5 = 4.74.
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14.8 Comparing Multiple Classification Algorithms: Analysis of
Variance

In many cases, we have more than two candidate classification algo
rithms, and we would like to find the most accurate. Given L candidate
classification algorithms, we train them on K training sets, induce K clas
sifiers with each algorithm, and then test them on K validation sets and
record their error rates. This gives us L groups of K values. The prob
lem then is the comparison of these L samples for statistically significant
difference.

ANALYSIS OF In analysis of variance (anova), we consider L independent samples,
VARIANCE each of size K, composed of normal random variables of unknown mean

/-Ij and unknown common variance 0- 2:

Xij - N(/-Ij, 0-2),j = 1, ... ,L, i = 1, ... ,K,

and we are interested in testing the hypothesis Ho that all means are
equal:

Ho : /-11 = /-12 = ... = /-IL

The comparison of error rates of multiple classification algorithms fits
this scheme. We have L classification algorithms, and we have their error
rates on K validation folds. Xij is the number of validation errors made
by the classifier, which is trained by classification algorithm j on fold
i. Each Xij is binomial and approximately normal. If Ho is accepted,
we conclude that there is no significant error difference among the error
rates of the L classification algorithms. This is therefore a generalization
of the tests we saw in section 14.7 that compared the error rates of two
classification algorithms. The L classification algorithms may be different
or use different hyperparameters, for example, number of hidden units
in a multilayer perceptron, number of neighbors in k-nn, and so forth.

The approach in anova is to derive two estimators of 0- 2• One estimator
is designed such that it is true only when Ho is true, and the second is
always a valid estimator, regardless of whether Ho is true or not. Anova
then rejects Ho, namely, that the L samples are drawn from the same
population, if the two estimators differ significantly.

Our first estimator to 0- 2 is valid only if the hypothesis is true, namely,
/-Ij = /-I,j = 1, ... ,I. If Xij - N(/-I, 0-2), then the group average

K X.
mj = L --.!l..

i=1 K
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is also normal with mean J.l and variance cr 2 / K. If the hypothesis is true,
then mj, j = 1, ... ,L are L instances drawn from N(J.l, cr 2 / K). Then their

mean and variance are

I ·(m· - m)2S2 = ) )
L-l

Thus an estimator of cr 2 is K . S2, namely,

~ 2 _ ~ (mj - m)2
(14.20) cr - K L. L _ 1

)=1

(14.21)

(14.22)

(14.23)

Each of mj is normal and (L - 1)S2 / (cr 2/ K) is chi-square with (L - 1)
degrees of freedom. Then, we have

(mj - m)2
'" - X L

2
_ 1L. cr2/K

)

We define SSb, the between-group sum of squares, as

SSb == K ~(mj - m)2
j

So, when Ho is true, we have

SSb _ X 2
cr 2 L-1

Our second estimator of cr 2 is the average of group variances, SJ, de
fined as

S2 = If=l (Xij - mj)2
) K-l

and their average is

0-2 = ±S'j = ~~ (Xij - mj)2

j=l L j i L(K - 1)

We define SSw, the within-group sum of squares:

SSw == ~~(Xij - mj)2
j i

Remembering that for a normal sample, we have

SJ 2
(K - 1) cr 2 - X K - 1



(14.24)

(14.25)
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and that the sum of chi-squares is also a chi-square, we have

L S2
(K - 1) I ~ ~ Xf(K-l)

j=! (J

So

ssw 2
(J2 ~ XL(K-l)

We should reject Ho if the two estimators disagree significantly. If Ho
is not true, then the first estimator will overestimate (J2. The ratio of
two independent chi-square random variables divided by their respective
degrees of freedom is a random variable that is F distributed, and hence
when Ho is true, we have

(
SSb/(J2) / (SSw/(J2) = SSb/(L -1) ~ F

L - 1 L(K - 1) SSw/(L(K - 1)) L-I,L(K-l)

For any given significance value lX, the hypothesis that the L classifi
cation algorithms have the same expected error rate is accepted if this
statistic is less than F()(,L-I,L(K-l). This is the basic one-way analysis of
variance where there is a single factor, for example, classification algo
rithm.

If the hypothesis is rejected, we only know that there is some difference
between the L groups; we do not know how the error rates of the classi
fication algorithms differ. We can then do anova on subsets of classifi
cation algorithms to determine the subsets with comparable error rates.
We do not need to consider all possible subsets; we order classification
algorithms in terms of average error and then test only consecutive ones.
To find the largest groups, we go from larger to smaller subsets: First we
test aJl L; if this rejects, there are two subsets of L - 1 (leaving out the two
at either end), and so on. At the end, we have groups in which there is no
significant difference. For example, we can have the result 145 23, which
implies that we have two groups, one formed of classification methods 1,
4, 5, and the other formed of 2 and 3.

There are also nonparametric tests to allow checking for contrasts (Dean
and Voss 1999): Let us say 1 and 2 are parametric methods and 3 and 4
are nonparametric methods. We can then test whether the average of 1
and 2 differs from the average of 3 and 4.

Or, we can use a series of pairwise comparisons using the tests we dis
cussed in section 14.7 to check for pairwise differences. In statistics, this
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MULTIPLE is called multiple comparisons. There is, however, one point we need to
COMPARISONS pay attention to if we decide after applying a set of tests: If m hypotheses

are to be tested, each at significance level IX, then the probability that at
least one hypothesis is incorrectly rejected is at most mIX. For example,
the probability that six confidence intervals, each calculated at 95 percent
individual confidence intervals, will simultaneously be correct is at least
70 percent. Thus to ensure that the overall confidence interval is at least
100(1- IX), each confidence interval should be set at 100(1 - IXlm). This

BONFERRONI is called a Bonferroni correction.
CORRECTION Note that the main cost is the training and testing of L classification

algorithms on K training/validation sets. Once this is done and the values
are stored in a K x L table, calculating the anova or pairwise comparison
test statistics from those is very cheap in comparison.

14.9 Notes

A more detailed discussion of interval estimation, hypothesis testing, and
analysis of variance can be found in any introductory statistics book,
for example, Ross 1987. Dietterich (1998) discusses statistical tests and
compares them on a number of applications using different classification
algorithms. Jensen and Cohen (2000) discuss how the hyperparameters
of a learner can be optimized.

In comparing two classification algorithms, note that we are testing
only whether they have the same expected error rate. If they do, this
does not mean that they make the same errors. This is an idea that we
will discuss in chapter 15; we can combine multiple models to improve
accuracy if different classifiers make different errors.

Another important point to note is that we are only assessing or com
paring misclassifications. This implies that from our point of view, all
misclassifications have the same cost. When this is not the case, our tests
should be based on risks taking a suitable loss function into account (sec
tion 3.3). Not much work has been done in this area. Similarly, these tests
should be generalized from classification to regression, so as to be able
to assess the mean square errors of regression algorithms (section 4.6),
or to be able to compare the errors of two regression algorithms.

The tests we discussed are parametric in that we assumed certain para
metric models and defined hypotheses on the parameters, for example,

NONPARAMETRIC TEST Ho : J1 = O. There are also nonparametric tests (Conovar 1999). For exam-



14.10 Exercises 349

pIe, the Kruskal-Wallis test is the nonparametric version of anova where
we are given a number of samples, each from one population, and we
want to test the null hypothesis that all of the populations are identical.
The Newman-Keuls test is a nonparametric range test that finds subsets
with comparable error rates and then orders these subsets; for example,
it can find orderings such as 145 23. Methods of multiple comparisons
are discussed in Dean and Voss 1999.

STATLOG The Statlog project (Michie, Spiegelhalter, and Taylor 1994) compared
twenty different classification algorithms on a large number of applica

DELVE tions. Another is the Delve project that allows researchers to add new
datasets and classification algorithms and compare with others (Hinton
and Delve Team Members 1995).

When we compare two or more algorithms, if the null hypothesis that
they have the same error rate is accepted, we choose the simpler one,
namely, the one with less space or time complexity. That is, we use our
prior preference if the data does not prefer one of the learning algorithms
in terms of error rate. For example, if we compare a linear model and a
nonlinear model and if the test accepts that they have the same expected
error rate, we should go for the simpler linear model. Even if the test
rejects, in choosing one algorithm over another, error rate is only one of
the criteria. Other criteria like training (space/time) complexity, testing
complexity, and interpretability may override in practical applications.

14.10 Exercises

1. We can simulate a classifier with error probability P by drawing samples from
a Bernoulli distribution. Doing this, implement the binomial, approximate,
and t tests for Po E (0,1). Repeat these tests at least 1,000 times for sev
eral values of P and calculate the probability of rejecting the null hypothesis.
What do you expect the probability of reject to be when Po = p?

2. Assume Xl - N(/1, 0'2) where 0'2 is known. How can we test for Ho : /1 ~ /10
vs. Hj : /1 < /10?

3. The K-fold cross-validated t test only tests for the equality of error rates. If
the test rejects, we do not know which classification algorithm has the lower
error rate. How can we test whether the first classification algorithm does not
have higher error rate than the second one? Hint: We have to test Ho : J.l ~ 0
vs. HI: /1 > O.

4. Let us say we have three classification algorithms. How can we order these
three from best to worst?
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15 Combining Multiple Learners

We discussed many different learning algorithms in the previous
chapters. Though these are generally successful, no one single al
gorithm is always the most accurate. Now, we are going to discuss
models composed of multiple learners that complement each other
so that by combining them, we attain higher accuracy.

15.1 Rationale

IN ANY APPLICATION, we can use one of several learning algorithms,
and with certain algorithms, there are hyperparameters that affect the
final learner. For example, in a classification setting, we can use a para
metric classifier or a multilayer perceptron, and for example, with a mul
tilayer perceptron, we should also decide on the number of hidden units.
The No Free Lunch Theorem states that there is no single learning algo
rithm that in any domain always induces the most accurate learner. The
usual approach is to try many and choose the one that performs the best
on a separate validation set, as we discussed in chapter 14.

Each learning algorithm dictates a certain model that comes with a set
of assumptions. This inductive bias leads to error if the assumptions do
not hold for the data. Learning is an ill-posed problem and with finite
data, each algorithm converges to a different solution and fails under dif
ferent circumstances. The performance of a learner may be fine-tuned to
get the highest possible accuracy on a validation set, but this fine-tuning
is a complex task and still there are instances on which even the best
learner is not accurate enough. The idea is that there may be another
learner that is accurate on these. By suitably combining multiple learners
then, accuracy can be improved. Recently with computation and mem-
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ory getting cheaper, such systems composed of multiple learners have
become popular.

Since there is no point in combining learners that always make similar
BASE-LEARNERS decisions, the aim is to be able to find a set of base-learners who differ

in their decisions so that they will complement each other. There are
different "knobs" that we can play with to achieve this:

1. The easiest is to use different learning algorithms to train the differ
ent base-learners. Different algorithms make different assumptions
about the data and lead to different classifiers. For example, one base
learner may be parametric and another may be nonparametric. When
we decide on a single algorithm, we give emphasis to a single method
and ignore all others. Combining multiple learners based on multiple
algorithms, we free ourselves from taking a decision and we no longer
put all our eggs in one basket.

2. We can use the same learning algorithm but use it with different hy
perparameters. Examples are the number of hidden units in a multi
layer perceptron, kink-nearest neighbor, error threshold in decision
trees, and so forth. With a Gaussian parametric classifier, whether
the covariance matrices are shared or not, is a hyperparameter. If the
optimization algorithm uses an iterative procedure such as gradient
descent whose final state depends on the initial state, such as in back
propagation with multilayer perceptrons, the initial state, for example,
the initial weights, is another hyperparameter. When we train multiple
base-learners with different hyperparameter values, we average over it
and reduce variance, and therefore error.

3. Separate base-learners may also be using different representations of
the same input object or event, making it possible to integrate differ
ent types of sensors/measurements or features. Different representa
tions make different characteristics explicit allOWing better identifica
tion. In many applications, there are multiple sources of information,
and it is desirable to use all of these data to extract more informa
tion and achieve higher accuracy in prediction. For example, in speech
recognition, to recognize the uttered words, additional to the acous
tic input, we can also use the video image of the speaker's lips as the

SENSOR FUSION words are spoken. This is similar to sensor fusion where the data from
different sensors are integrated to extract more information for a spe
cific application. The simplest approach is to concatenate all data vec-
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tors and treat it as one large vector from a single source, but this does
not seem theoretically appropriate since this corresponds to modeling
data as sampled from one multivariate statistical distribution. More
over, larger input dimensionalities make the systems more complex
and require larger samples for the estimators to be accurate. The
approach we take is to make separate predictions based on different
sources using separate base-learners, then combine their predictions.

4. Another possibility is to have different training sets to train the dif
ferent base-learners. This can be done randomly by drawing random
training sets from the given sample; this is called bagging. Or, the
learners can be trained serially so that instances on which the preced
ing base-learners are not accurate are given more emphasis in training
later base-learners; examples are boosting and cascading, which ac
tively try to generate complementary learners, instead of leaving this
to chance. The partitioning of the training sample can also be done
based on locality in the input space so that each base-learner is trained
on instances in a certain local part of the input space; this is what is
done by the mixture ofexperts that we discussed in chapter 12 but that
we revisit in this context of combining multiple learners. Similarly, it
is possible to define the main task in terms of a number of subtasks
to be implemented by the base-learners, as is done by error-correcting
output codes.

