FUNDAMENTALS
NEURAL NETWORKS

ARCHITECTURES, ALGORITHMS,
AMD APPLICATIONS

Lavurene Favuseit

Contents

CHAPTER 1

PREFACE
ACKNOWLEDGMENTS
INTRODUCTION
11 Why Neural Networks, and Why Now? |
12 What Is a Neural Net? 3
121 Artificial Neural Networks, 3 o
1.2.2 Biological Neural Networks, 5 ‘
13 Where Are Neural Nets Being Used? 7
1.3.1 Sgnal Processing, 7
1.3.2 Contral, 8
1.3.3 Pattern Recognition, 8
1.3.4 Medicine, 9
135 Speech Production, 9
}%9 &eech Recogniticin, 10
3. SINEsS, 1
14 How Are Neural Networks Used? 11

141 Typical Architectures, 12

14.2 Setting the Weights, 15

14.3 Common Activation Functions, 17
14.4 Summary of Notation, 20

Xiii

XV,

Vil

CHAPTER 2

1.5

16 /

1.7

Contents

Who Is Developing Neural Networks? 22

1.5.1 The 1940s: The Beginning of Neural Nets, 22

1.5.2 The 1950s and 1960s: The First Golden Age of
Neural Networks, 23

1.5.3 The 1970s: The Quiet Years, 24

1.54 The 1980s: Renewed Enthusiasm, 25

When Neural Nets Began: the McCulloch-Pitts
Neuron 26 O
1.6.1 Architecture, 27 A\
1.6.2 Algorithm, 28
1.6.3 Applications, 30

Suggestions for Further Study 35
1.7.1 Readings, 35
1.7.2 Exercises, 37

SIMPLE NEURAL NETS FOR PATTERN
CLASSIFICATION 39

22 [

f

2.3

S

2.4

2.5

General Discussion 39

2.1.1 Architecture, 40
2.1.2 Biases and Thresholds, 41

2.1.3 Linear Separability, 43
2.14 Data Representation, 48

Hebb Net 48
2.2.1 Algorithm, 49
2.2.2 Application, 50

\)\Q

Perceptron 59

2.3.1 Architecture, 60

2.3.2 Algorithm, 61

2.3.3 Application, 62 ‘
2.3.4 Perceptron Learning Rule Convergence Theorem, 76

Adaline 80

2.4.1 Architecture, 81
2.4.2 Algorithm, 81
2.4.3 Applications, 82
2.4.4 Derivations, 86
24.5 Madaline, 88

Suggestions for Further Study 96
2.5.1 Readings, 96
2.5.2 Exercises, 97
2.5.3 Projects, 100

Contents

/3.1

33

34

3.5

3.6

CHAPTER 4

4.1

4.2

4.3

|

CHAPTER 3 PATTERN ASSOCIATION

Training Algorithms for Pattern Association 103

3.1.1 Hebb Rule Jor Pattern Association, 103
3.1.2 Delta Rule Jor Pattern Association, 106

Heteroassociative Memory Neural Network 108

3.2.1 Architecture, 108
3.2.2 Application,_ 108

Autoassociative Net 121 A

3.3.1 Architecture, 121

3.3.2 Algorithm, 122

3.3.3 - Application, 122

3.34 Storage Capacity, 125 °

Iterative Autoassociative Net 129

3.4.1 Recurrent Linear Autoassociator, 130

34.2 Brain-State~in-a-Box, 131

34.3 Autoassociator With Threshold Function, 132
344 Discrete Hopfield Net, 135

Bidirectional Associative Memory (BAM) 140
3.5.1 Architecture, 141

3.5.2 Algorithm, 141

3.5.3 Application, 144

3.5.4 Analysis, 148

Suggestions for Further Study 149
3.6.1 Readings, 149

3.6.2 Exercises, 150

3.6.3 Projects, 152

NEURAL NETWORKS BASED ON COMPETITION

Fixed-Weight Competitive Nets 158
4.1.1 Maxnet, 158

4.1.2 Mexican Hat, 160

4.1.3 Hamming Net, 164

Kohonen Self-Organizing Maps 169
4.2.1 Architecture, 169

4.2.2 Algorithm, 170

4.2.3 Application, 172

Learning Vector Quantization 187
4.3.1 Architecture, 187

4.3.2 Algorithm, 188

4.3.3 Application, 189

4.3.4 Variations, 192

ix

101

156

x Contents

4.4 Counterpropagation 195
44.1 Full Counterpropagation, 196
4.4.2 Forward-Only Counterpropagation, 206

4.5 Suggestions For Further Study 211
4.5.1 Readings, 211
4.5.2 Exercises, 211
4.5.3 Prajects, 214

CHAPTER 5 ADAPTIVE RESONANCE THEORY 218

5.1 Introduction 218
5.1.1 Motivation, 218
5.1.2 Basic Architecture, 219
5.1.3 Basic Operation, 220

5.2 ART1 222
5.2.1 Architecture, 222
5.2.2 Algorithm, 225
5.2.3 Applications, 229
5.2.4 Analysis, 243

5.3 ART2 246
5.3.1 Architecture, 247
5.3.2 Algorithm, 250
5.3.3 Applications, 257
5.34 Analysis, 276

5.4 Suggestions for Further Study 283
5.4.1 Readings, 283
5.4.2 Exercises, 284
5.4.3 Projects, 287

CHAPTER 6 BACKPROPAGATION NEURAL NET 289

6.1 Standard Backpropagation 289
6.1.1 Architecture, 290
6.1.2 Algorithm, 290
6.1.3 Applications, 300

6.2 Variations 305
6.2.1 Alternative Weight Update Procedures, 305
6.2.2 Alternative Activation Functioné, 309
6.2.3 Strictly Local Backpropagation, 316
6.2.4 Number of Hidden Layers, 320

6.3 Theoretical Results 324
6.3.1 Derivation of Learning Rules, 324
6.3.2 Multilayer Neural Nets as Universal Approximators,
328

Contents xi

6.4 Suggestions for Further Study 330
6.4.1 Readings, 330
6.4.2 Exercises, 330
6.4.3 Projects, 332

CHAPTER 7 A SAMPLER OF OTHER NEURAL NETS 334

7.1 Fixed Weight Nets for Constrained Optimization 335
7.1.1 Boltzmann Machine, 338
7.1.2 Continuous Hopfield Net, 348
7.1.3 Gaussian Machine, 357
7.14 Cauchy Machine, 359

7.2 A Few More Nets that Learn 362
7.2.1 Modified Hebbian Learning, 362
7.2.2 Boltzmann Machine with Learning, 367
7.2.3 Simple Recurrent Net, 372
7.2.4 Backpropagation in Time, 377

7.2.5 Backpropagation Training for Fully Recurrent Nets
384

7.3 Adaptive Architectures 385
7.3.1 Probabilistic Neural Net, 385
7.3.2 Cascade Correlation, 390

7.4 Neocognitron 398
7.4.1 Architecture, 399
7.4.2 Algorithm, 407

7.5 Suggestions for Further Study 418

7.5.1 Readings, 418

7.5.2 Exercises, 418

7.5.3 Project, 420
GLOSSARY 422
REFERENCES 437

INDEX 449

Preface

There has been a resurgence of interest in artificial neural networks over the last
few years, as researchers from diverse backgrounds have produced a firm theo-
retical foundation and demonstrated numerous applications of this rich field of
study. However, the interdisciplinary nature of neural networks complicates the
development of a comprehensive, but introductory, treatise on the subject. Neural
networks are useful tools for solving many types of problems. These problems
may be characterized as mapping (including pattern association and pattern clas-
sification), clustering, and constrained optimization. There are severa neural net-
works available for each type of problem. In order to use these tools effectively
it is important to understand the characteristics (strengths and limitations) of each.

This book presents a wide variety of standard neural networks, with dia-
grams of the architecture, detailed statements of the training algorithm, and sev-
eral examples of the application for each net. In keeping with our intent to show
neural networksin afair but objective light, typical results of simple experiments
are included (rather than the best possible). The emphasis is on computational
characteristics, rather than psychological interpretations. To illustrate the simi-
larities and differences among the neural networks discussed, similar examples
are used wherever it is appropriate.

Fundamentals of Neural Networks has been written for students and for
researchers in academia, industry, and govemment who are interested in using
neural networks. It has been developed both as a textbook for a one semester,
or two quarter, Introduction to Neural Networks course at Florida Institute of
Technology, and as a resource book for researchers. Our course has been de-
veloped jointly by neural networks researchers from applied mathematics, com-

Xiii

Xiv Preface

puter science, and computer and electrical engineering. Our students are seniors,
or graduate students, in science and engineering; many work in local industry.

It is assumed that the reader is familiar with calculus and some vector-matrix
notation and operations. The mathematical treatment has been kept at a minimal
level, consistent with the primary aims of clarity and correctness. Derivations,
theorems and proofs are included when they serve to illustrate the important
features of a particular neural network. For example, the mathematical derivation
of the backpropagation training algorithm makes clear the correct order of the
operations. The level of mathematical sophistication increases somewhat in the
later chapters, as is appropriate for the networks presented in chapters 5, 6, and
7. However, derivations and proofs (when included) are presented at the end of
a section or chapter, so that they can be skipped without loss of continuity.

The order of presentation of the topics was chosen to reflect increasing
complexity of the networks. The material in each chapter is largely independent,
so that the chapters (after the first chapter) may be used in amost any order
desired. The McCulloch-Pitts neuron discussed at the end of Chapter 1 provides
asimple example of an early neura net. Single layer nets for pattern classification
and pattern association, covered in chapters 2 and 3, are two of the earliest ap-
plications of neural networks with adaptive weights. More complex networks,
discussed in later chapters, are aso used for these types of problems, as well as
for more general mapping problems. Chapter 6, backpropagation, can logically
follow chapter 2, adthough the networks in chapters 3-5 are somewhat simpler in
structure. Chapters 4 and 5 treat networks for clustering problems (and mapping
networks that are based on these clustering networks). Chapter 7 presents a few
of the most widely used of the many other neural networks, including two for
constrained optimization problems.

Algorithms, rather than computer codes, are provided to encourage the
reader to develop a thorough understanding of the mechanisms of training and
applying the neural network, rather than fostering the more superficial familiarity
that sometimes results from using completely developed software packages. For
many applications, the formulation of the problem for solution by a neural network
(and of an appropriate network) requires the detailed understanding of the
networks that cornes from performing both hand calculations and developing com-
puter codes for extremely simple examples.

Acknowledgments

Many people have helped to make this book a redlity. 1 can only mention a few
of them here.

1 have benefited either directly or indirectly from short courses on neural
networks taught by Harold Szu, Robert Hecht-Nielsen, Steven Rogers, Bernard
Widrow, and Tony Martinez.

My thanks go also to my colleagues for stimulating discussions and en-
couragement, especialy Harold K. Brown, Barry Grossman, Fred Ham, De-
metrios Lainiotis, Moti Schneider, Nazif Tepedelenlioglu, and Mike Thursby.

My students have assisted in the development of this book in many ways,
severa of the examples are based on student work. Joe Vandeville, Alan Lindsay,
and Francisco Gomez performed the computations for many of the examples in
Chapter 2. John Karp provided the results for Example 4.8. Judith Lipofsky did
Examples 4.9 and 4.10. Fred Parker obtained the results shown in Examples 4.12
and 4.13. Joseph Oslakovic performed the computations for severa of the ex-
amples in Chapter 5. Laurie Walker assisted in the development of the backpro-
pagation program for severa of the examplesin Chapter 6; Ti-Cheng Shih did the
computations for Example 6.5; Abdallah Said developed the logarithmic activation
function used in Examples 6.7 and 6.8. Todd Kovach, Robin Schumann, and
Hong-wei Du assisted with the Boltzmann machine and Hopfield net examples
in Chapter 7; Ki-suck Yoo provided Example 7.8.

Severa of the network architecture diagrams are adapted from the original
publications as referenced in the text. The spanning tree test data (Figures 4.11,
4,12, 5.11, and 5.12) are used with permission from Springer-Verlag. The illus-
trations of modified Hebbian learning have been adapted from the origina pub-

XV

XVi Acknowledgments

lications: Figure 7.10 has been adapted from Hertz, Krogh, Palmer, Introduction
to the Theory of Neural Computation, @ 1991 by Addison-Wesley Publishing
Company, Inc. Figure 7.11 has been adapted and reprinted from Neural Networks,
Vol. 5, Xu, Oja, and Suen, Modified Hebbian Leaming for Curve and Surface
Fitting, pp. 441-457, 1992 with permission from Pergamon Press Ltd, Headington
Hill Hall, Oxford 0X3 OBW, UK. Severa of the figures for the neocognitron are
adapted from (Fukushima, et al., 1983); they are used with permission of |EEE.
The diagrams of the ART2 architecture are used with permission of the Optical
Society of America, and Carpenter and Grossberg. The diagrams of the simple
recurrent net for learning a context sensitive grammar (Servan-Schreiber, et d.,
1989) are used with the permission of the authors.

The preparation of the manuscript and software for the examples has been
greatly facilitated by the use of a Macintosh Ilci furnished by Apple Computers
under the AppleSeed project. 1 thank Maurice Kurtz for making it available to
me.

1 appreciate the constructive and encouraging comments of the manuscript
reviewers. Stanley Ahat, The Ohio State University; Peter Anderson, Rochester
Institute of Technology; and Nirma Bose, Penn State University.

1 would like to thank the Prentice-Hall editorial staff, and especially Rick
Delorenzo, for their diligent efforts to produce an accurate and attractive product
within the inevitable time and budget constraints.

But firgt, last, and always, 1 would like to thank my husband and colleague,
Don Fausett for introducing me to neural networks, and for his patience, en-
couragement, and advice when asked, during the writing of this book (as well as
other times).

FUNDAMENTALS
» OF NEURAL NETWORKS

CHAPTER 1

Introduction

1.1 WHY NEURAL NETWORKS AND WHY NOW?

As modern computers become ever more powerful, scientists continue to be chal-
lenged to use machines effectively for tasks that are relatively simple for humans.
Based on examples, together with some feedback from a “teacher,” we learn
easily to recognize the letter A or distinguish a cat from a bird. More experience
alows us to refine our responses and improve our performance. Although even-
tually, we may be able to describe rules by which we can make such decisions,
these do not necessarily reflect the actual process we use. Even without a teacher,
we can group similar patterns together. Yet another common human activity is
trying to achieve a goa that involves maximizing a resource (time with one's
family, for example) while satisfying certain constraints (such as the need to earn
a living). Each of these types of problems illustrates tasks for which computer
solutions may be sought.

Traditional, sequential, logic-based digital computing excels in many areas,
but has been less successful for other types of problems. The development of
artificial neural networks began approximately 50 years ago, motivated by a desire
to try both to understand the brain and to emulate some of its strengths. Early

2 Introduction Chap. 1

successes were overshadowed by rapid progress in digital computing. Also, claims
made for capabilities of early models of neural networks proved to be exaggerated,
casting doubts on the entire field.

Recent renewed interest in neural networks can be attributed to several
factors. Training techniques have been developed for the more sophisticated net-
work architectures that are able to overcome the shortcomings of the early, simple
neural nets. High-speed digital computers make the simulation of neural processes
more feasible. Technology is now available to produce specialized hardware for
neural networks. However, at the same time that progress in traditional computing
has made the study of neural networks easier, limitations encountered in the
inherently sequential nature of traditional computing have motivated some new
directions for neural network research. Fresh approaches to parallel computing
may benefit from the study of biological neural systems, which are highly parallel.
The level of success achieved by traditional computing approaches to many types
of problems leaves room for a consideration of alternatives.

Neural nets are of interest to researchers in many areas for different reasons.
Electrical engineers find numerous applications in signal processing and control
theory. Computer engineers are intrigued by the potential for hardware to im-
plement neural nets efficiently and by applications of neural nets to robotics.
Computer scientists find that neural nets show promise for difficult problems in
areas such as artificial intelligence and pattern recognition. For applied mathe-
maticians, neural nets are a powerful tool for modeling problems for which the
explicit form of the relationships among certain variables is not known.

There are various points of view as to the nature of a neural net. For example,
is it a specialized piece of computer hardware (say, a VLSI chip) or a computer
program? We shall take the view that neural nets are basically mathematical
models of information processing. They provide a method of representing rela-
tionships that is quite different from Turing machines or computers with stored
programs. As with other numerical methods, the availability of computer re-
sources, either software or hardware, greatly enhances the usefulness of the ap-
proach, especially for large problems.

The next section presents a brief description of what we shall mean by a
neural network. The characteristics of biological neural networks that serve as
the inspiration for artificial neural networks, or neurocomputing, are also men-
tioned. Section 1.3 gives a few examples of where neural networks are currently
being developed and applied. These examples come from a wide range of areas.
Section 1.4 introduces the basics of how a neural network is defined. The key
characteristics are the net’s architecture and training algorithm. A summary of
the notation we shall use and illustrations of some common activation functions
are also presented. Section 1.5 provides a brief history of the development of
neural networks. Finally, as a transition from the historical context to descriptions
of the most fundamental and common neural networks that are the subject of the
remaining chapters, we describe the McCulloch-Pitts neuron,

Sec. 1.3 Where Are Neural Nets Being Used? 3
1.2 WHAT IS A NEURAL NET?
1.2.1 Artificial Neural Networks

An artificial neural network is an information-processing system that has certain
performance characteristics in common with biological neural networks. Artificial
neural networks have been developed as generalizations of mathematical models
of human cognition or neural biology, based on the assumptions that:

1. Information processing occurs at many simple elements called neurons.
2. Signals are passed between neurons over connection links.

3. Each connection link has an associated weight, which, in a typical neural
net, multiplies the signal transmitted.

4. Each neuron applies an activation function (usually nonlinear) to its net input
(sum of weighted input signals) to determine its output signal.

A neural network is characterized by (1) its pattern of connections between the
neurons (called its architecture), (2) its method of determining the weights on the
connections (called its training, or learning, algorithm), and (3) its activation
function. |

Since what distinguishes (artificial) neural networks from other approaches
to information processing provides an introduction to both how and when to use
neural networks, let us consider the defining characteristics of neural networks
further.

A neural net consists of a large number of simple processing elements called
neurons, units, cells, or nodes. Each neuron is connected to other neurons by
means of directed communication links, each with an associated weight. The
weights represent information being used by the net to solve a problem. Neural
nets can be applied to a wide variety of problems, such as storing and recalling
data or patterns, classifying patterns, performing general mappings from input
patterns to output patterns, grouping similar patterns, or finding solutions to con-
strained optimization problems.

Each neuron has an internal state, called its activation or activity level, which
is a function of the inputs it has received. Typically, a neuron sends its activation
as a signal to several other neurons. It is important to note that a neuron can send
only one signal at a time, although that signal is broadcast to several other neurons.:

For example, consider a neuron Y, illustrated in Figure 1.1, that receives
inputs from neurons X, X>, and Xs. The activations (output signals) of these
neurons are x;, x», and x;, respectively. The weights on the connections from
X1, X2, and X; to neuron Y are w,, wa, and ws, respectively. The net input, y_in,
to neuron Y is the sum of the weighted signals from neurons X, X, and X3, i.e.,

y—_in = wix; + woxs + wixi.

4 Introduction Chap. 1

@ Wy -{ ¥

®_/ Figure 1.1 A simple (artificial) neuron.

The activation y of neuron Y is given by some function of its net input,
y = f(y-in), e.g., the logistic sigmoid function (an S-shaped curve)

1
1 + exp(—x)’

fx) =

or any of a number of other activation functions. Several common activation
functions are illustrated in Section 1.4.3. .

Now suppose further that neuron Y is connected to neurons Z; and Z, with
weights v and v,, respectively, as shown in Figure 1.2. Neuron Y sends its signal
y to each of these units. However, in general, the values received by neurons Z |
and Z, will be different, because each signal is scaled by the appropriate weight,
v1 Or v3. In a typical net, the activations z, and z, of neurons Z 1 and Z, would
depend on inputs from several or even many neurons, not just one, as shown in
this simple example.

Although the neural network in Figure 1.2 is very simple, the presence of
a hidden unit, together with a nonlinear activation function, gives it the ability to
solve many more problems than can be solved by a net with only input and output
units. On the other hand, it is more difficult to train (i.e., find optimal values for
the weights) a net with hidden units. The arrangement of the units (the architecture

Input Hidden Output
Units Units Units

Figure 1.2 A very simple neural network.

Sec. 1.2 What is a Neural Net? 5

of the net) and the method of training the net are discussed further in Section 1.4.
A detailed consideration of these iideas for specific nets, together with simple
examples of an application of each net, is the focus of the following chapters.

1.2.2 Biologicai Neural Networks

The extent to which a neural network models a particular biological neural system
varies. For some researchers, this is a primary concern; for others, the ability of
the net to perform useful tasks (such as approximate or represent a function) is
more important than the biological plausibility of the net. Although our interest
lies almost exclusively in the computational capabilities of neural networks, we
shall present a brief discussion of some features of biological neurons that may
help to clarify the most important characteristics of artificial neural networks. In
addition to being the original inspiration for artificial nets, biological neural sys-
tems suggest features that have distinct computational advantages.

There is a close analogy between the structure of a biological neuron (i.e.,
a brain or nerve cell) and the processing element (or artificial neuron) presented
in the rest of this book. In fact, the structure of an individual neuron varies much
less from species to species than does the organization of the system of which
the neuron is an element.

A biological neuron has three types of components that are of particular
interest in understanding an artificial neuron: its dendrites, soma, and axon. The
many dendrites receive signals from other neurons. The signals are electric im-
pulses that are transmitted across a synaptic gap by means of a chemical process.
The action of the chemical transmitter modifies the incoming signal (typically, by
scaling the frequency of the signals that are received) in a manner similar to the
action of the weights in an artificial neural network.

The soma, or cell body, sums the incoming signals. When sufficient input
is received, the cell fires; that is, it transmits a signal over its axon to other cells.
It is often supposed that a cell either fires or doesn’t at any instant of time, so
that transmitted signals can be treated as binary. However, the frequency of firing
varies and can be viewed as a signal of either greater or lesser magnitude. This
corresponds to looking at discrete time steps and summing all activity (signals
received or signals sent) at a particular point in time.

