
Introduction

to

Mach ine

Learn ing

Ethem Alpaydın

The MIT Press

So lut ions Manua l

Please email remarks, suggestions, corrections to
alpaydin@boun.edu.tr

Version 1 Printed on January 10, 2007

1 Introduction

1. Imagine you have two possibilities: You can fax a document, that is,
send the image, or you can use an optical character reader (OCR) and
send the text file. Discuss the advantage and disadvantages of the two
approaches in a comparative manner. When would one be preferable
over the other?

The text file typically is shorter than the image file but a faxed docu-
ment can also contain diagrams, pictures, etc. After using an OCR, we
lose properties such as font, size, etc (unless we also recognize and
transmit such information) or the personal touch if it is handwritten
text. OCR may not be perfect, and for ambigious cases, OCR should
identify those image blocks and transmit them as they are. A fax ma-
chine is cheaper and easier to find than a computer with scanner and
OCR software.

OCR is good if we have high volume, good quality documents; for doc-
uments of few pages with small amount of text, it is better to transmit
the image.

2. Let us say we are building an OCR and for each character, we store
the bitmap of that character as a template that we match with the read
character pixel by pixel. Explain when such a system would fail. Why
are barcode readers still used?

Such a system allows only one template per character and cannot dis-
tinguish characters from multiple fonts, for example. There are stan-
dardized fonts such as OCR-A and OCR-B, the fonts you typically see
in vouchers and banking slips, which are used with OCR software, and
you may have already noticed how the characters in these fonts have
been slightly changed to minimize the similarities between them. Bar-

2 1 Introduction

code readers are still used because reading barcodes is still a better
(cheaper, more reliable, more available) technology than reading char-
acters.

3. Assume we are given the task to build a system that can distinguish
junk e-mail. What is in a junk e-mail that lets us know that it is junk?
How can the computer detect junk through a syntactic analysis? What
would you like the computer to do if it detects a junk e-mail—delete
it automatically, move it to a different file, or just highlight it on the
screen?

Typically, spam filters check for the existence/absence of words and
symbols. Words such as “opportunity”, ”viagra”, ”dollars” as well as
characters such as ’$’, ’!’ increase the probability that the email is
spam. These probabilities are learned from a training set of example
past emails that the user has previously marked as spam (One very
frequently used method for spam filtering is the naive Bayes’ classifier
which we discuss in Section 5.7).

The spam filters do not work with 100 percent reliability and fre-
quently make errors in classification. If a junk mail is not filtered
and showed to the user, this is not good, but it is not as bad as filter-
ing a good mail as spam. Therefore, mail messages that the system
considers as spam should not be automatically deleted but kept aside
so that the user can see them if he/she wants to, especially in the
early stages of using the spam filter when the system has not yet been
trained sufficiently.

Note that filtering spam will probably never be solved completely as
the spammers keep finding novel ways to outdo the filters: They use
digit ‘0’ instead of the letter ’O’, digit ‘1’ instead of letter ‘l’ to pass
the word tests, add pieces of texts from regular messages for the mail
to be considered not spam, or send it as image not as text (and lately
distort the image in small random amounts to that it is not always the
same image). Still, spam filtering is probably one of the best applica-
tion areas of machine learning where learning systems can adapt to
changes in the ways spam messages are generated.

4. Let us say you are given the task of building an automated taxi. Define
the constraints. What are the inputs? What is the output? How can you
communicate with the passenger? Do you need to communicate with
the other automated taxis, that is, do you need a “language”?

3

An automated taxi should be able to pick a passenger and drive him/her
to a destination. It should have some positioning system (GPS/GIS) and
should have other sensors (cameras) to be able to sense cars, pedes-
trians, obstacles etc on the road. The output should be the sequence
of actions to reach the destination in the smallest time with the min-
imum inconvenience to the passenger. The automated taxi needs to
communicate with the passenger to receive commands and may also
need to interact with other automated taxis to exhange information
about road traffic or scheduling, load balancing, etc.

5. In basket analysis, we want to find the dependence between two items
X and Y . Given a database of customer transactions, how can you find
these dependencies? How would you generalize this to more than two
items?

This is discussed in Section 3.9.

6. How can you predict the next command to be typed by the user? Or
the next page to be downloaded over the Web? When would such a
prediction be useful? When would it be annoying?

These are also other applications of basket analysis. The result of
any statistical estimation has the risk of being wrong. That is, such
dependencies should always be taken as an advice which the user can
then adopt or refuse. Assuming them to be true and taking automatic
action accordingly would be annoying.

2 Supervised Learning

1. Write the computer program that finds S and G from a given training
set.

The Matlab code given in ex2_1.m does not consider multiple possible
generalizations of S or specializations of G and therefore may not
work for small datasets. An example run is given in figure 2.1.

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

G

C

S

Figure 2.1 ‘+’/’o’ are the positive and negative examples. C , S and G are the
actual concept, the most specific hypothesis and the most general hypothesis
respectively.

5

2. Imagine you are given the training instances one at a time, instead of
all at once. How can you incrementally adjust S and G in such a case?
(Hint: See the candidate elimination algorithm in Mitchell 1997.)

The candidate elimination algoritm proposed by Mitchell starts with
S as the null set and G as containing the whole input space. At each
instance x, S and G are updated as follows (Mitchell, 1997; p. 33):

� If x is a positive example, remove any g ∈ G that covers x and
expand any s ∈ S that does not cover x

� If x is a negative example, remove any s ∈ S that covers x and
restrict any g ∈ G that does cover x

The important point is that when we are restricting a g ∈ G (special-
ization) or expanding a s ∈ S (generalization), there may be more than
one way of doing it, and this creates multiple hypotheses in S or G. For
example, in figure 2.2, if we see a negative example at (20000,2000)
after two positive examples G = (−∞ < x < ∞,−∞ < y < ∞) splits in
two: G = (−∞ < x < 20000,−∞ < y < ∞), (−∞ < x < ∞,−∞ < y <
2000). These are two different ways of specializing G so that it does
not include any positive example.

x
 2
: E
ng

in
e

po
w

er

x
1
: Price

G
1

10,000
 20,000
15,000

1,400

1,200

1,600

1,800

S

G
2

Figure 2.2 There are two specializations of G.

6 2 Supervised Learning

3. Why is it better to use the average of S and G as the final hypothesis?

If there is noise, instances may be slightly changed; in such a case,
using halfway between S and G will make the hypothesis robust to
such small perturbations.

4. Let us say our hypothesis class is a circle instead of a rectangle. What
are the parameters? How can the parameters of a circle hypothesis be
calculated in such a case? What if it is an ellipse? Why does it make
more sense to use an ellipse instead of a circle? How can you generalize
your code to K > 2 classes?

In the case of a circle, the parameters are the center and the radius (see
figure 2.3). We then need to find the tightest circle that includes all the
positive examples as S and G will be the largest circle that includes all
the positive examples and no negative example:

c

x
 2
: E
ng

in
e

po
w

er

x
1
: Price

C

r

c

c
1

c
2

Figure 2.3 Hypothesis class is a circle with two parameters, the coordinates of
its center and its radius.

It makes more sense to use an ellipse because the two axes need not
have the same scale and an ellipse has two separate parameters for
the widths in the two axes rather than a single radius.

When there are K > 2 classes, we need a separate circle/ellipse for
each class. For each class Ci , there will be one hypothesis which takes

7

all elements of Ci as positive examples and instances of all Cj , j 6= i as
negative examples.

5. Imagine our hypothesis is not one rectangle but a union of two (or m >
1) rectangles. What is the advantage of such a hypothesis class? Show
that any class can be represented by such a hypothesis class with large
enoughm.

In the case when there is a single rectangle, all the positive instances
should form one single group; by increasing the number of rectangles,
we get flexibility. With two rectangles for example (see figure 2.4),
the positive instances can form two, possibly disjoint clusters in the
input space. Note that each rectangle corresponds to a conjunction on
the two input attributes and having multiple rectangles, corresponds
to a disjunction. Any logical formula can be written as a disjunction
of conjunctions. In the worst case (m = N), we can have a separate
rectangle for each positive instance.

x
 2
: E
ng

in
e

po
w

er

x
1
: Price

h
1

h
2

C

Figure 2.4 Hypothesis class is a union of two rectangles.

6. If we have a supervisor who can provide us with the label for any x,
where should we choose x to learn with fewer queries?

The region of ambiguity is between S and G. It would be best to be
given queries there so that we can make this region of doubt smaller.
If a given instance there turns out to be positive, this means we can

8 2 Supervised Learning

make S larger up to that instance; if it is negative, this means we can
shrink G up until there.

7. In equation 2.12, we summed up the squares of the differences between
the actual value and the estimated value. This error function is the one
most frequently used, but it is one of several possible error functions.
Because it sums up the squares of the differences, it is not robust to
outliers. What would be a better error function to implement robust
regression?

As we see in Chapter 4, the squared error corresponds to assuming
that there is Gaussian noise. If the noise comes from a distribution
with long tails, then summing up squared differences cause a few, far
away points, i.e., outliers, to corrupt the fitted line.