One important note is that when we generate multiple base-learners,
we want them to be reasonably accurate but do not require them to be
very accurate individually, so they are not, and need not be, optimized
separately for best accuracy. The base-learners are not chosen for their
accuracy, but for their simplicity. We do require, however, that the base
learners be accurate on different instances, specializing in subdomains
of the problem. What we care for is the final accuracy when the base
learners are combined, rather than the accuracies of the base-learners we
started from. Let us say we have a classifier that is 80 percent accurate.
When we decide on a second classifier, we do not care for the overall
accuracy; we only care about how accurate it is on the 20 percent that the
first classifier misclassifies, as long as we know when to use which one.

In addition to how the learners are trained, there are also different ways
the multiple base-learners are combined to generate the final output:

MULTI EXPERT • Mu[tiexpert combination methods have base-learners that work in par-
COMBINATION
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alIeI. All of them are trained and then given an instance, they all give
their decisions, and a separate combiner computes the final decision
using their predictions. Examples include voting and its variants, mix
ture of experts, and stacked generalization.

MULTISTAGE • Multistage combination methods use a serial approach where the next
COMBINATION base-learner is trained with or tested on only the instances where the

previous base-learners are not accurate enough. The idea is that the
base-learners (or the different representations they use) are sorted in
increasing complexity so that a complex base-learner is not used (or its
complex representation is not extracted) unless the preceding simpler
base-learners are not confident. An example is cascading.

Let us say that we have L base-learners. We denote by dj (x) the predic
tion of base-learner :Mj given the arbitrary dimensional input x. In the
case of multiple representations, each :Mj uses a different input repre
sentation Xj. The final prediction is calculated from the predictions of
the base-learners:

where f (.) is the combining function with <I> denoting its parameters.
When there are K outputs, each learner has K outputs, dj;(x), i = 1, ... ,K,
j = 1, ... , L, and combining them, we also generate K values, Yi, i =
1, ... ,K and then for example in classification, we choose the class with
the maximum Yi value.

15.2

VOTING

ENSEMBLES
LINEAR OPINION

POOLS

(15.2)

Voting

The simplest way to combine multiple classifiers is by voting, which cor
responds to taking a linear combination of the learners. This is also
known as ensembles and linear opinion pools. Let us denote by Wj the
weight of learner j. Then the final output is computed as (see figure 15.1)

L

Y = I Wjdj
j=I

satisfying

L

Wj ~ 0, Vj and I Wj = 1
j=1
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Figwe 15.1 In voting, the combiner function f(·) is a weighted sum. d j are
the multiple learners, and Wj are the weights of their votes. y is the overall
output. In the case of multiple outputs, for example, classification, the learners
have multiple outputs dji whose weighted sum gives Yi. Note also that in the
diagram, all learners observe the same input; it may be the case that different
learners observe different representations of the same input object or event.

Here, f (.) of equation 15.1 corresponds to a weighted sum where <I> is
the set of weights, WI, ... , WL.

In regression, we take the weighted average of the individual predic
tions. The name voting comes from its use in classification

L

(15.3) Yi = L wjdji
j=1

where dji is the vote of learner j for class Ci and Wj is the weight of its
vote. In the simplest case, we have simple voting where all voters have
equal weight, namely, Wj = 1/L. In classification, this is called plurality
voting where the class having the maximum number of votes is the win
ner. When there are two classes, this is majority voting where the winner
class gets more than half of the votes (exercise 1). If the voters can also
supply the additional information of how much they vote for each class
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BAYESIAN MODEL

COMBINATION

(15.4)
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(e.g., by the posterior probability), then after normalization, these can be
used as weights in a weighted voting scheme. Equivalently, if dji are the
class posterior probabilities, P(C;lx,..Mj), then we can just sum them up
(Wj = 1/L) and choose the class with maximum Yi.

Another possibility is to assess the accuracies of the learners (regressor
or classifier) on a separate validation set and use that information to
compute the weights, so that we give more weights to more accurate
learners.

Voting schemes can be seen as approximations under a Bayesian frame
work with weights approximating prior model probabilities, and model
decisions approximating model-conditional likelihoods. This is Bayesian
model combination. For example, in classification we have Wj == P(..Mj),
dji = P(Cilx,..Mj), and equation 15.3 corresponds to

P(C;lx) = 2: P(C;lx, ..Mj)P(..Mj)
all models :Ntj

Simple voting corresponds to a uniform prior. If we have a prior distri
bution preferring simpler models, this would give larger weights to them.
We cannot integrate over all models; we only choose a subset for which
we believe P(..Mj) is high, or we can have another Bayesian step and cal
culate P(..Mj IX), the probability of a model given the sample, and sample
high probable models from this density.

Hansen and Salamon (1990) have shown that given independent two
class classifiers with success probability higher than 1/2, namely, better
than random guessing, by taking a majority vote, the accuracy increases
as the number of voting classifiers increases. Let us assume that dj are
tid with expected value E[dj ] and variance Var(dj ), then when we take
a simple average with Wj = 1/L, the expected value and variance of the
output are

E[y]

(15.5) Var(y)

E [2: .!.dj ] = .!.LE[dj ] = E[dj]
j L L

Var (", .!.d') = ~Var (", d') = ~LVar(d') = .!. Var(d·)L. L J L2 L. J [2 J L J
J J

We see that the expected value does not change, so the bias does not
change. But variance, and therefore mean square error, decreases as the
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number of independent voters, L, increases. In the general case,
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so we see that further decrease in variance is possible if the voters are
not independent but are negatively correlated. The error then decreases
if the accompanying increase in bias is not higher.

If we view each base-learner as a random noise function added to the
true discriminant/regression function and if these noise functions are
uncorrelated with 0 mean, then the averaging of the individual estimates
is like averaging over the noise. In this sense, voting has the effect of
smoothing in the functional space and can be thought of as a regularizer
with a smoothness assumption on the true function (Perrone 1993). We
saw an example of this in figure 4.5(d), where averaging over models with
large variance, we get a better fit than those of the individual models.
This is the idea in voting: We vote over models with high variance and
low bias so that after combination, the bias remains small and we reduce
the variance by averaging. Even if the individual models are biased, the
decrease in variance may offset this bias and still a decrease in error is
possible.

15.3 Error-Correcting Output Codes

ERROR-CORRECTING In error-correcting output codes (EeOC) (Dietterich and Bakiri 1995), the
OlJIPlJI CODES main classification task is defined in terms of a number of subtasks that

are implemented by the base-learners. The idea is that the original task
of separating one class from all other classes may be a difficult prob
lem. Instead, we want to define a set of simpler classification problems,
each specializing in one aspect of the task, and combining these simpler
classifiers, we get the final classifier.

Base-learners are binary classifiers having output -1/ + 1, and there is
a code matrix W of K x L whose K rows are the binary codes of classes
in terms of the L base-learners dj. For example, if the second row of
W is [-1, + I, +1, -1], this means that for us to sayan instance belongs
to Cz, the instance should be on the negative side of d l and d4 , and on
the positive side of dz and d3. Similarly, the columns of the code matrix
defines the task of the base-learners. For example if the third column
is [-1, +I, +1V, we understand that the task of the third base-learner,
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d3, is to separate the instances of Cl from the instances of Cz and C3
combined. This is how we form the training set of the base-learners. For
example in this case, all instances labeled with Cz and C3 form X:t and
instances labeled with Cl form Xi, and d3 is trained so that Xl E X:t give
output +1 and xt E Xi give output -1.

The code matrix thus allows us to define a polychotomy (K > 2 clas
sification problem) in terms of dichotomies (K = 2 classification prob
lem), and it is a method that is applicable using any learning algorithm to
implement the dichotomizer base-learners-for example, linear or multi
layer perceptrons (with a single output), decision trees, or SVMs whose
original definition is for two-class problems.

The typical one discriminant per class setting corresponds to the diag
onal code matrix where L = K. For example, for K = 4, we have

[

+1
-1w= -1
-1

-1 -1
+1 -1
-1 +1
-1 -1

-1 j-1
-1
+1

The problem here is that if there is an error with one of the base
learners, there is a misclassification because the class code words are so
similar. So the approach in error-correcting codes is to have L > K and
increase the Hamming distance between the code words. One possibility
is pairwise separation of classes where there is a separate base-learner to
separate C; from Cj , for i < j (section 10.4). In this case, L = K(K - 1)/2
and with K = 4, the code matrix is

[

+1
-1w= o
o

+1 +1
o 0

-1 0
o -1

o
+1
-1
o

where a zero entry denotes "don't care." That is, d 1 is trained to separate
Cl from Cz and does not use the training instances belonging to the other
classes. Similarly, we say that an instance belongs to Cz if d1 = -1 and
d4 = ds = + 1, and we do not consider the values of dz, d3 , and d6 . The
problem here is that L is <9 (K z), and for large K pairwise separation may
not be feasible.

The approach is to set L beforehand and then find W such that the
distances between rows, and at the same time the distances between
columns, are as large as pOSSible, in terms of Hamming distance. With
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K classes, there are 2(K-l) - 1 possible columns, namely, two-class prob
lems. This is because K bits can be written in 2K different ways and
complements (e.g., "0101" and "1010," from our point of view, define the
same discriminant), dividing the possible combinations by 2 and then
subtracting 1 because a column of alIOs (or Is) is useless. For example,
when K = 4, we have

[ =~ =~ =~ ~~ ~~ ~~ ~~ 1
W = -1 +1 +1 -1 -1 +1 +1

+1 -1 +1 -1 +1 -1 +1

When K is large, for a given value of L, we look for L columns out of the
2(K-l) -1. We would like these columns ofW to be as different as possible
so that the tasks to be learned by the base-learners are as different from
each other as possible. At the same time, we would like the rows of W to
be as different as possible so that we can have maximum error correction
in case one or more base-learners fail.

ECOC can be written as a voting scheme where the entries of W, Wij,

are considered as vote weights:
L

(15.7) Yi = L wijdj
j=l

and then we choose the class with the highest Yi. Taking a weighted sum
and then choosing the maximum instead of checking for an exact match
allows d j to no longer need to be binary but to take a value between -1
and +1, carrying soft certainties instead of hard decisions. Note that a
value Pj between 0 and I, for example, a posterior probability, can be
converted to a value dj between -1 and +1 simply as

dj = 2pj - 1

The difference between equation 15.7 and the generic voting model of
equation 15.3 is that the weights of votes can be different for different
classes, namely, we no longer have Wj but Wij, and also that Wj ~ 0
whereas Wij are -1,0, or +1.

One problem with ECOC is that because the code matrix W is set a pri
ori, there is no guarantee that the subtasks as defined by the columns
of W will be simple. Dietterich and Bakiri (1995) report that the di
chotomizer trees may be larger than the polychotomizer trees and when
multilayer perceptrons are used, there may be slower convergence by
backpropagation.
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15.4 Bagging

BAGGING Bagging is a voting method whereby base-learners are made different by
training them over slightly different training sets. Generating L slightly
different samples from a given sample is done by bootstrap, where given
a training set X of size N, we draw N instances randomly from X with re
placement (section 14.2.3). Because sampling is done with replacement,
it is possible that some instances are drawn more than once and that
certain instances are not drawn at all. When this is done to generate L
samples Xj, j = 1, ... , L, these samples are similar because they are all
drawn from the same original sample, but they are also slightly different
due to chance. The base-learners dj are trained with these L samples

UNSTABLE ALGORITHM Xj. A learning algorithm is an unstable algorithm if small changes in the
training set causes a large difference in the generated learner, namely, the
learning algorithm has high variance. Bagging, short for bootstrap aggre
gating, uses bootstrap to generate L training sets, trains L base-learners
using an unstable learning procedure and then during testing, takes an
average (Breiman 1996). Bagging can be used both for classification and
regression. In the case of regression, to be more robust, one can take the
median instead of the average when combining predictions.

Algorithms such as decision trees and multilayer perceptrons are un
stable. Nearest neighbor is stable but condensed nearest neighbor is un
stable (Alpaydm 1997). If the original training set is large, then we may
want to generate smaller sets of size N' < N from them using bootstrap,
since otherwise the bootstrap replicates Xj will be too similar, and dj will
be highly correlated.

15.5 Boosting

In bagging, generating complementary base-learners is left to chance and
to the unstability of the learning method. In boosting, we actively try
to generate complementary base-learners by training the next learner

BOOSTING on the mistakes of the previous learners. The original boosting algo-
rithm (Schapire 1990) combines three weak learners to generate a strong

WEAK LEARNER learner. A weak learner has error probability less than 1/2, which makes
STRONG LEARNER it better than random guessing on a two-class problem, and a strong

learner has arbitrarily small error probability.
Given a large training set, we randomly divide it into three. We use XI
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and train d1• We then take Xz and feed it to dl. We take all instances
misclassified by d1 and also as many instances on which d 1 is correct
from Xz, and these together form the training set of dz. We then take X3
and feed it to d1 and dz. The instances on which d1 and dz disagree form
the training set of d3. During testing, given an instance, we give it to d1

and dz; if they agree, that is the response, otherwise the response of d 3 is
taken as the output. Schapire (1990) has shown that this overall system
has reduced error rate, and the error rate can arbitrarily be reduced by
using such systems recursively, that is, a boosting system of three models
used as d j in a higher system.