The transmission of the signal from a particular neuron is accomplished by
an action potential resulting from differential concentrations of ions on either side
of the neuron’s axon sheath (the brain’s ‘‘white matter’’). The ions most directly
involved are potassium, sodium, and chloride.

A generic biological neuron is illustrated in Figure 1.3, together with axons
from two other neurons (from which the illustrated neuron could receive signals)
and dendrites for two other neurons (to which the original neuron would send
signals). Several key features of the processing elements of artificial neural net-
works are suggested by the properties of biological neurons, viz., that:

Ll

Introduction Chap. 1

The processing element receives many signals.
Signals may be modified by a weight at the receiving synapse.
The processing element sums the weighted inputs.

Under appropriate circumstances (sufficient input), the neuron transmits a
single output.

The output from a particular neuron may go to many other neurons (the
axon branches).

Other features of artificial neural networks that are suggested by biological neu-
rons are:

6.

Information processing is local (although other means of transmission, such
as the action of hormones, may suggest means of overall process control).

. Memory is distributed:

a. Long-term memory resides in the neurons’ synapses or weights.
b. Short-term memory corresponds to the signals sent by the neurons.

A synapse’s strength may be modified by experience.

. Neurotransmitters for synapses may be excitatory or inhibitory.

Yet another important characteristic that artificial neural networks share

with biological neural systems is fault tolerance. Biological neural systems are
fault tolerant in two respects. First, we are able to recognize many input signals
that are somewhat different from any signal we have seen before. An example of
this is our ability to recognize a person in a picture we have not seen before or
to recognize a person after a long period of time.

Second, we are able to tolerate damage to the neural system itself. Humans

are born with as many as 100 billion neurons. Most of these are in the brain, and
most are not replaced when they die [Johnson & Brown, 1988]. In spite of our
continuous loss of neurons, we continue to learn. Even in cases of traumatic neural

Axon from
Another Neuron

Dendrite Dendrite of
Another Neuron

v
Synaptic
Gap

Axon from
Another Neuron

Axon

Synaptic /
Gap Dendrite of

Another Neuron

Figure 1.3 Biological neuron.

Sec. 1.3 Where Are Neural Nets Being Used? 7
loss, other neurons can sometimes be trained to take over the functions of the
damaged cells. In a similar manner, artificial neural networks can be designed to
be insensitive to small damage to the network, and the network can be retrained
in cases of significant damage (e.g., loss of data and some connections).

Even for uses of artificial neural networks that are not intended primarily
to model biological neural systems, attempts to achieve biological plausibility may
lead to improved computational features. One example is the use of a planar array
of neurons, as is found in the neurons of the visual cortex, for Kohonen's self-
organizing maps (see Chapter 4). The topological nature of these maps has com-
putational advantages, even in applications where the structure of the output units
is not itself significant.

Other researchers have found that computationally optimal groupings of
artificial neurons correspond to biological bundles of neurons [Rogers & Kabrisky,
1989]. Separating the action of a backpropagation net into smaller pieces to make
it more local (and therefore, perhaps more biologically plausible) also allows im-
provement in computational power (cf. Section 6.2.3) [D. Fausett, 1990].

1.3 WHERE ARE NEURAL NETS BEING USED?

The study of neural networks is an extremely interdisciplinary field, both in its
development and in its application. A brief sampling of some of the areas in which
neural networks are currently being applied suggests the breadth of their appli-

cability. The examples range from commercial successes to areas of active re-
search that show promise for the future.

1.3.1 Signal Processing

There are many applications of neural networks in the general area of signal
processing. One of the first commercial applications was (and still is) to suppress
noise on a telephone line. The neural net used for this purpose is a form of
ADALINE. (We discuss ADALINEs in Chapter 2.) The need for adaptive echo can-
celers has become more pressing with the development of transcontinental sat-
ellite links for long-distance telephone circuits\NThe two-way round-trip time delay
for the radio transmission is on the order of half a second. The switching involved -
in conventional echo suppression is very disruptive with path delays of this length.
Even in the case of wire-based telephone transmission, the repeater amplifiers
introduce echoes in the signal.

The adaptive noise cancellation idea is quite simple. At the end of a long-
distance line, the incoming signal is applied to both the telephone system com-
ponent (called the hybrid) and the adaptive filter (the ADALINE type of neural net).
The difference between the output of the hybrid and the output of the ADALINE
is the error, which is used to adjust the weights on the ADALINE. The ADALINE

is trained to remove the noise (echo) from the hybrid’s output signal. (See Widrow
and Stearns, 1985, for a more detailed discussion.)

8 Introduction Chap. 1

1.3.2 Control

The difficulties involved in backing up a trailer are obvious to anyone who has
either attempted or watched a novice attempt this maneuver. However, a driver
with experience accomplishes the feat with remarkable ease. As an example of
the application of neural networks to control problems, consider the task of train-
ing a neural *‘truck backer-upper’’ to provide steering directions to a trailer truck
attempting to back up to a loading dock [Nguyen & Widrow, 1989; Miller, Sutton,

& Werbos, 1990]. Information is available describing the position of the cab of
the truck, the position of the rear of the trailer, the (fixed) position of the loading
dock, and the angles that the truck and the trailer make with the loading dock.
The neural net is able to learn how to steer the truck in order for the trailer to
reach the dock, starting with the truck and trailer in any initial configuration that
allows enough clearance for a solution to be possible. To make the problem more
challenging, the truck is allowed only to back up.

The neural net solution to this problem uses two modules. The first (called
the emulator) learns to compute the new position of the truck, given its current
position and the steering angle. The truck moves a fixed distance at each time
step. This module learns the ‘“‘feel”” of how a trailer truck responds to various
steering signals, in much the same way as a driver learns the behavior of such a
rig. The emulator has several hidden units and is trained using backpropagation
(which is the subject of Chapter 6).

The second module is the controller. After the emulator is trained, the con-
troller learns to give the correct series of steering signals to the truck so that the
trailer arrives at the dock with its back parallel to the dock. At each time step,
the controller gives a steering signal and the emulator determines the new position
of the truck and trailer. This process continues until either the trailer reaches the
dock or the rig jackknifes. The error is then determined and the weights on the
controller are adjusted.

As with a driver, performance improves with practice, and the neural con-
troller learns to provide a series of steering signals that direct the truck and trailer
to the dock, regardless of the starting position (as long as a solution is possible).
Initially, the truck may be facing toward the dock, may be facing away from the
dock, or may be at any angle in between. Similarly, the angle between the truck
and the trailer may have an initial value short of that in a jack-knife situation.
The training process for the controller is similar to the recurrent backpropagation
described in Chapter 7.

1.3.3 Pattern Recognition
Many interesting problems fall into the general area of pattern recognition. One

specific area in which many neural network applications have been developed is
the automatic recognition of handwritten characters (digits or letters). The large

Sec. 1.3 Where Are Neural Nets Being Used? 9

variation in sizes, positions, and styles of writing make this a difficult problem
for traditional techniques. It is a good example, however, of the type of infor-
mation processing that humans can perform relatively easily.

General-purpose multilayer neural nets, such as the backpropagation net (a
multilayer net trained by backpropagation) described in Chapter 6, have been
used for recognizing handwritten zip codes [Le Cun et al., 1990]. Even when an
application is based on a standard training algorithm, it is quite common to cus-
tomize the architecture to improve the performance of the application. This back-
propagation net has several hidden layers, but the pattern of connections from
one layer to the next is quite localized.

An alternative approach to the problem of recognizing handwritten char-
acters is the ‘‘neocognitron’ described in Chapter 7. This net has several layers,
each with a highly structured pattern of connections from the previous layer and
to the subsequent layer. However, its training is a layer-by-layer process, spe-
cialized for just such an application.

1.3.4 Medicine

One of many examples of the application of neural networks to medicine was
developed by Anderson et al. in the mid-1980s [Anderson, 1986; Anderson,
Golden, and Murphy, 1986]. It has been called the ‘‘Instant Physician’’ [Hecht-
Nielsen, 1990]. The idea behind this application is to train an autoassociative
memory neural network (the *‘Brain-State-in-a-Box,”’ described in Section 3.4.2)
to store a large number of medical records, each of which includes information
on symptoms, diagnosis, and treatment for a particular case. After training, the
net can be presented with input consisting of a set of symptoms; it will then find
the full stored pattern that represents the ‘‘best’ diagnosis and treatment.

The net performs surprisingly well, given its simple structure. When a par-
ticular set of symptoms occurs frequently in the training set, together with a unique
diagnosis and treatment, the net will usually give the same diagnosis and treat-
ment. In cases where there are ambiguities in the training data, the net will give
the most common diagnosis and treatment. In novel situations, the net will pre-
scribe a treatment corresponding to the symptom(s) it has seen before, regardless
of the other symptoms that are present.

1.3.5 Speech Production

Learning to read English text aloud is a difficult task, because the correct phonetic
pronunciation of a letter depends on the context in which the letter appears. A
traditional approach to the problem would typically involve constructing a set of
rules for the standard pronunciation of various groups of letters, together with a
look-up table for the exceptions.

One of the most widely known examples of a neural network approach to

10 Introduction Chap. 1

the problem of speech production is NETtalk {Sejnowski and Rosenberg, 1986],
a multilayer neural net (i.e., a net with hidden units) similar to those described
in Chapter 6. In contrast to the need to construct rules and look-up tables for the
exceptions, NETtalk’s only requirement is a set of examples of the written input,
together with the correct pronunciation for it. The written input includes both the
letter that is currently being spoken and three letters before and after it (to provide
a context). Additional symbols are used to indicate the end of a word or punc-
tuation. The net is trained using the 1,000 most common English words. After
training, the net can read new words with very few errors; the errors that it does
make are slight mispronunciations, and the intelligibility of the speech is quite
good. '

It is interesting that there are several fairly distinct stages to the response
of the net as training progresses. The net learns quite quickly to distinguish vowels
from consonants; however, it uses the same vowel for all vowels and the same
consonant for all consonants at this first stage. The result is a babbling sound.
The second stage of learning corresponds to the net recognizing the boundaries
between words; this produces a pseudoword type of response. After as few as 10
passes through the training data, the text is intelligible. Thus, the response of the
net as training progresses is similar to the development of speech in small children.

1.3.6 Speech Recognition

Progress is being made in the difficult area of speaker-independent recognition
of speech. A number of useful systems now have a limited vocabulary or grammar
or require retraining for different speakers. Several types of neural networks have
been used for speech recognition, including multilayer nets (see Chapter 6) or
multilayer nets with recurrent connections (see Section 7.2). Lippmann (1989)
summarizes the characteristics of many of these nets.

One net that is of particular interest, both because of its level of development
toward a practical system and because of its design, was developed by Kohonen
using the self-organizing map (Chapter 4). He calls his net a ‘‘phonetic type-
writer.”” The output units for a self-organizing map are arranged in a two-dimen-
sional array (rectangular or hexagonal). The input to the net is based on short
segments (a few milliseconds long) of the speech waveform. As the net groups
similar inputs, the clusters that are formed are positioned so that different ex-
amples of the same phoneme occur on output units that are close together in the
output array.

After the speech input signals are mapped to the phoneme regions (which
has been done without telling the net what a phoneme is), the output units can
be connected to the appropriate typewriter key to construct the phonetic type-
writer. Because the correspondence between phonemes and written letters is very
regular in Finnish (for which the net was developed), the spelling is often correct.
See Kohonen (1988) for a more extensive description.

Sec. 1.4 How Are Neural Networks Used? 11
1.3.7 Business

Neural networks are being applied in a number of business settings [Harston,
1990]. We mention only one of many examples here, the mortgage assessment
work by Nestor, Inc. [Collins, Ghosh, & Scofield, 1988a, 1988b].

Although it may be thought that the rules which form the basis for mortgage
underwriting are well understood, it is difficult to specify completely the process
by which experts make decisions in marginal cases. In addition, there is a large
financial reward for even a small reduction in the number of mortgages that be-
come delinquent. The basic idea behind the neural network approach to mortgage
risk assessment is to use past experience to train the net to provide more consistent
and reliable evaluation of mortgage applications.

Using data from several experienced mortgage evaluators, neural nets were
trained to screen mortgage applicants for mortgage origination underwriting and
mortgage insurance underwriting. The purpose in each of these is to determine
whether the applicant should be given a loan. The decisions in the second kind
of underwriting are more difficult, because only those applicants assessed as
higher risks are processed for mortgage insurance. The training input includes
information on the applicant’s years of employment, number of dependents, cur-
rent income, etc., as well as features related to the mortgage itself, such as the
loan-to-value ratio, and characteristics of the property, such as its appraised value.
The target output from the net is an *‘accept’ or ‘‘reject’’ response.

In both kinds of underwriting, the neural networks achieved a high level of
agreement with the human experts. When disagreement did occur, the case was
often a marginal one where the experts would also disagree. Using an independent
measure of the quality of the mortgages certified, the neural network consistently
made better judgments than the experts. In effect, the net learned to form a
consensus from the experience of all of the experts whose actions had formed
the basis for its training.

A second neural net was trained to evaluate the risk of default on a loan,
based on data from a data base consisting of 111,080 applications, 109,072 of
which had no history of delinquency. A total of 4,000 training samples were se-
lected from the data base. Although delinquency can result from many causes
that are not reflected in the information available on a loan application, the pre-
dictions the net was able to make produced a 12% reduction in delinquencies.

1.4 HOW ARE NEURAL NETWORKS USED?

Let us now consider some of the fundamental features of how neural networks
operate. Detailed discussions of these ideas for a number of specific nets are
presented in the remaining chapters. The building blocks of our examination here
are the network architectures and the methods of setting the weights (training).

12 Introduction Chap. 1

We also illustrate several typical activation functions and conclude the section
with a summary of the notation we shall use throughout the rest of the text.

1.4.1 Typical Architectures

Often, it is convenient to visualize neurons as arranged in layers. Typically, neu-
rons in the same layer behave in the same manner. Key factors in determining
the behavior of a neuron are its activation function and the pattern of weighted
connections over which it sends and receives signals. Within each layer, neurons
usually have the same activation function and the same pattern of connections to
other neurons. To be more specific, in many neural networks, the neurons within
a layer are either fully interconnected or not interconnected at all. If any neuron
in a layer (for instance, the layer of hidden units) is connected to a neuron in
another layer (say, the output layer), then each hidden unit is connected to every
output neuron.

The arrangement of neurons into layers and the connection patterns within
and between layers is called the net architecture. Many neural nets have an input
layer in which the activation of each unit is equal to an external input signal. The
net illustrated in Figure 1.2 consists of input units, output units, and one hidden
unit (a unit that is neither an input unit nor an output unit).

Neural nets are often classified as single layer or muitilayer. In determining
the number of layers, the input units are not counted as a layer, because they
perform no computation. Equivalently, the number of layers in the net can be
defined to be the number of layers of weighted interconnect links between the
slabs of neurons. This view is motivated by the fact that the weights in a net
contain extremely important information. The net shown in Figure 1.2 has two
layers of weights.

The single-layer and multilayer nets illustrated in Figures 1.4 and 1.5 are
examples of feedforward nets—nets in which the signals flow from the input units
to the output units, in a forward direction. The fuily interconnected competitive
net in Figure 1.6 is an example of a recurrent net, in which there are closed-loop
signal paths from a unit back to itself.

Single-Layer Net

A single-layer net has one layer of connection weights. Often, the units can be
distinguished as input units, which receive signals from the outside world, and
output units, from which the response of the net can be read. In the typical single-
layer net shown in Figure 1.4, the input units are fully connected to output units
but are not connected to other input units, and the output units are not connected
to other output units. By contrast, the Hopfield net architecture, shown in Figure
3.7, is an example of a single-layer net in which all units function as both input
and output units. _

For pattern classification, each output unit corresponds to a particular cat-

Sec. 1.4 How Are Neural Networks Used? 13

One Layer Output
Units of Weights Units Figure 1.4 A single-layer neural net.

Hidden Output
Units Units

Figure 1.5 A multilayer neural net.

14 Introduction Chap. 1

1 Figure 1.6 Competitive layer.

egory to which an input vector may or may not belong. Note that for a single-
layer net, the weights for one output unit do not influence the weights for other
output units. For pattern association, the same architecture can be used, but now
the overall pattern of output signals gives the response pattern associated with
the input signal that caused it to be produced. These two examples illustrate the
fact that the same type of net can be used for different problems, depending on
the interpretation of the response of the net.

On the other hand, more complicated mapping problems may require a mul-
tilayer network. The characteristics of the problems for which a single-layer net
is satisfactory are considered in Chapters 2 and 3. The problems that require
multilayer nets may still represent a classification or association of patterns; the
type of problem influences the choice of architecture, but does not uniquely de-
termine it. '

Multilayer net

A multilayer net is a net with one or more layers (or levels) of nodes (the so-
called hidden units) between the input units and the output units. Typically, there
is a layer of weights between two adjacent levels of units (input, hidden, or output).
Multilayer nets can solve more complicated problems than can single-layer nets,
but training may be more difficult. However, in some cases, training may be more
successful, because it is possible to solve a problem that a single-layer net cannot
be trained to perform correctly at all.

Competitive layer

A competitive layer forms a part of a large number of neural networks. Several
examples of these nets are discussed in Chapters 4 and 5. Typically, the inter-
connections between neurons in the competitive layer are not shown in the ar-
chitecture diagrams for such nets. An example of the architecture for a competitive

Sec. 1.4 How Are Neural Networks Used? 15

layer is given in Figure 1.6; the competitive interconnections have weights of —e.
The operation of a winner-take-all competition, MAXNET [Lippman, 1987], is de-
scribed in Section 4.1.1.

1.4.2 Setting the Weights

In addition to the architecture, the method of setting the values of the weights
(training) is an important distinguishing characteristic of different neural nets. For
convenience, we shall distinguish two types of training—supervised and unsu-
pervised—{for a neural network; in addition, there are nets whose weights are
fixed without an iterative training process.

Many of the tasks that neural nets can be trained to perform fall into the
areas of mapping, clustering, and constrained optimization. Pattern classification
and pattern association may be considered special forms of the more general
problem of mapping input vectors or patterns to the specified output vectors or
patterns.

There is some ambiguity in the labeling of training methods as supervised
or unsupervised, and some authors find a third category, self-supervised training,
useful. However, in general, there is a useful correspondence between the type
of training that is appropriate and the type of problem we wish to solve. We
summarize here the basic characteristics of supervised and unsupervised training
and the types of problems for which each, as well as the fixed-weight nets, is
typically used.

Supervised training

In perhaps the most typical neural net setting, training is accomplished by pre-
senting a sequence of training vectors, or patterns, each with an associated target
output vector. The weights are then adjusted according to a learning algorithm.
This process is known as supervised training.

Some of the simplest (and historically earliest) neural nets are designed to
perform pattern classification, i.e., to classify an input vector as either belonging
or not belonging to a given category. In this type of neural net, the output is a
bivalent element, say, either 1 (if the input vector belongs to the category) or —1
(if it does not belong). In the next chapter, we consider several simple single-
layer nets that were designed or typically used for pattern classification. These
nets are trained using a supervised algorithm. The characteristics of a classifi-
cation problem that determines whether a single-layer net is adequate are con-
sidered in Chapter 2 also. For more difficult classification problems, a multilayer
net, such as that trained by backpropagation (presented in Chapter 6) may be
better.

Pattern association is another special form of a mapping problem, one in
which the desired output is not just a “‘yes’ or ‘‘no,”’ but rather a pattern. A
neural net that is trained to associate a set of input vectors with a corresponding

16 Introduction Chap. 1

set of output vectors is called an associative memory. If the desired output vector
is the same as the input vector, the net is an autoassociative memory; if the output
target vector is different from the input vector, the net is a heteroassociative
memory. After training, an associative memory can recall a stored pattern when
it is given an input vector that is sufficiently similar to a vector it has learned.
Associative memory neural nets, both feedforward and recurrent, are discussed
in Chapter 3.

Multilayer neural nets can be trained to perform a nonlinear mapping from
an n-dimensional space of input vectors (n-tuples) to an m-dimensional output
space—i.e., the output vectors are m-tuples.

The single-layer nets in Chapter 2 (pattern classification nets) and Chapter
3 (pattern association nets) use supervised training (the Hebb rule or the delta
rule). Backpropagation (the generalized delta rule) is used to train the multilayer
nets in Chapter 6. Other forms of supervised learning are used for some of the
nets in Chapter 4 (learning vector quantization and counterpropagation) and Chap-
ter 7. Each learning algorithm will be described in detail, along with a description
of the net for which it is used.

Unsupervised training

Self-organizing neural nets group similar input vectors together without the use
of training data to specify what a typical member of each group looks like or to
which group each vector belongs. A sequence of input vectors is provided, but
no target vectors are specified. The net modifies the weights so that the most
similar input vectors are assigned to the same output (or cluster) unit. The neural
net will produce an exemplar (representative) vector for each cluster formed. Self-
organizing nets are described in Chapters 4 (Kohonen self-organizing maps) and
Chapter 5 (adaptive resonance theory).

Unsupervised learning is also used for other tasks, in addition to clustering.
Examples are included in Chapter 7.

Fixed-weight nets

Still other types of neural nets can solve constrained optimization problems. Such
nets may work well for problems that can cause difficulty for traditional tech-
niques, such as problems with conflicting constraints (i.e., not all constraints can
be satisfied simultaneously). Often, in such cases, a nearly optimal solution (which
the net can find) is satisfactory. When these nets are designed, the weights are
set to represent the constraints and the quantity to be maximized or minimized.
The Boltzmann machine (without learning) and the continuous Hopfield net
(Chapter 7) can be used for constrained optimization problems.
Fixed weights are also used in contrast-enhancing nets (see Section 4.1).