To decrease the effect of outliers, we can sum up the absolute value of
differences instead of squaring them:

E(g|X) = 1
N

N∑

t=1

|r t − g(xt)|

but note that we lose from differentiability. Support vector regres-
sion which we discuss in Chapter 10 uses an error function (see equa-
tion 10.61 and figure 10.13) which uses absolute difference and also
has a term that neglects the error due to very small differences.

8. Derive equation 2.16.

We take the derivative of the sum of squared errors with respect to the
two parameters, set them equal to 0 and solve these two equations in
two unknowns:

E(w1, w0|X) = 1
N

N∑

i=1

[
r t − (w1xt +w0)

]2

∂E
∂w0

=
∑
t

[
r t − (w1xt +w0)

] = 0

∑
t
r t = w1

∑
t
xt +Nw0

w0 =
∑
t
r t/N −w1

∑
t
xt/N = r −w1x

∂E
∂w1

=
∑
t

[
r t − (w1xt +w0)

]
xt = 0

9

∑
t
r txt = w1

∑
t
(xt)2 +w0

∑
t
xt

∑
t
r txt = w1

∑
t
(xt)2 + (r −w1x)

∑
t
xt

∑
t
r txt = w1


∑
t
(xt)2 − x

∑
t
xt

+ r

∑
t
xt

∑
t
r txt = w1


∑
t
(xt)2 − xNx


+ rNx

w1 =
∑
t r txt − xrN∑
t(xt)2 −Nx2

9. Assume our hypothesis class is the set of lines, and we use a line to
separate the positive and negative examples, instead of bounding the
positive examples as in a rectangle, leaving the negatives outside (see
figure 2.10). Show that the VC dimension of a line is 3.

As we see in figure 2.5 below, for all possible labeling of three points,
there exist a line to separate positive and negative examples. With four
points, no matter how we place these four points in two dimensions,
there is at least one labeling where we cannot draw a line such that on
one side lie all the positives and on the other lie all the negatives.

x
1

x
 2

All possible labelings of three points can be separated

using a line.

x
1

x
 2

These four points cannot be separated using a line.

Figure 2.5 With a line, we can shatter three points but not four.

10. Show that the VC dimension of the triangle hypothesis class is 7 in two

10 2 Supervised Learning

dimensions. (Hint: For best separation, it is best to place the seven points
equidistant on a circle.)

As we can see in figure 2.6, for all possible labeling of seven points,
we can draw a triangle to separate the positive and negative examples.
We cannot do the same when there are eight points.

x
1

x
 2

x
1

x
 2

These eight points with this labeling cannot be

separated using a triangle.

These seven points can be separated using a

triangle no matter how they are labeled.

Figure 2.6 A triangle can shatter seven points but not eight.

3 Bayesian Decision Theory

1. In a two-class problem, the likelihood ratio is

p(x|C1)
p(x|C2)

Write the discriminant function in terms of the likelihood ratio.

We can define a discriminant function as

g(x) = P(C1|x)
P(C2|x) and choose

{
C1 if g(x) > 1
C2 otherwise

We can write the discriminant as the product of the likelihood ratio
and the ratio of priors:

g(x) = p(x|C1)
p(x|C2)

P(C1)
P(C2)

If the priors are equal, the discriminant is the likelihood ratio (see also
the next exercise).

2. In a two-class problem, the log odds is defined as

log
P(C1|x)
P(C2|x)

Write the discriminant function in terms of the log odds.

We define a discriminant function as

g(x) = log
P(C1|x)
P(C2|x) and choose

{
C1 if g(x) > 0
C2 otherwise

12 3 Bayesian Decision Theory

Log odds is the sum of log likelihood ratio and log of prior ratio:

g(x) = log
p(x|C1)
p(x|C2)

+ log
P(C1)
P(C2)

If the priors are equal, the discriminant is the log likelihood ratio.

3. In a two-class, two-action problem, if the loss function is λ11 = λ22 = 0,
λ12 = 10, and λ21 = 1, write the optimal decision rule.

We calculate the expected risks of the two actions:

R(α1|x) = λ11P(C1|x)+ λ12P(C2|x) = 10P(C2|x)
R(α2|x) = λ21P(C1|x)+ λ22P(C2|x) = P(C1|x)

and we choose C1 if R(α1|x) < R(α2|x), or if P(C1|x) > 10P(C2|x),
P(C1|x) > 10/11. Assigning accidentally an instance of C2 to C1 is so
bad that we need to be very sure before assigning an instance to C1.

4. Somebody tosses a fair coin and if the result is heads, you get nothing,
otherwise you get $5. How much would you pay to play this game?
What if the win is $500 instead of $5?

With five dollars, the expected earning is (1/2) · 0 + (1/2) · 5 = 2.5
dollars and one can bet up that amount to play the game. With a
reward of 500 dollars, the expected earning is 250 and one can bet
up that amount. However research has shown that people are risk
aversive, in the sense that though they may risk small amounts, they
do not like to risk larger amounts, even though odds may be more
favorable. See for example, A. Tversky, D. Kahneman. 1981. “The
framing of decisions and the psychology of choice,” Science 211: 453–
458.

5. In figure 3.4, calculate P(C|W).

P(C|W) = P(W |C)P(C)
P(W)

P(W) = P(W |C)P(C) + P(W |∼C)P(∼C)
P(W |∼C) = P(W |R, S,∼C)P(R, S|∼C)

+P(W |∼R, S,∼C)P(∼R, S|∼C)

13

+P(W |R,∼S,∼C)P(R,∼S|∼C)
+P(W |∼R,∼S,∼C)P(∼R,∼S|∼C)

= P(W |R, S)P(R|∼C)P(S|∼C)
+P(W |∼R, S)P(∼R|∼C)P(S|∼C)
+P(W |R,∼S)P(R|∼C)P(∼S|∼C)
+P(W |∼R,∼S)P(∼R|∼C)P(∼S|∼C)

6. In figure 3.5, calculate P(F|C).

P(F|C) = P(F|R)P(R|C) + P(F|∼R)P(∼R|C)

7. Given the structure in figure 3.5 and a sample X containing observa-
tions as

Cloudy Sprinkler Rain Wet grass Roof
No Yes No Yes Yes
Yes No Yes No No

...
...

...
...

...

how do you learn the probabilities?

We estimate the probabilities by counting the proportions of occur-
rences:

P(C) = #{cases where cloudy = ‘yes’}
#{cases}

P(S|C) = P(S,C)
P(C)

= #{cases where sprinkler = ‘yes’ and cloudy = ‘yes’}
#{cases where cloudy = ‘yes’}

...

8. Generalize the confidence and support formulas for basket analysis to
calculate k-dependencies, namely, P(Y |X1, . . . , Xk).

We are interested in rules of the form X1, X2, . . . , Xk → Y :

� Support:

P(X1, X2, . . . , Xk, Y) = #{customers who bought X1 and . . . Xk and Y}
#{customers}

14 3 Bayesian Decision Theory

� Confidence:

P(Y |X1, X2, . . . , Xk) = P(X1, X2, . . . , Xk, Y)
P(X1, X2, . . . , Xk)

= #{customers who bought X1 and . . . Xk and Y}
#{customers who bought X1 and . . . Xk}

Note that people who bought X1, X2, X3 over a certain number should
have bought X1, X2 and X1, X3 and X2, X3 over the same amount. So
one can expand k-dependencies from (k−1)-dependencies. This is the
basic idea behind the Apriori algorithm.

9. If, in basket analysis, associated with each item sold, we also have a
number indicating how much the customer enjoyed the product, for
example, in a scale of 0 to 10, how can you use this extra information
to calculate which item to propose to a customer?

One can come up with a weighted confidence measure, or considering
that these are numeric values now, one can calculate correlations and
propose a new product that has the highest positive correlation with
the current one, if the correlation is high enough.

4 Parametric Methods

1. Write the code that generates a Bernoulli sample with given parameter
p, and the code that calculates p̂ from the sample.

The Matlab code is given in ex4_1.m.

2. Write the log likelihood for a multinomial sample and show equation 4.6.

We add the constraint as a Lagrange term and maximize it:

J(pi) =
∑

i

∑
t
xti logpi + λ(1−

∑

i
pi)

∂J
pi

=
∑
t xti
pi

− λ = 0

λ =
∑
t xti
pi

⇒ piλ =
∑
t
xti

∑

i
piλ =

∑

i

∑
t
xti ⇒ λ =

∑
t

∑

i
xti

pi =
∑
t xti∑

t
∑
i xti
=
∑
t xti
N

because
∑

i
xti = 1

3. Write the code that generates a normal sample with given µ and σ , and
the code that calculates m and s from the sample. Do the same using
the Bayes’ estimator assuming a prior distribution for µ.

The Matlab code is given in ex4_3.m and we see an example output in
figure 4.1.

4. Given two normal distributions p(x|C1) ∼ N (µ1, σ 2
1) and p(x|C2) ∼

N (µ2, σ 2
2) and P(C1) and P(C2), calculate the Bayes’ discriminant points

analytically.

16 4 Parametric Methods

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Figure 4.1 Actual Gaussian density (continuous line), a sample drawn from it
(×), and a Gaussian fitted to the sample (dotted line).