Though it is quite successful, the disadvantage of the boosting method
is that it requires a very large training sample. The sample should be
divided into three and furthermore, the second and third classifiers are
only trained on a subset on which the previous ones err. So unless one
has a quite large training set, dz and d3 will not have training sets of
reasonable size. Drucker et a1. (1994) use a set of 118,000 instances
in boosting multilayer perceptrons for optical handwritten digit recogni
tion.

ADABOOST Freund and Schapire (1996) proposed a variant, named AdaBoost, short
for adaptive boosting, that uses the same training set over and over and
thus need not be large. AdaBoost can also combine an arbitrary number
of base-learners, not three.

Many variants of AdaBoost have been proposed; here, we discuss the
original algorithm AdaBoost.Ml (see figure 15.2): The idea is to modify
the probabilities of drawing the instances as a function of the error. Let
us say V) denotes the probability that the instance pair (x t , r t ) is drawn
to train the jth base-learner. Initially, all vi = 1/N. Then we add new
base-learners as follows, starting from j = 1: Ej denotes the error rate
of d j • AdaBoost requires that Ej < 1/2, Vj; if not, we stop adding new
base-learners. Note that this error rate is not on the original problem but
on the dataset used at step j. We define {3j = Ej/(1 - Ej} < 1, and we set
V)+l = (3jV) if dj correctly classifies Xl, otherwise V)+l = V). Because V)+l
should be probabilities, there is a normalization where we divide V)+l by
It V) + l' so that they sum up to 1. This has the effect that the probability
of a correctly classified instance is decreased, and the probability of a
misclassified instance increases. Then a new sample of the same size is
drawn from the original sample according to these modified probabilities,
V)+l' with replacement, and is used to train dj+l'

This has the effect that d j +1 focuses more on instances misclassified
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Training:
For all {xt,rt}~l E X, initialize p~ = liN
For all base-learners j = 1, ... ,L

Randomly draw Xj from X with probabilities P)
Train dj using Xj
For each (xt,r t ), calculate y5 - dj(x t )

Calculate error rate: fj - It P) . l(y5 f= r t )

If fj > 1/2, then L - j - 1; stop
I3j - fj/O - fj)
For each (x t , r t ), decrease probabilities if correct:

If t t t 13 t EI I tYj = r Pj+l - jPj se Pj+l - Pj
Normalize probabilities:

Zj - It P)+l; P)+l - P)+l / Zj
Testing:

Given x, calculate dj(x),j = 1, ,L
Calculate class outputs, i = 1, ,K:

Yi = I]=l (log JJ) dji(x)

Figure 15.2 AdaBoost algorithm.

by d j . That is why the base-learners are chosen to be simple and not ac
curate, since otherwise the next training sample would contain only a few
outlier and noisy instances repeated many times over. For example, with
decision trees, decision stumps, which are trees grown only one or two
levels, are used. So it is clear that these would have bias but the decrease
in variance is larger and the overall error decreases. An algorithm like the
linear discriminant has low variance, and we cannot gain by AdaBoosting
linear discriminants.

Once training is done, AdaBoost is a voting method. Given an instance,
all dj decide and a weighted vote is taken where weights are proportional
to the base-learners' accuracies (on the training set): Wj = logO /13 j). Fre
und and Schapire (1996) showed improved accuracy in twenty-two bench
mark problems, equal accuracy in one problem, and worse accuracy in
four problems.

Schapire et al. (1998) explain that the success of AdaBoost is due to its
MARGIN property of increasing the margin. If the margin increases, the training

instances are better separated and an error is less likely. This makes
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AdaBoost's aim similar to that of support vector machines (section 10.9).
In AdaBoost, although different base-learners have slightly different

training sets, this difference is not left to chance as in bagging, but is
a function of the error of the previous base-learner. The actual perfor
mance of boosting on a particular problem is clearly dependent on the
data and the base-learner. There should be enough training data and the
base-learner should be weak but not too weak, and boosting is especially
susceptible to noise and outliers.

AdaBoost has also been generalized to regression: One straightforward
way, proposed by Avnimelech and Intrator (1997), checks for whether
the prediction error is larger than a certain threshold, and if so marks
it as error, then uses AdaBoost proper. In another version (Drucker
1997), probabilities are modified based on the magnitude of error, such
that instances where the previous base-learner commits a large error,
have a higher probability of being drawn to train the next base-learner.
Weighted average, or median, is used to combine the predictions of the
base-learners.

15.6 Mixture of Experts Revisited

MIXTURE OF EXPERTS In voting, the weights Wj are constant over the input space. In the mixture
of experts architecture (section 12.8), there is a gating network whose
outputs are taken as weights in voting. This architecture can then be
viewed as a voting method where the votes depend on the input, and
may be different for different inputs. The competitive learning algorithm
used by the mixture of experts localizes the base-learners such that each
of them becomes an expert in a different part of the input space and have
its weight, Wj (x), close to 1 in its region of expertise. The final output is
a weighted average as in voting

L

(15.8) Y = I Wj(x)dj
j=l

except in this case, both the base-learners and the weights are a function
of the input (see figure 15.3).

Jacobs (1997) has shown that in the mixture of experts architecture,
experts are biased but are negatively correlated. As training proceeds,
bias decreases and expert variances increase but at the same time as
experts localize in different parts of the input space, their covariances
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Figure 15.3 Mixture of experts is a voting method where the votes, as given
by the gating system, are a function of the input. The combiner system f also
includes this gating system.

get more and more negative, which, due to equation 15.6, decreases the
total variance, and thus the error. In section 12.8, we considered the
case where both are linear functions but a nonlinear method can also be
used both for the experts and the gating. This would decrease the expert
biases but risk increasing expert variances and overfitting.

15.7 Stacked Generalization

STACKED Stacked generalization is a technique proposed by Wolpert (1992) that ex-
GENERALIZATION tends voting in that the way the output of the base-learners is combined

need not be linear but is learned through a combiner system, {( ·1<11),
which is another learner, whose parameters <II are also trained (see fig
ure 15.4):

(15.9) Y = {(d1,dz, ... ,dLI<II)

The combiner learns what the correct output is when the base-learners
give a certain output combination. We cannot train the combiner function
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Figure 15.4 In stacked generalization, the combiner is another learner and is
not restricted to being a linear combination as in voting.

on the training data because the base-learners may be memorizing the
training set; the combiner system should actually learn how the base
learners make errors. Stacking is a means of estimating and correcting
for the biases of the base-learners. Therefore the combiner should be
trained on data unused in training the base-learners. Wolpert proposes
to use leave-one-out though this is too costly and k-fold cross-validation
is more efficient when we have a large sample.

If f (·1 WI, ... ,wr) is a linear model with constraints, Wi ~ 0, Ij Wj =

1, the optimal weights can be found by constrained regression. Note,
however, that there is no restriction on the combiner function and unlike
voting, the combination can be nonlinear. For example, f(·) may be a
multilayer perceptron with <I> its connection weights. The outputs of the
base-learners d j define a new I-dimensional space in which the output
discriminant/regression function is learned by the combiner function.

In stacked generalization, we would like the base-learners to be as dif
ferent as possible so that they will complement each other, and it is ad
visable for them to be based on different learning algorithms. Zhang,
Mesirov, and Waltz (1992) use stacking for protein secondary structure
prediction with significant improvement in accuracy. In their study, the
base-learners are a parametric classifier, a nearest-neighbor classifier,
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voting, the combination can be nonlinear. For example, f(·) may be a
multilayer perceptron with <I> its connection weights. The outputs of the
base-learners d j define a new I-dimensional space in which the output
discriminant/regression function is learned by the combiner function.

In stacked generalization, we would like the base-learners to be as dif
ferent as possible so that they will complement each other, and it is ad
visable for them to be based on different learning algorithms. Zhang,
Mesirov, and Waltz (1992) use stacking for protein secondary structure
prediction with significant improvement in accuracy. In their study, the
base-learners are a parametric classifier, a nearest-neighbor classifier,
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..
and a multilayer perceptron. The combiner is another multilayer per-
ceptron.

15.8 Cascading

The idea in cascaded classifiers is to have a sequence of base-classifiers
dj sorted in terms of their space or time complexity, or the cost of the
representation they use, so that d j +1 is costlier than d j (Kaynak and AI-

CASCADING paydm 2000). Cascading is a multistage method and we use dj only if all
preceding learners, dk, k < j are not confident (see figure 15.5). For this,
associated with each learner is a confidence Wj such that we say dj is con
fident of its output and can be used if Wj > OJ where 1/K < OJ ::; OJ+l < 1
is the confidence threshold. In classification, the confidence function is
set to the highest posterior: Wj == maxi dji; this is the strategy used for
rejections (section 3.3).

We use learner dj if all the preceding learners are not confident:

(15.10) Yi = dji ifwj > OJ and 'ilk <j,wk < Ok

Starting with j = 1, given a training set, we train dj. Then we find all
instances from a separate validation set on which dj is not confident, and
these constitute the training set of d j +1 . Note that unlike in AdaBoost,
we choose not only the misclassified instances but the ones for which the
previous base-learner is not confident. This covers the misclassifications
as well as the instances for which the posterior is not high enough; these
are instances on the right side of the boundary but for which the distance
to the discriminant, namely, the margin, is not large enough.

The idea is that an early simple classifier handles the majority of in
stances, and a more complex classifier is only used for a small percent
age, thereby not significantly increasing the overall complexity. This is
contrary to the multiexpert methods like voting where all base-learners
generate their output for any instance. If the problem space is complex,
a few base-classifiers may be cascaded increasing the complexity at each
stage. In order not to increase the number of base-classifiers, the few
instances not covered by any are stored as they are and are treated by a
nonparametric classifier, such as k-NN.

The inductive bias of cascading is that the classes can be explained by
a small number of "rules" in increasing complexity, with an additional
small set of "exceptions" not covered by the rules. The rules are imple
mented by simple base-classifiers, for example, perceptrons of increasing



15.8 Cascading

y=d
2

367

x

no

Figure 15.5 Cascading is a multistage method where there is a sequence of
classifiers, and the next one is used only when the preceding ones are not confi
dent.

complexity, which learn general rules valid over the whole input space.
Exceptions are localized instances and are best handled by a nonpara
metric model.

Cascading thus stands between the two extremes of parametric and
nonparametric classification. The former-for example, a linear model
finds a single rule that should cover all the instances. A nonparametric
classifier-for example, k-NN-stores the whole set of instances without
generating any simple rule explaining them. Cascading generates a rule
(or rules) to explain a large part of the instances as cheaply as possible
and stores the rest as exceptions. This makes sense in a lot of learning
applications. For example, most of the time the past tense of a verb in
English is found by adding a "_d" or "-ed" to the verb; there are also
irregular verbs-for example, "go"j"went"-that do not obey this rule.
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15.9 Notes

The idea in combining learners is to divide a complex task into simpler
tasks that are handled by separately trained base-learners. Each base
learner has its own task. If we had a large learner containing all the
base-learners, then it would risk overfitting. For example, consider tak
ing a vote over three multilayer perceptrons, each with a single hidden
layer. If we combine them all together with the linear model combining
their outputs, this is a large multilayer perceptron with two hidden lay
ers. If we train this large model with the whole sample, it very probably
overfits. When we train the three multilayer perceptrons separately, for
example, using ECOC, bagging, and so forth, it is as if we define a re
quired output for the second-layer hidden nodes of the large multilayer
perceptron. This puts a constraint on what the overall learner should
learn and simplifies learning.

One disadvantage of combining is that the combined system is not in
terpretable. For example, even though decision trees are interpretable,
bagged or boosted trees are not interpretable. Error-correcting codes with
their weights as -1/0/ + 1 allow some form of interpretability. Mayoraz
and Moreira (1997) discuss incremental methods for learning the error
correcting output codes where base-learners are added when needed.
Allwein, Schapire, and Singer (2000) discuss various methods for cod
ing multiclass problems as two-class problems. Alpaydm and Mayoraz
(1999) consider the application of ECOC where linear base-learners are
combined to get nonlinear discriminants, and they also propose methods
to learn the ECOC matrix from data.

The earliest and most intuitive approach is voting. Xu, Krzyzak, and
Suen (1992) is an early review. Benedikttson and Swain (1992) consider
voting methods for combining multiple sources. Kittler et al. (1998) give
a recent review of voting methods and also discuss an application where
multiple representations are combined. The task is person identifica
tion using three representations: frontal face image, face profile image,
and voice. The error rate of the voting model is lower than the error
rates when a single representation is used. Another application is given
in Alimoglu and Alpaydm 1997 where for improved handwritten digit
recognition, two sources of information are combined: One is the tempo
ral pen movement data as the digit is written on a touch-sensitive pad,
and the other is the static two-dimensional bitmap image once the digit
is written. In that application, the two classifiers using either of the two
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representations have around 5 percent error, but combining the two re
duces the error rate to 3 percent. It is also seen that the critical stage
is the design of the complementary learners and/or representations, the
way they are combined is not as critical.