Sec. 1.4. How Are Neural Networks Used? 17
1.4.3 Common Activation Functions

As mentioned before, the basic operation of an artificial neuron involves summing
its weighted input signal and applying an output, or activation, function. For the
input units, this function is the identity function (see Figure 1.7). Typically, the
same activation function is used for all neurons in any particular layer of a neural
net, although this is not required. In most cases, a nonlinear activation function
is used. In order to achieve the advantages of multilayer nets, compared with the
limited capabilities of single-layer nets, nonlinear functions are required (since
the results of feeding a signal through two or more layers of linear processing
elements—i.e., elements with linear activation functions—are no different from
what can be obtained using a single layer).

(i) Identity function:
f(x) =x for all x.

Single-layer nets often use a step function to convert the net input, which
is a continuously valued variable, to an output unit that is a binary (1 or 0) or
bipolar (1 or —1) signal (see Figure 1.8). The use of a threshold in this regard is
discussed in Section 2.1.2. The binary step function is also known as the threshold
function or Heaviside function.

(if) Binary step function (with threshold 6):

1 ifx=o0
fu)“{o ifx <6

Sigmoid functions (S-shaped curves) are useful activation functions. The
logistic function and the hyperbolic tangent functions are the most common. They
are especially advantageous for use in neural nets trained by backpropagation,
because the simple relationship between the value of the function at a point and
the value of the derivative at that point reduces the computational burden during
training.

The logistic function, a sigmoid function with range from 0 to 1, is often

Figure 1.7 Identity function.

18 Introduction Chap. 1

fx)

Figure 1.8 Binary step function.

used as the activation function for neural nets in which the desired output values
either are binary or are in the interval between 0 and 1. To emphasize the range
of the function, we will call it the binary sigmoid; it is also called the logistic
sigmoid. This function is illustrated in Figure 1.9 for two values of the steepness
parameter o.

(iii) Binary sigmoid:

_r

1 + exp(—ox) '
F'(x) = af(0) [1 = f(x)).

As is shown in Section 6.2.3, the logistic sigmoid function can be scaled to
have any range of values that is appropriate for a given problem. The most com-
mon range is from — 1 to 1; we call this sigmoid the bipolar sigmoid. It is illustrated
in Figure 1.10 for ¢ = 1.

fx) =

fx)

Figure 1.9 Binary sigmoid. Steepness parameters o = 1 and o = 3.

Sec. 1.4 How Are Neural Networks Used? 19

Figure 1.10 Bipolar sigmoid.

(iv) Bipolar sigmoid:

2
1 + exp(—ox)

2f(x) =1 =

g(x)

_ 1 — exp(—ox)
1 + exp(—ox) "’

g'(x) g-[l + gl - g).

The bipolar sigmoid is closely related to the hyperbolic tangent function,
which is also often used as the activation function when the desired range of
output values is between —1 and 1. We illustrate the correspondence between
the two for ¢ = 1. We have

1 — exp(—x)

g0 \= 1 + exp(—x)’

2
The hyperbolic tangent is
exp(x) — exp(—x)
exp(x) + .exp(—x)
_ 1 = exp(—2x)
S 1+ exp(=2x)

h(x)

The derivative of the hyperbolic tangent is
h'(x) = [1 + h()I1 — h(x)]. |

For binary data (rather than continuously valued data in the range from 0
to 1), it is usually preferable to convert to bipolar form and use the bipolar sigmoid
or hyperbolic tangent. A more extensive discussion of the choice of activation
functions and different forms of sigmoid functions is given in Section 6.2.2.

20

Introduction Chap. 1

1.4.4 Summary of Notation

The following notation will be used throughout the discussions of specific neural
nets, unless indicated otherwise for a particular net (appropriate values for the
parameter depend on the particular neural net model being used and will be dis-
cussed further for each model):

Xis Yj

y-in;

Activations of units X;, Y;, respectively:
For input units X;;

x; = input signal;
for other units Y;
yi = f(y-iny).

Weight on connection from unit X; to unit Y;:
Beware: -Some authors use the opposite convention, with w;; de-
noting the weight from unit Y; to unit X;.

Bias on unit ¥;:
A bias acts like a weight on a connection from a unit with a constant
activation of 1 (see Figure 1.11).

Net input to unit ¥;:

y_inj = bj + Exiw,-j
. i

Weight matrix:
W = {w;}.
Vector of weights:
w,; = (lea Wajs e o vy an)T-

This is the jth column of the weight matrix.
Norm or magnitude of vector x.
Threshold for activation of neuron Y;:
A step activation function sets the activation of a neuron to 1 when-
ever its net input is greater than the specified threshold value 6;;
otherwise its activation is 0 (see Figure 1.8).
Training input vector:
S = (81,3 8is .y Sa)
Training (or target) output vector:
t=(t1,...,tj,...,tm).
Input vector (for the net to classify or respond to):

X = (X1, v Xiyenoy,Xn)

Sec. 1.4 How Are Neurél Networks Used? 21

Aw,-j Change in Wil -

Awg; = [wy (new) — w;; (old)]. -

a Learning rate:

The learning rate is used to control the amount of weight adjust-
ment at each step of training:-

Matrix multiplication method for calciﬂating net input -

If the connection weights for a neural net are stored in a matrix W = (w; ;). the
net input to unit ¥; (with no bias on unit j) is simply the dot product of the vectors
X = (X1,...,Xi...,X,) and w; (the jth column of the weight matrix):

y_in; = x-w,

n
= 2 XiW;j; .
i=1
Bias ‘
A bias can be included by adding a component’)xo = 1 to the vector x, i.e.,
x = (L, xy,...,x,...,x,). The bias is treated exactly like any other weight,

i.e., wo; = b;. The net input to unit ¥; is given by
‘ y-in; = X'w,

n
2 XiW,j

i=0 . .

n

woj + X Xiwy

i=1

n .
bj + 2 XiWij .
i=1

The relation between a bias and a threshold is considere'djn‘Section 2.1.2.

Figure 1.11 Neuron with a bias.

22 Introduction Chap. 1

1.5 WHO IS DEVELOPING NEURAL NETWORKS?

This section presents a very brief summary of the history of neural networks, in
terms of the development of architectures and algorithms that are widely used
today. Results of a primarily biological nature are not included, due to space
constraints. They have, however, served as the inspiration for a number of net-
works that are applicable to problems beyond the original ones studied. The his-
tory of neural networks shows the interplay among biological experimentation,
modeling, and computer simulation/hardware implementation. Thus, the field is
strongly interdisciplinary.

1.5.1 The 1940s: The Beginning of Neural Nets

McCulloch-Pitts neurons

Warren McCulloch and Walter Pitts designed what are generally regarded as the
first neural networks [McCulloch & Pitts, 1943]. These researchers recognized
that combining many simple neurons into neural systems was the source of in-
creased computational power. The weights on a McCulloch-Pitts neuron are set
so that the neuron performs a particular simple logic function, with different neu-
rons performing different functions. The neurons can be arranged into a net to
produce any output that can be represented as a combination of logic functions.
The flow of information through the net assumes a unit time step for a signal to
travel from one neuron to the next. This time delay allows the net to model some
physiological processes, such as the perception of hot and cold.

The idea of a threshold such that if the net input to a neuron is greater than
the threshold then the unit fires is one feature of a McCulloch-Pitts neuron that
is used in many artificial neurons today. However, McCulloch-Pitts neurons are
used most widely as logic circuits [Anderson & Rosenfeld, 1988].

McCulloch and Pitts subsequent work [Pitts & McCulloch, 1947] addressed
issues that are still important research areas today, such as translation and rotation
invariant pattern recognition.

Hebb learning

Donald Hebb, a psychologist at McGill University, designed the first learning law
for artificial neural networks [Hebb, 1949]. His premise was that if two neurons
were active simultaneously, then the strength of the connection between them
should be increased. Refinements were subsequently made to this rather general
statement to allow computer simulations [Rochester, Holland, Haibt & Duda,
1956]. The idea is closely related to the correlation matrix learning developed by
Kohonen (1972) and Anderson (1972) among others. An expanded form of Hebb
learning [McClelland & Rumelhart, 1988] in which units that are simultaneously
off also reinforce the weight on the connection between them will be presented
in Chapters 2 and 3. '

Sec. 1.5 Who is Developing Neural Networks? 23

1.5.2 The 1950s and 1960s: The First Golden Age
- of Neural Networks

Although today neural networks are often viewed as an alternative to (or com-
plement of) traditional computing, it is interesting to note that John von Neumann,
the ““father of modern computing,”” was keenly interested in modeling the brain
[von Neumann, 1958]. Johnson and Brown (1988) and Anderson and Rosenfeld
(1988) discuss the interaction between von Neumann and early neural network
researchers such as Warren McCulloch, and present further indication of von
Neumann’s views of the directions in which computers would develop.

Perceptrons

Together with several other researchers [Block, 1962; Minsky & Papert, 1988
(originally published 1969)], Frank Rosenblatt (1958, 1959, 1962) introduced and
developed a large class of artificial neural networks called perceptrons. The most
typical perceptron consisted of an input layer (the retina) connected by paths with
fixed weights to associator neurons; the weights on the connection paths were
adjustable. The perceptron learning rule uses an iterative weight adjustment that
is more powerful than the Hebb rule. Perceptron learning can be proved to con-
verge to the correct weights if there are weights that will solve the problem at
hand (i.e., allow the net to reproduce correctly all of the training input and target
output pairs). Rosenblatt’s 1962 work describes many types of perceptrons. Like
the neurons developed by McCulloch and Pitts and by Hebb, perceptrons use a
threshold output function. '

The early successes with perceptrons led to enthusiastic claims. However,
the mathematical proof of the convergence of iterative learning under suitable
assumptions was followed by a demonstration of the limitations regarding what
the perceptron type of net can learn [Minsky & Papert, 1969].

ADALINE

Bernard Widrow and his student, Marcian (Ted) Hoff [Widrow & Hoff, 1960],
developed a learning rule (which usually either bears their names, or is designated
the least mean squares or delta rule) that is closely related to the perceptron
learning rule. The perceptron rule adjusts the connection weights to a unit when-
ever the response of the unit is incorrect. (The response indicates a classification
of the input pattern.) The delta rule adjusts the weights to reduce the difference
between the net input to the output unit and the desired output. This results in
the smallest mean squared error. The similarity of models developed in psychology
by Rosenblatt to those developed in electrical engineering by Widrow and Hoff
is evidence of the interdisciplinary nature of neural networks. The difference in
learning rules, although slight, leads to an improved ability of the net to genéralize
(i.e., respond to input that is similar, but not identical, to that on which it was
trained). The Widrow-Hoff learning rule for a single-layer network is a precursor
of the backpropagation rule for multilayer nets.

24 . Introduction Chap. 1

Work by Widrow and his students is sometimes reported as neural network
research, sometimes as adaptive linear systems. The name ADALINE, interpreted
as either Apaptive Linear NEuron or Apaptive LINEar system, is often given to
these nets. There have been many interesting applications of ADALINEs, from
neural networks for adaptive antenna systems [Widrow, Mantey, Griffiths, &
Goode, 1967] to rotation-invariant pattern recognition to a variety of control prob-
lems, such as broom balancing and backing up a truck [Widrow, 1987; Tolat &
Widrow, 1988; Nguyen & Widrow, 1989]. MaDALINEs are multilayer extensions'
of ApALINEs [Widrow & Hoff, 1960; Widrow & Lehr, 1990].

1.5.3 The 1970s: The Quiet Years

In spite of Minsky and Papert’s demonstration of the limitations of perceptrons
(i.e., single-layer nets), research on neural networks continued. Many of the cur-
rent leaders in the field began to publish their work during the 1970s. (Widrow,
of course, had started somewhat earlier and is still active.)

Kohonen

The early work of Teuvo Kohonen (1972), of Helsinki University of Technology,
dealt with associative memory neural nets. His more recent work [Kohonen, 1982]
has been the development of self-organizing feature maps that use a topological
structure for the cluster units. These nets have been applied to speech recognition
(for Finnish and Japanese words) [Kohonen, Torkkola, Shozakai, Kangas, &
Venta, 1987; Kohonen, 1988], the solution of the ‘‘Traveling Salesman Problem’’

[Angeniol, Vaubois, & Le Texier, 1988], and musical composition [Kohonen,
1989b]. : ’

Anderson

James Anderson, of Brown University, also started his research in neural net-
works with associative memory nets [Anderson, 1968, 1972]. He developed these
ideas into his ‘‘Brain-State-in-a-Box’’ [Anderson, Silverstein, Ritz, & Jones,
1977], which truncates the linear output of earlier models to prevent the output
from becoming too large as the net iterates to find a stable solution (or memory).
Among the areas of application for these nets are medical diagnosis and learning
multiplication tables. Anderson and Rosenfeld (1988) and Anderson, Pellionisz,
and Rosenfeld (1990) are collections of fundamental papers on neural network
research. The introductions to each are especially useful.

Grossberg

Stephen Grossberg, together with his many colleagues and coauthors, has had an
extremely prolific and productive career. Klimasauskas (1989) lists 146 publica-
tions by Grossberg from 1967 to 1988. His work, which is very mathematical and
very biological, is widely known [Grossberg, 1976, 1980, 1982, 1987, 1988]. Gross-
berg is director of the Center for Adaptive Systems at Boston University.

Sec. 1.5 Who is Developing Neural Networks? 25

Carpenter

Together with Stephen Grossberg, Gail Carpenter has developed a theory of self-
organizing neural networks called adaptive resonance theory [Carpenter & Gross-
berg, 1985, 1987a, 1987b, 1990]. Adaptive resonance theory nets for binary input
patterns (ART1) and for continuously valued inputs (ART?2) will be examined in
Chapter 5.

1.5.4 The 1980s: Renewed Enthusiasm

Backpropagation

Two of the reasons for the ‘‘quiet years’’ of the 1970s were the failure of single-
layer perceptrons to be able to solve such simple problems (mappings) as the Xor
function and the lack of a general method of training a multilayer net. A method
for propagating information about errors at the output units back to the hidden
units had been discovered in the previous decade [Werbos, 1974], but had not
gained wide publicity. This method was also discovered independently by David
Parker (1985) and by LeCun (1986) before it became widely known. It is very
similar to yet an earlier algorithm in optimal control theory [Bryson & Ho, 1969].
Parker’s work came to the attention of the Parallel Distributed Processing Group
led by psychologists David Rumelhart, of the University of California at San
Diego, and James McClelland, of Carnegie-Mellon University, who refined and
publicized it [Rumelhart, Hinton, & Williams, 1986a, 1986b; McClelland &
Rumelhart, 1988].

Hopfield nets

Another key player in the increased visibility of and respect for neural nets
is prominent physicist John Hopfield, of the California Institute of Tech-
nology. Together with David Tank, a researcher at AT&T, Hopfield has developed
a number of neural networks based on fixed weights and adaptive activations
[Hopfield, 1982, 1984; Hopfield & Tank, 1985, 1986; Tank & Hopfield, 1987].
These nets can serve as associative memory nets and can be used to solve con-
straint satisfaction problems such as the ‘‘Traveling Salesman Problem.’’ An ar-
ticle in Scientific American [Tank & Hopfield, 1987] helped to draw popular at-
tention to neural nets, as did the message of a Nobel prize-winning physicist that,
in order to make machines that can do what humans do, we need to study human
cognition.

Neocognitron

Kunihiko Fukushima and his colleagues at NHK Laboratories in Tokyo have
developed a series of specialized neural nets for character recognition. One ex-
ample of such a net, called a neocognitron, is described in Chapter 7. An earlier
self-organizing network, called the cognitron [Fukushima, 1975], failed to rec-
ognize position- or rotation-distorted characters. This deficiency was corrected
in the neocognitron [Fukushima, 1988; Fukushima, Miyake, & Ito, 1983].

26 Introduction Chap. 1

Boltzmann machine

A number of researchers have been involved in the development of nondeter-
ministic neural nets, that is, nets in which weights or activations are changed on
the basis of a probability density function [Kirkpatrick, Gelatt, & Vecchi, 1983;
Geman & Geman, 1984; Ackley, Hinton, & Sejnowski, 1985; Szu & Hartley,
1987]. These nets incorporate such classical ideas as simulated annealing and
Bayesian decision theory.

Hardware implementation

Another reason for renewed interest in neural networks (in addition to solving
the problem of how to train a multilayer net) is improved computational capa-
bilities. Optical neural nets [Farhat, Psaltis, Prata, & Paek, 1985] and VLSI im-
plementations [Sivilatti, Mahowald, & Mead, 1987] are being developed.

Carver Mead, of California Institute of Technology, who also studies motion
detection, is the coinventor of software to design microchips. He is also cofounder
of Synaptics, Inc., a leader in the study of neural circuitry.

Nobel laureate Leon Cooper, of Brown University, introduced one of the
first multilayer nets, the reduced coulomb energy network. Cooper is chairman
of Nestor, the first public neural network company [Johnson & Brown, 1988},
and the holder of several patents for information-processing systems [Klima-
sauskas, 1989].)

Robert Hecht-Nielsen and Todd Gutschow developed several digital neu-
rocomputers at TRW, Inc., during 1983-85. Funding was provided by the Defense
Advanced Research Projects Agency (DARPA) [Hecht-Nielsen, 1990]. DARPA
(1988) is a valuable summary of the state of the art in artificial neural networks
(especially with regard to successful applications). To quote from the preface to
his book, Neurocomputing, Hecht-Nielsen is ‘‘an industrialist, an adjunct aca-
demic, and a philanthropist without financial portfolio>’ [Hecht-Nielsen, 1990].
The founder of HNC, Inc., he is also a professor at the University of California,
San Diego, and the developer of the counterpropagation network.

1.6 WHEN NEURAL NETS BEGAN: THE McCULLOCH-PITTS
NEURON

The McCulloch-Pitts neuron is perhaps the earliest artificial neuron [McCulloch
& Pitts, 1943]. It displays several important features found in many neural net-
works. The requirements for McCulloch-Pitts neurons may be summarized as
follows:

1. The activation of a McCulloch-Pitts neuron is binary. That is, at any time
step, the neuron either fires (has an activation of 1) or does not fire (has an
activation of 0).

2. McCulloch-Pitts neurons are connected by directed, weighted paths.

Sec. 1.6 When Neural Nets Began: The McCulloch-Pitts Neuron , 27

3. A connection path is excitatory if the weight on the path is positive; other-
wise it is inhibitory. All excitatory connections into a particular neuron have
the same weights.

4. Each neuron has a fixed threshold such that if the net input to the neuron
is greater than the threshold, the neuron fires.

5. The threshold is set so that inhibition is absolute. That is, any nonzero
inhibitory input will prevent the neuron from firing.

6. It takes one time step for a signal to pass over ofie connection link.

The simple example of a McCulloch-Pitts neuron shown in Figure 1.12 il-
lustrates several of these requirements. The connection from X, to Y is excitatory,
as is the connection from X, to Y. These excitatory connections have the same
(positive) weight because they are going into the same unit.

The threshold for unit Y is 4; for the values of the excitatory and inhibitory
weights shown, this is the only integer value of the threshold that will allow Y to
fire sometimes, but will prevent it from firing if it receives a nonzero signal over
the inhibitory connection.

It takes one time step for the signals to pass from the X units to Y; the
activation of Y at time 7 is determined by the activations of X, X>, and X; at the
previous time, t — 1. The use of discrete time steps enables a network of
McCulloch-Pitts neurons to. model physiological phenomena in which there is a
time delay; such an example is given in Section 1.6.3.

1.6.1 Architecture

In general, a McCulloch-Pitts neuron Y may receive signals from any number of
other neurons. Each connection path is either excitatory, with weight w > 0, or
inhibitory, with weight —p (p > 0). For convenience, in Figure 1.13, we assume
there are n units, X, . . ., X,,, which send excitatory signals to unit ¥, and m

units, X, 41, . . . , Xn+m, Which send inhibitory signals. The activation function
for unit Y is

| if y_in = 0
f(y"")‘{o if y_in < 0

2

(D——
@_/

~1
Figure 1.12 A simple McCulloch-Pitts
neuron Y.

28 Introduction Chap. 1

P

-P
Figure 1.13 Architecture of 2
.McCulloch-Pitts neuron Y.

s

where y_in is the total input signal received and 6 is the threshold. The condition
that inhibition is absolute requires that for the activation function satisfy the
inequality

0> nw — p. (
Y will fire if it receives k or more excitatory inputs and no inhibitory inputs, where
kw=0>(k — Dw.

: Although all excitatory weights coming into any particular unit must be the
same, the weights coming into one unit, say, Y1, do not have to be the same as
the weights coming into another unit, say Y-.

1.6.2 Algorithm

The weights for a McCulloch-Pitts neuron are set, together with the threshold for
the neuron’s activation function, so that the neuron will perform a simple logic
function. Since analysis, rather than a training algorithm, is used to determine
the values of the weights and threshold, several examples of simple McCulloch-
Pitts neurons are presented in this section. Using these simple neurons as building
blocks, we can model any function or phenomenon that can be represented as a
logic function. In Section 1.6.3, an example is given of how several of these simple
neurons can be combined to model an interesting physiological phenomenon.

Simple networks of McCulloch-Pitts neurons, each with a threshold of 2,
are shown in Figures 1.14-1.17. The activation of unit X; at time ¢ is denoted
xi(t). The activation of a neuron X; at time ¢ is determined by the activations, at
time t — 1, of the neurons from which it receives signals.

Logic functions will be used as simple examples for a number of neural nets.
The binary form of the functions for AND, OR, and AND Nor are defined here for
reference. Each of these functions acts on two input values, denoted x; and x»,
and produces a single output value y.

Sec. 1.6 When Neural Nets Began: The McCulloch-Pitts Neuron 29

AND

The AND function gives the response ‘‘true’’ if both input values are ‘‘true’’;
otherwise the response is ‘‘false.”” If we represent ‘‘true’’ by the value 1, and
‘““false’’ by 0, this gives the following four training input, target output pairs:

X1 X2 -

y
I 1 1
1 0 0
0 1 0
0 0 0

Example 1.1 A McCulloch-Pitts Neuron for the ANp Function

The network in Figure 1.14 performs the mapping of the logical Anp function. The
threshold on unit Y is 2.