We have

p(x|C1) ∼ N (µ1, σ 2
1) =

1√
2πσ1

exp

[
−(x− µ1)2

2σ 2
1

]

p(x|C2) ∼ N (µ2, σ 2
2)

We would like to find x that satisfy P(C1|x) = P(C2|x), or:

p(x|C1)P(C1) = p(x|C2)P(C2)

logp(x|C1)+ logP(C1) = logp(x|C2)+ logP(C2)

−1
2

log 2π − logσ1 − (x− µ1)2

2σ 2
1

+ logP(C1) = · · ·

− logσ1 − 1

2σ 2
1

(
x2 − 2xµ1 + µ2

1

)
+ logP(C1) = · · ·

(
1

2σ 2
2

− 1

2σ 2
1

)
x2 +

(
µ1

σ 2
1

− µ2

σ 2
2

)
x+

(
µ2

2

2σ 2
2

− µ2
1

2σ 2
1

)
+ log

σ2

σ1
+ log

P(C1)
P(C2)

= 0

This is of the form ax2 + bx+ c = 0 and the two roots are

x1, x2 = −b ±
√
b2 − 4ac
2a

17

Note that if the variances are equal, a = 0 and there is one root, that
is, the two posteriors intersect at a single x value.

5. What is the likelihood ratio

p(x|C1)
p(x|C2)

in the case of Gaussian densities?

p(x|C1)
p(x|C2)

=
1√

2πσ1
exp

[
− (x−µ1)2

2σ 2
1

]

1√
2πσ2

exp
[
− (x−µ2)2

2σ 2
2

]

If we have σ 2
1 = σ 2

2 = σ 2, we have

p(x|C1)
p(x|C2)

= exp

[
−(x− µ1)2

2σ 2
+ (x− µ2)2

2σ 2

]

= exp

[
(µ1 − µ2)
σ 2

x+ µ
2
2 − µ2

1

2σ 2

]

= exp(wx+w0)

If we calculate the odds assuming equal priors, we have

P(C1|x)
P(C2|x) = P(C1|x)

1− P(C1|x) =
p(x|C1)
p(x|C2)

P(C1)
P(C2)

= exp(wx+w0)

P(C1|x) = exp(wx+w0)
1+ exp(wx+w0)

= 1
1+ exp(−(wx+w0))

which is the logistic function in terms of differences of means etc.

6. For a two-class problem, generate normal samples for two classes with
different variances, then use parametric classification to estimate the
discriminant points. Compare these with the theoretical values.

The Matlab code is given in ex4_6.m, and its output plot is in fig-
ure 4.2.

Output:

18 4 Parametric Methods

Real values C1:(3.0,1.0)- C2:(2.0,0.3)
Estimates C1:(3.45,1.23)- C2:(2.15,0.26)
Actual intersect pts: 2.49 1.31
Estimated intersect pts: 2.64 1.53

0 1 2 3 4 5 6
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Figure 4.2 Actual densities, posteriors, drawn samples and the fitted densities
and posteriors for a two-class problem. The continuous lines are the actual
densities and posteriors and the dotted lines are the estimations using the data
points shown by ‘×’ and ‘◦’.

7. Assume a linear model and then add 0-mean Gaussian noise to gener-
ate a sample. Divide your sample into two as training and validation
sets. Use linear regression using the training half. Compute error on
the validation set. Do the same for polynomials of degrees 2 and 3 as
well.

The Matlab code given in ex4_7.m samples data from 2 sin(1.5x) +
N (0,1), and fits five times polynomials of order 1, 2 and 3. It also
calculates their bias and variance. This is the code used to generate
figure 4.5 of the book (with orders 1, 3 and 5). The plots are given in
figure 4.3 (This is figure 4.5 in the book):

Output:

19

Order 1 B=1.80 V=0.29 E=2.09
Order 2 B=1.25 V=0.38 E=1.63
Order 3 B=0.28 V=0.30 E=0.58

0 1 2 3 4 5
−5

0

5
(a) Function and data

0 1 2 3 4 5
−5

0

5
(b) Order 1

0 1 2 3 4 5
−5

0

5
(c) Order 2

0 1 2 3 4 5
−5

0

5
(d) Order 3

Figure 4.3 Function, one random noisy sample and five fitted polynomials of
order 1, 2 and 3.

8. When the training set is small, the contribution of variance to error may
be more than that of bias and in such a case, we may prefer a simple
model even though we know that it is too simple for the task. Can you
give an example?

With small datasets and complex models, the fit will have high variance
because there is not enough data to sufficiently constrain the model
and the fit will follow noise. In such a case, it is better to use a simple
model though it risks having high bias.

If we run the program of exercise 4.7 here with six data points (ex4_8.m
has N = 6 on line 2), we get the result in figure 4.4 and the following
output

Order 1 B=1.66 V=0.37 E=2.03

20 4 Parametric Methods

Order 2 B=1.31 V=1.59 E=2.90
Order 3 B=3.74 V=2.86 E=6.60

0 1 2 3 4 5
−5

0

5
(a) Function and data

0 1 2 3 4 5
−5

0

5
(b) Order 1

0 1 2 3 4 5
−5

0

5
(c) Order 2

0 1 2 3 4 5
−5

0

5
(d) Order 3

Figure 4.4 Function, one random noisy sample and five fitted polynomials of
order 1, 2 and 3.

We see that a linear fit has less error though a third-degree polynomial
is ideally the best.

9. Let us say, given the samples Xi = {xti , r ti }, we define gi(x) = r1
i ,

namely, our estimate for any x is the r value of the first instance in
the (unordered) dataset Xi. What can you say about its bias and vari-
ance, as compared with gi(x) = 2 and gi(x) =

∑
t r ti /N? What if the

sample is ordered, so that gi(x) =mint r ti ?

Taking any instance has less bias than taking a constant but has higher
variance. It has higher variance than the average and it may have
higher bias. If the sample is ordered so that the instance we pick is
the minimum, variance decreases (minimums tend to get more similar
to each other) and bias may also increase. The Matlab code is given in
ex4_9.m and running it, we get the plot of figure 4.5 with the following
output:

21

Order 0 B=1.87 V=0.10 E=1.97
First inst B=2.63 V=2.30 E=4.93
Min inst B=14.42 V=0.53 E=14.95

0 1 2 3 4 5
−5

0

5
(a) Function and data

0 1 2 3 4 5
−5

0

5
(b) Order 0

0 1 2 3 4 5
−5

0

5
(c) First instance

0 1 2 3 4 5
−5

0

5
(d) Min

Figure 4.5 Function, one random noisy sample and the fitted models are:∑
t r t/N, r1, mint r t .

5 Multivariate Methods

1. Show equation 5.11.

Given that

Σ =
[

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

]

we have

|Σ| = σ 2
1σ

2
2 − ρ2σ 2

1σ2 = σ 2
1σ2(1− ρ2)

|Σ|1/2 = σ1σ2

√
1− ρ2

Σ−1 = 1

σ 2
1σ2(1− ρ2)

[
σ 2

2 −ρσ1σ2

−ρσ1σ2 σ 2
1

]

and (x − µ)TΣ−1(x − µ) can be expanded as

[x1 − µ1 x2 − µ2]




σ 2
2

σ 2
1σ2(1−ρ2) − ρσ1σ2

σ 2
1σ2(1−ρ2)

− ρσ1σ2

σ 2
1σ2(1−ρ2)

σ 2
1

σ 2
1σ2(1−ρ2)



[
x1 − µ1

x2 − µ2

]

= 1
1− ρ2

[(
x1 − µ1

σ1

)2

− 2ρ
(
x1 − µ1

σ1

)(
x2 − µ2

σ2

)
+
(
x2 − µ2

σ2

)2
]

2. Generate a sample from a multivariate normal density N (µ,Σ), cal-
culate m and S, and compare them with µ and Σ. Check how your
estimates change as the sample size changes.

The Matlab code is given in ex5_2.m. The result is given in figure 5.1
for different sample sizes.

23

3. Generate samples from two multivariate normal densitiesN (µi ,Σi), i =
1,2, and calculate the Bayes’ optimal discriminant for the four cases in
table 5.1.

The Matlab code is given in ex5_3.m and its output is given in fig-
ure 5.2.