It has been shown by Jacobs (1995) that L dependent experts are worth
the same as L f independent experts where L f

~ L. Under certain cir
cumstances, voting models and Bayesian techniques will yield identical
results (Jacobs 1995). The priors of equation 15.4 are in turn modeled
as distributions with hyperparameters and in the ideal case, one should
integrate over the whole model-parameter space. This approach is not
generally feasible in practice and one resorts to approximation or sam
pling. With advances in Bayesian statistics, these supra-Bayesian tech
niques may become more important in the near future:

Combining multiple learners has been a popular topic in machine learn
ing since early 1990s, and research has been going on ever since (Diet
terich 1997). AdaBoost is currently considered to be one of the best ma
chine learning algorithms and is almost automatic once the base-learner
and the number of base-learners are chosen. There are also versions of
AdaBoost where the next base-learner is trained on the residual of the
previous base-learner (Hastie, Tibshirani, and Friedman 2001). There is
a Web site www.boosting.org where recent publications on model com
bination in general and AdaBoost in particular could be found. Despite
the success of multiple models in practice, there is still discussion going
on as to how or why model combination works; for example, see Breiman
1998; Bauer and Kohavi 1999.

15.10 Exercises

1. If each base-learner is tid and correct with probability p > 1/2, what is the
probability that a majority vote over L classifiers gives the correct answer?

2. In bagging, to generate the L training sets, what would be the effect of using
L-fold cross-validation instead of bootstrap?

3. Propose an incremental algorithm for learning error-correcting output codes
where new two-class problems are added as they are needed to better solve
the multiclass problem.

4. What is the difference between voting and stacking using a linear perceptron
as the combiner function?

5. In cascading, why do we require ej +I ~ ej ?
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16 Reinforcement Learning

In reinforcement learning, the learner is a decision-making agent
that takes actions in an environment and receives reward (or penalty)
for its actions in trying to solve a problem. After a set of trial-and
error runs, it should learn the best policy, which is the sequence of
actions that maximize the total reward.

16.1 Introduction

LET US SAY we want to build a machine that learns to play chess. In
this case we cannot use a supervised learner for two reasons: First, it is
very costly to have a teacher that will take us through many games and
indicate us the best move for each position. Second, in many cases, there
is no such thing as the best move; the goodness of a move depends on the
moves that follow. A single move does not count; a sequence of moves is
good if after playing them we win the game. The only feedback is at the
end of the game when we win or lose the game.

Another example is a robot that is placed in a maze. The robot can
move in one of the four compass directions and should make a sequence
of movements to reach the exit. As long as the robot is in the maze, there
is no feedback and the robot tries many moves until it reaches the exit
and only then does it get a reward. In this case there is no opponent, but
we can have a preference for shorter trajectories implying that in this
case we play against time.

These two applications have a number of points in common: There is
a decision maker, called the agent, that is placed in an environment (see
figure 16.1). In chess, the game-player is the decision maker and the en
vironment is the board; in the second case, the maze is the environment
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State
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Figure 16.1 The agent interacts with an environment. At any state of the envi
ronment, the agent takes an action that changes the state and returns a reward.

of the robot. At any time, the environment is in a certain state that is
one of a set of possible states-for example, the state of the board, the
position of the robot in the maze. The decision maker has a set of actions
possible: legal movement of pieces on the chess board, movement of the
robot in possible directions without hitting the walls, and so forth. Once
an action is chosen and taken, the state changes. The solution to the task
requires a sequence of actions and we get feedback, in the form of a re
ward rarely, generally only when the complete sequence is carried out.
The reward defines the problem and is necessary if we want a learning
agent. The learning agent learns the best sequence of actions to solve a
problem where "best" is quantified as the sequence of actions that has
the maximum cumulative reward. Such is the setting of reinforcement
learning.

Reinforcement learning is different from the learning methods we dis
cussed before in a number of respects: It is called "learning with a critic,"
as opposed to learning with a teacher which we have in supervised learn

CRITIC ing. A critic differs from a teacher in that it does not tell us what to do
but only how well we have been doing in the past; the critic never informs
in advance. The feedback from the critic is scarce and when it comes, it

CREDIT ASSIGNMENT comes late. This leads to the credit assignment problem: After taking
several actions and getting the reward, we would like to assess the indi
vidual actions we did in the past and find the moves that led us to win the
reward so that we can record and recall them later on. As we see shortly,
what a reinforcement learning program does is that it learns to generate
an internal value for the intermediate states or actions as to how good
they are in leading us to the goal and getting us to the real reward. Once
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such an internal reward mechanism is learned, the agent can just take
the local actions to maximize it.

The solution to the task requires a sequence of actions and from this
perspective, we remember the Markov models we discussed in chapter 13.
Indeed, we use a Markov decision process to model the agent. The differ
ence is that in the case of Markov models, there is an external process that
generates a sequence of signals, for example, speech, which we observe
and model. In the current case, however, it is the agent that generates
the sequence of actions. Previously, we also made a distinction between
observable and hidden Markov models where the states are observed or
hidden (and should be inferred) respectively. Similarly here, sometimes
we have a partially observable Markov decision process in cases where
the agent does not know its state exactly but should infer it with some
uncertainty through observations using sensors. For example, in the case
of a robot moving in a room, the robot may not know its exact position
in the room, nor the exact location of obstacles nor the goal, and should
make decisions through a limited image provided by a camera.

16.2 Single State Case: K-Armed Bandit

K-ARMED BANDIT We start with a simple example. The K-armed bandit is a hypothetical
slot machine with K levers. The action is to choose and pull one of the
levers, and we win a certain amount of money that is the reward associ
ated with the lever (action). The task is to decide which lever to pull to
maximize the reward. This is a clasification problem where we choose
one of K. If this were supervised learning, then the teacher would tell us
the correct class, namely, the lever leading to maximum earning. In this
case of reinforcement learning, we can only try different levers and keep
track of the best. This is a simplified reinforcement learning problem
because there is only one state, or one slot machine, and we need only
decide on the action. Another reason why this is simplified is that we
immediately get a reward after a single action; the reward is not delayed
so we immediately see the value of our action.

Let us say Q(a) is the value of action a. Initially, Q(a) = 0 for all a.
When we try action a, we get reward ra ~ O. If rewards are deterministic,
we always get the same ra for any pull of a and in such a case, we can
just set Q(a) = ra . If we want to exploit, once we find an action a such
that Q(a) > 0, we can keep choosing it and get ra at each pull. However,
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it is quite possible that there is another lever with a higher reward, so we
need to explore.

We can choose different actions and store Q(a) for all a. Whenever we
want to exploit, we can choose the action with the maximum value, that
is,

(16.1) choose a* if Q(a*) = maxQ(a)
a

If rewards are not determirustic but stochastic, we get a different re
ward each time we choose the same action. The amount of reward is
defined by the probability distribution p(rla). In such a case, we define
Qda) as the estimate of the value of action a at time t. It is an average of
all rewards received when action a was chosen before time t. An online
update can be defined as

where rt+l (a) is the reward received after taking action a at time (t + 1)st
time.

Note that equation 16.2 is the delta rule that we have used on many
occasions in the previous chapters: '7 is the learning factor (gradually
decreased in time for convergence), rt+l is the desired output, and Qr (a)

is the current prediction. Qt+l (a) is the expected value of action a at time
t + 1 and converges to the mean of p(rla) as t increases.

The full reinforcement learrung problem generalizes this simple case in
a number of ways: First, we have several states. This corresponds to hav
ing several slot machines with different reward probabilities, p(rlsi,aj),
and we need to learn Q (Si, a j ), which is the value of taking action aj when
in state Si. Second, the actions affect not only the reward but also the next
state, and we move from one state to another. Third, the rewards are de
layed and we need to be able to estimate immediate values from delayed
rewards.

16.3 Elements of Reinforcement Learning

The learning decision maker is called the agent. The agent interacts with
the environment that includes everything outside the agent. The agent
has sensors to decide on its state in the environment and takes an action
that modifies its state. When the agent takes an action, the environment
provides a reward. Time is discrete as t = 0,1,2, ... and St E S denotes
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the state of the agent at time t where S is the set of all possible states.
at E .A (sr) denotes the action that the agent takes at time t where .A(St)
is the set of possible actions in state St. When the agent in state St takes
the action at, the clock ticks, reward rt+l E ~ is received, and the agent

MARKOV DECISION moves to the next state, St+l. The problem is modeled using a Markov
PROCESS decision process (MDP). The reward and next state are sampled from their

respective probability distributions, p(rt+llst, at) and P(st+llst, at). Note
that what we have is a Markov system where the state and reward in
the next time step depend only on the current state and action. In some
applications, reward and next state are deterministic and for a certain
state and action taken, there is one possible reward value and next state.

Depending on the application, a certain state may be designated as the
initial state and in some applications, there is also an absorbing terminal
(goal) state where the search ends; all actions in this terminal state tran
sition to itself with probability 1 and without any reward. The sequence

EPISODE of actions from the start to the terminal state is an episode, or a trial.
POLICY The policy, IT, defines the agent's behavior and is a mapping from the

states of the environment to actions: IT : S - .A. The policy defines the
action to be taken in any state St: at = IT (St). The value of a policy IT,

V 1T (St), is the expected cumulative reward that will be received while the
agent follows the policy, starting from state St.

FINITE-HORIZON In the finite-horizon or episodic model, the agent tries to maximize the
expected reward for the next T steps:

06.3) V 1T (sr) = E[rt+l + rt+2 + ... + rt+T] = E [± rt+i]
1=1

Certain tasks are continuing, and there is no prior fixed limit to the
INFINITE-HORIZON episode. In the infinite-horizon model, there is no sequence limit, but

future rewards are discounted:

(16.4) V~ (s,) =E[r", + yr", + y'r'+3 + ... ] = E [~ yH r",]

DISCOUNT RATE where °::::; ;y < I is the discount rate to keep the return finite. If;y = 0,
then only the immediate reward counts. As;y approaches 1, rewards
further in the future count more, and we say that the agent becomes
more farsighted. ;y is less than 1 because there generally is a time limit
to the sequence of actions needed to solve the task. The agent may be a
robot that runs on a battery. We prefer rewards sooner rather than later
because we are not certain how long we will survive.
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OJYfIMAL POLICY For each policy rr, there is a V 1T (St ), and we want to find the optimal
policy rr* such that

(16.5) V* (sd = max V 1T (St), VSt
1T

In some applications, for example, in control, instead of working with
the values of states, V(sd, we prefer to work with the values of state
action pairs, Q (Sf, ad. V (sd denotes how good it is for the agent to be
in state St, whereas Q (St, ad denotes how good it is to perform action at
when in state St. We define Q* (St, ad as the value, that is, the expected
cumulative reward, of action at taken in state St and then obeying the
optimal policy afterward. The value of a state is equal to the value of the
best possible action:

V* (St)

(16.6) V* (sd

max Q*(St, at)
at

maxE [f yi-lrt+i]
at i=l

~axE [rt +1 + Y fyi-Irt +i + 1]
t i=1

maxE [rt+l + yV*(St+l)]
at

~~ (E[rt+IJ + y 2: P(St+lISt,adv*(St+d)
S'+1

To each possible next state St+l, we move with probability P(St+ liSt, at),
and continuing from there using the optimal policy, the expected cumu
lative reward is V* (St+l). We sum over all such possible next states, and
we discount it because it is one time step later. Adding our immediate
expected reward, we get the total expected cumulative reward for action
at. We then choose the best of possible actions. Equation 16.6 is known

BELLMAN'S EQUATION as Bellman's equation (Bellman 1957). Similarly, we can also write

(16.7) Q* (St, ad = E[rt+IJ + y 2: P(st+llst, ad maxQ*(St+l, at+J>
5'+1 at+l

Once we have Q*(st,ad values, we can then define our policy rr as
taking the action ai which has the highest value among all Q*(st,at>:

(16.8) rr*(st>: Choose ai where Q*(s"an = maxQ*(St,a,)
at
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Initialize V (s) to arbitrary values
Repeat

For all s E S
For all a E .Jl

Q(s, a) ~ E[rls, a] + y IS'ESP(S' Is, a)V(s')
V(s) ~ maxa Q(s, a)

Until V(s) converge

Figure 16.2 Value iteration algorithm for model-based learning.
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This means that if we have the Q * (St, at) values, then by using a greedy
search at each local step we get the optimal sequence of steps that maxi
mizes the cumulative reward.