Or

The Or function gives the response ‘‘true’’ if either of the input values is ‘‘true’’;
otherwise the response is ‘‘false.”’ This is the ‘‘inclusive or,”’ since both input
values may be ‘‘true’’ and the response is still ‘“‘true.”’ Representing ‘‘true’’ as
1, and ‘‘false’’ as 0, we have the following four training input, target output pairs:

X1 X2 —)
1 1 1
1 0 1
0 1 1
0 0 0

Example 1.2 A McCulloch-Pitts Neuron for the Or Function

The network in Figure 1.15 performs the logical Or function. The threshold on unit
Yis2. .

1 2

Figure 1.14 A McCulloch-Pitts neuron to Figure 1.15 A McCulloch-Pitts neuron to
perform the logical AND function. perform the logical Or function.

30 , Introduction Chap. 1

AnD Not

The AND Nor function is an example of a logic function that is not symmetric in
its treatment of the two input values. The response is ‘‘true’” if the first input
value, x;, is “‘true’’ and the second input value, x», is ‘‘false’’; otherwise the
response is ‘‘false.”’ Using a binary representation of the logical input and re-
sponse values, the four training input, target output pairs are:

Xy X2 —> Y
1 1 0
1 0 1
0 1 0
0 0 0

Example 1.3 A McCulloch-Pitts Neuron for the Ano Nor Function

The net in Figure 1.16 performs the function x; ANp Nort x». In other words, neuron
Y fires at time ¢ if and only if unit X, fires at time + — 1 and unit X, does not fire
at time ¢+ — 1. The threshold for unit Y is 2.

1.6.3 Applications

Xor

The Xor (exclusive or) function gigles the response ‘‘true”’ if exactly one of the
input values is ‘“‘true’’; otherwise the response is ‘‘false.”” Using a binary rep-
resentation, the four training input, target output pairs are:

X1 X2 — Yy
1 1 0
1 0 1
0 1 1
0 0 0

Example 1.4 A McCulloch-Pitts Net for the Xor Function

The network in Figure 1.17 performs the logical Xor function. Xor can be expressed
as

x1 XOR x3 < (x, A‘ND Nor x3) Or (x; AND Nor x1).

Figure 1.16 A McCulloch-Pitts neuron
-1 to perform the logical AND NoT
function.

4
|
:
s
i
!,

Sec. 1.6 When Neural Nets Began: The McCulloch-Pitts Neuron 31

Figure 1.17 A McCulloch-Pitts neural
net to perform the logical Xor
- function.

Thus, y = x; Xor x, is found by a two-layer net. The first layer forms
Z1 = x1 AND Nor x>

and
Z2 = x; AND Nor x;,.
The second layer consists of
y = 21 OR z».
Units Z,;, Z,, and Y each have a threshold of 2.

Hot and cold
Example 1.5 Modeling the Perception of Hot and Cold with a McCulloch-Pitts Net

It is a well-known and interesting physiological phenomenon that if a cold stimulus
is applied to a person’s skin for a very short period of time, the person will perceive
heat. However, if the same stimulus is applied for a longer period, the person will
perceive cold. The use of discrete time steps enables the network of McCulloch-
Pitts neurons shown in Figure 1.18 to model this phenomenon. The example is an
elaboration of one originally presented by McCulloch and Pitts [1943]. The model
is designed to give only the first perception of heat or cold that is received by the
perceptor units. :

In the figure, neurons X; and X, represent receptors for heat and cold,
respectively, and neurons Y, and Y are the counterpart perceptors. Neurons Z;

Figure 1.18 A network of McCulloch-
Pitts neurons to model the perception
of heat and cold.

32 Introduction Chap. 1

and Z; are auxiliary units needed for the problem. Each neuron has a threshold
of 2, i.e., it fires (sets its activation to 1) if the net input it receives is =2. Input
to the system will be (1,0) if heat is applied and (0,1) if cold is applied. The desired
response of the system is that cold is perceived if a cold stimulus is applied for
two time steps, i.e.,

y2(t) = x2(t — 2) AND x2(t — 1).

The activation of unit Y, at time ¢ is y,(7); y»(¢) = 1 if cold is perceived, and
y2(t) = 0 if cold is not perceived.

In order to model the physical phenomenon described, it is also required
that heat be perceived if either a hot stimulus is applied or a cold stimulus is

applied briefly (for one time step) and then removed. This condition is expressed
as

yi(#) = {xi(t — 1)} Or {x2(z — 3) AND NoT x,(t — 2)}.

To see that the net shown in Figure 1.18 does in fact represent the two
logical statements required, consider first the neurons that determine the response
of Y, at time ¢ (illustrated in Figure 1.19). The figure shows that

yi(8) = x1(t = 1) OrR z,(¢t — 1).

Now consider the neurons (illustrated in Figure 1.20) that determine the
response of unit Z, at time ¢+ — 1. This figure shows that

zi(t — 1) = z2(t — 2) AND Nort x2(¢ — 2).

Finally, the response of unit Z at time ¢+ — 2 is simply the value of X at
the previous time step:

22(t — 2) = xa2(t — 3).
Substituting in the preceding expression for y,(¢) gives
yi(t) = {xi(t — 1)} Or {x2(z — 3) AND Nort x,(t — 2)}.

 The analysis for the respbnse of neuron Y at time f proceeds in a similar
manner. Figure 1.21 shows that y;(f) = z2(t — 1) AND x(z — 1). However, as

] ~1
. 2 !
2
Figure 1.19 The neurons that determine the response Figure 1.20 The neurons that

of unit Y;. determine the response of unit Z,.

Sec. 1.6 When Neural Nets Began: The McCulloch-Pitts Neuron 33

before, z.(t — 1) = x,(¢t — 2); substituting in the expression for y,(¢) then gives
y2(8) = x2(r — 2) AND x2(2 — 1),

as required.)

It is also informative to trace the flow of activations through the net, starting
with the presentation of a stimulus at # = 0. Case 1, a cold stimulus applied for
one time step and then removed, is illustrated in Figure 1.22. Case 2, a cold
stimulus applied for two time steps, is illustrated in Figure 1.23, and case 3, a hot
stimulus applied for one time step, is illustrated in Figure 1.24. In each case, only
the activations that are known at a particular time step are indicated. The weights
on the connections are as .in Figure 1.18.

Case 1: A cold stimulus applied for one time step.

The activations that are known at + = 0 are shown in Figure 1.22(a).

The activations that are known at t+ = | are shown in Figure 1.22(b). The
activations of the input units are both 0, signifying that the cold stimulus presented
at r = 0 was removed after one time step. The activations of Z, and Z, are based
on the activations of X; att = 0.

The activations that are known at t = 2 are shown in Figure 1.22(c). Note
that the activations of the input units are not specified, since their value at
t = 2 does not determine the first response of the net to the situation being
modeled. Although the responses of the perceptor units are determined, no per-
ception of hot or cold has reached them yet.

The activations that are known at + = 3 are shown in Figure 1.22(d). A
perception of heat is indicated by the fact that unit Y, has an activation of 1 and
unit Y» has an activation of 0.

Case 2: A cold stimulus applied for two time steps.

The activations that are known at ¢t = 0 are shown in Figure 1.23(a), and
those that are known at ¢ = 1 are shown in Figure 1.23(b).

The activations that are known at ¢t = 2 are shown in Figure 1.23(c). Note
that the activations of the input units are not specified, since the first response
of the net to the cold stimulus being applied for two time steps is not influenced
by whether or not the stimulus is removed after the two steps. Although the
responses of the auxiliary units Z, and Z, are indicated, the responses of the
perceptor units are determined by the activations of all of the units at ¢ = 1.
Case 3: A hot stimulus applied for one time step.

The activations that are known at ¢+ = 0 are shown in Figure 1.24(a).

The activations that are known at ¢ = 1 are shown in Figure 1.24(b). Unit
Y, fires because it has received a signal from X;. Y> does not fire because it
requires input signals from both X, and Z, in order to fire, and X had an activation
of datt = 0.

‘ : ’— 1
@\/ ﬁ Figure 1.21 The neurons that
: 1 determine the response of unit Y.

34

Introduction Chap. 1

Figure 1.22 A cold stimulus applied
for one time step.

Activations at @)1 = 0, (b))t =1, (c) ¢
=2,and (d)r = 3.

Sec. 1.7 - Suggestions for Further Study 35

Figure 1.23 A cold stimulus applied
for two time steps.

Activations at (a) t = 0, (b) ¢ = 1, and
©t=2.

1.7 SUGGESTIONS FOR FURTHER STUDY
1.7.1 Readings

Many of the applications and historical developments we have summarized in this
chapter are described in more detail in two collections of original research:

J Neurocomputing: Foundations of Research [Anderson & Rosenfeld, 1988].

~-® Neurocomputing 2: Directions for Research [Anderson, Pellionisz &
Rosenfeld, 1990].

36 : o Introduction Chap. 1

Figure 1.24 A hot stimulus applied for
one time step.
Activations at (a) t = 0Oand (b) ¢ = 1.

These contain useful papers, along with concise and insightful introductions
explaining the significance and key results of each paper.
' The DARPA Neural Network Study (1988) also provides descriptions of both
the theoretical and practical state of the art of neural networks that year.

Nontechnical introductions

Two very readable nontechnical introductions to neural networks, with an em-
phasis on the historical development and the personalities of the leaders in the
field, are:

® Cognizers [Johnson & Brown, 1988].

® Apprentices of Wonder: Inside the Neural Network Revolution [Allman,
1989].)

Applications
Among the books dealing with neural networks for particular types of applications
are: '

® Neural Networks for Signal Processing [Kosko, 1992b].
® Neural Networks for Control [Miller, Sutton, & Werbos, 1990].

Sec. 1.7 Suggestions for Further Study 37

o Simulated Annealing and Boltzmann Machines [Aarts & Korst, 1989).
® Adaptive Pattern Recognition and Neural Networks [Pao, 1989].
® Adaptive Signal Processing [Widrow & Sterns, 19835].

History

The history of neural networks is a combination of progress in experimental work
with biological neural systems, computer modeling of biological neural systems,
the development of mathematical models and their applications to problems in a
wide variety of fields, and hardware implementation of these models. In addition
to the collections of original papers already mentioned, in which the introductions
to each paper provide historical perspectives, Embodiments of Mind [McCulloch,
1988] is a wonderful selection of some of McCulloch’s essays. Perceptrons [Min-
sky & Papert, 1988] also places the development of neural networks into historical
context.

Biological neural networks

Introduction to Neural and Cognitive Modeling [Levine, 1991] provides extensive
information on the history of neural networks from a mathematical and psycho-
logical perspective. For additional writings from a biological point of view, see
Neuroscience and Connectionist Theory [Gluck & Rumelhart, 1990] and Neural
and Brain Modeling {MacGregor, 1987].

1.7.2 Exercises

1.1 Consider the neural network of McCulloch-Pitts neurons shown in Figure 1.25. Each
neuron (other than the input neurons, N, and N,) has a threshold of 2.

a. Define the response of neuron N at time 7 in terms of the activations of the input
neurons, N and N, at the appropriate time.

b. Show the activation of each neuron that results from an input signal of Ny = 1,
N, =0at:=0.

1.2 There are at least two ways to express XOR in terms of other simple logic functions
that can be represented by McCulloch-Pitts neurons. One such example is presented
in Section 1.6. Find another representation and the net for it. How do the two nets
(yours and the one in Section 1.6)c0mpare?

»{ N, Figure 1.25 Neural network for
Exercise 1.1.

38 Introduction Chap. 1

1.3 Inthe McCulloch-Pitts model of the perception of heat and cold, a cold stimulus applied
at times r — 2 and ¢ — 1 is perceived as cold at time ¢. Can you modify the net to
require the cold stimulus to be applied for three time steps before cold is felt?

1.4 In the hot and cold model, consider what is felt after the first perception. (That is, if
the first perception of hot or cold is at time ¢, what is felt at time ¢ + 1?) State clearly
any further assumptions as to what happens to the inputs (stimuli) that may be nec-
essary or relevant.

1.5 Design a McCulloch-Pitts net to model the perception of simple musical patterns. Use
three input units to correspond to the three pitches, ‘‘do,”” ‘‘re,”” and ‘‘mi.”” Assume
that only one pitch is presented at any time. Use two output units to correspond to
the perception of an ‘‘upscale segment’ and a ‘‘downscale segment”’ —specifically,
a. the pattern of inputs ‘‘do’” at time ¢z = 1, *‘re”’ at t = 2, and “‘mi’’ at + = 3 should

elicit a positive response from the ‘‘upscale segment’’ unit;
b. the pattern of inputs ‘““mi’” at time ¢t = 1, *‘re’” at t = 2, and ‘“do”” at ¢+ = 3 should
elicit a positive response from the ‘‘downscale segment’’ unit;
c. any other pattern of inputs should generate no response.
You may wish to elaborate on this example, allowing for more than one input unit to
be ‘‘on’’ at any instant of time, designing output units to detect chords, etc.

CHAPTER 2

Simple Neural Nets
for Pattern Classification

2.1 GENERAL DISCUSSION

One of the simplest tasks that neural nets can be trained to perform is pattern
classification. In pattern classification problems, each input vector (pattern) be-
longs, or does not belong, to a particular class or category. For a neural net
approach, we assume we have a set of training patterns for which the correct
classification is known. In the simplest case, we consider the question of mem-
bership in a single class. The output unit represents membership in the class with
aresponse of 1; a response of — 1 (or 0 if binary representation is used) indicates
that the pattern is not a member of the class. For the single-layer nets described
in this chapter, extension to the more general case in which each pattern may or
may not belong to any of several classes is immediate. In such case, there is an
output unit for each class. Pattern classification is one type of pattern recognition;
the associative recall of patterns (discussed in Chapter 3) is another.

Pattern classification problems arise in many areas. In 1963, Donald Specht
(a student of Widrow) used neural networks to detect heart abnormalities with
EKG types of data as input (46 measurements). The output was ‘“‘normal’’ or
‘‘abnormal,”” with an ‘‘on”’ response signifying normal [Specht, 1967; Caudill &
Butler, 1990]. In the early 1960s, Minsky and Papert used neural nets to classify
input patterns as convex or not convex and connected or not connected [Minsky
& Papert, 1988]. There are many other examples of pattern classification problems

39

40 Simple Neural Nets for Pattern Classification Chap. 2

being solved by neural networks, both the simple nets described in this chapter,
other early nets not discussed here, and multilayer nets (especially the backprop-
agation nets described in Chapter 6).

In this chapter, we shall discuss three methods of training a simple single-
layer neural net for pattern classification: the Hebb rule, the perceptron learning
rule, and the delta rule (used by Widrow in his ADALINE neural net). First, how-
ever, we discuss some issues that are common to all single-layer nets that perform
pattern classification. We conclude the chapter with some comparisons of the
nets discussed and an extension to a multilayer net, MADALINE.

Many real-world examples need more sophisticated architecture and training
rules because the conditions for a single-layer net to be adequate (see Section
2.1.3) are not met. However, if the conditions are met approximately, the results
may be sufficiently accurate. Also, insight can be gained from the more simple
nets, since the meaning of the weights may be easier to interpret.

2.1.1 Architecture

The basic architecture of the simplest possible neural networks that perform pat-
tern classification consists of a layer of input units (as many units as the patterns
to be classified have components) and a single output unit. Most neural nets we
shall consider in this chapter use the single-layer architecture shown in Figure
2.1. This allows classification of vectors, which are n-tuples, but considers mem-
bership in only one category.

Input Output Figure 2.1 Single-layer net for pattern
Units _ Unit classification.

An example of a net that classifies the input into several categories is con-
sidered in Section 2.3.3. This net is a simple extension of the nets that perform

Sec. 2.1 General Discussion ‘ 41

a single classification. The MADALINE net considered in Section 2.4.5 is a mul-
tilayer extension of the single-layer ADALINE net.

2.1.2 Biases and Thresholds

A bias acts exactly as a weight on a connection from a unit whose activation is
always 1. Increasing the bias increases the net input to the unit. If a bias is
included, the activation function is typically taken to be

_ 1 if net = 0;
floet) = {—1 if net < 0;
where

net = b + 2 XiW;.
i

Some authors do not use a bias weight, but instead use a fixed threshold 6
for the activation function. In that case,

_ 1 if net = 0;
f(net) = {—1 if net < 6;

where

net = 2 XiW;.
i

However, as the next example will demonstrate, this is essentially equivalent to
the use of an adjustable bias. '

Example 2.1 The role of a bias or a threshold

In this example and in the next section, we consider the separation of the input space
into regions where the response of the net is positive and regions where the response
is negative. To facilitate a graphical display of the relationships, we illustrate the
ideas for an input with two components while the output is a scalar (i.e., it has only
one component). The architecture of these examples is given in Figure 2.2.

Input Output Figure 2.2 Single-layer neural network
Units Unit for logic functions.

42 Simple Neural Nets for Pattern Classification Chap. 2

The boundary between the values of x, and x, for which the net gives a positive
response and the values for which it gives a negative response is the separating line

b + xywy + XaW, = 0,
or (assuming that w, # 0),

w) b
Xy = —— X3 — — ..
L] w»
The requirement for a positive response from the output unit is that the net input it
receives, namely, b + x;w; + x,w,, be greater than 0. During training, values of
wy, w,, and b are determined so that the net will have the correct response for the
training data.

If one thinks in terms of a threshold, the requirement for a positive response
from the output unit is that the net input it receives, namely, x,w, + x.w,, be greater
than the threshold. This gives the equation of the line separating positive from neg-
ative output as

X(wy + xwy = 0,
or (assuming that w, # 0),

wi 9
x2=———x1+—.
w2 w2

During training, values of w, and w, are determined so that the net will have
the correct response for the training data. In this case, the separating line cannot
pass through the origin, but a line can be found that passes arbitrarily close to the
origin. i

The form of the separating line found by using an adjustable bias and the form
obtained by using a fixed threshold illustrate that there is no advantage to including
both a bias and a nonzero threshold for a neuron that uses the step function as its
activation function. On the other hand, including neither a bias nor a threshold is
equivalent to requiring the separating line (or plane or hyperplane for inputs with
“more components) to pass through the origin. This may or may not be appropriate
for a particular problem.

As an illustration of a pseudopsychological analogy to the use of a bias,
consider a simple (artificial) neural net in which the activation of the neuron
corresponds to a person’s action, ‘‘Go to the ball game.”’ Each input signal cor-
responds to some factor influencing the decision to “‘go’’ or ‘‘not go’’ (other
possible activities, the weather conditions, information about who is pitching,
etc.). The weights on these input signals correspond to the importance the person
places on each factor. (Of course, the weights may change with time, but methods
for modifying them are not considered in this illustration.) A bias could represent
a general inclination to *‘go’’ or ‘‘not go,”’ based on past experiences. Thus, the
bias would be modifiable, but the signal to it would not correspond to information
about the specific game in question or activities competing for the person’s time.

Sec. 2.1 General Discussion 43

The threshold for this ‘‘decision neuron’’ indicates the total net input nec-
essary to cause the person to ‘‘go,” i.e., for the decision neuron to fire. The
threshold would be different for different people; however, for the sake of this
simple example, it should be thought of as a quantity that remains fixed for each
individual. Since it is the relative values of the weights, rather than their actual
magnitudes, that determine the response of the neuron, the model can cover all
possibilities using either the fixed threshold or the adjustable bias.

2.1.3 Linear Separability

For each of the nets in this chapter, the intent is to train the net (i.e., adaptively
determine its weights) so that it will respond with the desired classification when
presented with an input pattern that it was trained on or when presented with one
that is sufficiently similar to one of the training patterns. Before discussing the
particular nets (which is to say, the particular styles of training), it is useful to
discuss some issues common to all of the nets. For a particular output unit, the
desired response is a ‘‘yes’’ if the input pattern is a member of its class and a
“no’ if it is not. A ‘“‘yes’” response is represented by an output signal of 1, a
"“no’’ by an output signal of —1 (for bipolar signals). Since we want one of two
responses, the activation (or transfer or output) function is taken to be a step
function. The value of the function is 1 if the net input is positive and —1 if the
net input is negative. Since the net input to the output unit is

y.in =b + inw,v,
i

it is easy to see that the boundary between the region where y_in > 0 and the
region where y_in < 0, which we call the decision boundary, is determined by
the relation ! ") M

b+ Zxwi =0 | hy+hw ~O

! — A =-9
Depending on the number of input units in the network, this equation represents
a line, a plane, or a hyperplane.

If there are weights (and a bias) so that all of the training input vectors for
which the correct response is +1 lie on one side of the decision boundary and
all of the training input vectors for which the correct response is — 1 lie on the
other side of the decision boundary, we say that the problem is “‘linearly sepa-
rable.”” Minsky and Papert [1988] showed that a single-layer net can learn only
linearly separable problems. Furthermore, it is easy to extend this result to show
that multilayer nets with linear activation functions are no more powerful than
single-layer nets (since the composition of linear functions is linear).

It is convenient, if the input vectors are ordered pairs (or at most ordered
triples), to graph the input training vectors and indicate the desired response by
the appropriate symbol (‘‘+* or **~). The analysis also extends easily to nets

44 Simple Neural Nets for Pattern Classification Chap. 2

with more input units; however, the graphical display is not as convenient. The
region where y is positive is separated from the region where it is negative by the
line

These two regions are often called decision regions for the net. Notice in the
following examples that there are many different lines that will serve to separate
the input points that have different target values. However, for any particular
line, there are also many choices of w, w,, and b that give exactly the same line.
The choice of the sign for b determines which side of the separating line corre-
sponds to a + 1 response and which side to a — 1 response.

There are four different bipolar input patterns we can use to train a net with
two input units. However, there are two possible responses for each input pattern,
so there are 2* different functions that we might be able to train a very simple
net to perform. Several of these functions are familiar from elementary logic, and
we will use them for illustrations, for convenience. The first question we consider
is, For this very simple net, do weights exist so that the net will have the desired
output for each of the training input vectors?

Example 2.2 Response regions for the Anp function

The Anp function (for bipolar inputs and target) is defined as follows:

INPUT (x5, X2) OUTPUT (f)

a,n +1
(a, -1 -1
(-1, D -1
(-1, -1 -1

The desired responses can be illustrated as shown in Figure 2.3. One possible de-
cision boundary for this function is shown in Figure 2.4.