4. For a two-class problem, for the four cases of Gaussian densities in ta-
ble 5.1, derive

log
P(C1|x)
P(C2|x)

Using Bayes’ rule, we have

log
P(C1|x)
P(C2|x) = log

p(x|C1)
p(x|C2)

+ log
P(C1)
P(C2)

Given that

p(xCi) = 1
(2π)d/2|Σi|1/2 exp

[
−1

2
(x − µi)TΣ−1

i (x − µi)
]

we have the following four cases:

(a) Σ1 6= Σ2:

log
p(x|C1)
p(x|C2)

= log
|Σ1|−1/2 exp[−(1/2)(x − µ1)TΣ−1

1 (x − µ1)]
|Σ2|−1/2 exp[−(1/2)(x − µ2)TΣ−1

2 (x − µ2)]

(b) Σ1 = Σ2 = Σ:

log
p(x|C1)
p(x|C2)

= −1
2
(x − µ1)TΣ−1

1 (x − µ1)+
1
2
(x − µ2)TΣ−1

2 (x − µ2)

= xTΣ−1(µ1 − µ2)+
1
2
(µ2 − µ1)TΣ

−1(µ2 + µ1)

We can write

log
P(C1|x)
P(C2|x) = w

Tx +w0

where

w = Σ−1
1 (µ1 − µ2)

w0 = −1
2
(µ1 + µ2)TΣ−1(µ1 − µ2)+ log

P(C1)
P(C2)

24 5 Multivariate Methods

(c) Σ diagonal with σ 2
j , j = 1, . . . , d:

log
P(C1|x)
P(C2|x) =

d∑

j=1

(
µ1j − µ2j

σj

)2

xj − 1
2

d∑

j=1

(
µ2

1j − µ2
2j

σ 2
j

)
+ log

P(C1)
P(C2)

(d) Σ diagonal with σ 2:

log
P(C1|x)
P(C2|x) =

1
σ 2

d∑

j=1

(µ1j − µ2j)2xj − 1
2σ 2

d∑

j=1

(µ2
1j − µ2

2j)+ log
P(C1)
P(C2)

5. Let us say we have two variables x1 and x2 and we want to make a
quadratic fit using them, namely

f (x1, x2) = w0 +w1x1 +w2x2 +w3x1x2 +w4(x1)2 +w5(x2)2

How can we find wi , i = 0, . . . ,5, given a sample of X = {xt1, xt2, r t}?
We write the fit as

f (x1, x2) = w0 +w1z1 +w2z2 +w3z3 +w4z4 +w5z5

where z1 = x1, z2 = x2, z3 = x1x2, z4 = (x1)2, and z5 = (x2)2. We
can then use linear regression to learn wi , i = 0, . . . ,5. The linear fit in
the five-dimensional (z1, z2, z3, z4, z5) corresponds to a quadratic fit in
the two-dimensional (x1, x2) space. We discuss such generalized linear
models in more detail (and other nonlinear basis functions) in chapter
10.

25

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Population

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Data and fitted Gaussian

(a) N = 10

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Population

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Data and fitted Gaussian

(b) N = 50

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Population

0 1 2 3 4
0

0.5

1

1.5

2

2.5

3

3.5

4

x

y

Data and fitted Gaussian

(c) N = 500

Figure 5.1 Gaussian population and the fitted Gaussian for different sample
sizes.

26 5 Multivariate Methods

0 2 4
0

1

2

3

4

x

y

Likelihoods and Posteriors

0 2 4
0

1

2

3

4

x

y

Arbitrary covar

0 2 4
0

1

2

3

4

x

y

Shared covar

0 2 4
0

1

2

3

4

x

y

Diag covar

0 2 4
0

1

2

3

4

x

y

Equal var

Figure 5.2 With two classes, population densities and the optimal Bayes’ dis-
criminant is shown. Then, data are sampled and the estimated likelihoods and
posterior discriminants are shown for the four cases.

6 Dimensionality Reduction

1. Assuming that the classes are normally distributed, in subset selection,
when one variable is added or removed, how can the new discriminant
be calculated quickly? For example, how can the new S−1

new be calculated
from S−1

old?

When we add a new variable, we are adding a row and column to the
covariance matrix. It can be shown that if we partition a symmetric
nonsingular matrix A into (Rencher, 1995; p. 28)

A =
[

A11 a12

aT12 a22

]

the inverse is given by

A−1 = 1
b

[
bA−1

11 +A−1
11a12aT12A−1

11 −A−1
11a12

−aT12A−1
11 1

]

where b = a22 − aT12A−1
11a12. So given A11 and A−1

11 , we can easily cal-
culate A−1 when a12 and a22 (covariances of the new variable with the
existing variables, and its variance) are added.

Another possibility is to break down the Mahalanobis distance calcu-
lation (if we have the previous values stored). Let A be partitioned
as (T. Cormen, C. Leiserson, R. Rivest, C. Stein. 2001. Introduction to
Algorithms, The MIT Press. 2nd edition, p. 761)

A =
[

Ak BT

B C

]

28 6 Dimensionality Reduction

where Ak is the leading k × k submatrix of A and x similarly broken
into two parts, we can write

xTAx = [yTzT]
[

Ak BT

B C

][
y
z

]

= (y +A−1
k BTz)TAk(y +A−1

k BTz)+ zT (C− BA−1
k BT)z

In our case of adding one feature, y will be d-dimensional and z will be
a scalar. If we already have the d-dimensional yTAky values calculated
and stored, we can use the equality above to calculate the (d + 1)-
dimensional xTAx values easily.

2. Using Optdigits from the UCI repository, implement PCA. For various
number of eigenvectors, reconstruct the digit images and calculate the
reconstruction error (equation 6.12).

The Matlab code is given in ex6_2.m (which also generates figure 6.3
in the book). The contour plot of an example ‘6’ and its reconstruc-
tion is given in figure 6.1. The original 64 dimensional data and its
reconstruction are as follows:

tf =
0 0 0 0 0 0 0 0
0 0 0 2 2 0 0 0
0 9 15 15 16 16 12 1
10 14 3 2 15 5 10 11
12 4 0 6 12 0 4 14
0 0 0 1 15 3 11 12
0 0 0 0 4 14 14 1
0 0 0 0 0 0 0 0

tfn =
0 -0.0000 0.0023 0.0010 0.0034 0.0852 0.0572 -0.0000

0.0844 1.2471 2.9502 3.6126 4.2342 3.2692 1.3435 0.0996
3.2523 9.7849 14.2097 14.2816 12.7876 13.9419 11.7729 2.9551

10.8280 13.9309 10.1036 7.0768 7.8097 8.2514 10.9618 11.4303
8.5466 9.3411 3.6087 2.5096 6.3869 6.0329 10.4288 16.4897

-0.4493 1.5186 2.1009 3.1204 7.5014 10.8696 13.2739 11.3677
-1.3608 -1.5062 0.5341 2.1385 3.2335 6.8721 7.8419 4.2543
-0.1859 -0.1063 0.0335 0.0034 0.0000 0.0789 0.4969 0.4434

29

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

1 2 3 4 5 6 7 8
1

2

3

4

5

6

7

8

Figure 6.1 A ‘6’ and its reconstruction using the top two eigenvectors.

3. Plot the map of your state/country using MDS, given the road travel
distances as input.

The Matlab code that generates figure 6.6 in the book is given in ex6_3.m.
It generates the map of Europe from pairwise distances between 12
cities.

4. In Sammon mapping, if the mapping is linear, namely, g(x|W) =WTx,
how can W that minimizes the Sammon stress be calculated?

MDS already does this linear mapping. Another possibility is to plug
in the linear model in Sammon stress (equation 6.29) and find W that
minimizes it. One can for example use an iterative, gradient-descent
procedure; this is especially interesting when the mapping is nonlin-
ear. We discuss this in chapter 11 when we use multilayer perceptrons
(p. 265).

7 Clustering

1. In image compression, k-means can be used as follows: The image is
divided into nonoverlapping c × c windows and these c2-dimensional
vectors make up the sample. For a given k, which is generally a power
of two, we do k-means clustering. The reference vectors and the indices
for each window is sent over the communication line. At the receiv-
ing end, the image is then reconstructed by reading from the table of
reference vectors using the indices. Write the computer program that
does this for different values of k and c. For each case, calculate the
reconstruction error and the compression rate.

This code is very straightforward, given the pseudocode of k-means in
figure 7.3 (p. 139) of the book. One word of caution: When calculating
the compression rate, do not forget to take into account the storage
needed for the reference vectors. Given an n×n image, c× c windows,
m reference vectors, the index of each window is coded using log2m
bits. There are (n/c)2 indices that should be so coded; so the image
is transferred using (n/c)2 log2m bits. There are m reference vectors
each of dimensionality c2. If we need b bits for each dimension, we
need mc2b bits to store the reference vectors.

2. We can do k-means clustering, partition the instances, and then calcu-
late Si separately in each group. Why is this not a good idea?

Because it does hard partitioning. It is always better to do a soft par-
titioning (using hti ∈ (0,1) instead of bti ∈ {0,1}) where instances (in
between two clusters) can contribute to the parameters (the covari-
ance matrix in this case) of more than one cluster, thereby effectively
increasing the training set of each cluster and allowing a smooth tran-
sition between clusters.

31

3. Derive the M-step equations for S in the case of shared arbitrary covari-
ance matrix S (equation 7.15) and s2, in the case of shared diagonal
covariance matrix (equation 7.16).