16.4 Model-Based Learning

We start with model-based learning where we completely know the en
vironment model parameters, p(r/+lls/, a/) and P(s/+llsr. ad. In such a
case, we do not need any exploration and can directly solve for the opti
mal value function and policy using dynamic programming. The optimal
value function is unique and is the solution to the simultaneous equa
tions given in equation 16.6. Once we have the optimal value function,
the optimal policy is to choose the action that maximizes the value in the
next state:

(16.9) rr*(s/) = arg~~ (E[rt+lISt,arJ + Y L P(Sr+lls/,at)V*(s/))
St+IES

16.4.1 Value Iteration

To find the optimal policy, we can use the optimal value function, and
VALUE ITERATION there is an iterative algorithm called value iteration that has been shown

to converge to the correct V* values. Its pseudocode is given in fig
ure 16.2.

We say that the values converged if the maximum value difference be
tween two iterations is less than a certain threshold 8:
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Initialize a policy rr arbitrarily
Repeat

rr - rr'
Compute the values using rr by

solving the linear equations
V 1T (s) = E[rls, rr(s)] + Y LS'ES P(s' Is, rr(s) )V1T (s')

Improve the policy at each state
rr'(s) - argmaxa(E[rls,a] + YLs' Es P(s'ls,a)V1T(s'))

Until rr = rr'

Figure 16.3 Policy iteration algorithm for model-based learning.

where 1 is the iteration counter. Because we only care for the actions
with the maximum value, it is possible that the policy converges to the
optimal one even before the values converge to their optimal values. Each
iteration is (')(151 2 15\1), but frequently there is only a small number k <
151 of next possible states, so complexity decreases to (,)(kI5115\1).

16.4.2 Policy Iteration

In policy iteration, we store and update the policy rather than doing this
indirectly over the values. The pseudocode is given in figure 16.3. The
idea is to start with a policy and improve it repeatedly until there is no
change. The value function can be calculated by solving for the linear
equations. We then check whether we can improve the policy by taking
these into account. This step is guaranteed to improve the policy, and
when no improvement is possible, the policy is guaranteed to be optimal.
Each iteration of this algorithm takes (')(15\1151 2 + 151 3 ) time that is more
than that of value iteration, but policy iteration needs fewer iterations
than value iteration.

16.5 Temporal Difference Learning

Model is defined by the reward and next state probability distributions,
and as we saw in section 16.4, when we know these, we can solve for the
optimal policy using dynamic programming. However, these methods are
costly, and we seldom have such perfect knowledge of the environment.
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TEMPORAL

DIFFERENCE

16.5.1

(16.10)

(16.11)

The more interesting and realistic application of reinforcement learning
is when we do not have the model. This requires exploration of the en
vironment to query the model. We first discuss how this exploration
is done and later see model-free learning algorithms for deterministic
and nondeterministic cases. Though we are not going to assume a full
knowledge of the environment model, we will however require that it be
stationary.

As we will see shortly, when we explore and get to see the value of the
next state and reward, we use this information to update the value of the
current state. These algorithms are called temporal difference algorithms
because what we do is look at the difference between our current estimate
of the value of a state (or a state-action pair) and the discounted value of
the next state and the reward received.

Exploration Strategies

To explore, one possibility is to use €-greedy search where with prob
ability €, we choose one action uniformly randomly among all possible
actions, namely, explore, and with probability 1 - €, we choose the best
action, namely, exploit. We do not want to continue exploring indefinitely
but start exploiting once we do enough exploration; for thiS, we start with
a high € value and gradually decrease it. We need to make sure that our
policy is soft, that is, the probability of choosing any action a E Jl in
state s E S is greater than O.

We can choose probabilistically, using the softmax function to convert
values to probabilities

P(als) = .:xp Q(s, a)
I b=l exp Q(s, b)

and then sample according to these probabilities. To gradually move
from exploration to exploitation, we can use a "temperature" variable T
and define the probability of choosing action a as

P(als) = exp[Q(s,a)/T]
I:=l exp[Q(s,b)/T]

When T is large, all probabilities are equal and we have exploration.
When T is small, better actions are favored. So the strategy is to start
with a large T and decrease it gradually, a procedure named annealing,
which in this case moves from exploration to exploitation smoothly in
time.



382 16 Reinforcement Learning

16.5.2 Deterministic Rewards and Actions

In model-free learning, we first discuss the simpler deterministic case,
where at any state-action pair, there is a single reward and next state
possible. In this case, equation 16.7 reduces to

(16.12) Q(s"ar) = r'+l + ymaxQ(s,+},a,+d
a'+l

and we simply use this as an assignment to update Q(s"a,). When in
state s" we choose action a, by one of the stochastic strategies we saw
earlier, which returns a reward r'+l and takes us to state S'+1. We then
update the value of previous action as

06.13) Q(s"a,) - r'+l + ymaxQ(s'+l,a,+d
Qt+l

where the hat denotes that the value is an estimate. Q (S'+1, a,+1) is a later
value and has a higher chance of being correct. We discount this by y and
add the immediate reward (if any) and take this as the new estimate for

BACKUP the previous Q(s" a,). This is called a backup because it can be viewed as
taking the estimated value of an action in the next time step and "backing
it up" to revise the estimate for the value of a current action.

For now we assume that all Q(s, a) values are stored in a table; we will
see later on how we can store this information more succintly when 151
and 15\1 are large.

Initially all Q(s" at) are 0 and they are updated in time as a result
of trial episodes. Let us say we have a sequence of moves and at each
move, we use equation 16.13 to update the estimate of the Q value of the
previous state-action pair using the Q value of the current state-action
pair. In the intermediate states, all rewards and therefore values are 0 so
no update is done. When we get to the goal state, we get the reward rand
then we can update the Q value of the previous state-action pair as yr.
As for the preceding state-action pair, its immediate reward is 0 and the
contribution from the next state-action pair is discounted by y because it
is one step later. Then in another episode, if we reach this state, we can
update the one preceding that as y2 r, and so on. This way, after many
episodes, this information is backed up to earlier state-action pairs. Q
values increase until their optimal values as we find paths with higher
cumulative reward, for example, shorter paths, but they never decrease
(see figure 16.4).

Note that we do not know the reward or next state functions here.
They are part of the environment, and it is as if we query them when
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Figure 16.4 Example to show that Q values increase but never decrease. This
is a deterministic grid-world where G is the goal state with reward 100, all other
immediate rewards are °and y = 0.9. Let us consider the Q value of the transi
tion marked by asterisk, and let us just consider only the two paths A and B. Let
us say that path A is seen before path B, then we have ymax(0,8l) = 72.9.
If afterward B is seen, a shorter path is found and the Q value becomes
y max(lOO, 81) = 90. If B is seen before A, the Q value is y max(lOO, 0) = 90.
Then when B is seen, it does not change because y max(lOO, 81) = 90.

we explore. We are not modeling them either, though that is another
possibility. We just accept them as given and learn directly the optimal
policy through the estimated value function.

16.5.3 Nondeterministic Rewards and Actions

If the rewards and the result of actions are not deterministic, then we
have a probability distribution for the reward p (rt +1 1St, at) from which
rewards are sampled, and there is a probability distribution for the next
state P(St+lISt, at>. These help us model the uncertainty in the system
that may be due to forces we cannot control in the environment: for
example, our opponent in chess, the dice in backgammon, or our lack of
knowledge of the system. For example, we may have an imperfect robot
which sometimes fails to go in the intended direction and deviates, or
advances shorter or longer than expected.

In such a case, we have

We cannot do a direct assignment in this case because for the same
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Initialize all Q(s, a) arbitrarily
For all episodes

Initalize S

Repeat
Choose a using policy derived from Q. e.g., E-greedy
Take action a, observe rand s'
Update Q(s, a):

Q(s,a) - Q(s,a) + '1(r + ymaxa, Q(s',a') - Q(s,a»

S - s'
Until S is terminal state

Figure 16.5 Q learning, which is an off-policy temporal difference algorithm.

state and action, we may receive different rewards or move to different
next states. What we do is keep a running average. This is known as the

Q LEARNING Q learning algorithm:

(16.15) Q(st,ad - Q(st,ad + '1(rt+1 + ymaxQ(St+1,at+l) - Q(st,ad)
at+l

We think of rt+l +y maxar + 1 Q(S1+1 , ae+l) values as a sample of instances
for each (se,ad pair and we would like Q(se,ad to converge to its mean.
As usual '1 is gradually decreased in time for convergence, and it has been
shown that this algorithm converges to the optimal Q* values (Watkins
and Dayan 1992). The pseudocode of Q learning algorithm is given in
figure 16.5.

We can also think of equation 16.15 as reducing the difference between
the current Q value and the backed up estimate, from one time step later.

TEMPORAL Such algorithms are called temporal difference (TD) algorithms (Sutton
DIFFERENCE 1988).
OFF-POLICY This is an off-policy method as the value of the best next action is used
ON-POLICY without using the policy. In an on-policy method, the policy is used to

determine also the next action. The on-policy version of Q learning is the
SARSA Sarsa algorithm whose pseudocode is given in figure 16.6. We see that

instead of looking for all possible next actions a' and choosing the best,
the on-policy Sarsa uses the policy derived from Q values to choose one
next action a' and uses its Q value to calculate the temporal difference.
On-policy methods estimate the value of a policy while using it to take
actions. In off-policy methods, these are separated, and the policy used
to generate behavior, called the behavior policy, may in fact be differ-
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Initialize all Q(s, a) arbitrarily
For all episodes

Initalize s
Choose a using policy derived from Q, e.g., €-greedy
Repeat

Take action a, observe rand s'
Choose a' using policy derived from Q, e.g., €-greedy
Update Q(s, a):

Q(s,a) - Q(s,a) + l1(r + yQ(s',a') - Q(s,a»

s - s', a - a'
Until s is terminal state
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Figure 16.6 Sarsa algorithm, which is an on-policy version of Q learning.

ent from the policy that is evaluated and improved, called the estimation
policy.

Sarsa converges with probability 1 to the optimal policy and state
action values if a GLIE policy is employed to choose actions. AGUE
(Greedy in the Limit with Infinite Exploration) policy is where 0) all state
action pairs are visited an infinite number of times, and (2) the policy
converges in the limit to the greedy policy (which can be arranged, for
example, with €-greedy policies by setting € = 1/ t).

The same idea of temporal difference can also be used to learn V (s)

TD LEARNING values, instead of Q (s, a). TD learning (Sutton 1988) uses the following
update rule to update a state value:

(16.16) V(sr) - V(sr) + l1[rt+1 + yV(St+]) - V(sr)]

This again is the delta rule where rt+1 + yV(St+l) is the better, later pre
diction and V (St) is the current estimate. Their difference is the temporal
difference and the update is done to decrease this difference. The update
factor 11 is gradually decreased, and TD is guaranteed to converge to the
optimal value function V* (s).

16.5.4 Eligibility Traces

The previous algorithms are one-step, that is the temporal difference is
used to update only the previous value (of the state or state-action pair).

ELlGlBILlTY TRACE An eligibility trace is a record of the occurrence of past visits and en-
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Figure 16.7 Example of an eligibility trace for a value. Visits are marked by an
asterisk.

abIes us to implement temporal credit assignment, allowing us to update
the values of previously occurring visits as well. We discuss how this
is done with Sarsa to learn Q values; adapting this to learn V values is
straightforward.

To store the eligibility trace, we require an additional memory variable
associated with each state-action pair, e(s, a), initialized to O. When the
state-action pair (s, a) is visited, namely, when we take action a in state
s, its eligibility is set to 1; the eligibilities of all other state-action pairs
are multiplied by yA. 0 ::s A ::s 1 is the trace decay parameter.

(16.17)
{

I
e S a -r( , ) - yAet-l (s, a)

if S = St and a = at,
otherwise

If a state-action pair has never been visited, its eligibility remains 0; if it
has been, as time passes and other state-actions are visited, its eligibility
decays depending on the value of y and A(see figure 16.7).

We remember that in Sarsa, the temporal error at time t is

In Sarsa with an eligibility trace, named Sarsa(A), all state-action pairs
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Initialize all Q(s,a) arbitrarily, e(s,a) - 0, '<is,a
For all episodes

Initalize S

Choose a using policy derived from Q, e.g., €-greedy
Repeat

Take action a, observe rand s'
Choose a' using policy derived from Q, e.g., €-greedy
D - r + yQ(s', a') - Q(s, a)
e(s,a)-1
For all s, a:

Q(s,a) - Q(s,a) + '1De(s,a)
e(s, a) - yAe(s, a)

S - s', a - a'
Until S is terminal state

Figure 16.8 Sarsa(,\) algorithm.
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are updated as

(16.19) Q(s,a) - Q(s,a) + '1Dter(s,a), '<is,a

This updates all eligible state-action pairs, where the update depends
on how far they have occurred in the past. The value of Adefines the tem
poral credit: If A = 0, only one-step update is done. The algorithms we
discussed in section 16.5.3 are such and for this reason they are named
Q(0), Sarsa(O), or TD(O). As A gets closer to 1, more of the previous
steps are considered. When A = 1, all previous steps are updated and
the credit given to them falls only by y per step. In online updating, all
eligible values are updated immediately after each step; in offline updat
ing, the updates are accumulated and a single update is done at the end
of the episode. Online updating takes more time but converges faster.