An example of weights that would give the decision boundary illustrated in
the figure, namely, the separating line

x3= —x; + 1,
is
b= -1,
wy = 1’
Wy = 1.

The choice of sign for b is determined by the requirement that
b+ xyw, + xawy <0

where x; = 0 and x, = 0. (Any point that is not on the decision boundary can be
used to determine which side of the boundary is positive and which is negative; the
origin is particularly convenient to use when it is not on the boundary.)

Sec. 2.1 General Discussion 45

x2

X1

Figure 2.3 Desired response for the
logic function AND (for bipolar inputs).

1

Figure 2.4 The logic function Anp,
showing a possible decision boundary.

46 Simple Neural Nets for Pattern Classification Chap. 2

Example 2.3 Response regions for the Or function

The logical Or function (for bipolar inputs and target) is defined as follows:

INPUT (x4, x2) OUTPUT (¢)

1,1 +1
(1, -1 +1
(- D +1

(-1, -1 -1

The weights must be chosen to provide a separating line, as illustrated in Figure
2.5. One example of suitable weights is

b =1,
wy =1,
wy =1,
giving the separating line
Xz = —x; — L.

The choice of sign for b is determined by the requirement that
b + X 1wy + X2W2>0

where x, = 0 and x, = 0.

*2

x1

Figure 2.5 The logic function Or, show-
ing a possible decision boundary.

Sec. 2.1 General Discussion 47

The preceding two mappings (which can each be solved by a single-layer
neural net) illustrate graphically the concept of linearly separable input. The input
points to be classified positive can be separated from the input points to be clas-
sified negative by a straight line. The equations of the decision boundaries are
not unique. We will return to these examples to illustrate each of the learning
rules in this chapter.

Note that if a bias weight were not included in these examples, the decision
boundary would be forced to go through the origin. In many cases-(including
Examples 2.2 and 2.3), that would change a problem that could be solved (i.e.,
learned, or one for which weights exist) into a problem that could not be solved.

Not all simple two-input, single-output mappings can be solved by a single-
layer net (even with a bias included), as is illustrated in Example 2.4.

Example 2.4 Response regions for the Xor function

The desired response of this net is as follows:

INPUT (x4, x2) OUTPUT (1)

a1 -1
(1, -1 +1
(-1, 1 +1
(-1, -1 -1

It is easy to see that no single straight line can separate the points for which
a positive response is desired from those for which a negative response is desired.

X2

Xt

Figure 2.6 Desired response for the
logic function Xor.

48 Simple Neural Nets for Pattern Classification Chap. 2

2.1.4 Data Representation

The previous examples show the use of a bipolar (values 1 and — 1) representation
of the training data, rather than the binary representation used for the McCulloch-
Pitts neurons in Chapter 1. Many early neural network models used binary rep-
resentation, although in most cases it can be modified to bipolar form. The form
of the data may change the problem from one that can be solved by a simple
neural net to one that cannot, as is illustrated in Examples 2.5-2.7 for the Hebb
rule. Binary representation is also not as good as bipolar if we want the net to
generalize (i.e., respond to input data similar, but not identical to, training data).
Using bipolar input, missing data can be distinguished from mistaken data. Missing
values can be represented by “‘0’’ and mistakes by reversing the input value from
+1to —1, or vice versa. We shall discuss some of the issues relating to the choice
of binary versus bipolar representation further as they apply to particular neural
nets. In general, bipolar representation is preferable.

The remainder of this chapter focuses on three methods of training single-
layer neural nets that are useful for pattern classification: the Hebb rule, the
perceptron learning rule, and the delta rule (or least mean squares). The Hebb
rule, or correlational learning, is extremely simple but limited (even for linearly
separable problems); the training algorithms for the perceptron and for ADALINE
(adaptive linear neuron, trained by the delta rule) are closely related. Both are
iterative techniques that are guaranteed to converge under suitable circumstances.
The generalization of an ADALINE to a multilayer net (MADALINE) also will be
examined.

2.2 HEBB NET

The earliest and simplest learning rule for a neural net is generally known as the
Hebb rule. Hebb proposed that learning occurs by modification of the synapse
strengths (weights) in a manner such that if two interconnected neurons are both
“on’’ at the same time, then the weight between those neurons should be in-
creased. The original statement only talks about neurons firing at the same time
(and does not say anything about reinforcing neurons that do not fire at the same
time). However, a stronger form of learning occurs if we also increase the weights
if both neurons are “‘off”” at the same time. We use this extended Hebb rule
[McClelland & Rumelhart, 1988] because of its improved computational power
and shall refer to it as the Hebb rule.

We shall refer to a single-layer (feedforward) neural net trained using the
(extended) Hebb rule as a Hebb net. The Hebb rule is also used for training other
specific nets that are discussed later. Since we are considering a single-layer net,
one of the interconnected neurons will be an input unit and one an output unit
(since no input units are connected to each other, nor are any output units in-

Sec. 2.2 - Hebb Net . 49

terconnected). If data are represented in bipolar form, it is easy to express the
desired weight update as

wi(new) = w;(old) + x;y.

If the data are binary, this formula does not distinguish between a training
pair in which an input unit is ‘“‘on’” and the target value is ‘‘off>’ and a training
pair in which both the input unit and the target value are ‘‘off.”” Examples 2.5
and 2.6 (in Section 2.2.2) illustrate the extreme limitations of the Hebb rule for
binary data. Example 2.7 shows the improved performance achieved by using
bipolar representation for both the input and target values.

. I
s s 4 E Ll l, ¢ Yviy
2.2.1 Algorithm(ﬂw ¥ '/}9/ v TN 9 fe A <§I ¥ ?'/‘ o ¢] ‘
Step 0. Initialize all weights: S Oy
w; =0 (i = 1ton).
Step 1. For each input training vector and target output pair, s : ¢, do steps
2-4.
Step 2. Set activations for input units:
Xi = §; (i = 1ton).
Step 3. Set activation for output unit:
Y =t

Step 4. Adjust the weights for 2
wi(new) = wi(old) + x/,x (i = 1ton). ><
Adjust the bias: |
b(new) = b(old) + y.

...... ~,

Note that the bias is adjusted exactly like a weight from a ‘‘unit’” whose
output signal is always 1. The weight update can also be expressed in vector form
as '

winew) = w(ol;m)
This is often written in terms of the weight change, AW, as
Aw = xy
and
w(new) = w(old) + Aw.

There are several methods of implementing the Hebb rule for learning. The
foregoing algorithm requires only one pass through the training set; other equiv-
alent methods of finding the weights are described in Section 3.1.1, where the
Hebb rule for pattern association (in which the target is a vector) is presented.

50 Simple Neural Nets for Pattern Classification Chap. 2

2.2.2 Application

Bias types of inputs are not explicitly used in the original formulation of Hebb
learning. However, they are included in the examples in this section (shown as
a third input component that is always 1) because without them, the problems
discussed cannot be solved.

Logic functions
Example 2.5 A Hebb net for the Anp function: binary inputs and targets

INPUT TARGET e
(x; x2 1)
a 11 1
a o 0
o 11 0
(] 01 0

For each training input: target, the weight change is the product of the input
vector and the target value, i.e.,

o
Aw, = xyf, Aw,y = x5t Ab = t. ﬁ(< L

The new weights are the sum of the previous weights and the weight ;:ﬁange. Only
one iteration through the training vectors is required. The weight updates for the
first input are as follows:

INPUT TARGET WEIGHT CHANGES WEIGHTS
(x1 x2 1) (Aw; Aw, AD) ’ (wy wy b)
© 0 0

a 1 D 1 (1 1 1) a 1.1

The separating line (see Section 2.1.3) becomes
X2 = —Xy — 1.

The graph, presented in Figure 2.7, shows that the response of the net will now be
correct for the first input pattern. Presenting the second, third, and fourth training
inputs shows that because the target value is 0, no learning occurs. Thus, using
binary target values prevents the net from learning any pattern for which the target

is “‘off’:
INPUT TARGET WEIGHT CHANGES WEIGHTS
(xl X2 1) : (AW] AWz Ab) (W| Wo b)
a o 1) 0 (0 0 0) a 1 1
o 1 §] 0 © 0 0) a 1 1

0 o 1) 0 © 0 0) a 1

Sec. 2.2 Hebb Net

51
x2
0 +
0 0

x1

Figure 2.7 Decision boundary for bi-
nary AND function using Hebb rule after
first training pair.

Example 2.6 A Hebb net for the Anp function: binary inputs,(bip(;lar targets)
(e oleg

i

INPUT TARGET
xi x2 1
a 1 D 1
a o -1
© 1 n -1
© 0o -1
Presenting the first input, including a value of 1 for the third component, yields the
following:
INPUT TARGET WEIGHT CHANGES WEIGHTS
(xl X2 1) (AW[AWZ Ab) (W] Wy b)
O 0 0
a 1 1) | (1 1 1) a 1 n

The separating line becomes
X2 = —X, — 1.
Figure 2.8 shows that the response of the net will now be correct for the first input

pattern.

Presenting the second, third, and fourth training patterns shows that learning

continues for each of these patterns (since the target value is now —1, rather than
0, as in Example 2.5).

52 Simple Neural Nets for Pattern Classification Chap. 2

X

Figure 2.8 Decision boundary for AnD
\ function using Hebb rule after first train-
) ing pair (binary inputs, bipolar targets).

INPUT TARGET WEIGHT CHANGES WEIGHTS
x1 x2 1) © (Aw: Aw, Ab) (w1 wy b)
a o 1 -1 (-1 0 -1 © 1 0
© 1 1 ~1 © -1 -1 © 0 -1
© o0 1) -1 ©) © 0 -2

However, these weights do not provide the correct response for the first input pat-
tern.

The choice of training patterns can play a significant role in determining
which problems can be solved using the Hebb rule. The next example shows that
the AND function can be solved if we modify its representation to express the
inputs as well as the targets in bipolar form. Bipolar representation of the inputs
and targets allows mrodification of a weight when the input unit and the target
value are both ‘‘on’’ at the same time and when they are both “‘off”’ at the same
time. The algorithm is the same as that just given, except that now all units will
learn whenever there is an error in the output.

Example 2.7 A Hebb net for the Anp function: bipolar inputs and targets

INPUT TARGET

(x, X2 D

¢! 1 1) 1
a -1) -1
(-1 1 1) -1
(-1 -1 1) -1

L

Sec. 2.2 Hebb Net 53

Presenting the first input, including a value of 1 for the third component, yields
the following:

i

INPUT TARGET WEIGHT CHANGES WEIGHTS
(.X] X2 1) (AWl AWZ Ab) (W] Wy b)
‘ o 0 0
a€ 1 1) 1 a 1 1) a 1 n

The separating line becomes
X = —x; — 1.
The graph in Figure 2.9 shows that the response of the net will now be correct

for the first input point (and also, by the way, for the input point (—1, — 1)). Pre-
senting the second input vector and target results in the following situation:

Do\
INPUT TARGET WEIGHT CHANGES WEIGHTS
(x1 x2 D < (Aw, Aw, Ab) (Wi wa b)
///,,,—4— [a 1
a -1 -1 -1 1 -1 o 2 0
The separating line becomes
X2 = 0
X
- +

\)

- \ - Figure 2.9 Decision boundary for the

AND function using Hebb rule after first
training pair (bipolar inputs and targets).

54

Simple Neural Nets for Pattern Classification Chap. 2

A
/

x1

Figure 2.10 Decision boundary for bi-
polar AND function using Hebb rule after
second training pattern (boundary is x;-
axis).

The graph in Figure 2.10 shows that the response of the net will now be correct
for the first two input points, (1, 1) and (1, —1), and also, incidentally, for the input
point (—1, —1). Presenting the third input vector and target yields the following:

INPUT TARGET WEIGHT CHANGES WEIGHTS
(-xl X2 1) - ’ (AW] AWZ Ab) (Wl Wao b)
\ © 2 0

(-1 1 1 -1 a -1 -1) a1 -1
The separating line becomes

Xy = —x; + 1.

The graph in Figure 2.11 shows that the response of the net will now be correct
for the first three input points (and also, by the way, for the input point (—1,-1)).
Presenting the last point, we obtain the following:

INPUT TARGET WEIGHT CHANGES WEIGHTS

1 x2 1 . (Aw, Aw, Ab) (w, wy b)

, , a 1t -

(-1 =1 1) -1 ({1 1 -1 2 2 -2
T

Even though the weights have changed, the separating line is still
X2 = —x; + 1,

so the graph of the decision regions (the positive response and the negative response)
remains as in Figure 2.11.

Sec. 2.2 Hebb Net b—kd«‘u)(\ -xtwak??i@
N —3- 4 Dx x> e
N | > = ~X 1+ |

X1

N

- . _ Figure 2.11 Decision boundary for bi-
polar AND function using Hebb rule after
third training pattern.

Character recognition

Example 2.8 A Hebb net to classify two-dimensional input patterns (representing letters)

A simple example of using the Hebb rule for character recognition involves training
the net to distinguish between the pattern ‘X"’ and the pattern “‘O”’. The patterns
can be represented as

... # . #H#H#
. # L #F . # .. . #
L # L. and # .. . #
. # L # # .. . #
.. . # B X
Pattern 1 Pattern 2

To treat this example as a pattern classification problem with one output class,
we. will designate that class ‘X and take the pattern ‘O’ to be an example of
output that is not “*X.”

The first thing we need to do is to convert the patterns to input vectors. That
is easy to do by assigning each # the value 1 and each ‘‘.”’ the value — 1. To convert
from the two-dimensional pattern to an input vector, we simply concatenate the rows,
i.e., the second row of the pattern comes after the first row, the third row follows,
ect. Pattern 1 then becomes

}~-1-1-11,-11-11-1,-1-11-1-1,-11-11 -1,
I -1-~1-11,
and pattern 2 becomes
-1r11rr-,1-t-1-1,1-1-1-11,1-1-1-11,-1111 -1,

where a comma denotes the termination of a line of the original matrix. For computer
simulations, the program can be written so that the vector is read in from the two-
dimensional format.

-
\

56

Simple Neural Nets for Pattern Classification Chap. 2

The correct response for the first pattern is “‘on,” or +1, so the weights after
presenting the first pattern are simply the input pattern. The bias weight after pre-
senting this is + 1. The correct response for the second pattern is *‘off,”” or — 1, so
the weight change when the second pattern is presented is

I-1-1-11,-1111-1,-1111~-1,-1111-1,1—-1—-1-11.

In addition, the weight change for the bias weight is — 1.

Adding the weight change.to the weights representing the first pattern gives
the final weights: ,

2-2-2-22,-2202-2,-2020-2,-2202-2,2-2-2-22.

The bias weight is 0.

Now, we compute the output of the net for each of the training patterns. The
net input (for any input pattern) is the dot product of the input pattern with the
weight vector. For the first training vector, the net input is 42, so the response is
positive, as desired. For the second training pattern, the net input is —42, so the
response is clearly negative, also as desired.

However, the net can also give reasonable responses to input patterns that are
similar, but not identical, to the training patterns. There are two types of changes
that can be made to one of the input patterns that will generate a new input pattern
for which it is reasonable to expect a response. The first type of change is usually
referred to as ‘‘mistakes in the data.”’ In this case, one or more components of the
input vector (corresponding to one or more pixels in the original pattern) have had
their sign reversed, changing a 1 to a — 1, or vice versa. The second type of change
is called “‘missing data.”” In this situation, one or more of the components of the
input vector have the value 0, rather than 1 or — 1. In general, a net can handle more
missing components than wrong components; in other words, with input data, ““It’s
better not to guess.”

Other simple examples

Example 2.9 Limitations of Hebb rule training for binary patterns

This example shows that the Hebb rule may fail, even if the problem is linearly
separable (and_even if 0 is not the target).
Consider the follpwing input and target output pairs:

1 1 1 —> 1

1 1 0 - \]
1 0 1 - 0
0 1 1 — 0

It is easy to see that the Hebb rule cannot learn any pattern for which the target is
0. So we must at least convert the targets to +1 and — 1. Now consider

1 1 1 — 1
1 1 0 — -1
1 0 1 — -1
0 1 1 — -1

Sec. 2.2 ° Hebb Net 87

Figure 2.12 shows that the problem is now solvable, i.c., the input points
classified in one class (with target value + 1) are linearly separablc from those not
in the class (with target value —1). The figure also shows that a_nonzcro bias will
be necessary, since the separating plane does not pass through the origin. The plane
pictured is x; + x; + x3 + (—2.5) = 0, i.e., a weight vector of (1 1 1) and a bias

. Jof —2.5.

- The weights (and bias) are found by taking the sum of the weight changes that
occur at each stage of the algorithm. The weight change is simply the input pattern
(augmented by the fourth component, the input to the bias weight, which is always
1) multiplied by the target value for the pattern. We obtain:

‘ Weight change for first input pattern: i 1 1 1
- Weight change for second input pattern: -1 -1 0 -1
Y/ Weight change for third input pattern: -1 0 -1 -1
Weight change for fourth input pattern: 0O -1 -1 -1
Final weights (and bias) -1 -1 -1 =2

x3

@ Figure 2.12 Linear separation of binary
X1 training inputs.

It is easy to see that these weights do not produce the correct output for the first
pattern.

88 Simple Neural Nets for Pattern Classification Chap. 2

Example 2.10 Limitation of Hebb rule training for bipolar patterns

Examples 2.5, 2.6, and 2.7 show that even if the representation of the vectors does
not change the problem from unsolvable to solvable, it can affect whether the Hebb
rule works. In this example, we consider the same problem as in Example 2.9, but
with the input points (and target classifications) in bipolar form. Accordingly, we
have the following arrangement of values:

INPUT WEIGHT CHANGE WEIGHT
(xs+ x2 x3 1) TARGET (Awy Aw: ij Ab) (w1 wa2w3b)
(1] 00 0)
(1 1 11 1 (1 1 1 1) (111 1)
(1 1 -1 1) -1 (-1 -1 1 -1 (00 2 0)
(1 -1 1 1) -1 (-1 1 -1 - (-1 11 -1
(-1 1 1 1) -1 (1 -1 -1 -1 (000 -2

Again, it is clear that the weights do not give the correct output for the first input
pattern.

Figure 2.13 shows that the input points are linearly separable; one posssible
plane, x; + x; + x3 + (—2) = 0, to perform the separation is shown. This plane
corresponds to a weight vector of (1 1 1) and a bias of —2.

XA

Figure 2.13 Linear separation of bipolar
training inputs.

Sec. 2.3 Perceptron 59
2.3 PERCEPTRON

Perceptrons had perhaps the most far-reaching impact of any of the early neural
nets. The perceptron learning rule is a more powerful learning rule than the Hebb
rule. Under suitable assumptions, its iterative learning procedure can be proved
to converge to the correct weights, i.e., the weights that allow the net to produce
the correct output value for each of the training input patterns. Not too surpris-
ingly, one of the necessary assumptions is that such weights exist.

A number of different types of perceptrons are described in Rosenblatt (1962)
and in Minsky and Papert (1969, 1988). Although some perceptrons were self-
organizing, most were trained. Typically, the original perceptrons had three layers
of neurons—sensory units, associator units, and a response unit—forming an
approximate model of a retina. One particular simple perceptron [Block, 1962]
used binary activations for the sensory and associator units and an activation of
+1, 0, or —1 for the response unit. The sensory units were connected to the
associator units by connections with fixed weights having values of +1,0, or — 1,
assigned at random.

The activation function for each associator unit was the binary step function
with an arbitrary, but fixed, threshold. Thus, the signal sent from the associator
units to the output unit was a binary (0 or 1) signal. The output of the perceptron
is y = f(y-in), where the activation function is

1 if y_in>0_
f(y_n) = 0 if —-0<yin=o9o
-1 ify_in< -9

The weights from the associator units to the response (or output) unit were
adjusted by the perceptron learning rule. For each training input, the net would
calculate the response of the output unit. Then the net would determine whether
an error occurred for this pattern (by comparing the calculated output with the
target value). The net did not distinguish between an error in which the calculated
output was zero and the target — 1, as opposed to an error in which the calculated
output was +1 and the target — 1. In either of these cases, the sign of the error
denotes that the weights should be changed in the direction indicated by the target
value. However, only the weights on the connections from units that sent a non-
zero signal to the output unit would be adjusted (since only these signals con-
tributed to the error). If an error occurred for a particular training input pattern,
the weights would be changed according to the formula

W,'(neW) = W,(Old) + atx;,

where the target value tis +1 or —1 and « is the learning rate. If an error did
not occur, the weights would not be changed. .

60 Simple Neural Nets for Pattern Classification Chap. 2

Training would continue until no error occurred. The perceptron learning
rule convergence theorem states that if weights exist to allow the net to respond
correctly to all training patterns, then the rule’s procedure for adjusting the
weights will find values such that the net does respond correctly to all training
patterns (i.e., the net solves the problem-or learns the classification). Moreover,
the net will find these weights in a finite number of training steps. We will consider
a proof of this theorem in Section 2.3.4, since it helps clarify which aspects of
the many variations on perceptron learning are significant.

2.3.1 Architecture

Simple perceptron for pattern classification

The output from the associator units in the original simple perceptron was a binary
vector; that vector is treated as the input signal to the output unit in the sections
that follow. As the proof of the perceptron learning rule convergence theorem
given in Section 2.3.4 illustrates, the assumption of a binary input is not necessary.
Since only the weights from the associator units to the output unit could be ad-
justed, we limit our consideration to the single-layer portion of the net, shown in
Figure 2.14. Thus, the associator units function like input units, and the archi-
tecture is as given in the figure.

g

W,

. n
@—/ Figure 2.14 Perceptron to perform sin-

gle classification.

The goal of the net is to classify each input pattern as belonging, or not
belonging, to a particular class. Belonging is signified by the output unit giving a
response of + 1; not belonging is indicated by a response of — 1. The net is trained
to perform this classification by the iterative technique described earlier and given
in the algorithm that follows.