In the case of a shared arbitrary covariance matrix, in the E-step, we
have

hti =
πi exp[−(1/2)(xt −mi)TS−1

i (xt −mi)]∑
j πj exp[−(1/2)(xt −mj)TS−1

j (xt −mj)]

and in the M-step for the component parameters, we have

min
mi ,S

∑
t

∑

i
hti (x

t −mi)TS−1(xt −mi)

The update equation for mi does not change but for the common co-
variance matrix, we have

Sl =
∑
t
∑
i hti (xt −ml+1

i)(xt −ml+1
i)T∑

t
∑
i hti

=
∑
t
∑
i hti (xt −ml+1

i)(xt −ml+1
i)T

N

Another way we can see this is by considering that

S =
∑

i
P(Gi)Si =

∑

i

(∑
t hti
N

)
Si

In the case of a shared diagonal matrix, for the E-step we have

hti =
πi exp

[−(1/2s2)‖xt −mi‖2
]

∑
j πj exp

[
−(1/2s2)‖xt −mj‖2

]

and in the M-step, we have

min
mi ,s

∑
t

∑

i
hti
‖xt −mi‖2

s2

The update equation for the shared variance is

s2 =
∑
t
∑
i
∑d
k=1 h

t
i (x

t
k −mik)2

Nd

32 7 Clustering

4. Define a multivariate Bernoulli mixture where inputs are binary and
derive the EM equations.

When the components are multivariate Bernouilli, we have d-dimensional
binary vectors. Assuming that the dimensions are independent, we
have (section 5.7)

pi(xt |Φ) =
d∏

j=1

p
xtj
ij (1− pij)1−x

t
j

where Φl = {pli1, pli2, . . . , plid}ki=1. The E-step does not change (equa-
tion 7.9). In the M-step, for the component parameters pij , i = 1, . . . , k, j =
1, . . . , d, we maximize

Q′ =
∑
t

∑

i
hti logpi(xt|φl)

=
∑
t

∑

i
hti
∑

j
xtj logplij + (1− xtj) log(1− plij)

Taking the derivative with respect to pij and setting equal to 0, we get

pl+1
ij =

∑
t htix

t
j∑

t htj

Note that this is the same as equation 5.31 except for estimated “soft”
labels hti replacing the supervised labels r ti .

8 Nonparametric Methods

1. Show equation 8.17.

Given that

p̂(x|Ci) = ki
NiVk(x)

P̂(Ci) = NiN
we can write

P̂ (Ci|x) = p̂(x|Ci)P̂ (Ci)∑
j p̂(x|Cj)P̂ (Cj)

=
ki

NiVk(x)
Ni
N∑

j
kj

NjVk(x)
Nj
N

= ki∑
j kj

= ki
k

2. How does condensed nearest neighbor behave if k > 1?

When k > 1, to get full accuracy without any misclassification, it may
be necessary to store an instance multiple times so that the correct
class has the majority of the votes. For example, if k = 3 and x has
two neighbors both belonging to a different class, we need to store x
twice (that is it gets added in two epochs), so that if x is seen during
test, the majority (two in this case) out of three neighbors belong to
the correct class.

3. In a regressogram, instead of averaging in a bin and doing a constant
fit, one can use the instances falling in a bin and do a linear fit (see
figure 8.11). Write the code and compare this with the regressogram
proper.

The Matlab code is given in ex8_3.m which is the code used to generate
figure 8.11 of the book. Compared with the regressogram proper, it is

34 8 Nonparametric Methods

more costly both in terms of space and computation: We need one
more parameter (slope) for each bin; we need computation during test
to calculate the output; we need more computation during training to
calculate the linear fit in each bin.

4. Write the error function for loess discussed in section 8.6.3.

The output is calculated using a linear model

g(x) = ax+ b

where, in the running line smoother, a, b minimize

E(a, b|x,X) =
∑
t
w
(
x− xt
h

)
[r t − (axt + b)]2

and

w(u) =
{

1 if |u| < 1
0 otherwise

Note that we do not have one error function but rather, for each test
input x, we have another error function taking into account only the
data closest to x, which is minimized to fit a line in that neighborhood.

Loess is the weighted version of running line smoother where a kernel
function K(·) ∈ (0,1) replaces the w(·) ∈ {0,1}:

E(a, b|x,X) =
∑
t
K
(
x− xt
h

)
[r t − (axt + b)]2

5. Propose an incremental version of the running mean estimator, which,
like the condensed nearest neighbor, stores instances only when neces-
sary.

Let us say that we are using nearest neighbor regression, that is, given
test input x, we find closest xt ∈ X and give its desired output r t as the
output. In such a case, in the condensed nearest neighbor regression,
we do not need to store a given pair (x, r) if (x′, r ′) is the closest and
|r ′ − r | < θ where θ is some tolerance threshold.

We modify the pseudocode of figure 8.6 (on p. 164 of the book) for
condensed nearest neighbor classification as shown in figure 8.1. In-
stead of checking whether the class labels are the same, we check if
the outputs are close enough.

35

Z ← ∅
Repeat

For all (x, r) ∈ X (in random order)
Find (x′, r ′) ∈ Z such that ‖x − x′‖ =minxj∈Z ‖x − xj‖
If |r − r ′| > θ add (x, r) to Z

Until Z does not change

Figure 8.1 Condensed nearest neighbor regression algorithm.

This can be generalized to any nonparametric smoother: We check if
the estimate using current Z gives an acceptable output (within a cer-
tain tolerance), if not, we add the current pair to Z. Again (see exercise
8.2 above), it may be necessary to store the current pair multiple times.

6. Generalize kernel smoother to multivariate data.

We can just use a multivariate kernel, for example, d-variate Gaussian,
in equation 8.21. Again, we have the usual concerns of the suitability
of using Euclidean distance vs. estimating a local covariance and using
Mahalanobis distance.

9 Decision Trees

1. Generalize the Gini index (equation 9.5) and the misclassification error
(equation 9.6) for K > 2 classes. Generalize misclassification error to
risk, taking a loss function into account.

� Gini index with K > 2 classes: φ(p1, p2, . . . , pK) =
∑K
i=1

∑
j<i pipj

� Misclassification error: φ(p1, p2, . . . , pK) = 1−maxKi=1 pi
� Risk: φΛ(p1, p2, . . . , pK) = minKi=1

∑K
k=1 λikpk where Λ is the K × K

loss matrix (equation 3.7).

2. For a numeric input, instead of a binary split, one can use a ternary
split with two thresholds and three branches as

xj < wma, wma ≤ xj < wmb, xj ≥ wmb

Propose a modification of the tree induction method to learn the two
thresholds, wma, wmb. What are the advantages and the disadvantages
of such a node over a binary node?

For the numeric attributes, in the pseudocode given in figure 9.3 of the
book, instead of one split threshold, we need to try all possible pairs
of splits and choose the best; in calculating the entropy after the split,
we need to sum up over the three sets corresponding to the instances
taking the three branches.

The complexity of finding the best pair is O(N2
m) instead ofO(Nm) and

each node stores two thresholds instead of one and has three branches
instead of two. The advantage is that one ternary node splits an input
into three, whereas this requires two successive binary nodes. Which
one is better depends on the data at hand; if we have hypotheses that

37

require bounded intervals (for example, rectangles), a ternary node
may be advantageous.

3. Propose a tree induction algorithm with backtracking.

The decision tree induction algorithm is greedy and stops when there
is no further decrease in entropy. One possibility is to backtrack: Let
us say that we have a tree where no matter now we add a node, en-
tropy does not decrease further; we can go back, undo the last deci-
sion, choose the next best split and continue, to see whether we get
to a better state. In fact, the decision tree induction does depth-first
search and any other search mechanism, best-first search, breadth-
first search, etc. can be used which can search wider in the space (of
possible trees) at the expense of more space and computation.

4. In generating a univariate tree, a discrete attribute with n possible val-
ues can be represented by n 0/1 dummy variables and then treated as
n separate numeric attributes. What are the advantages and disadvan-
tages of this approach?

If we do this, we get binary splits instead of n-ary splits. For example,
if we have three values {red,green,blue}, a discrete node has a ternary
split whereas doing this, we can have a split such as {red, not-red},
thereby grouping all the complements of a value in the other branch.
Whether this leads to simpler trees or not depends on the data.

5. Derive a learning algorithm for sphere trees (equation 9.21). Generalize
to ellipsoid trees.

A sphere node uses a binary decision node (see figure 9.1):

fm(x) : ‖x − cm‖ ≤ αm

and a simple algorithm is as follows: Calculate the centroid of in-
stances reaching node m and take it as cm. Then sort all instances
according to their (Euclidean) distance to the center and for all possi-
ble Nm−1 values between them, check what the entropy would be and
choose the best as the radius αm. In an ellipsoid tree, we calculate the
covariance matrix of the instances and use the Mahalanobis distance
from an instance to the center.

6. In a regression tree, we discussed that in a leaf node, instead of calculat-
ing the mean, we can do a linear regression fit and make the response

38 9 Decision Trees

c

a

Figure 9.1 A sphere decision node.

at the leaf dependent on the input. Propose a similar method for classi-
fication trees.

This implies that at each leaf, we will have a linear classifier trained
with instances reaching there. That linear classifier will generate pos-
terior probabilities for the different classes and those probabilities will
be used in the entropy calculation. That is, it is not necessary that a
leaf is pure, that is, contains instances of only one class; it is enough
that the classifier in it generates posterior probabilities close to 0 or 1.

7. Propose a rule induction algorithm for regression.

Rule induction is similar to tree induction except that at each split,
we keep one of the branches (better one) and ignore the other, going
depth-first and generating a single path, instead of a tree. Each node
corresponds to one condition, the path corresponds to their conjunc-
tion and the leaf is the average of their outputs. We would like to find
a subset which is as large as possible and on which we have small es-
timation error (MSE in regression); we can combine these two criteria
of accuracy and complexity using some MDL measure. Once we get a
rule, we remove the subset it covers from the training set. We then
run the same algorithm again to get another rule that covers another
subset, until we cover all the training set.