SARSA(A) The pseudocode for Sarsa(,\) is given in figure 16.8. Q (A) and TD(A)
algorithms can similarly be derived (Sutton and Barto 1998).

16.6 Generalization

Until now, we assumed that the Q(s, a) values (or V(s), if we are esti
mating values of states) are stored in a lookup table, and the algorithms
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we considered earlier are called tabular algorithms. There are a num
ber of problems with this approach: (1) When the number of states and
the number of actions is large, the size of the table may become quite
large; (2) States and actions may be continuous, for example, turning the
steering wheel by a certain angle, and to use a table, they should be dis
cretized which may cause error; (3) When the search space is large, too
many episodes may be needed to fill in all the entries of the table with
acceptable accuracy.

Instead of storing the Q values as they are, we can consider this a re
gression problem. This is a supervised learning problem where we define
a regressor Q(s,aIO), taking S and a as inputs and parameterized by a
vector of parameters, 0, to learn Q values. For example, this can be an
artificial neural network with S and a as its inputs, one output, and 0 its
connection weights.

A good function approximator has the usual advantages and solves the
problems discussed previously: A good approximation may be achieved
with a simple model without explicitly storing the training instances; it
can use continuous inputs; and it allows generalization: If we know that
similar (s, a) pairs have similar Q values, we can generalize from past
cases and come up with good Q(s, a) values even if that state-action pair
has never been encountered before.

To be able to train the regressor we need a training set. In the case
of Sarsa(O), we saw before that we would like Q (St, at) to get close to
rt+l + rQ(St+l,at+d. So, we can form a set of training samples where
the input is the state-action pair (St, at) and the required output is rt+l +
rQ(St+J, at+d. We can write the squared error as

(16.20) £t(O) = [rt+l + rQ(St+j,at+l) - Q(st,adJ 2

Training sets can similarly be defined for Q(O) and TD(O), where in
the latter case we learn V(s), and the required output is rt+l - rV(St+l)'
Once such a set is ready, we can use any supervised learning algorithm
for learning the training set.

If we are using a gradient-descent method, as in training neural net
works, the parameter vector is updated as

(16.21) 1::10 = '1[rt+l + rQ(St+J,at+l) - Q(st,adJV'O,Q(st,ad

This is a one-step update. In the case of Sarsa(/\), the eligibility trace is
also taken into account:
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where the temporal difference error is

Dt = rt+l + yQ(St+l,at+l) - Q(st,ad

and the vector of eligibilities of parameters are updated as

(16.23) et = yAet-l + \J 0, Q(St, ad

with eo all zeros. In the case of a tabular algorithm, the eligibilities are
stored for the state-action pairs because they are the parameters (stored
as a table). In the case of an estimator, eligibility is associated with the
parameters of the estimator. We also note that this is very similar to the
momentum method for stabilizing backpropagation (section 11.8.1). The
difference is that in the case of momentum previous weight changes are
remembered, whereas here previous gradient vectors are remembered.

Depending on the model used for Q(st,ad, for example, a neural net
work, we plug its gradient vector in equation 16.23.

In theory, any regression method can be used to train the Q function
but the particular task has a number of requirements: First, it should al
low generalization, that is we really need to guarantee that similar states
and actions have similar Q values. This also requires a good coding of S

and a, as in any application, to make the similarities apparent. Second,
reinforcement learning updates provide instances one by one and not as
a whole training set, and the learning algorithm should be able to do in
dividual updates to learn the new instance without forgetting what has
been learned before. For example, a multilayer perceptron using back
propagation can be trained with a single instance only if a small learning
rate is used. Or, such instances may be collected to form a training set
and learned altogether but this slows down learning as no learning hap
pens while a sufficiently large sample is being collected.

Because of these reasons, it seems a good idea to use local learners to
learn the Q values. In such methods, for example, radial basis functions,
information is localized and when a new instance is learned, only a local
part of the learner is updated without possibly corrupting the informa
tion in another part. The same requirements apply if we are estimating
the state values as V(stIO).

16.7 Partially Observable States

In certain applications, the agent does not know the state exactly. It is
equipped with sensors that rerurn an observation using which the agent
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should estimate the state. Let us say we have a robot which navigates
in a room. The robot may not know its exact location in the room, or
what else is there in the room. The robot may have a camera with which
sensory observations are recorded. This does not tell the robot its state
exactly but gives some indication as to its likely state. For example the
robot, may only know that there is a wall to its right.

The setting is like a Markov decision process, except that after taking
an action at, the new state St+1 is not known but we have an observation
Ot+1 which is a stochastic function of St and at: p(Ot+I!st,at). This is

PARTIALLY called a partially observable MDP (POMDP). If Ot+1 = St+l, then POMDP
OBSERVABLE MDP reduces to the MDP. This is just like the distinction between observable

and hidden Markov models and the solution is similar; that is, from the
observation, we need to infer the state (or rather a probability distribu
tion for the states) and then act based on this. If the agent believes that
it is in state SI with probability 0.4 and in state S2 with probability 0.6,
then the value of any action is 0.4 times the value of the action in S1 plus
0.6 times the value of the action in S2.

The Markov property does not hold for observations: The next state
observation does not only depend on the current action and observation.
When there is limited observation, two states may appear the same but
are different and if these two states require different actions, this can
lead to a loss of performance, as measured by the cumulative reward.
The agent should somehow compress the past trajectory into a current
unique state estimate. These past observations can also be taken into
account by taking a past window of observations as input to the policy or
one can use a recurrent neural network (section 11.12.2) to maintain the
state without forgetting past observations.

At any time, the agent may calculate the most likely state and take an
action accordingly. Or it may take an action to gather information and
reduce uncertainty, for example, search for a landmark, or stop to ask
for direction. This implies the importance of the value of information
(section 3.6) and indeed POMDPs can be modeled as dynamic influence
diagrams (section 3.8). The agent chooses between actions based on the
amount of information they provide, the amount of reward they produce,
and how they change the state of the environment.

BELIEF STATE To keep the process Markov, the agent keeps an internal belief state bt
that summarizes its experience (see figure 16.9). The agent has a state

estimator that updates the belief state bt+1 based on the last action at,
current observation Ot+l, and its previous belief state bt . There is a pol-
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Figure 16.9 In the case of a partially observable environment, the agent has a
state estimator (SE) that keeps an internal belief state b and the policy IT gener
ates actions based on the belief states.

icy IT that generates the next action ar+! based on this belief state, as
opposed to the real state that we had in a completely observable envi
ronment. The belief state is a probability distribution over states of the
environment given the initial belief state (before we did any actions) and
the past observation-action history of the agent (without leaving out any
information that could improve agent's performance). Q learning in such
a case involves the belief state-action pair values, instead of the actual
state-action pairs:

(16.24) Q(b(, ad = E[rr+d + Y L P(br+ilbr,ar)V(br+})
bl+l

An algorithm is given in (Kaelbling, Littman, and Cassandra 1998) but
unfortunately due to its high computational complexity, it can be solved
exactly for only tens of states. Otherwise, one needs to resort to an al
gorithm that approximates the value function V(br+l); a review of such
algorithms is given in Hauskrecht 2000.

16.8 Notes

More information on reinforcement learning can be found in the textbook
by Sutton and Barto (1998) that discusses all the aspects, learning algo
rithms, and several applications. A comprehensive tutorial is Kaelbling,
Littman, and Moore 1996.
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Dynamic programming methods are discussed in Bertsekas 1987 and
in Bertsekas and Tsitsiklis 1996, and TD('\) and Q-learning can be seen as
stochastic approximations to dynamic programming (Jaakkola, Jordan,
and Singh 1994). Reinforcement learning has two advantages over clas
sical dynamic programming: First, as they learn, they can focus on the
parts of the space that are important and ignore the rest; and second,
they can employ function approximation methods to represent know
ledge that allows them to generalize and learn faster.

LEARNING AUTOMATA A related field is that of learning automata (Narendra and Thathachar
1974), which are finite state machines that learn by trial and error for
solving problems like the K -armed bandit. The setting we have here is
also the topic of optimal control where there is a controller (agent) taking
actions in a plant (environment) that minimize cost (maximize reward).

The earliest use of temporal difference method was in Samuel's check
ers program written in 1959 (Sutton and Barto 1998). For every two suc
cessive positions in a game, the two board states are evaluated by the
board evaluation function that then causes an update to decrease the dif
ference. There has been much work on games because games are both
easily defined and challenging. A game like chess can easily be simulated:
the allowed moves are formal, and the goal is well-defined. Despite the
simplicity of defining the game, expert play is quite difficult.

One of the most impressive application of reinforcement learning is
TD-GAMMON the TD-Gammon program that learns to play backgammon by playing

against itself (Tesauro 1995). This program is superior to the previous
neurogammon program also developed by Tesauro, which was trained
in a supervised manner based on plays by experts. Backgammon is a
complex task with approximately 1020 states, and there is randomness
due to the roll of dice. Using the TD(,\) algorithm, the program achieves
master level play after playing 1,500,000 games against a copy of itself.

Another interesting application is in job shop scheduling, or finding
a schedule of tasks satisfying temporal and resource constraints (Zhang
and Dietterich 1996). Some tasks have to be finished before others can be
started, and two tasks requiring the same resource cannot be done simul
taneously. Zhang and Dietterich used reinforcement learning to qUickly
find schedules that satisfy the constraints and are short. Each state is one
schedule, actions are schedule modifications, and the program finds not
only one good schedule but a schedule for a class of related scheduling
problems.

Recently hierarchical methods have also been proposed where the prob-
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Figure 16.10 The grid world. The agent can move in the four compass direc
tions starting from S. The goal state is G.

lem is decomposed into a set of subproblems. This has the advantage
that policies learned for the subproblems can be shared for multiple
problems, which accelerates learning of the new problem (Dietterich 2000).
Each subproblem is simpler and learning them separately is faster. The
disadvantage is that when they are combined, the policy may be subopti
mal.

Though reinforcement learning algorithms are slower than supervised
learning algorithms, it is clear that they have a wider variety of applica
tion and have the potential to construct better learning machines (Ballard
1997). They do not need any supervision and this may actually be better
since then they are not biased by the teacher. For example, Tesauro's
TD-Gammon program in certain circumstances came up with moves that
turned out to be superior to those made by the best players. The field of
reinforcement learning is developing rapidly and we may expect to see
other impressive results in the near future.

16.9 Exercises

1. Given the grid world in figure 16.10, if the reward on reaching on the goal
is 100 and y = 0.9, calculate manuaUy Q*(s,a), V*(S), and the actions of
optimal policy.

2. With the same configuration given in exercise 1, use Q learning to learn the
optimal policy.

3. In exercise 1, how does the optimal policy change if another goal state is
added to the lower-right corner? What happens if a state of reward -100 (a
very bad state) is defined in the lower-right corner?
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4. Instead of having y < 1, we can have y = 1 but with a negative reward of -c
for all intermediate (nongoal) states. What is the difference?

5. In exercise I, assume that the reward on arrival to the goal state is normal
distributed with mean 100 and variance 40. Assume also that the actions are
also stochastic in that when the robot advances in a direction, it moves in the
intended direction with probability 0.5 and there is a 0.25 probability that it
moves in one of the lateral directions. Learn Q(s, a) in this case.

6. Assume we are estimating the value function for states V (s) and that we want
to use TD(A) algorithm. Derive the tabular value iteration update.

7. Using equation 16.22, derive the weight update equations when a multilayer
perceptron is used to estimate Q.

8. Give an example of a reinforcement learning application that can be modeled
by a POMDP. Define the states, actions, observations, and reward.
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A Probability

We review briefly the elements of probability, the concept of a ran
dom variable, and example distributions.

A.I Elements of Probability

A RAN DOM experiment is one whose outcome is not predictable with
certainty in advance (Ross 1987; Casella and Berger 1990). The set of all
possible outcomes is known as the sample space S. A sample space is
discrete if it consists of a finite (or countably infinite) set of outcomes;
otherwise it is continuous. Any subset E of S is an event. Events are
sets, and we can talk about their complement, intersection, union, and so
forth.

One interpretation of probability is as a frequency: When an experi
ment is continually repeated under the exact same conditions, for any
event E, the proportion of time that the outcome is in E approaches some
constant value. This constant limiting frequency is the probability of the
event, and we denote it as P(E).