Sec. 2.3 Perceptron 61
2.3.2 Algorithm

The algorithm given here is suitable for either binary or bipolar input vectors (n-
tuples), with a bipolar target, fixed 0, and adjustable bias. The threshold 6 does
not play the same role as in the step function illustrated in Section 2.1.2; thus,
both a bias and a threshold are needed. The role of the threshold is discussed
following the presentation of the algorithm. The algorithm is not particularly sen-
sitive to the initial values of the weights or the value of the learning rate.

Step 0. Initialize weights and bias.
(For simplicity, set weights and bias to zero.)
Set learning rate o (0 < o = 1).
(For simplicity, o can be set to 1.)
Step 1. While stopping condition is false, do Steps 2-6.
Step 2. For each training pair s:t, do Steps 3-5.

Step 3. Set activations of input units:
Xi = 8;.
Step 4. Compute response of output unit:

yoin = b + 3 xiw;;
i

1 if y.in> 0

y = 0 if -0<y.in=29
-1 ifyin< —0
Step 5. Update weights and bias if an error occurred
for this pattern.
Ify+#1

W,'(HCW) = W,(Old) + @‘[,
b(new) = b(old) + «at.

else

wi(new) = w;(old),
b(new) = b(old).

Step 6. Test stopping condition:
If no weights changed in Step 2, stop; else, continue.

Note that only weights connecting active input units (x; # 0) are updated.
Also, weights are updated only for patterns that do not produce the correct value
of y. This means that as more training patterns produce the correct response, less
learning occurs. This is in contrast to the training of the ADALINE units described
in Section 2.4, in which learning is based on the difference between y_in and 1.

62 Simple Neural Nets for Pattern Classification Chap. 2

The threshold on the activation function for the response unit is a fixed,
non-negative value 6. The form of the activation function for the output unit
(response unit) is such that there is an *‘undecided’’ band (of fixed width deter-
mined by 6) separating the region of positive response from that of negative re-
sponse. Thus, the previous analysis of the interchangeability of bias and threshold
does not apply, because changing 6 would change the width of the band, not just
the position.

Note that instead of one separating line, we have a line separating the region
of positive response from the region of zero response, namely, the line bounding
the inequality -

wixy + WaXy + b > 6,

and a line separating the region of zero response from the region of negative
response, namely, the line bounding the inequality

wix; + waxs + b < —0.

2.3.3 Application

Logic functions
Example 2.11 A Perceptron for the ANp function: binary inputs, bipolar targets

Let us consider again the Anp function with binary input and bipolar target, now
using the perceptron learning rule. The training data are as given in Example 2.6 for
the Hebb rule. An adjustable bias is included, since it is necessary if a single-layer
net is to be able to solve this problem. For simplicity, we take @ = 1 and set the
initial weights and bias to 0, as indicated. However, to illustrate the role of the
threshold, we take@ﬁb

The weight change is Aw = 1(x,, x,, 1) if an error has occurred and zero
otherwise. Presenting the first input, we have:

WEIGHT

INPUT v NET ouT TARGET CHANGES WEIGHTS

(x; x2 D (w, w2 b)
k © 0 0)
! 1 1) 0 0 1 (1 1 1) Q 1 1)

The separating lines become

QO

X|+XZ+1=.2
and

Xy +x3+ 1= -.2.

Sec. 2.3 Perceptron 63

x2

N+

R Figure 2.15 Decision boundary for logic
function AND after first training input.

The graph in Figure 2.15 shows that the response of the net will now be correct for
the first input pattern.
Presenting the second input yields the following:

WEIGHT
INPUT NET OUT TARGET CHANGES WEIGHTS
(x1 x2 1) W, wy b)
(1 10

a o 2 1 -1 (-1 0 -1 ©0© @ o0

The separating lines become

and
X2 = — 2

The graph in Figure 2.16 shows that the response of the net will now (still) be correct
for the first input point.
For the third input, we have:

WEIGHT
INPUT NET ouT TARGET CHANGES WEIGHTS
(xi x2 1 (Wi w, b)
(0] 1 0)
© 1 1) 1 1 -1 oo -1 -1 (O 0 -1

Since the components of the input patterns are nonnegative and the components of
the weight vector are nonpositive, the response of the net will be negative (or zero).

64

Simple Neural Nets for Pattern Classification Chap. 2

X2

X1

Figure 2.16 Decision boundary after
second training input.

To complete the first epoch of training, we present the fourth training pattern;

WEIGHT

INPUT NET OUT TARGET CHANGES WEIGHTS

(x;r x 1) wi wy b)
© 0 -1

© o0 1 -1 -1 -1 © o0-lo) (0 0 -

The response for all of the input patterns is negative for the weights derived; but
since the response for input pattern (1, 1) is not correct, we are not finished.

The second epoch of training yields the following weight updates for the first
input:

WEIGHT
INPUT NET ouT TARGET CHANGES WEIGHTS
(xi x b Wi wy b)
o 0 -1)
(1 1 1) -1 -1 1 a 1 n q 1 0)

The separating lines become

Xy + xp = 2
and

X+ xp = -.2.

Sec. 2.3 Perceptron 65

The graph in Figure 2.17 shows that the response of the net will now be correct for

a, 1.

x2

N ™

Figure 2.17 Boundary after first train-
ing input of second epoch.

For the second input in the second epoch, we have:

WEIGHT
INPUT NET OuT TARGET CHANGES WEIGHTS

(x; x2» 1 (w, ws b)

(1 1 0)
(0 D 1 1 -1 (-1 0 ~-1) (© I -1

The separating lines become

and

The graph in Figure 2.18 shows that the response of the net will now be correct
(negative) for the input points (1, 0) and (0, 0); the response for input points (0, 1)

and (1, 1) will be 0, since the net inEut would be 0, which is between —.2 and .2
o = .2).

In the second epoch, the third input yields:

WEIGHT
INPUT NET ouT TARGET CHANGES WEIGHTS
(xi x» 1 W, w, b)
© 1 -1
(4 1 1) 0 0 -1 o -1 -1 (© 0 -2)

66 Simple Neural Nets for Pattern Classification Chap. 2

X1

Figure 2.18 Boundary after second
input of second epoch.

Again, the response will be negative for all of the input.
To complete the second epoch of training, we present the fourth training pat-

tern:
WEIGHTS
INPUT NET ouT TARGET CHANGE WEIGHTS
(xi x 1) wi w; b)
(1] 0 -2)
© 0o -2 -1 -1 o 0 0 (© 0" -2
The results for the third epoch are:
WEIGHT
INPUT NET OuT TARGET CHANGES WEIGHTS
(x, xy 1) o Wy ws b)
oo BTRUY g y y
(1 I 1) =2 -1 1 a 1 1) 1 -1
a 0 1 0 0 -1 (-1 0 -1 © 1 ~=2)
o @&n -1 -1 - CF © -0 0o ©0 1 -2
(1] o n -2 -1 -1 (1] 0 0 (© 1 -2
The results for the fourth epo;:h are:
¢ 1 1) -1 -1 1 “a 1 D @ 2 -1
(1 01 0 0 -1 (-1 0 -1 (© 2 -2
© 1 D 0 0 -1 o -1 -1 (© I -3)
© 0 1) -3 -1 -1 © 0 0 (© 1

T =3)

Sec. 2.3

For the fifth epoch, we have

a 1
a 0
© 1
© 0

Perceptron

n -2
[|
1) 0
n -3

and for the sixth epoch,

¢! 1
(1 0
© 1
© 0

n -1
1) 0
n -1
‘H -3

The results for the seventh epoch are:

(1
¢l 0
© 1
o 0

1) 0
1) 0
1) 0
1) -4

The eighth epoch yields

a 1
a. o
o 1
© o0

and the ninth

a 1
¢ 0
© 1
© 0

Finally, the results for the tenth epoch are:

(L 1
a 0
o 1
© 0

n -1
n -1
1) 0
n -4
1) 0
1) 0
H -1
1 -4

n 1
n -2
n -1
n -4

4
-1 1
-1 -1
0 -1
-1 -1
-1 1
0 -1
-1 -1
-1 -1
0 1
0 -1
0 —1
-1 -1
-1 1
-1 -1
0 -1
-1 -1
0 1
0 ~1
-1 -1
-1 -1

Y t
1 |
-1 ~1
~1 -1
-1 -1

o
a
©
©
o

(1
(-1
©
©

a
(-1
©
©

4!
©
©
o

o
(
©
©

—

[T I —

1))
-1
0)
0

1)
-1)
-1)

0

)
0)

-1)

0)
0)
0)
0)

(a
(1
(1
(

2
(1
(1
(1

2
(1
(1
(1

Q2
Q
Q@
@

(&)
Q@
Q2
Q2

Q
v
Q2
2

NN W NN W W NN NN — = NN

w W W W

W W W W

67

-2)
-2)
-3)
-3)

-2)
-3)
-3)
-3)

-2)
-3)
—4)
—4)

-3)
-3)
—4)
)

-3)
—4)
—4)
—4)

—4)
—4)
—4)
—4)

68 ‘Simple Neural Nets for Pattern Classification Chap. 2

Thus, the positive response is given by all points such that
26 + 3x; — 4> 2,
with boundary line '

oo 2.1
2 = 3 X 1 5°
and the negative response is given by all points such that
2.X‘| + 3X2 -4 < *.2,

with boundary line

(see Figure 2.19.)

Figure 2.19 Final decision boundaries
for AND function in perceptron learning.

Since the proof of the perceptron learning rule convergence theorem (Section
2.3.4) shows that binary input is not required, and in previous examples bipolar
input was often preferable, we consider again the previous example, but with
bipolar inputs, an adjustable bias, and & = 0. This variation provides the most
direct comparison with Widrow-Hoff learning (an AbALINE net), which we con-
sider in the next section. Note that it is not necessary to modify the training set
so that all patterns are mapped to +1 (as is done in the proof of the perceptron
learning rule convergence theorem); the weight adjustment is /x whenever the
response of the net to input vector x is incorrect. The target value is still bipolar.

Sec. 2.3 Perceptron 69

Example 2.12 A Perceptron for the Anp function: bipolar inputs and targets

The training process for bipolar input, a = 1, and threshold and initial weights =

0 is:
WEIGHT
INPUT NET OuT TARGET CHANGES WEIGHTS
(xl X2 1) (W| Wso b)
(] 0 0)
q 11 0 0 1 (1 1 n A 1 1)
ql -1 D 1 1 -1 (-1 1 -1 (© 2 0)
(-1 1 1) 2 1 -1 a -1 - 1 -1
(-1 -1 1) -3 -1 -1 (] 0 0 1 -1
In the second epoch of training, we have:
a 1D 1 1 1 © 0 0 O 1 -1
a -1 1 -1 -1 -1 © 0 0 « 1 -1
(-1 11 -1 -1 -1 © 0 0 1 -1
(-1 -1 1) -3 -1 -1 (1] 0 0 (1 1 -1

Since all the Aw’s are 0 in epoch 2, the system was fully trained after the first epoch.

It seems intuitively obvious that a procedure that could continue to learn to
improve its weights even after the classifications are all correct would be better
than a learning rule in which weight updates cease as soon as all training patterns
are classified correctly. However, the foregoing example shows that the change
from binary to bipolar representation improves the results rather spectacularly.

We next show that the perceptron with @« = 1 and 8 = .1 can solve the
problem the Hebb rule could not.

Other simple examples

Example 2.13 Perceptron training is more powerful than Hebb rule training

The mapping of interest maps the first three components of the input vector onto a
target value that is 1 if there are no zero inputs and that is —1 if there is one zero
input. (If there are two or three¢ zeros in the input, we do not specify the target
value.) This is a portion of the parity problem for three inputs. The fourth component
of the input vector is the input to the bias weight and is therefore always 1. The
weight change vector is left blank if no error has occurred for a particular pattern.
The learning rate is & = 1, and the threshold 8 = .1. We show the following selected
epochs:

Simple Neural Nets for Pattern Classification Chap. 2

INPUT NET OUT TARGET WEIGHT CHANGE WEIGHTS

X1 X2 X3 1) (Wl Wy Ws b)

@ o0 o0 0)

Epoch 1:

air 1 n o 0 1 (a 1 1 1 11 1)
airomn 3 1 -1 (-1 -1 0 -1 (© 01 0)
ao1 1n 1 1 -1 (-1 0 -1 -1 00 -1
ot 11 -1 -1 -1 (y(-1t 00 -1
Epoch 2:

airi11n -2 -1 1 q 11 1 (© 11 0)
airon 1 1 -1 (-1 -1 0 -1H((-1 01 -1
@ao 11 -1 -1 -1 (y(-1 01 -1
o111 O 0 -1 o -1 -1 -D(-1-10 =2
Epoch 3:

ai1 11y -4 -1 1 q 1 1 1 (© 01 -1
air1o1mn-1 -1 -1 () (0. 01 -1
ao11n o 0. -1 (-1 0 -1 -DH(-1 00 -2
o1 1 1nH -2 -1 -1 () (-1 00 =2)
Epoch 4:

aitri11n -3 -1 1 (1 1 1 D@ 11 -1
airomn o 0 -1 (-1 -1 0 -D(1 01 =2
ao1mn-2 -1 -1 () (-1 01 =2)
o1 1 n -1 -1 -1 (y(-1 01 =2
Epoch 5:

air1r1n-2 -1 1 (1 1 1 D © 12 -1
ai1o0o1mn o 0 -1 (-1 -1 0 -1 (-1 02 =2
ao1 1y -1 -1 -1 () (-1 02 =2
o111 n 0 0 -1 0w -1 -1 -D((-1-11 =3)
Epoch 10:)
airi1n-3 -1 1 a 1 1 1nd 12 =3)
atro1n -1 -1 -1 () (1 12 =3
ao1 np o 0 -1 (-1 0 -1 -1 (0 11 -4
o1 1 1n -2 -1 -1 () (0 11 -4

Sec. 2.3

Perceptron
Epoch 15:

arirumn
a1 00
ao1 1
o1 10D
Epoch 20:

airi1rn
atr o
ao1mn
or1rmn
Epoch 25:

a11pn
a1 01
ao1n
wr10n
Epoch 26:

a1 10
a1 o0 0n
a01 0D
0111

-2
~2

-2

-2
-1

1
-3
-2
-1

Character recognition

Application Procedure
Apply training algorithm to set the weights.

Step 0.
Step 1.

For each input vector x to be classified, do Steps 2-3.

Step 2.
Step 3.

-1
0
-1
0

-1
-1

0
-1

0
0
-1
-1

1
-1

-1

1
-1
-1

-1
-1
-1

a 1 1)

(-1 -1 0 -1
()
© -1 -1 -1

(1 1 1 1)
()
(-1 0 -1 -1
()
(1 1 |y
(-1 -1 0 -1
()
()
()
()
()
()

Set activations of input units.
Compute response of output unit:

y_in

il

Exiwi;
1 ify_in>9
0 if-0=<y.in=<¢
-1 ify_in< -9

2

(
(1

3
2
¥
@

2
¥
2
2

W W W A NN NN —_ NN W

L

W W W W
L T

N W W W

W oW A

Example 2.14 A Perceptron to classify letters from different fonts: one output class

71

—4)
-3)
-3)
-6)

~6)
—6)

-7
—-8)
~8)
—-8)

-8)
—-8)
-8)
-8

As the first example of using the perceptron for character recognition, consider the
21 input patterns in Figure 2.20 as examples of A or not-A. In other words, we train
the perceptron to classify each of these vectors as belonging, or not belonging, to

72

Input from
Font 1

e s 00 0 0 o

e o o of
o4k

E -
e oo 000
s 0 ofpkoe

ke o0 0.0 0 o3
otk o

«eD...

Input from
Font 2

Input from
Font 3

e o0 000 ok

o ok
o o3
o o o3
o ofEo

§

it

«eD...

oooooo
oooooo
oooooo

HiHEHH
ceeesE..

ooooo
ooooo

¢ sk o ok

- XICAY ERCARE -
e o ofke o o3

ooooo

$e 000 00 o3
Sk o o ofEe o3
o3k

- XA T N
ke o o oo o3k

FEeo o 0o ofke o

oS o istE o

Figure 2.20 Training input and target output patterns.

oo ofpe oFEe 0 o
o oo o o odfe o
Stk e 2 0 0 0 o3k o
FEo o0 0 0 0 o o

dEe o otk

....#.
i*"f::

- X3
E- X3

e s o o3k o

s o oot 0o o
o oo o ofEo o o
LN)

£ _ CECICEERE

e o odko o o3) o
3.

Sec. 2.3 Perceptron 73

the class A. In that case, the target value for each pattern is either 1 or —1; only
the first component of the target vector shown is applicable. The net is as shown in
Figure 2.14, and n = 63. There are three examples of A and 18 examples of not-A
in Figure 2.20.

We could, of course, use the same vectors as examples of B or not-B and train
the net in a similar manner. Note, however, that because we are using a single-layer
net, the weights for the output unit signifying A do not have any interaction with
the -weights for the output unit signifying B. Therefore, we can solve these two
problems at the same time, by allowing a column of weights for each output unit.
Our net would have 63 input units and 2 output units. The first output unit would
correspond to ‘A or not-A”’, the second unit to *‘B or not-B.”’ Continuing this idea,
we can identify 7 output units, one for each of the 7 categories into which we wish
to classify our input.

Ideally, when an unknown character is presented to the net, the net’s output
consists of a single “‘yes’’ and six ‘‘nos.” In practice, that may not happen, but the
net may produce several guesses that can be resolved by other methods, such as
considering the strengths of the activations of the various output units prior to setting
the threshold or examining the context in which the ill-classified character occurs.

Example 2.15 A Perceptron to classify letters from different fonts: several output classes

The perceptron shown in Figure 2.14 can be extended easily to the case where the
input vectors belong to one (or more) of several categories. In this type of application,
there is an output unit representing each of the categories to which the input vectors
may belong. The architecture of such a net is shown in Figure 2.21.

Figure 2.21 Perceptron to classify input
into seven categories.

74 Simple Neural Nets for Pattern Classification Chap. 2

For this example, each input vector is a 63-tuple representing a letter expressed
as a pattern on a 7 X 9 grid of pixels. The training patterns are illustrated in Figure
2.20. There are seven categories to which each input vector may belong, so there
are seven components to the output vector, each representing a letter: A, B, C, D,
E, K, or J. For ease of reading, we show the target output pattern indicating that
the input was an “A’”’ as (A ------- ,a“B”"(¢B------), etc.

The training input patterns and target responses must be converted to an ap-
propriate form for the neural net to process. A bipolar representation has better
computational characteristics than does a binary representation. The input patterns
may be converted to bipolar vectors as described in Example 2.8; the target output
pattern (A - - - - - - -) becomes the bipolar vector (1, -1, —1, -1, -1, -1, —1)
and the target pattern (- B - - - - - -) is represented by the bipolar vector (-1, 1, —1,
-1, -1, -1, = 1).

A modified training algorithm for several output categories (threshold = 0,
learning rate = 1, bipolar training pairs) is as follows:

Step 0. Initialize weights and biases
(0 or small random values).
Step 1. While stopping condition is false, do Steps 1-6.
Step 2. For each bipolar training pair s : t, do Steps 3-5.

Step 3. Set activation of each input unit, i = 1,. .., n:
X;i = §;.
Step 4. Compute activation of each output unit,
ji=1L...,m

y_inj = bj + 2 XiWij.
i

1 ify_in;>6
y; = 0 if-0=y.in,=6
-1 ify_in;< -9

Step 5. Update biases and v‘veight‘s, i=1...,m
i=1,...,n
If ¢ # Yis then

bi(new) = bjold) + ¢;
wii(new) = w;(old) + #x;.

Else, biases and weights remain unchanged.
Step 6. Test for stopping condition:
If no weight changes occurred in Step 2, stop; otherwise,
continue.

After training, the net correctly classifies each of the training vectors.

The performance of the net shown in Figure 2.21 in classifying input vectors
that are similar to the training vectors is shown in Figure 2.22. Each of the input

Sec. 2.3

Input from

Font 1

Lt { P
P

$ast.
«eeD...

Input from

Font 2

00000 o3

oo o 0 0 oo

. 3
]
© ®

Figure 2.22 Classification of noisy input patterns using a perceptron.

Perceptron

oooooo
oooooo
......

Y P
....E..

e o 0000 o
‘® 3D
.
e 0

Bk o o ofee o
o oo oo o
HEe oo ofpe o
Sko o o oo oFp

CHOMAE o3tk

¢ 0000 Je

O« stk ot () 2o

o o oo ofke o o
oo ofpe
* s 0 e o N

D e v oo @ o
*

e oo 000 oPE o

O #° + #0
.#u-o#o
o#o.#oo
o#.Oo-o
n##oooo
o#o#.-o
0#00#00
Oft#o . ##

sesse X

76 Simple Neural Nets for Pattern Classification Chap. 2

patterns is a training input pattern with a few of its pixels changed. The pixels
where the input pattern differs from the training pattern are indicated by @ for
a pixel that is ““on”” now but was ‘‘off*” in the training pattern, and O for a pixel
that is “‘off” now but was originally ‘‘on.”’

2.3.4 Perceptron Learning Rule Convergence Theorem

The statement and proof of the perceptron learning rule convergence theorem
given here are similar to those presented in several other sources [Hertz, Krogh,
& Palmer, 1991; Minsky & Papert, 1988; Arbib, 1987]. Each of these provides a
slightly different perspective and insights into the essential aspects of the rule.
The fact that the weight vector is perpendicular to the plane separating the input
patterns at each step of the learning processes [Hertz, Krogh, & Palmer, 1991]
can be used to interpret the degree of difficulty of training a perceptron for different
types of input.
The perceptron learning rule is as follows:
Given a finite set of P input training vectors

x(p),) p=1,...,P,
each with an associated target value
t(p), p=1,...,P,
which is either + 1 or — 1, and an activation functiony = f(y—_in), where
1 ify_in>9
y = 0 if-0=<yin=29

-1 ify_in< -0,

the weights are updated as follows:
If y # ¢, then

w (new) = w (old) + rx;
else
no change in the weights.