10 Linear Discrimination

1. For each of the following basis function, describe where it is nonzero:

a. sin(x1)
This is used when a trigonometric mapping is necessary, for ex-
ample, in robot arm kinematics, or in recurring phenomena, for
example, seasonal repeating behavior in time-series.

b. exp(−(x1 − a)2/c)
This is a bell-shaped function with a as its center and c its spread.
Roughly, speaking it is nonzero between (a − 2

√
c, a+ 2

√
c).

c. exp(−‖x − a‖2/c)
This is a d-dimensional bell-shaped function with a as its center
and c its spread in d dimensions.

d. log(x2)
This is useful when x2 has a wide scale and a log transformation is
useful.

e. 1(x1 > c)
This is similar to a univariate split of a decision tree node.

f. 1(ax1 + bx2 > c)
This defines a multivariate oblique split.

2. For the two-dimensional case of figure 10.2, show equations 10.4 and
10.5.

Given figure 10.1, first let us take input x0 on the hyperplane. The
angle between x0 and w is a0 and because it is on the hyperplane

40 10 Linear Discrimination

w

g
(
x
)
=
0

g
(
x
)>
0
g
(
x
)<
0

x

d
0
=|w
0
|/||
w
||

d=|g
(
x
)
|
/||
w
||

x
1

x
 2

x
o

a
0
 a

Figure 10.1 The geometric interpretation of the linear discriminant.

g(x0) = 0. Then

g(x0) = wTx0 +w0 = ‖w‖‖x0‖ cosa0 +w0 = 0

d0 = ‖x0‖ cosa0 = |w0|
‖w‖

For any x with angle a to w, similarly we have

g(x) = wTx +w0 = ‖w‖‖x‖ cosa +w0

d = ‖x‖ cosa − w0

‖w‖ =
g(x)−w0 +w0

‖w‖ = g(x)‖w‖
3. Show that the derivative of the softmax, yi = exp(ai)/

∑
j exp(aj), is

∂yi/∂aj = yi(δij − yj), where δij is 1 if i = j and 0 otherwise.

Given that
yi = expai∑

j expaj

for i = j , we have

∂yi
∂ai

=
expai

(∑
j expaj

)
− expai expaj

(∑
j expaj

)2

41

= expai∑
j expaj

(∑
j expaj − expai∑

j expaj

)

= yi(1− yi)

and for i 6= j , we have

∂yi
∂aj

= − expai expaj(∑
j expaj

)2

= −
(

expai∑
j expaj

)(∑
j expaj∑
j expaj

)

= yi(0− yj)

which we can combine in one equation as

∂yi
∂aj

= yi(δij − yj)

4. With K = 2, show that using two softmax outputs is equal to using one
sigmoid output.

y1 = expo1

expo1 + expo2
= 1

1+ exp(o2 − o1)
= 1

1+ exp(−(o1 − o2))

So for example if we have o1 = wT1x, we have

y1 = expwT1x
expwT1x + expwT2x

= sigmoid((w1 −w2)Tx)

and y2 = 1− y1.

5. How can we learn Wi in equation 10.34?

For example if we have two inputs x1, x2, we can open up equation
10.34 as

log
p(x1, x2|Ci)
p(x1, x2|CK) = Wi11x2

1 +Wi12x1x2 +Wi21x2x1 +Wi22x2
2

+ wi1x1 +wi2x2 +wi0

Then we can use gradient-descent and take derivative with respect to
any Wjkl to calculate an update rule (as in equation 10.33):

∆Wjkl = η
∑
t
(r tj − y tj)xtkxtl

11 Multilayer Perceptrons

1. Show the perceptron that calculates NOT of its input.

y = s(−x+ 0.5)

2. Show the perceptron that calculates NAND of its two inputs.

y = s(−x1 − x2 + 1.5)

3. Show the perceptron that calculates the parity of its three inputs.

h1 = s(−x1 − x2 + 2x3 − 1.5) 001

h2 = s(−x1 + 2x2 − x3 − 1.5) 010

h3 = s(2x1 − x2 − x3 − 1.5) 100

h4 = s(x1 + x2 + x3 − 2.5) 111

y = s(h1 + h2 + h3 + h4 − 0.5)

The four hidden units corresponding to the four cases of (x1, x2, x3)
values where the parity is 1, namely, 001, 010, 100, and 111. They are
then OR’d to calculate the overall output. Note that another possibility
is to calculate the three bit parity is in terms of two-bit parity (XOR)
as: (x1 XOR x2) XOR x3.

4. Derive the update equations when the hidden units use tanh, instead of
the sigmoid. Use the fact that tanh′ = (1− tanh2).

The only difference from the case where hidden units use sigmoid
is that the derivative of the hidden unit activations will change. In
updating the first layer weights (equation 11.16), instead of zh(1−zh),
we will have (1− z2

h).

43

5. Derive the update equations for an MLP with two hidden layers.

z1h = sigmoid(wT1hx) = sigmoid



d∑

j=1

w1hjxj +w1h0


 , h = 1, . . . ,H1

z2l = sigmoid(wT2lz1) = sigmoid



H1∑

h=0

w2lhz1h +w2l0


 , l = 1, . . . ,H2

yi = vTi z2 =
H2∑

l=1

vilz2l + v0

Let us take the case of regression:

E = 1
2

∑
t

∑

i
(r ti − y ti)2

We just continue backpropagating, that is continue the chain rule, and
we can write error on a layer as a function of the error in the layer after,
carrying the supervised error in the output layer to layers before:

erri ≡ r ti − y ti and ∆vil = η
∑
t
erriz2l

err2l ≡

∑

i
errivi


 z2l(1− z2l) and ∆w2lh = η

∑
t
err2lz1h

err1h ≡

∑

l
err2lw2lh


 z1h(1− z1h) and ∆whj = η

∑
t
err1hxj

6. Parity is cyclic shift invariant, for example, “0101” and “1010” have
the same parity. Propose a multilayer perceptron to learn the parity
function using this hint.

One can generate virtual examples by adding shifted versions of in-
stances to the training set. Or, one can define local hidden units with
weight sharing to keep track of local parity which are then combined
to calculate the overall parity.

7. In cascade correlation, what are the advantages of freezing the previ-
ously existing weights?

The main advantage is that it allows us to train a single layer at each
step which is faster than training multiple hidden layers. Keeping all

44 11 Multilayer Perceptrons

but one of the set of parameters fixed is similar to backfitting algo-
rithms; we go over a set of additive models, while keeping all the others
fixed, we update the parameters of one model to minimize the resid-
ual from the other models. This makes sense in cascade correlation
because each new unit is adde to learn what has not yet been learned
by the previous layer(s).

8. Derive the update equations for an MLP implementing Sammon map-
ping that minimizes Sammon stress (equation 11.40).

E(θ|X) =
∑
r ,s

[‖g(xr |θ)− g(xs|θ)‖ − ‖xr − xs‖
‖xr − xs‖

]2

= 1∑
r ,s ‖xr − xs‖2

∑
r ,s

(‖g(xr |θ)− g(xs|θ)‖ − ‖xr − xs‖)2

The MLP is written as

g(x|v,W) =
∑

h
vhzh + v0 and zh = sigmoid


∑

j
whjxj +wh0




The update rules are found using gradient-descent:

∆vh = −η 1∑
r ,s ‖xr − xs‖2

∑
r ,s

(‖g(xr |θ)− g(xs|θ)‖ − ‖xr − xs‖) (zrh − zsh)

∆whj = −η 1∑
r ,s ‖xr − xs‖2

∑
r ,s

(‖g(xr |θ)− g(xs|θ)‖ − ‖xr − xs‖)

· vh
[
zrh(1− zrh)xrj − zsh(1− zsh)xsj

]

12 Local Models

1. Show an RBF network that implements XOR.

There are two possibilities: (a) We can have two circular Gaussians cen-
tered on the two positive instances and the second layer ORs them, (b)
We can have one elliptic Gaussian centered on (0.5, 0.5) with negative
correlation to cover the two positive instances

z
1

z
1

z
2

(a)
 (b)

Figure 12.1 Two ways of implementing XOR with RBF.

2. Derive the update equations for the RBF network for classification (equa-
tions 12.20 and 12.21).

Because of the use of cross-entropy and softmax, the update equa-
tions will be the same with equations 12.17, 12.18, and 12.19 (see
equation 10.33 for a similar derivation).

3. Show how the system given in equation 12.22 can be trained.

There are two sets of parameters: v, v0 of the default model and
wh,mh, sh of the exceptions. Using gradient-descent and starting from

46 12 Local Models

random values, we can update both iteratively. We update v, v0 as if
we are training a linear model and wh,mh, sh as if we are training a
RBF network.

Another possibility is to separate their training: First, we train the
linear default model and then once it converges, we freeze its weights
and calculate the residuals, that is, differences not explained by the
default. We train the RBF on these residuals, so that the RBF learns
the exceptions, that is, instances not covered by the default “rule.” See
E. Alpaydın. 1997. REx: Learning A Rule and Exceptions, International
Computer Science Institute TR-97-040, Berkeley CA.

4. Compare the number of parameters of a mixture of experts architecture
with an RBF network.

With d inputs, K classes and H Gaussians, an RBF network needs Hd
parameters for the centers, H parameters for the spreads and (H +
1)K parameters for the second layer weights. For the case of a MoE,
for each second layer weight, we need a d + 1 dimensional vector of
the linear model, but there is no bias, thereby we have HK(d + 1)
parameters.