Probability sometimes is interpreted as a degree of belief. For example,
when we speak of Turkey's probability of winning the World Soccer Cup
in 2006, we do not mean a frequency of occurrence, since the champi
onship will happen only once and it has not yet occurred (at the time of
the writing of this book). What we mean in such a case is a subjective
degree of belief in the occurrence of the event. Because it is subjective,
different individuals may assign different probabilities to the same event.
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A.l.I Axioms of Probability

Axioms ensure that the probabilities assigned in a random experiment
can be interpreted as relative frequencies and that the assignments are
consistent with our intuitive understanding of relationships among rela
tive frequencies:

1. 0::;; P(£) ::;; 1. If £1 is an event that call1lot possibly occur then P(£1) =

O. If £2 is sure to occur, P(£z) = 1.

2. S is the sample space containing all possible outcomes, P(S) = 1.

3. If £;, i = 1, ... , n are mutually exclusive (i.e., if they Call1lot occur at the
same time, as in £; n £j = 0, j 1= i, where 0 is the null event that does
not contain any possible outcomes) we have

For example, letting F denote the complement of £, consisting of all
possible outcomes in S that are not in £, we have £ n £c = 0 and

P(£ u F) = P(£) + P(F) = 1

P(F) = 1 - P(£)

If the intersection of £ and F is not empty, we have

(A.2) P(£ u F) = P(£) + P(F) - P(£ n F)

A.l.2 Conditional Probability

P(£IF) is the probability of the occurrence of event £ given that F oc
curred and is given as

(A.3) P(£IF) = P(£ n F)
P(F)

Knowing that F occurred reduces the sample space to F, and the part
of it where £ also occurred is £ nF. Note that equation A.3 is well-defined
only if P(F) > O. Because n is commutative, we have

P(£ n F) = P(£IF)P(F) = P(FI£)P(£)
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which gives us Bayes' formula:

P(FIE) = P(EIF)P(F)
P(E)
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When F; are mutually exclusive and exhaustive, namely, U:1 F; = S

n

E UEnF;
;=1

n n

(AS) P(E) = LP(E n F;) = L P(EIF;)P(F;)
;=1 ;=1

(A.6)

Bayes' formula allows us to write

P(FIE) = P(E n F;) = P(EIF;)P(F;)
I P(E) I j P(EIFj)P(Fj)

If E and F are independent, we have P(EIF) = P(E) and thus

(A.7) P(E n F) = P(E)P(F)

That is, knowledge of whether F has occurred does not change the prob
ability that E occurs.

A.2 Random Variables

A random variable is a function that assigns a number to each outcome
in the sample space of a random experiment.

A.2.1 Probability Distribution and Density Functions

The probability distribution function F(·) of a random variable X for any
real number a is

(A8) F(a) = P{X :::; a}

and we have

(A9) Pta < X :::; b} = F(b) - F(a)

If X is a discrete random variable

(AlO) F(a) = L P(x)
'dX$a
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where P(·) is the probability mass function defined as Pea) = P{X = a}. If
X is a continuous random variable, p ( . ) is the probability density function

such that

(All) F(a) = roo p(x)dx

A.2.2 Joint Distribution and Density Functions

In certain experiments, we may be interested in the relationship between
two or more random variables, and we use the joint probability distribu
tion and density functions of X and Y satisfying

(A12) F(x, y) = P{X .$ X, Y .$ y}

Individual marginal distributions and densities can be computed by
marginalizing, namely, summing over the free variable:

(A.l3) Fx(x) = P{X.$ x} = P{X.$ x, Y.$ oo} = F(x, 00)

In the discrete case, we write

(AI4) P(X = x) = 'LP(x,Yj)
j

and in the continuous case, we have

(A15) Px(x) = f:oo p(x, y)dy

If X and Yare independent, we have

(AI6) p(x, y) = Px(x)py(y)

These can be generalized in a straightforward manner to more than two
random variables.

A.2.3 Conditional Distributions

When X and Y are random variables

(AI?)
P{X = x Y = y}

PXIY(xly) = P{X = xl Y = y} = P{Y ~ y}
P(x,y)

Py(y)
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A.2.4 Bayes' Rule

401

When two random variables are jointly distributed with the value of one
known, the probability that the other takes a given value can be computed
using Bayes' rule:

(AlB) P( I ) = P(xIY)Py(Y)
Y x Px(x)

P(xly)Py(Y)

2:y P (xIY)Py(Y)

(A19)

A.2.5

(A20)

Or, in words

o likelihood x prior
postenor = 0d

eVl ence
Note that the denominator is obtained by summing (or integrating if Y
is continuous) the numerator over all possible y values. The "shape" of
p(Ylx) depends on the numerator with denominator as a normalizing
factor to guarantee that p(y!x) sum to 1. Bayes' rule allows us to mod
ify a prior probability into a posterior probability by taking information
provided by x into account.

Bayes' rule inverts dependencies, allowing us to compute p(Ylx) if
p(xlY) is known. Suppose that Y is the "cause" of x, like Y going on sum
mer vacation and x having a suntan. Then p(xlY) is the probability that
someone who is known to have gone on summer vacation has a suntan.
This is the causal (or predictive) way. Bayes' rule allows us a diagnostic

approach by allOWing us to compute p(Ylx): namely, the probability that
someone who is known to have a suntan, has gone on summer vacation.
Then p(y) is the general probability of anyone's going on summer vaca
tion and p(x) is the probability that anyone has a suntan, including both
those who have gone on summer vacation and those who have not.

Expectation

Expectation, expected value, or mean of a random variable X, denoted by
E[X], is the average value of X in a large number of experiments:

E X = { 2:; XiP (Xi) if X is discrete
[] f xp(x)dx if X is continuous

It is a weighted average where each value is weighted by the probability
that X takes that value. It has the following properties (a, b E ~):

(A2l) E[aX + b]

E[X + Y]

aE[X] + b

E[X] + E[Y]
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(A.22)

(A.23)

A.2.6

A Probability

For any real-valued function g(.), the expected value is

E[ (X)] = { Ii g(Xi )P(Xi) if X is discrete
9 f g(x)p(x)dx if X is continuous

A special g(x) = x n, called the nth moment of X, is defined as

E Xn = { Ii x~P(Xi) if X is discrete
[] f xnp(x)dx if X is continuous

Mean is the first moment and is denoted by Ji.

Variance

Variance measures how much X varies around the expected value. If
Ji == E[X], the variance is defined as

(A.24) Var(X) = E[(X - Ji)2] = E[X2] - Ji2

Variance is the second moment minus the square of the first moment.
Variance, denoted by u 2 , satisfies the follOWing property (a, b E '1\):

(A.25) Var(aX + b) = a 2Var(X)

.jVar(X) is called the standard deviation and is denoted by u. Standard
deviation has the same unit as X and is easier to interpret than variance.

Covariance indicates the relationship between two random variables.
If the occurrence of X makes Y more likely to occur, then the covariance
is positive; it is negative if X's occurrence makes Y less likely to happen
and is 0 if there is no dependence.

(A.26) Cov(X, Y) = E [(X - Jix) (Y - Jiy)] = E[XY] - JixJiY

where Jix == E[X] and Jiy == E[Y]. Some other properties are

Cov(X, Y) Cov(Y,X)

Cov(X,X) Var(X)

Cov(X + Z, Y) Cov(X, Y) + Cov(Z, Y)

(A.27) Cov (~Xi' Y) L COV(Xi, Y)

(A.28) Var(X + Y) Var(X) + Var(Y) + 2Cov(X, Y)

(A.29) Var (~Xi) LVar(Xi) + L L COV(Xi,Xj )

i Hi
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(A.30)

(A.31)

If X and Yare independent, E[XY] = E[X]E[Y] = JlxJlY and Cov(X, Y) =

O. Thus if Xi are independent

Var (~x,) ~ par(x,)

Correlation is a normalized, dimensionless quantity that is always be
tween -1 and 1:

Corr(X Y) = Cov(X, Y)
, v'Var(X)Var(Y)

A.2.7 Weak Law of Large Numbers

Let X = {XtW~l be a set of independent and identically distributed (tid)
random variables each having mean Jl and a finite variance (J2. Then for
any E > 0

(A.32) P {12..~xt -JlI > E} --+ 0 as N ~ 00

That is, the average of N trials converges to the mean as N increases.

A.3 Special Random Variables

There are certain types of random variables that occur so frequently that
names are given to them.

A.3.1 Bernoulli Distribution

A trial is performed whose outcome is either a "success" or a "failure."
The random variable X is a 0/1 indicator variable and takes the value 1
for a success outcome and is 0 otherwise. p is the probability that the
result of trial is a success. Then

(A.33) PIX = l} = p and PIX = O} = 1 - P

which can equivalently be written as

(A.34) PIX = i} = pi(l - p)l-i, i = 0,1

If X is Bernoulli, its expected value and variance are

(A.35) E[X] = p, Var(X) = p(l - p)
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A.3.2 Binomial Distribution

If N identical independent Bernoulli trials are made, the random vari
able X that represents the number of successes that occurs in N trials is
binomial distributed. The probability that there are i successes is

(A.36) P{X = i} = ( ~ ) pi(l- p)N-i, i = O... N

If X is binomial, its expected value and variance are

(A.37) E[X] = Npl Var(X) = Np(l - p)

A.3.3 Multinomial Distribution

Consider a generalization of Bernoulli where instead of two states, the
outcome of a random event is one of K mutually exclusive and exhaustive
states, each of which has a probability of occurring Pi where If= i Pi =

1. Suppose that N such trials are made where outcome i occurred Ni
times with I}=i Ni = N. Then the joint distribution of Ni, N2, ... , NK is
multinomial:

K Nj

(A.38) P(Ni,N2,·· .,NK) = N! n ~.I
i=i /.

A special case is when N = 1; only one trial is made. Then Ni are 0/1
indicator variables of which only one of them is 1 and all others are O.
Then equation A.38 reduces to

K

(A.39) P(NI,N21 ... ,NK) = np~1
i=l

A.3.4 Uniform Distribution

X is uniformly distributed over the interval [a, b) if its density function
is given by

(AAO) (x) = {b~a if a ~ x ~ b
p 0 othe~se

If X is uniform, its expected value and variance are

(AA1) E[X] = a; b, Var(X) = (b ~2a)2
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Figure A.I Probability density function of Z, the unit normal distribution.

A.3.5 Normal (Gaussian) Distribution

X is normal or Gaussian distributed with mean J1 and variance (J2, de
noted as N(J1, (J2), if its density function is

(A.42) p(x) = ~(J exp [- (x2-:;)2] ,-00 < x < 00

Many random phenomena obey the bell-shaped normal distribution, at
least approximately, and many observations from nature can be seen as a
continuous, slightly different versions of a typical value-that is probably
why it is called the normal distribution. In such a case, J1 represents the
typical value and (J defines how much instances vary around the proto
typical value.

68.27 percent lie in (J1 - (J,J1 + (J), 95.45 percent in (J1 - 2(J,J1 + 2(J)
and 99.73 percent in (J1- 3(J,J1 + 3(J). Thus Pflx - J11 < 3(J} ::::; .99. For
practical purposes, p(x) ::::; °if x < Ji- 3(J or x > J1 + 3(J. Z is unit normal,
namely, N(O, 1) (see figure A.I) and its density is written as

(A.43) 1 [x2
]pz(x) = -- exp --

J2IT 2
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(A.44)

CENTRAL LIMIT

THEOREM

(A.45)

(A.46)

A.3.6

(A.47)

(A.48)

(A.49)

(A.50)

A Probability

If X - N(p, (J"2) and Y = aX + b, then Y - N(ap + b, a 2(J"2). The
sum of independent normal variables is also normal with p = :L Pi and
(J"2 = Li (J"? If X is N(p, (J"2), then

X-P_Z
(J"

This is called z-normalization.
Let Xl, X2, ... ,XN be a set of lid random variables all having mean p

and variance (J"2. Then the central limit theorem states that for large N,
the distribution of

Xl+X2+ .. ·+ XN

is approximately N (Np, N (J"2). For example, if X is binomial with pa
rameters (N, p), X can be written as the sum of N Bernoulli trials and
(X - Np){.jNp(l - p) is approximately unit normal.

Central limit theorem is also used to generate normally distributed ran
dom variables on computers. Programming languages have subroutines
that return uniformly distributed (pseudo-)random numbers in the range
[0,1]. When Ui are such random variables, LJ~l Ui - 6 is approximately
Z.

Let us say Xl - N(p, (J"2). The estimated sample mean

L~=l xtm = =-'-'=-=---
N

is also normal with mean p and variance (J"2 / N.

Chi-Square Distribution

If Zi are independent unit normal random variables, then

X = Zr + Z~ + ... + Z~

is chi-square with n degrees of freedom, namely, X - X~, with

E[X] = n, Var(X) = 2n

When Xt - N(p, (J"2), the estimated sample variance is

52 = Lt(Xt - m)2

N-1
and we have

52
(N -1)-2 - X~_l

(J"

It is also known that m and 52 are independent.
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(A.51)

A.4 References

t Distribution

If Z ~ Z and X ~ X~ are independent, then

T __Z_
n- .jX/n

is t-distributed with n degrees of freedom with

407

(A.52)
n

E[Tnl = O,n > 1, Var(Tn) = --2,n > 2
n-

Like the unit normal density, t is symmetric around O. As n becomes
larger, t density becomes more and more like the unit normal, the differ
ence being that t has thicker tails, indicating greater variability than does
normal.