The perceptron learning rule convergence theorem is:

If there is a weight vector w* such that f(x(p)-w*) = t(p) for all p, then
for any starting vector w, the perceptron learning rule will converge to a weight
vector (not necessarily unique and not necessarily w*) that gives the correct re-
sponse for all training patterns, and it will do so in a finite number of steps.

The proof of the theorem is simplified by the observation that the training
set can be considered to consist of two parts:

F* = {x such that the target value is + 1}

Sec. 2.3 Perceptron 77

and
F~ = {x such that the target value is — 1}.
A new training set is then defined as
F=F"U-F-,
where
—F~ = {—xsuch that x is in F~}.

In order to simplify thp algebra slightly, we shall assume, without loss of gen-
erality, that 6 = 0 and a = 1 in the proof. The existence of a solution of the
original problem, namely the existence of a weight vector w* for which

x-w* > (ifxisin F*

and
Xxw* <0 if xisin F—,

is equivalent to the existence of a weight vector w* for which
xw¥ > (if xis in F.

All target values for the modified training set are + 1. If the response of the net
is incorrect for a given training input, the weights are updated according to

w(new) = w(old) + x.

Note that the input training vectors must each have an additional component
(which is always 1) included to account for the signal to the bias weight.

We now sketch the proof of this remarkable convergence theorem, because
of the light that it sheds on the wide variety of forms of perceptron learning that
are guaranteed to converge. As mentioned, we assume that the training set has
been modified so that all targets are + 1. Note that this will involve reversing the
sign of all components (including the input component corresponding to the bias)
for any input vectors for which the target was originally — 1.

We now consider the sequence of input training vectors for which a weight
change occurs. We must show that this sequence is finite.

Let the starting weights be denoted by w(0), the first new weights by w(l),
etc. If x(0) is the first training vector for which an error has occurred, then

w(l) = w(0) + x(0) (where, by assumption, x(0)-w(0) < 0).

If another error occurs, we denote the vector x(1); x(1) may be the same as x(0)
if no errors have occurred for any other training vectors, or x(1) may be different
from x(0). In either case,

w(2) = w(l) + x(1) (where, by assumption, x(1)-w(1) < 0).

78 Simple Neural Nets for Pattern Classification Chap. 2

At any stage, say, k, of the process, the weights are changed if and only if the
current weights fail to produce the correct (positive) response for the current
input vector, i.e., if x(k — 1)>-w(k — 1) = 0. Combining the successive weight
changes gives

w(k) = w(0) + x(0) + x(1) + x(2) + -+ + x(k — 1).

We now show that & cannot be arbitrarily large.
Let w* be a weight vector such that x-w* > 0 for all training vectors in F.
-Let m = min{x-w*}, where the minimum is taken over all training vectors in F;
this minimum exists as long as there are only finitely many training vectors. Now,

wk)'w* = [w(0) + x(0) + x(1) + x(2) + - + x(k — I)]-w*
= w(0)w* + km

since x(i)w* =z mforeachi, 1 =i < P,
The Cauchy-Schwartz inequality states that for any vectors a and b,

(@b)* = [l bl?,

or
(ab)?
[lal* = T (for |Ib]* = 0).
Therefore,
(w(k)-w*)?
w(k)|]? = ———
_ WO)-w* + km)?
B [[w*||?

This shows that the squared length of the weight vector grows faster than k2,
where k is the number of time the weights have changed.

However, to show that the length cannot continue to grow indefinitely, con-
sider

wk) =wk — 1) + x(tk — 1),
together with the fact that
x(tk — Dwk — 1) = 0.
By simple algebra,
Iw(I? = wtk — DI? + 2x(k — D-w(k — 1) + |Ix(k — D
= wtk — DI? + [Ix(k — DI

Sec. 2.3 Perceptron 79

Now let M = max {|| x |* for all x in the training set}; then
Iw(k)I? < lIwk — DIP + |x(k — DI
= wtk — 2 + |Ix(k = 2)I? + [x(k — DI?

= WO + [xO)F + - + |x(k — DI?
= [wO)I? + kM.

Thus, the squared length grows less rapidly than linearly in k.
Combining the inequalities

(WO)W* + km)?
[Iw*|[>

Iw(o)|? =

and
[w(k)? < |w()|*> + kM

shows that the ;iumber of times that the weights may change is bounded. Spe-
cifically,
(w(0)-w* + km)?
[Iw* 12

= W) = |wO)? + kM.

Again, to simplify the algebra, assume (without loss of generality) that w(0) = 0.
Then the maximum possible number of times the weights may change is given by

(km)?
e = <M

or

%12
ksM"w2” '
m

Since the assumption that w* exists can be restated, without loss of generality,
as the assumption that there is a solution weight vector of unit length (and the
definition of m is modified accordingly), the maximum number of weight updates
is M/m*. Note, however, that many more computations may be required, since
very few input vectors may generate an error during any one epoch of training.
Also, since w* is unknown (and therefore, so is m), the number of weight updates
cannot be predicted from the preceding inequality.

The foregoing proof shows that many variations in the perceptron learning
rule are possible. Several of these variations are explicitly mentioned in Chapter
11 of Miqsky and Papert (1988).

The original restriction that the coefficients of the patterns be binary is un-

80 Simple Neural Nets for Pattern Classification Chap. 2

necessary. All that is required is that there be a finite maximum norm of the
training vectors (or at least a finite upper bound to the norm). Training may take
a long time (a large number of steps) if there are training vectors that are very
small in norm, since this would cause small m to have a small value. The argument
of the proof is unchanged if a nonzero value of 6 is used (although changing the
value of 6 may change a problem from solvable to unsolvable or vice versa). Also,
the use of a learning rate other than 1 will not change the basic argument of the
proof (see Exercise 2.8). Note that there is no requirement that there can be only
finitely many training vectors, as long as the norm of the training vectors is
bounded (and bounded away from 0 as well). The actual target values do not
matter, either; the learning law simply requires that the weights be incremented
by the input vector (or a multiple of it) whenever the response of the net is incorrect
(and that the training vectors can be stated in such a way that they all should give
the same response of the net).

Variations on the learning step include setting the learning rate o to any
nonnegative constant (Minsky starts by setting it specifically to 1), setting a to
1/jlx|| so that the weight change is a unit vector, and setting o to (x-w)/||x||*> (which
makes the weight change just enough for the pattern x to be classified correctly
at this step).

Minsky sets the initial weights equal to an arbitrary training pattern. Others
usually indicate small random values.

Note also that since the procedure will converge from an arbitrary starting
set of weights, the process is error correcting, as long as the errors do not occur
too often (and the process is not stopped before error correction occurs).

2.4 ADALINE

The ADALINE (ADpaptive Linear NEuron) [Widrow & Hoff, 1960] typically uses -
bipolar (1 or — 1) activations for its input signals and its target output (although -
it is not restricted to such values). The weights on the connections from the input-
units to the ADALINE are adjustable. The ADALINE also has a bias, which acts like
an adjustable weight on a connection from a unit whose activation is always 1.

In general, an ADALINE can be trained using the delta rule, also known as
the least mean squares (LMS) or Widrow-Hoff rule. The rule (Section 2.4.2) can
also be used for single-layer nets with several output units; an ADALINE is a special
case in which there is only one output unit. During training, the activation of the
unit is its net input, i.e., the activation function is the identity function. The
learning rule minimizes the mean squared error between the activation and the
target value. This allows the net to continue learning on all training patterns, even
after the correct output value is generated (if a threshold function is applied) for
some patterns.

After training, if the net is being used for pattern classification in which the
desired output is either a +1 or a —1, a threshold function is applied to the net

Sec. 2.4 Apaung ' 81

input to obtain the activation. If the net input to the ADALINE is greater than or
equal to O, then its activation is set to 1; otherwise it is set to —1. Any problem
for which the input patterns corresponding to the output value +1 are linearly
separable from input patterns corresponding to the output value — 1 can be mod-
eled successfully by an ADALINE unit. An application algorithm is given in Section
2.4.3 to illustrate the use of the activation function after the net is trained.

In Section 2.4.4, we shall see how a heuristic learning rule can be used to
train a multilayer combination of ADALINES, known as a MADALINE.

2.4.1 Architecture

An ADALINE is a single unit (neuron) that receives input from several units. It
also receives input from a *‘unit’’ whose signal is always + 1, in order for the bias
weight to be trained by the same process (the delta rule) as is used to train the
other weights. A single ADALINE is shown in Figure 2.23.

-

O

b
: 1
@ "',,% Figure 2.23 Architecture of an
ADALINE.

Several ADALINES that receive signals from the same input units can be
combined in a single-layer net, as described for the perceptron (Section 2.3.3).
If, however, ADALINES are combined so that the output from some of them be-
comes input for others of them, then the net becomes multilayer, and determining
the weights is more difficult. Such a multilayer net, known as a MADALINE, is
considered in Section 2.4.5.

2.4.2 Algorithm

A training algorithm for an ADALINE is as follows:
Step 0. Initialize weights.
(Small random values are usually used.)
Set learning rate a.
(See comments following algorithm.)

82 Simple Neural Nets for Pattern Classification Chap. 2

Step 1. While stopping condition is false, do Steps 2-6.
Step 2. For each bipolar training pair s:t, do Steps 3-5.
Step 3. Set activations of input units, i = 1, ..., n:

Xi = §;.
Step 4. Compute net input to output unit:
y_in = b + >, xiw;.

Step 5. .Update bias and weights, i = 1, ..., n
b(new) = b(old) + alt — y_in).
winew) = wiold) + a(t — y_in)x;.

Step 6. Test for stopping condition:
If the largest weight change that occurred in Step 2 is
smaller than a specified tolerance, then stop; otherwise
continue.

Setting the learning rate to a suitable value requires some care. According
to Hecht-Nielsen (1990), an upper bound for its value can be found from the largest
eigenvalue of the correlation matrix R of the input (row) vectors x(p):

1 P
R = P > x(p)'x(p),
p=1

4
namely,

o < one-half the largest eigenvalue of R.

However, since R does not need to be calculated to compute the weight updates,
it is common simply to take a small value for a (such as « = .1) initially. If too
large a value is chosen, the learning process will not converge; if too small a value
is chosen, learning will be extremely slow [Hecht-Nielsen, 1990]. The choice of
learning rate and methods of modifying it are considered further in Chapter 6.
For a single neuron, a practical range for the learning rate a is 0.1 < na = 1.0,
where n is the number of input units [Widrow, Winter & Baxter, 1988].

The proof of the convergence of the ADALINE training process is essentially
contained in the derivation of the delta rule, which is given in Section 2.4.4.

2.4.3 Applications

After training, an ADALINE unit can be used to classify input patterns. If the target
values are bivalent (binary or bipolar), a step function can be applied as the

Sec. 2.4 ADALINE ; 83

activation function for the output unit. The following procedure shows the step
function for bipolar targets, the most common case:

Step 0. Initialize weights
(from ADALINE training algorithm given in Section 2.4.2).
Step 1. For each bipolar input vector x, do Steps 2-4.
Step 2. Set activations of the input units to x.
Step 3. Compute net input to output unit:

y-in = b + 3 x;w;.

Step 4. Apply the activation function:

_ 1 ify.in=0;
Y=1-1 if y_in < 0.

Simple examples

The weights (and biases) in Examples 2.16-2.19 give the minimum total squared
error for each set of training patterns. Good approximations to these values can
be found using the algorithm in Section 2.4.2 with a small learning rate.

Example 2.16 An ApavLine for the Anp function: binary inputs, bipolar targets

Even though the ApaLINE was presented originally for bipolar inputs and targets,
the delta rule also applies to binary input. In this example, we consider the Anp
function with binary input and bipolar targets. The function is defined by the fol-
lowing four training patterns:

Xy X2 t
1 1

S S -

0
1 -1
0

As indicated in the derivation of the delta rule (Section 2.4.4), an ADALINE is
designed to find weights that minimize the total error

4
E = 3 (xi(pwy + x2(p)wa + wo — H(p)),

p=1
where
xi(p)wy + x2(pIwz + wy

is the net input to the output unit for pattern p and #(p) is the associated target for
pattern p.

84 Simple Neural Nets for Pattern Classification =~ Chap. 2

Weights that minimize this error are

wy =1
and
wy =1,
with the bias
3
wo = —3. {
Thus, the separating line is ;\
3

x|+x2—5=0.

The total squared error for the four training patterns with these weights is 1.
A minor modification to Example 2.11 (setting 8 = 0) shows that for the per-
ceptron, the boundary line is

2 4
X2 = —"X|+_.

3 3

(The two boundary lines coincide when 6 = 0.) The total squared error for the
minimizing weights found by the perceptron is 10/9.

Example 2.17 An ApaLine for the Anp function: bipolar inputs and targets
The weights that minimize the total error for the bipolar form of the Anp function

are
ool
' 2
and
oo L
2 2 ’
with the bias
wo = —1
[} 2 .
Thus, the separating line is
1 1 1
Exl+§x2—§=0,

which is of course the same line as
X1 +x—-1=0,

as found by the perceptron in Example 2.12.

Sec. 2.4 ADALINE 85

Example 2.18 An ApaLine for the Anp Nor function: bipolar inputs and targets

The logic function x; AND NoT x- is defined by the following bipolar input and target
patterns:

X1 X2 t

11 -1
1 -1 1
-1 1 -1
-1 -1 -1

Weights that minimize the total squared error for the bipolar form of the Anp Not
function are

N
)
and
wo = 1
2 = 2)
with the bias
wo = 1
[B 2 .
Thus, the separating line is
1 1 1
§x|—§x2~'2'=0.

Example 2.19 An ApaLinE for the Or function: bipolar inputs and targets

The logic function x; Or x; is defined by the following bipolar input and target
patterns:

X X t
1 1 1
1 -1 1

-1 1 1

-1 -1 -1

Weights that minimize the total squared error for the bipolar form of the Or function
are

B | —

=
I

86 Simple Neural Nets for Pattern Classification Chap. 2

and
oo L
2 = 2 3
with the bias
wo = 1
0o~ 2 .
Thus, the separating line is
l + lx + L 0
21Tyl

2.4.4 Derivations

Delta rule for single output unit

The delta rule changes the weights of the neural connections so as to minimize
the difference between the net input to the output unit, y_in, and the target value
t. The aim is to minimize the error over all training patterns. However, this is
accomplished by reducing the error for each pattern, one at a time. Weight cor-
rections can also be accumulated over a number of training patterns (so-called
batch updating) if desired. In order to distinguish between the fixed (but arbitrary)
index for the weight whose adjustment is being determined in the derivation that
follows and the index of summation needed in the derivation, we use the index
I for the weight and the index i for the summation. We shall return to the more
standard lowercase indices for weights whenever this distinction is not needed.
The delta rule for adjusting the Ith weight (for each pattern) is

Aw, = aft — y_in)x,.

The nomenclature we use in the derivation is as follows:

X vector of activations of input units, an n-tuple.
y_in the net input to output unit Y is
n
y-in = Y xw;.
i=1
t target output.

Derivation. The squared error for a particular training pattern is
E = (t — y_in)%

E is a function of all of the weights, w;, i = 1, ..., n. The gradient of E is the
vector consisting of the partial derivatives of E with respect to each of the weights,
The gradient gives the direction of most rapid increase in E; the opposite direction

Sec. 2.4 ADALINE 87

gives the most rapid decrease in the error. The error can be reduced by adjusting

. . . oE
the weight w; in the direction of — — .

6w1
Since y_in = 3 xw;,
i=1
oF doy—in
— = =2(t — y_in
owy (Y) owy
= =2(t — y_in)x,.

Thus, the local error will be reduced most rapidly (for a given learning rate) by
adjusting the weights. according to the delta rule,

Aw; = alt — y_in)x;.

Delta rule for several output units

The derivation given in this subsection allows for more than one output unit. The
weights are changed to reduce the difference between the net input to the output
unit, y_in;, and the target value ¢,. This formulation reduces the error for each
pattern. Weight corrections can also be accumulated over a number of training
patterns (so-called batch updating) if desired.

The delta rule for adjusting the weight from the Ith input unit to the Jth
output unit (for each pattern) is

Awyy = oty ~ y_ing)xs.

Derivation. The squared error for a particular training pattern is

E =3 (t; - y-in).
Jj=1

E is a function of all of the weights. The gradient of E is a vector consisting of
the partial derivatives of E with respect to each of the weights. This vector gives
the direction of most rapid increase in E; the opposite direction gives the direction
of most rapid decrease in the error. The error can be reduced most rapidly by
adjusting the weight w,; in the direction of —3E/dw,,.

We now find an explicit formula for aE/ow,; for the arbitrary weight w, ;.
First, note that

oE d
aw” aw”

> (1 = y_in)?

Jj=1

(ty — y-inyp?,

Wy

88 Simple Neural Nets for Pattern Classification Chap. 2

since the weight w,, influences the error only at output unit Y¥,. Furthermore,
using the fact that

n
y-ing = 2 XiWig,

i=1
we obtain
oE dy_iny
= —2t; — y_in
awyry (ts = y-iny) awyy
= =2ty — y~iny)x,.

Thus, the local error will be reduced most rapidly (for a given learning rate) by
adjusting the weights according to the delta rule,

Awsy = oty — y_ing)x,.

The preceding two derivations of the delta rule can be generalized to the
case where the training data are only samples from a larger data set, or probability
distribution. Minimizing the error for the training set will also minimize the ex-
pected value for the error of the underlying probability distribution. (See Widrow
& Lehr, 1990 or Hecht-Nielsen, 1990 for a further discussion of the matter.)

2.4.5 MADALINE

As mentioned earlier, a MADALINE consists of Many Apaptive Linear NEurons
arranged in a multilayer net. The examples given for the perceptron and the deri-
vation of the delta rule for several output units both indicate there is essentially
no change in the process of training if several ADALINE units are combined in a
single-layer net. In this section we will discuss a MADALINE with one hidden layer
(composed of two hidden ADALINE units) and one output ADALINE unit. Gener-
alizations to more hidden units, more output units, and more hidden layers, are
straightforward.

Architecture

A simple MADALINE net is illustrated in Figure 2.24. The outputs of the two hidden
ADALINES, z; and z,, are determined by signals from the same input units X; and
X>. As with the ApaLINEs discussed previously, each output signal is the result
of applying a threshold function to the unit’s net input. Thus, y is a nonlinear
function of the input vector (x;, x,). The use of the hidden units, Z, and Z,, give
the net computational capabilities not found in single layer nets, but also com-
plicate the training process. In the next section we consider two training algo-
rithms for a MADALINE with one hidden layer.

Sec. 2.4 ADALINE 89

b by
w1
V1
w2
wa1
4]
w2
by
d Figure 2.24 A MADALINE with two hid-
den ADALINES and one output ADALINE.
Algorithm

In the MRI algorithm (the original form of MADALINE training) [Widrow and Hoff,
1960], only the weights for the hidden ADALINEs are adjusted; the weights for the
output unit are fixed. The MRII algorithm [Widrow, Winter, & Baxter, 1987]
provides a method for adjusting all weights in the net.

We consider first the MRI algorithm; the weights v, and v, and the bias b,
that feed into the output unit Y are determined so that the response of unit Y is
1 if the signal it receives from either Z, or Z, (or both) is 1 and is —1 if both Z,
and Z, send a signal of — 1. In other words, the unit ¥ performs the logic function
ORr on the signals it receives from Z, and Z,. The weights into Y are

S |
Uy = 2
and
_1
v2 e 2 ’
with the bias
1
b3 =§

(see Example 2.19). The weights on the first hidden ADALINE (w;; and w,;) and

the weights on the second hidden ADALINE (w2 and wa,) are adjusted according
to the algorithm.

20 Simple Neural Nets for Pattern Classification Chap. 2

Training Algorithm for MapaLINE (MRI). The activation function for units
Z,Z;,and Yis

_ 1 if x = 0;
fx) = {—1 if x < 0,
Step 0. Initialize weights:
Weights v, and v, and the bias b; are set as described;
small random values are usually used for ADALINE weights.
Set the learning rate a as in the ADALINE training algorithm (a small
value),

Step 1. While stopping condition is false, do Steps 2-8.
Step 2. For each bipolar training pair, s:t, do Steps 3-7.

Step 3. Set activations of input units:
Xi = §;.
Step 4. Compute net input to each - hidden ADALINE
unit;

ziny = by + xywi + xaway,
z2-in, = b, + X1Wi2 + XaoWas.

Step 5. Determine output of each hidden ADALINE
Unit:

z1 = f(zny),
22 = f(z-iny).

Step 6. Determine output of net:
y-in = b3 + z1vy + Zava;
¥ = f(y-in).

Step 7. - Determine error and update weights:
If t = y, no weight updates are performed.
Otherwise:
If t = 1, then update weights on Z,,
the unit whose net input is closest to 0,

b,(new) = b,(old) + a(l — z_iny),
wis(new) = w;;(old) + a(l — z_in,)x;;

If t = —1, then update weights on all units
Z, that have positive net input,

bi(new) = bi(old)+ a(—1 — z_iny),

w,-k(new) = W,'k(Old) + (l(_l - z_ink)x,-.

Sec. 2.4 ADALINE o1

Step 8. Test stopping condition.
If weight changes have stopped (or reached an acceptable
level), or if a specified maximum number of weight update
iterations (Step 2) have been performed, then stop; other-
wise continue.

Step 7 is motivated by the desire to (1) update the weights only if an error
occurred and (2) update the weights in such a way that it is more likely for the
net to produce the desired response.

If t = 1 and error has occurred, it means that all Z units had value —1 and
at least one Z unit needs to have a value of + 1. Therefore, we take Z, to be the
Z unit whose net input is closest to 0 and adjust its weights (using ADALINE training
with a target value of +1):

b;(new) = b,(old) + a(l — z_iny),
wis(new) = w;;(old) + a(l — z_iny)x;.

If t = —1 and error has occurred, it means that at least one Z unit had value
+1 and all Z units must have value — 1. Therefore, we adjust the weights on all
of the Z units with positive net input, (using ADALINE training with a target of
-1): ,

bi(new) = bi(old) + a(~1 — z_iny),
wi(new) = wi(old) + a(—1 — z_ingx;.