Note that the number of parameters in the first layer is the same with
RBF and it is the same whether we have Gaussian or softmax gating:
For each hidden unit, in the case of Gaussian gating, we need d param-
eters for the center and 1 for the spread; in the case of softmax gating,
the linear model has d + 1 parameters (d inputs and a bias).

5. Formalize a mixture of experts architecture where the experts and the
gating network are multilayer perceptrons. Derive the update equa-
tions for regression and classification.

The output is

y ti =
H∑

h=1

w tihg
t
h

The experts are MLP with M hidden units:

w tih =
M∑

k=1

vihkbtk + vih0

btk = sigmoid



d∑

j=1

ukjxtj + uk0



47

The gating networks are MLP with G hidden units:

gth = expoth∑
l expotl

oth =
G∑

k=1

mhkatk +mh0

atk = sigmoid



d∑

j=1

nkjxtj + nk0



As usual, we use gradient-descent:

E({v, u,m,n}|X) = 1
2

∑
t

∑

i
(r ti − y ti)2

∆vihk = η
∑
t
(r ti − y ti)gthbtk

∆ukj = η
∑
t

∑

h

∑

i
(r ti − y ti)gthvihkbtk(1− btk)xtj

∆mhk = η
∑
t

∑

i
(r ti − y ti)(w tih − y ti)gthatk

∆nkj = η
∑
t

∑

h

∑

i
(r ti − y ti)(w tih − y ti)gthmhkatk(1− atk)xtj

In classification, we have

y ti = exp
∑H
h=1w

t
ihg

t
h∑

k exp
∑H
h=1w

t
khg

t
h

E({v, u,m,n}|X) = −
∑
t

∑

i
r ti logy ti

Update equations turn out to be the same.

6. Derive the update equations for the cooperative mixture of experts for
classification.

E = −
∑
t

∑

i
r ti logy ti

y ti = exp
∑H
h=1w

t
ihg

t
h∑

k exp
∑H
h=1w

t
khg

t
h

48 12 Local Models

w tih = vTihx
t

gth = expmThx
t

∑
l expmT

l xt

We use gradient-descent:

∆vih = η
∑
t
(r ti − y ti)gthbtk

∆mh = −η
∑
t

∑

i

∑

k

∂E
∂y ti

∂y ti
∂gtk

∂gtk
∂pth

∂pth
∂mh

= η
∑
t

∑

i
(r ti − y ti)

∑

k
wikgtk(δkh − gth)xt

= η
∑
t

∑

i
(r ti − y ti)


∑

k
wikgtkδkh −

∑

k
wikgtkg

t
h


xt

= η
∑
t

∑

i
(r ti − y ti)(wih − y ti)gthxt

remembering that δkh = 0 for k 6= h and
∑
kwikgtk = y ti . This is for

softmax gating; for the case of Gaussian gating, the last term changes
to:

∂pth
∂mh

= (x
t −mh)
2s2
h

7. Derive the update equations for the competitive mixture of experts for
classification.

Let us see regression first:

L =
∑
t

log
∑

h
gth exp


−1

2

∑

i
(r ti − y tih)2




y tih = vTihx
t

gth = expmThx∑
l expmTl x

We use gradient-ascent to maximize the log likelihood:

∆vih = η
∑
t

gth exp
[
−(1/2)∑i(r ti − y tih)2

]

∑
l gtl exp

[
−(1/2)∑i(r ti − y til)2

](r ti − y tih)xt

= η
∑
t
(r ti − y tih)f thxt

49

where

f th =
gth exp

[
−(1/2)∑i(r ti − y tih)2

]

∑
l gtl exp

[
−(1/2)∑i(r ti − y til)2

]

Similarly,

∆mh = η
∑
t


∑

l

exp
[
−(1/2)∑i(r ti − y tih)2

]

∑
j gtl exp

[
−(1/2)∑i(r ti − y tij)2

]gtl (δlh − gth)

xt

= η
∑
t


∑

l
f tl (δlh − gth)


xt

= η
∑
t


∑

l
f tl δlh −

∑

l
f tl g

t
h


xt

= η
∑
t
(f th − gth)xt

given that
∑
l f tl = 1.

For the case of classification, the log likelihood is

L =
∑
t

log
∑

h
gth exp


∑

i
r ti logy tih




and we get the same update equations where

f th =
gth exp

[∑
i r ti logy tih

]

∑
l gtl exp

[∑
i r ti logy til

]

8. Formalize the hierarchical mixture of experts architecture with two lev-
els. Derive the update equations using gradient descent for regression
and classification.

The following is from (Jordan and Jacobs, 1994). I have only slightly
changed the notation to match the notation of the book.

Let us see the case of regression with a single output: y is the overall
output, yi are the outputs on the first level and yij are the outputs on
the second level, which are leaves for a model with two levels. Simi-
larly, gi are the gating outputs on the first level and gj|i are the outputs

50 12 Local Models

on the second level: gating value of expert j on the second level given
that we have chosen the branch i on the first level:

y =
∑

i
giyi

yi =
∑

j
gj|iyij and gi = expmTi x∑

k expmTk x

yij = vTijx and gj|i =
expmTijx∑
l expmTilx

In regression, the error to be minimized is (note that we are using a
competitive version here):

E =
∑
t

log
∑

i
gti
∑

j
gtj|i exp

[
−1

2
(r t − y tij)2

]

and using gradient-descent, we get the following update equations:

∆vij = η
∑
t
f ti f

t
j|i(r

t − y t)xt

∆mi = η
∑
t
(f ti − gti)xt

∆mij = η
∑
t
f ti (f

t
j|i − gtj|i)xt

where we make use of the following posteriors:

f ti =
gti
∑
j gtj|i exp[−(1/2)(r t − y tij)2]∑

k gtk
∑
j gtj|k exp[−(1/2)(r t − y tkj)2]

f tj|i =
gtj|i exp[−(1/2)(r t − y tij)2]∑
l gtl|i exp[−(1/2)(r t − y til)2]

f tij =
gtig

t
j|i exp[−(1/2)(r t − y tij)2]∑

k gtk
∑
l gtl|k exp[−(1/2)(r t − y tkl)2]

Note how we multiply the gating values on the path starting from the
root to a leaf expert.

51

For the case of classification with K > 2 classes, one possibility is to
have K separate HMEs as above (having single output experts), whose
outputs we softmax to maximize the loglikelihood:

L =
∑
t

log
∑

i
gti
∑

j
gtj|i exp

[∑
c
r tc logptc

]

ptc = expy tc∑
k expy tk

where each y tc denotes the output of one single-output HME. The more
interesting case of a single multiclass HME where experts have K soft-
max outputs is discussed in S. R. Waterhouse, A. J. Robinson. 1994.
“Classification using Hierarchical Mixtures of Experts.” Proceedings of
the 1994 IEEE Workshop on Neural Networks for Signal Processing, pp.
177–186. IEEE Press.

13 Hidden Markov Models

1. Given the observable Markov model with three states, S1, S2, S3, initial
probabilities

Π = [0.5,0.2,0.3]T

and transition probabilities

A =



0.4 0.3 0.3
0.2 0.6 0.2
0.1 0.1 0.8




generate 100 sequences of 1,000 states.

The Matlab code is given in ex13_1.m.

2. Using the data generated by the previous exercise, estimate Π, A and
compare with the parameters used to generate the data.

The Matlab code is given in ex13_2.m. Its output is

Π̂ = [0.54,0.20,0.26]T

Â =



0.3987 0.3005 0.3008
0.2057 0.5937 0.2005
0.0998 0.1001 0.8001




3. Formalize a second-order Markov model. What are the parameters?
How can we calculate the probability of a given state sequence? How
can the parameters be learned for the case of a observable model?

53

In a second-order MM, the current state depends on the two previous
states:

aijk ≡ P(qt+2 = Sk|qt+1 = Sj , qt = Si)

Initial state probability defines the probability of the first state:

πi ≡ P(q1 = Si)

We also need parameters to define the probability of the second state
given the first state:

θij ≡ P(q2 = Sj |q1 = Si)

Given a second-order observable MM with parameters λ = (Π,Θ,A),
the probability of an observed state sequence is

P(O = Q|λ) = P(q1)P(q2|q1)
T∏

t=3

P(qt |qt−1, qt−2)

= πq1θq2q1aq3q2q1aq4q3q2 · · ·aqT qT−1qT−2

The probabilities are estimated as proportions:

π̂i =
∑
k 1(qk1 = Si)

K

θ̂ij =
∑
k 1(qk2 = Sj and qk1 = Si)∑

k 1(qk1 = Si)

âijk =
∑
k
∑T
t=3 1(qkt = Sk and qkt−1 = Sj and qkt−2 = Si)∑

k
∑T
t=3 1(qkt−1 = Sj and qkt−2 = Si)

4. Show that any second- (or higher-order) Markov model can be converted
to a first-order Markov model.

In a second-order model, each state depends on the two previous
states. We can define a new set of states corresponding to the Carte-
sian product of the original set of states with itself. A first-order model
on this new N2 states corrresponds to a second-order model on the
original N states.