A.3.8 F Distribution

(A.53)

(A.54)

A.4

If Xl ~ X~ and X2 ~ X~ are independent chi-square random variables
with n and m degrees of freedom respectively,

F _ Xl/n
n,m - X2/ m

is F-distributed with nand m degrees of freedom with

m m 2 (2m + 2n - 4)
E[Fn,ml = m _ 2' m > 2, Var(Fn,m) = n(m _ 2)2(m _ 4)' m > 4
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5x2
cross-validation, 331
cv paired F test, 344
cv paired t test, 343

AdaBoost, 361
Adaptive resonance theory, 281
Additive models, 170
Agglomerative clustering, 147
Analysis of variance, 345
Anchor, 287
Anova, see Analysis of variance
Approximate normal test, 341
Apriori algorithm, 56
ART, see Adaptive resonance theory
Artificial neural networks, 229
Association rule, 3, 56
Attribute, 85
Autoassociator, 263

Backpropagation,246
through time, 268

Backup, 382
Backward selection, 106
Backward variable, 314
Bagging, 360
Base-learner, 352
Basis function, 200

cooperative vs. competitive, 293
normalization, 291

Basket analysis, 56

Batch learning, 247
Baurn-Welch algorithm, 318
Bayes' classifier, 43
Bayes' estimator, 68
Bayes' rule, 42, 401
Bayesian model combination, 356
Bayesian model selection, 81
Belief networks, 48

belief propagation, 53
Belief state, 390
Bellman's equation, 378
Between-class scatter matrix, 125
Bias, 65
Bias unit, 233
Bias/variance dilemma, 77
Binary split, 175
binding, 190
Binomial test, 340
Bonferroni correction, 348
Boosting, 360
Bootstrap, 332

C4.5,179
C4.5Rules, 185
CART, 179, 191
Cascade correlation, 260
Cascading, 366
Case-based reasoning, 169
Causality, 53

causal graph, 49
Centrallirnit theorem, 406
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Class
confusion matrix, 333
likelihood,42

Classification, 4
likelihood- vs. discriminant

based,197
Classification tree, 176
Cluster, 134
Clustering, 10

agglomerative, 147
divisive, 147
hierarchical, 147
online, 277

Code word, 136
Codebook vector, 136
Color quantization, 135
Common principal components,

115
Competitive basis functions, 293
Competitive learning, 276
Complete-link clustering, 147
Component density, 134
Compression, 7, 136
Condensed nearest neighbor, 162
Confidence interval

one-sided, 336
two-sided, 335

Confidence of an association rule,
56

Confusion matrix, 333
Connection weight, 233
Contingency table, 342
Correlation, 87
Cost-sensitive learning, 330
Covariance matrix, 86
Credit assignment, 374
Critic, 374
Cross-entropy, 209
Cross-validation, 34, 79, 330

5x2,331
K-fold,331

Curse of dimensionality, 160

Index

Decision node, 173
Decision region, 45
Decision tree, 173

multivariate, 190
onmivariate, 193
soft, 301
univariate, 175

Delve repository, 15, 349
Dendrogram, 148
Density estimation, 10
Dichotomizer, 45
Dimensionality reduction

nonlinear, 265
Directed acyclic graph, 48
Discount rate, 377
Discriminant, 5

function, 45
linear, 95
quadratic, 93

Discriminant adaptive nearest
neighbor, 162

Discriminant-based classification,
197

Divisive clustering, 147
Doubt, 21
Dynamic node creation, 260
Dynamic programming, 379

ECOC, see Error-correcting output
codes

Eigendigits, 114
Eigenfaces, 114
Eligibility trace, 385
EM, see Expectation-Maximization
Emission probability, 309
Empirical error, 20
Ensemble, 354
Entropy, 176
Episode, 377
Epoch,247
Error

type 1,338
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type II, 338
Error-correcting output codes, 357
Euclidean distance, 96
Evidence, 42
Example, 85
Expectation-Maximization, 140

supervised, 295
Expected error rate, 328
Expected utility, 46
Explaining away, 50
Extrapolation, 29

FA, see Factor analysis
Factor analysis, 116
Feature, 85

extraction, 106
selection, 106

Finite-horizon, 377
First-order rule, 189
Fisher's linear discriminant, 125
Flexible discriminant analysis, 115
Floating search, 107
Foil,187
Forward selection, 106
Forward variable, 312
Forward-backward procedure, 312
Fuzzy k-means, 150
Fuzzy membership function, 291
Fuzzy rule, 291

Generalization, 20, 33
Generalized linear models, 227
Gini index, 177
Gradient descent, 207

stochastic, 237
Gradient vector, 207
Graphical models, 48
Group, 134

Hamming distance, 161
Hebbian learning, 279
Hidden layer, 242
Hidden Markov model, 309

411

input-output, 321
left-to-right, 322

Hidden variables, 54
Hierarchical clustering, 147
Hierarchical cone, 256
Hierarchical mixture of experts,

300
Higher-order term, 199
Hint, 257
Histogram, 155
HMM, see Hidden Markov model
Hybrid learning, 287
Hypothesis, 19

class, 19
most general, 20
most specific, 20

Hypothesis testing, 338

ID3, 179
IF-THEN rules, 185
lid (independent and identically

distributed), 35
Ill-posed, 32
Impurity measure, 176
Imputation, 87
Inductive bias, 32
Inductive logic programming, 190
Infinite-horizon, 377
Influence diagrams, 55
Initial probability, 306
Input, 85
Input representation, 17
Input-output HMM, 321
Instance, 85
Instance-based learning, 154
Interpolation, 29
Interpretability, 185
Interval estimation, 334
Irep, 187

Job shop scheduling, 392
Junction tree, 53
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K-armed bandit, 375
K-fold

cross-validation, 331
cv paired t test, 343

k-means clustering, 13 7
fuzzy, 150
online, 277

k-nearest neighbor
classifier, 162
density estimate, 159
smoother, 167

k-nn, see k-nearest neighbor
Karhunen-Loeve expansion, 115
Kernel estimator, 157
Kernel function, 157,224
Kernel machine, 224
Kernel smoother, 166
Knowledge extraction, 7, 186,290
Kolmogorov complexity, 81

Latent factors, 116
Lateral inhibition, 278
LOA, see Linear discriminant

analysis
Leader cluster algorithm, 138
Leaf node, 173
Learning automata, 392
Learning vector quantization, 296
Least squares estimate, 74
Leave-one-out, 331
Left-to-right HMM, 322
Level of significance, 338
Levels of analysis, 230
Likelihood,62
Likelihood ratio, 57
Likelihood-based classification, 197
Linear classifier, 95, 204
Linear discriminant, 95, 198

analysis, 124
Linear opinion pool, 354
Linear regression, 74

multivariate, 100

Index

Linear separability, 203
Local representation, 284
Locally weighted running line

smoother, 167
Loess, see Locally weighted running

line smoother
Log likelihood, 62
Log odds, 57, 205
Logistic discrimination, 208
Logistic function, 206
Logit, 205
Loss function, 43
LVQ, see Learning vector

quantization

Mahalanobis distance, 88
Margin, 218, 362
Markov decision process, 377
Markov mixture of experts, 321
Markov model, 306

hidden, 309
learning, 308, 317
observable, 307

Maximum a Posteriori estimate, 68
Maximum likelihood estimation, 62
McNemar's test, 342
MOP, see Markov decision process
MOS, see Multidimensional scaling
Mean square error, 65
Mean vector, 86
Memory-based learning, 154
Minimum description length, 81
Mixture components, 134
Mixture density, 134
Mixture of experts, 296, 363

competitive, 300
cooperative, 299
hierarchical, 300
Markov, 321

Mixture of factor analyzers, 145
Mixture of mixtures, 146
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Mixture of probabilistic principal
component analyzers, 145

Mixture proportion, 134
Model combination

multiexpert, 353
multistage, 354

Model selection, 33
MoE, see Mixture of experts
Momentum, 253
Multidimensional scaling, 121

nonlinear, 283
using MLP, 265

Multilayer perceptrons, 242
Multiple comparisons, 348
Multivariate linear regression. 100
Multivariate polynomial regression,

101
Multivariate tree, 190

Naive Bayes' classifier. 53.95
Naive estimator. 155
Nearest mean classifier. 96
Nearest neighbor classifier. 162

condensed, 162
Negative examples, 17
Neuron, 229
No Free Lunch Theorem. 329
Noise. 25
Nonparametric estimation, 153
Nonparametric testing, 348
Null hypothesis. 338

Observable Markov model, 307
Observable variable. 40
Observation. 85
Observation probability. 309
OC1.192
Occam's razor. 27
Off-policy. 384
Omnivariate decision tree. 193
On-policy, 384
One-sided confidence interval. 336

413

One-sided test, 339
Online k-means. 277
Online learning. 237
Optimal policy, 378
Optimal separating hyperplane, 218
Outlier detection, 7
Overfitting, 33. 77
Overtraining. 254

PAC, see Probably Approximately
Correct

Paired t test. 341
Pairwise separation, 204, 358
Parallel processing, 232
Partially observable Markov

decision process, 390
Parzen windows, 157
Pattern recognition. 6
PCA, see Principal components

analysis
Perceptron, 233
Phone, 323
Piecewise approximation

constant, 244. 296
linear, 296

Policy, 377
Polychotomizer,45
Polynomial regression, 75

multivariate, 101
POMOP, see Partially observable

Markov decision process
Positive examples, 17
Posterior probability of a class, 42
Posterior probability of a

parameter, 67
Postpruning, 182
Potential function. 200
Power function. 339
Predicate. 189
Prediction, 5
Prepruning, 182
Principal components analysis. 109
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Principal curves, 129
Prior knowledge, 290
Prior probability of a class, 42
Prior probability of a parameter, 67
Probabilistic networks, 48
Probabilistic PCA, 118
Probably approximately correct

learning, 24
Product term, 199
Projection pursuit, 270
Proportion of variance, 112
Propositional rule, 189
Pruning

postpruning, 182
prepruning, 182
set, 182

Q learning, 384
Quadratic discriminant, 93, 199
Quantization, 136

Radial basis function, 286
REF, see Radial basis function
Real time recurrent learning, 268
Receiver operating characteristics,

334
Receptive field, 284
Reconstruction error, 115, 136
Recurrent network, 267
Reference vector, 136
Regression, 8, 29

linear, 74
polynomial, 75
polynomial multivariate, 101
robust, 226

Regression tree, 180
Regressogram, 165
Regularization, 79, 262
Regularized discriminant analysis,

98
Reinforcement learning, 11
Reject, 29, 44
Relative square error, 75

Index

Representation, 17
distributed vs. local, 284

Ridge regression, 262
Ripper, 187
Risk function, 43
Robust regression, 226
ROC, see Receiver operating

characteristics
RSE, see Relative square error
Rule

extraction, 290
induction, 186
pruning, 186

Rule support, 186
Rule value metric, 187
Running smoother

line, 167
mean, 165

Sammon mapping, 123
using MLP, 265

Sammon stress, 123
Sample, 40

correlation, 87
covariance, 87
mean, 87

Sarsa, 384
Sarsa(A), 387

Scatter, 124
Scree graph, 112
Self-organizing map, 282
Semiparametric density estimation,

134
Sensor fusion, 352
Sequential covering, 187
Sigmoid, 206
Single-link clustering, 147
Slack Variable, 222
Smoother, 164
Smoothing splines, 168
Soft count, 318
Soft error, 222
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Soft weight sharing, 263
Softmax, 212
SOM, see Self-organizing map
Spectral decomposition, III
Speech recognition, 322
Sphere node, 191
Stability-plasticity dilemma, 277
Stacked generalization, 364
Statlib repository, 15
Statlog, 349
Stochastic automaton, 306
Stochastic gradient descent, 237
Stratification, 331
Strong learner, 360
Structural adaptation, 259
Structural risk minimization, 80
Subset selection, 106
Supervised learning, 8
Support of an association rule, 56
Support vector machine, 221
SVM, see Support vector machine
Synapse,230
Synaptic weight, 233

t distribution, 337
t test, 339
Tangent prop, 259
TO, see Temporal difference
Template matching, 96
Temporal difference, 381

learning, 384
TO(0),385
TO-Gammon, 392

Test set, 34
Threshold, 201

function, 234
Time delay neural network, 266
Topographical map, 283
Transition probability, 306
Traveling salesman problem, 302
Triple trade-off, 33
Two-sided confidence interval, 335

Two-sided test, 338
Type I error, 338
Type II error, 338

UCI repository, 15
Unbiased estimator, 65
Underfitting, 33, 77
Unfolding in time, 267
Unit normal distribution, 335
Univariate tree, 175
Universal approximation, 244
Unobservable variable, 40
Unstable algorithm, 360
Utility function, 46
Utility theory, 46

Validation set, 34
Value iteration, 379
Value of information, 47, 390
Vapnik-Chervonenkis (VC)

dimension, 22
Variance, 66
Vector quantization, 136

supervised, 296
Version space, 20
Vigilance, 281
Virtual example, 258
Viterbi algorithm, 316
Voronoi tesselation, 162
Voting, 354

VVeaklearner, 360
Weight

decay, 259
sharing, 256
sharing soft, 263
vector, 201

Winner-take-all, 276
VVithin-class scatter matrix, 126

z, see Unit normal distribution
z-normalization, 89, 406
Zero-one loss function, 43
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