54 13 Hidden Markov Models

5. Some researchers define a Markov model as generating an observation
while traversing an arc, instead of on arrival to a state. Is this model
any more powerful than what we have discussed?

Similar to the case of the previous exercise, if the output depends not
only on the current state but also on the next state, we can define new
states corresponding to this pair and have the output generated by
this (joint) state.

6. Generate training and validation sequences from an HMM of your choos-
ing. Then train different HMMs by varying the number of hidden states
on the same training set and calculate the validation likelihoods. Ob-
serve how the validation likelihood changes as the number of states
increases.

ex13_6a.m samples from an HMM, and ex13_6b.m learns the param-
eters given a sample.

14 Assessing and Comparing

Classification Algorithms

1. We can simulate a classifier with error probability p by drawing sam-
ples from a Bernoulli distribution. Doing this, implement the binomial,
approximate, and t tests for p0 ∈ (0,1). Repeat these tests at least 1,000
times for several values of p and calculate the probability of rejecting
the null hypothesis. What do you expect the probability of reject to be
when p0 = p?

The Matlab code is given in ex14_1.m. When p0 = p, we expect the
probability of reject to be equal to α, maximum allowed type I proba-
bility (see figure 14.1).

2. Assume xt ∼ N (µ,σ 2) where σ 2 is known. How can we test for H0 :
µ ≥ µ0 vs. H1 : µ < µ0?

Under H0

z =
√
N(m − µ0)
σ

∼ Z

We accept H0 if z ∈ (−zα,∞).

3. The K-fold cross-validated t test only tests for the equality of error rates.
If the test rejects, we do not know which classification algorithm has
the lower error rate. How can we test whether the first classification
algorithm does not have higher error rate than the second one? Hint:
We have to test H0 : µ ≤ 0 vs. H1 : µ > 0.

Using the notation of section 14.7.2, under H0 : µ ≤ 0 vs. H1 : µ > 0

t =
√
k(m− 0)
s

∼ tK−1

56 14 Assessing and Comparing Classification Algorithms

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

p
0

P
ro

b
of

 a
cc

ep
tin

g
p0

<=
0.

7

Figure 14.1 Probability of acceptance of the three tests of H0 : p ≤ 0..7 for
different values of p (‘+’: Binomial test, ‘x’: Approximate normal test, ‘o’: t test;
the three tests agree for N = 250 and 500 iterations). Note that for p = 0.7, the
probability of acceptance is 0.95, which is expected because α = 0.05.

We accept H0 if t ∈ (−∞, tα,K−1). If we accept, we cannot say anything
but if we reject, we can say that the second algorithm has less error
rate.

4. Let us say we have three classification algorithms. How can we order
these three from best to worst?

Given three algorithms, if we have a linear ordering, such as 2 has sig-
nificantly less error than 1 and 3, 1 has significantly less error than
3, then we have a perfect order: 2 < 1 < 3. Unfortunately, this is
rarely the case; frequently we have one algorithm whose error rate is
significantly different from the other two whereas there is no signifi-
cant difference between the two. This implies that to be able to define
an order, we need an additional criterion, and the best candidate for
this is complexity (time and/or space). That is we order algorithms in
terms of error rates by looking at the results of pairwise tests and two
algorithms whose error rates are not statistically significantly different

57

are ordered in terms of complexity. So let us say 1 has significantly
less error than 2 and 3, there is no difference between 2 and 3 and 3
is simpler than 2, then we have the ordering: 1 < 3 < 2.

For a generalization of this idea to an arbitrary number of algorithms,
see O. T. Yıldız, E. Alpaydın. 2006. “Ordering and Finding the Best of
K > 2 Supervised Learning Algorithms.” IEEE Transactions on Pattern
Analysis and Machine Inteligence 28: 392–402.

15 Combining Multiple Learners

1. If each base-learner is iid and correct with probability p > 1/2, what is
the probability that a majority vote over L classifiers gives the correct
answer?

P(X ≥ bL/2c + 1) =
L∑

i=bL/2c+1

(
L
i

)
pi(1− p)L−i

0 10 20 30 40 50 60
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

No of base classifiers

pr
ob

 th
at

 m
aj

or
ity

 is
 c

or
re

ct

p=0.5

p=0.4

p=0.3

p=0.6

p=0.7 p=0.8 p=0.9

p=0.2

Figure 15.1 Probability that a majority vote is correct as a function of the num-
ber of base-learners for different p. The probabity increases only for p > 0.5.

59

2. In bagging, to generate the L training sets, what would be the effect of
using L-fold cross-validation instead of bootstrap?

With L-fold cross-validation, each training set has L − 1 parts of the
original set and different sets share L − 2 parts. For example, for L =
10, each training set contains 90 percent of the dataset whereas this
percentage is 63.2 percent for bagging. Different training sets share 80
percent of the data which is higher than the percentage of data shared
by two bootstrap samples.

3. Propose an incremental algorithm for learning error-correcting output
codes where new two-class problems are added as they are needed to
better solve the multiclass problem.

At each iteration, we look at the confusion matrix and find the pair of
classes that are most confused. We then generate a new dichotomizer,
that is, add a new column to the ecoc matrix where one of the most
confused classes is labeled as +1, the other is labeled as −1 and all
other classes are labeled as 0. We continue adding until we overfit
over a validation set.

4. What is the difference between voting and stacking using a linear per-
ceptron as the combiner function?

If the voting system is also trained, the only difference would be that
with stacking, the weights need not be positive or sum up to 1, and
there is also a bias term. Of course, the main advantage of stacking is
when the combiner is nonlinear.

5. In cascading, why do we require θj+1 ≥ θj?
Instances on which the confidence is less than θj have already been
filtered out by dj ; we require the threshold to increase so that we can
have higher confidences.

16 Reinforcement Learning

1. Given the grid world in figure 16.10, if the reward on reaching on the
goal is 100 and γ = 0.9, calculate manually Q∗(s, a), V∗(S), and the
actions of optimal policy.

The Matlab code given in ex16_1.m can be used.

2. With the same configuration given in exercise 1, useQ learning to learn
the optimal policy.

The code is given in ex16_1.m.

3. In exercise 1, how does the optimal policy change if another goal state
is added to the lower-right corner? What happens if a state of reward
−100 (a very bad state) is defined in the lower-right corner?

The Matlab code given in ex16_3.m has both a goal state and a bad
state with negative reward. We see that the optimal policy navigates
around the bad state.

4. Instead of having γ < 1, we can have γ = 1 but with a negative reward
of −c for all intermediate (nongoal) states. What is the difference?

The Matlab code is given in ex16_4.m where γ = 1 and c = −1. The Q
values converge to reward minus the number of steps to the goal.

5. In exercise 1, assume that the reward on arrival to the goal state is
normal distributed with mean 100 and variance 40. Assume also that
the actions are also stochastic in that when the robot advances in a
direction, it moves in the intended direction with probability 0.5 and
there is a 0.25 probability that it moves in one of the lateral directions.
Learn Q(s, a) in this case.

The Matlab code is given in ex16_5.m.

61

6. Assume we are estimating the value function for states V(s) and that
we want to use TD(λ) algorithm. Derive the tabular value iteration
update.

The temporal error at time t is

δt = rt+1 + γV(st+1)− V(st)

All state values are updated as

V(s)← V(s) + ηδtet(s), ∀s

where the eligibility of states decay in time:

et(s) =
{

1 if s = st
γλet−1(s) otherwise

7. Using equation 16.22, derive the weight update equations when a mul-
tilayer perceptron is used to estimate Q.

Let us say for simplicity we have one-dimensional state value st and
one-dimensional action value at and let us assume a linear model:

Q(s, a) = w1s +w2a +w3

We can update the three parameters w1, w2, w3 using gradient-descent
(equation 16.21):

∆w1 = η
[
rt+1 + γQ(st+1, at+1)−Q(st , at)

]
st

∆w2 = η
[
rt+1 + γQ(st+1, at+1)−Q(st , at)

]
at

∆w3 = η
[
rt+1 + γQ(st+1, at+1)−Q(st , at)

]

In the case of a multilayer perceptron, only the last term will differ to
update the weights on all layers.

In the case of Sarsa(λ), e is three-dimensional: e1 for w1, e2 for w2, and
e3 for w0. We update the eligibilities (equation 16.23):

e1
t = γλe1

t−1 + st
e2
t = γλe2

t−1 + at
e3
t = γλe3

t−1

62 16 Reinforcement Learning

and we update the weights using the eligibilities (equation 16.22):

∆w1 = η
[
rt+1 + γQ(st+1, at+1)−Q(st , at)

]
e1
t

∆w2 = η
[
rt+1 + γQ(st+1, at+1)−Q(st , at)

]
e2
t

∆w3 = η
[
rt+1 + γQ(st+1, at+1)−Q(st , at)

]
e3
t

8. Give an example of a reinforcement learning application that can be
modeled by a POMDP. Define the states, actions, observations, and re-
ward.

An example is a soccer playing robot. A robot has sensors, typically a
camera, but cannot fully observe its state, that is, its exact position in
the field. Using the camera, the robot can see only a part of the field,
maybe the goals, the boundaries or beacons, but this is not enough to
pinpoint its location accurately. It has actuators for action, to move in
the field. The goal is to win the game.