MADALINES can also be formed with the weights on the output unit set to
perform some other logic function such as AND or, if there are more than two
hidden units, the ‘“‘majority rule’’ function. The weight update rules would be
modified to reflect the logic function being used for the output unit [Widrow &
Lehr, 1990].

A more récent MADALINE training rule, called MRII [Widrow, Winter, &
Baxter, 1987], allows training for weights in all layers of the net. As in earlier
MADALINE training, the aim is to cause the least disturbance to the net at any step
of the learning process, in order to cause as little ‘‘unlearning’’ of patterns for
which the net had been trained previously. This is sometimes called the ‘‘don’t
rock the boat’’ principle. Several output units may be used; the total error for
any input pattern (used in Step 7b) is the sum of the squares of the errors at each
output unit.

Training Algorithm for MapALINE (MRII).
Step 0. Initialize weights:
Set the learning rate a.
Step 1. While stopping condition is false, do Steps 2-8.
Step 2. For each bipolar training pair, s:t, do Steps 3-7.
Step 3-6. Compute output of net as in the MRI algorithm.
Step 7. Determine error and update weights if necessary:

92 Simple Neural Nets for Pattern Classification Chap. 2

If t # y, do Steps 7a—b for each hidden unit whose net
input is sufficiently close to 0 (say, between —.25 and
.25). Start with the unit whose net input is closest to 0,
then for the next closest, etc.
Step 7a. Change the unit’s ouput
(from +1to —1, or vice versa).
Step 7b. Recompute the response of the net.
If the error is reduced:
adjust the weights on this unit
(use its newly assigned output value
as target and apply the Delta Rule).
Step 8. Test stopping condition.
If weight changes have stopped (or reached an accept-
able level), or if a specified maximum number of weight
update iterations (Step 2) have been performed, then
stop; otherwise continue.

A further modification is the possibility of attempting to modify pairs of units
at the first layer after all of the individual modifications have been attempted.
Similarly adaptation could then be attempted for triplets of units.

Application

Example 2.20 Training a MapbaLine for the Xor function

This example illustrates the use of the MRI algorithm to train a MADALINE to solve
the Xor problem. Only the computations for the first weight updates are shown.
The training patterns are:

X4 Xz t
1 1 -1
1 -1 1
-1 1 1
-1 —1 -1

Step 0. :
The weights into Z; and into Z, are small random values; the weights into Y are
those found in Example 2.19. The learning rate, a, is .5.

Weights into Z, Weights into 2, Weights into Y .
Wi W21 b, Wiz W22 by Uy U2 bs
.05 2 3 .1 2 15 S 5 5

Step 1. Begin training.
Step 2. For the first training pair, (1, 1): —1
Step 3. x; =1, x; =1
Step 4. z-in, 3 + .05+ 2
zin, = 15 + .1 + .2

55,
45.

o
i

Sec. 2.4 ADALINE 93

Step 5. z =1,

z2 = 1.
Step 6. y-in=.5+ .5+ .5;

y = 1.
Step 7. t—-y=—-1-1= —2%0,soanerroroccurred.
Since + = —1, and both Z units have positive net input,

update the weights on unit Z, as follows:

bi(new) = b(old) + a(—1 — z_in,)
= 3+ (S}~-1.55
= —.475
wi(new) = wi(old) + a(—1 — z_in)x,
=.05+ (.5)(—1.55)
= —.725
wai(new) = wa(old) + a(—1 — z.in x>

2+ (S5)—1.55)
-.575

update the weights on unit Z, as follows:

ba(new) = by(old) + a(—1 — z_iny)

A5 + (5)(—1.45)

= —.575

wiz(new) = wi(old) + a(—1 — z_inz)x,
= .1 + (.5)(—1.45)
= —.625

wa(new) = wy(old) + a(—1 — z_inz)x,

2+ (5)(—1.45)
—-.525

After four epochs of training, the final weights are found to be:

wn = -0.73 Wi = 1.27
Wo = 1.53 Wo = —-1.33
b, = —-0.99 b, = —1.09

Example 2.21 Geometric interpretation of MapaLINE weights

The positive response region for the Madaline trained in the previous example is the
union of the regions where each of the hidden units have a positive response. The

94 Simple Neural Nets for Pattern Classification Chap. 2

decision boundary for each hidden unit can be calculated as described in Section
2.1.3.

For hidden unit Z,, the boundary line is

= 0.48 x; + 0.65

For hidden unit Z,, the boundary line is

_ Wiz b,
X2 = — —x) — —
W2 L7
_ L2710
T1nt T 133
=096 x, — 0.82

These regions are shown in Figures 2.25 and 2.26. The response diagram for the
MapaLiNE is illustrated in Figure 2.27.

Figure2.25 Positive response region for
Z,.

Sec. 2.4 ADALINE 95

X2

Figure 2.26 Positive response region for
2.

Figure 2.27 Positive response region for MabALINE for Xor function.

96 Simple Neural Nets for Pattern Classification Chap. 2

Discussion

The construction of sample multilayer nets may provide insights into the appro-
priate choice of parameters for multilayer nets in general, such as those trained
using backpropagation (discussed in Chapter 6). For example, if the input patterns
fall into regions that can be bounded (approximately) by a number of lines or
planes, then the number of hidden units can be estimated.

It is possible to construct a net with 2p hidden units (in a single layer) that
will learn p bipolar input training patterns (each with an associated bipolar target
value) perfectly. Of course, that is not the primary (or at least not the exclusive)
goal of neural nets; generalization is also important and will not be particularly
good with so many hidden units. In addition, the training time and the number
of interconnections will be unnecessarily large. However, 2p certainly gives an
upper bound on the number of hidden units we might consider using.

For input that is to be assigned to different categories (the kind of input we
have been considering in this chapter), we see that the regions which each neuron
separates are bounded by straight lines. Closed regions (convex polygons) can be
bounded by taking the intersection of several half-planes (bounded by the sepa-
rating lines described earlier). Thus a net with one hidden layer (with p units) can
learn a response region bounded by p straight lines. If responses in the same
category occur in more than one disjoint region of the input space, an additional
hidden layer to combine these regions will make training easier.

2.5 SUGGESTIONS FOR FURTHER STUDY
2.5.1 Readings
Hebb rule
The description of the original form of the Hebb rule is found in

Hess, D. O. (1949). The Organization of Behavior. New York: John Wiley & Sons. In-
troduction and Chapter 4 reprinted in Anderson and Rosenfeld (1988), pp. 45-56.

Perceptrons

The description of the perceptron, as presented in this chapter, is based on

Brock, H. D. (1962). ““The Perceptron: A Model for Brain Functioning, 1.”” Reviews of

Modern Physics, 34:123-135. Reprinted in Anderson and Rosenfeld (1988), pp. 138-
150.

There are many types of perceptrons; for more complete coverage, see:

Sec. 2.5 Suggestions for Further Study 97

Minsky, M. L., & S. A. Paperr. (1988). Perceptrons, Expanded Edition. Cambridge, MA:
MIT Press. Original Edition, 1969.

RosenBLATT, F. (1958). ““The Perceptron: A Probabilistic Model for Information Storage
and Organization in the Brain.”” Psychological Review, 65:386-408. Reprinted in An-
derson and Rosenfeld (1988), pp. 92-114.

RosensLATT, F. (1962). Principles of Neurodynamics. New York: Spartan.

ApALINE and MADALINE

For further discussion of ADALINE and MADALINE, see

Wibrow, B., & M. E. Horr, Jr. (1960). ‘‘Adaptive Switching Circuits.”” IRE WESCON
Convention Record, part 4, pp. 96-104. Reprinted in Anderson and Rosenfeld (1988),
pp. 126-134.

Wiprow, B., and S. D. Stearns. (1985). Adaptive Signal Processing. Englewood Cliffs,
NIJ: Prentice-Hall.

Wibrow, B. & M. A. Lenr. (1990). **30 Years of Adaptive Neural Networks: Perceptron,
MapaLINE, and Backpropagation,”” Proceeding of the IEEE, 78(9):1415-1442.

2.5.2. Exercises

Hebb net

2.1 Apply the Hebb rule to the training patterns that define the Xor function.

2.2 There are 16 different logic functions (with two inputs and one output), of which 14
are linearly separable. Show that the Hebb rule can find the weights for all problems
for which weights exist, as long as bipolar representation is used and a bias is included.

2.3 Consider character recognition using the Hebb rule. In Example 2.8, the ‘X" and
“0” used for training differed in all but four components. Show that the net will
respond correctly to an input vector formed from either the ““X’* or the ““O™ with
up to 20 components missing. (Whether it responds correctly, of course, is based on
your knowing which pattern you started with—you might prefer an ‘I don’t know™
response. However, since the net input to the output unit is smaller the more com-
ponents are missing, the *‘degree of certainty”’ of the response can also be judged.)

Mistakes involve one or more pixels switching from the value in the original
training pattern to the opposite value. Show that at approximately 10 mistakes, the
net will be seriously confused. (The exact number depends on whether any of the
mistakes occur in the pixels where the training patterns differ.)

Example 2.8 could be rephrased as an example of distinguishing the pattern X
from not-X (rather than specifically detecting X versus O). Another pattern (for not-
X) that might be added to the net is:

N

-

- ¥ # # -

T

. . . #*

98

2.4

25

2.6

Simple Neural Nets for Pattern Classification Chap. 2

Find the new weights to store this pattern together with the two patterns used in
Example 2.8. (You can work from the weights in the example.) What does the bias
value tell you? How does the ability of the net to respond to noisy (missing or mis-
taken) data change as you add more patterns to the net? (You will probably need to
try more patterns of your own choosing in order to form a good conjecture to answer
this question.)

Create more letters, or different versions of X’s and O’s, for more training or testing
of the Hebb net.

a. Using the Hebb rule, find the weights required to perform the following classi-
fications: Vectors (1,1, 1, Hand (-1, 1, —1, — 1) are members of the class (and
therefore have target value 1); vectors (1, 1, 1, — 1) and (1, ~1, —1, 1) are not
members of the class (and have target value —1).

b. Using each of the training x vectors as input, test the response of the net.

a. The Hebb rule is sometimes used by converting the binary training patterns (inputs
and targets) to bipolar form to find the weight matrix. Apply this procedure to
find the weights to store the following classifications:

s() = (1,0, 1) (1) =1
sQ=00,,0 =0

b. Using the binary step function (with threshold 0) as the output unit’s activation
function, test the response of your network on each of the binary training patterns.

c. Using the bipolar step function (with threshold 0) as the output unit’s activation
function, convert the training patterns to bipolar form and test the network re-
sponse again.

d. Test the response of your network on each of the following noisy versions of the
bipolar form of the training patterns:

(09 _ly 1) (07 l’ —1) (Oy 0’ l) (O) 0; —1) (0, l’ 0) (09 _1’ 0)
(l’ 01 1) (19 0’ _'1) (1’ —19 0) (1, 0’ 0) (19 1, O) (1’ 11 1)

Which of the responses are correct, which are incorrect, and which are indefinite
(undetermined)?

Perceptron

2.7
2.8

2.9

Graph the changes in separating lines as they occur in Example 2.12.

Explore the influence of the value of the learning rate on the speed of convergence

of perceptron learning:

a. Consider different values of « in Example 2.12; explain your results.

b. Modify the proof of the perceptron learning rule convergence theorem to include
an arbitrary learning rate o.

Show that the use of a bias is essential in Example 2.11. That is, show that it is

impossible to find weights w, and w, for which the points (1,1), (1,0), (0,1), and (0,0)

are classified correctly. First, show that (0,0) will never be classified correctly, and

in fact, no learning will ever occur for that point. Then, neglecting (0,0), consider

whether (1,1), (1,0), and (0,1) can be classified correctly. That is, do weights w, and
w, exist such that

Sec. 2.5 Suggestions for Further Study 99

(Dw, + Mw, > 6 >0,
Mwy + Ow, < -6 <0,
Ow, + Dw, < —6<0.

2.10 Show that small initial weights still allow for any position of the initial decision line
for the perceptron.

2.11 Repeat Example 2.11, and show that there is no change in the training process if
0 = 0. Show that the separating line is

2 4
X2=—_X1+".

3 3~

2.12 Consider carefully the difference in what can be solved using the following activation

functions:
f= 1 ifnet=290
0 otherwise
or
f= 1 ifnet=296
—1 otherwise
or
1 ifnet=296
f= 0 if —-6<net<®

—1 ifnet=< —0

2.13 Even for 8 = 0, the perceptron learning rule prevents the correct classification of a
point -on the dividing line (which is better than assigning it arbitrarily to either side
of the line). If 8 < « (the learning rate), does the exact value of 8 matter? Does it
matter if @ > a? Does it make a difference whether we start with all initial weights
equal to 0, as in Examples 2.11-2.13, or with other values (small random numbers,
for instance)?

2.14 A variation of the perceptron learning rule allows active input units to increase their
weights and inactive units to decrease their weights in such manner that the total
weights are constant [see Block, 1962, p. 144, footnote 50]. Consider the effect this
would have on the binary representation of the Anp function in Example 2.11.

2.15 Using the perceptron learning rule, find the weights required to perform the following
classifications: Vectors (1, 1, 1, 1) and (—1, 1, —1, —1) are members of the class
(and therefore have target value 1); vectors (1, 1, 1, —1) and (1, — 1, —1, 1) are not
members of the class (and have target value — 1) . Use a learning rate of 1 and starting
weights of 0. Using each of the training x vectors as input, test the response of the
net.

ADALINE and lMADAuNE

2.16 Repeat Examples 2.18 and 2.19 using binary rather than bipolar vectors.
2.17 Construct a multilayer net with two hidden units that will learn a given (binary) input

100 Simple Neural Nets for Pattern Classification Chap. 2

pattern perfectly. The first hidden unit will have its weights equal to the input pattern
and its threshold equal to the number of 1’s in the input pattern. The second hidden
unit is designed so that it will fire if its net input is less than or equal to the number
of I’s in a given pattern. Combine the output from these two hidden units so that
the output unit will fire if both hidden units are on. The point of this exercise is to
observe that for p input training patterns, 2p hidden units will allow the net to learn
every training pattern perfectly. B

2.18 The Xor function can be represented as -
X1 Xor x2 © (x; OR x3) AND NoT (x; AND x3).

Construct a MapALINE to implement this formulation of Xor, and compare it with
the MapaLiNe in Example 2.21.

2.19 Using the delta rule, find the weights required to perform the following classifications:
Vectors (1, 1, 1, 1) and (-1, 1, —1, —1) are members of the class (and therefore
have target value 1); vectors (1, 1, 1, —1) and (1, — 1, —1, 1) are not members of
the class (and have target value —1). Use a learning rate of .5 and starting weights
of 0. Using each of the training x vectors as input, test the response of the net.

2.5.3 Projects

Perceptron

2.1 Write a computer program to classify létters from different fonts using perceptron
learning. Use as many output units as you have different letters in your training set.
Convert the letters to bipolar form. (You may wish to enter the letters as 2"’ if the
pixel is on and 0" if it is off to facilitate testing with noisy patterns after training;
your program should subtract 1 from each component of the input pattern to obtain
the bipolar vector.)

a. Repeat Example 2.15 for several values of the threshold 6. After training with each
value, test the ability of the net to classify noisy versions of the training patterns.
Try 5, 10, 15, 20 pixels wrong and the same levels of missing data. Do higher values
of 6 have any effect on how often the net is *““‘confused’’? Do you reach a value
of 8 for which the net cannot learn all of the training patterns?

b. Experiment with other letters. Are some combinations harder to learn than others?
Why?

ApDALINE and MADALINE

2.2 Write a computer program to classify several letters using delta rule learning. Follow
the directions in Project 2.1 (except for the reference to different values of 6.) Compare
the ability of the trained ApaLiNE to classify noisy input to the results for the per-
ceptron.

2.3 Write a computer program to train a MADALINE to perform the Xor function, using
the MRI algorithm. What effect do different learning rates have on the weights?

CHAPTER 3

Pattern Association

To a significant extent, learning is the process of forming associations between
related patterns. Aristotle observed that human memory connects items (ideas,
sensations, etc.) that are similar, that are contrary, that occur in close proximity,
or that occur in close succession [Kohonen, 1987]. The patterns we associate
together may be of the same type or sensory modality (e.g., a visual image may
be associated with another visual image) or of different types (e.g., the fragrance
of fresh-mown grass may be associated with a visual image or a feeling). Mem-
orization of a pattern (or a group of patterns) may be considered to be associating
the pattern with itself.

An important characteristic of the associations we form is that an input
stimulus which is similar to the stimulus for the association will invoke the as-
sociated response pattern. Suppose, for example, that we have learned to read
music, so that we associate with a printed note the corresponding pitch, or note
on the piano keyboard, or fingering on a stringed instrument. We do not need to
see precisely the same form of the musical note we originally learned in order to
have the correct association; if the note is larger, or if it is handwritten, we rec-
. ognize that it still means the same as before. In fact, it is not unusual after learning
a few notes to be able to make a good guess at the appropriate response for a
new note.

Our ability to recognize a person (either in person or from a photo) is an
example of the capability of human memory to respond to new situations. It is
relatively difficult to program a traditional computer to perform this task that we

101

102 Pattern Association Chap. 3

do so easily. The variations in the person’s appearance are virtually unlimited.
How do we then describe to a sequential logical computer the process of deciding
whether this is someone we know and, if so, which of our many acquaintances
it is?

In this chapter, we shall consider some relatively simple (single-layer) neural
networks that can learn a set of pattern pairs (or associations). An associative
memory net may serve as a highly simplified model of human memory [see the
early work by Kohonen (1972) and Anderson (1968, 1972)]; however, we shall
not address the question whether they are at all realistic models. Associative
memories also provide one approach to the computer engineering problem of
storing and retrieving data based on content rather than storage address. Since
information storage in a neural net is distributed throughout the system (in the
net’s weights), a pattern does not have a storage address in the same sense that
it would if it were stored in a traditional computer.

Associative memory neural nets are single-layer nets in which the weights
are determined in such a way that the net can store a set of pattern associations.
Each association is an input-output vector pair, s:t. If each vector t is the same
as the vector s with which it is associated, then the net is called an autoassociative
memory. If the t’s are different from the s’s, the net is called a keteroassociative
memory. In each of these cases, the net not only learns the specific pattern pairs
that were used for training, but also is able to recall the desired response pattern
when given an input stimulus that is similar, but not identical, to the training
input. Autoassociative neural nets are presented in Sections 3.3 and 3.4. Hetero-
associative neural nets are described in Sections 3.2 and 3.5.

Before training an associative memory neural net, the original patterns must
be converted to an appropriate representation for computation. However, not all »
representations of the same pattern are equally powerful or efficient. In a simple
example, the original pattern might consist of *‘on> and ‘‘off”’ signals, and the
conversion could be *‘on’’ — +1, “off>” — 0 (binary representation) or ‘‘on’’ —
+1, ““off”” — —1 (bipolar representation). In many of our examples, we assume
the conversion has already been made.

In the first section of this chapter, two common training methods for single-
layer nets are presented. The Hebb rule and delta rule were introduced in Chapter
2 for pattern classification. They are described here in more general terms.

The architecture of an associative memory neural net may be feedforward
or recurrent (iterative). In a feedforward net, information flows from the input
units to the output units; in a recurrent net, there are connections among the units
that form closed loops. Feedforward heteroassociative nets are considered in
Section 3.2, and feedforward autoassociative nets are discussed in Section 3.3.
Iterative autoassociative neural nets are described in Section 3.4, and iterative
heteroassociative nets are considered in Section 3.5.

A key question for all associative nets is how many patterns can be stored
(or pattern pairs learned) before the net starts to ‘‘forget’’ patterns it has learned
previously. As with human memory, a number of factors influence how much the

Sec. 3.1 Training Algorithms for Pattern Association 103

associative memory can learn. The complexity of the patterns (the number of
components) and the similarity of the input patterns that are associated with sig-
nificantly different response patterns both play a role. We shall consider a few
of these ideas in Section 3.3.4.

3.1 TRAINING ALGORITHMS FOR PATTERN ASSOCIATION
3.1.1 Hebb Rule for Pattern Association

The Hebb rule is the simplest and most common method of determining the
weights for an associative memory neural net. It can be used with patterns that
are represented as either binary or bipolar vectors. We repeat the algorithm here
for input and output training vectors (only a slight extension of that given in the
previous chapter) and give the general procedure for finding the weights by outer
products. Since we want to consider examples in which the input to the net after
training is a pattern that is similar to, but not the same as, one of the training
inputs, we denote our training vector pairs as s:t. We then denote our testing
input vector as x, which may or may not be the same as one of the training input

vectors.
Algorithm
Step 0. Initialize all weights (i = 1, ... ,n;j =1, ..., m):
Wi = 0.
Step 1. For each input training—target output vector pair s:t, do Steps 2-4.
Step 2. Set activations for input units to current training input
i=1,...,n):
X; = 8
Step 3. Set activations for output units to current target output
G=1,...,m):
Yi =4,
' Step 4. Adjust the weights (i = 1, ... ,n;j=1,..., m):

wiji(new) = w;;(old) + x;y;.

The foregoing algorithm is not usually used for this simple form of Hebb
learning, since weights can be found immediately, as shown in the next section.
However, it illustrates some characteristics of the typical neural approach to
learning. Algorithms for some modified forms of Hebb learning will be discussed
in Chapter 7.)

104 . Pattern Association Chap. 3

Outer products

.
The weights found by using the Hebb rule (with all weights initially 0) can also
be described in terms of outer products of the input vector—output vector pairs.
The outer product of two vectors

S=(S1, ..., 8i ..., 80)
and
t=(t1,...,[j,...,tm)

is simply the matrix product of the n X 1 matrix S = s” and the 1 X m matrix
T=t

S1 Sthy ... St o Sily
ST = S [tl .. tj .. tm] = sity ... S,'tj vee Siln
Sy Sty .. Spli .. Splm

This is just the weight matrix to store the association s:t found using the Hebb
rule. ‘

To store a set of associations s(p) : t(p),p = 1, ..., P, where
s(p) = (s4(p)s . . -, 5:p), . .., 5a(DP))
and

t(p) = (tl(p)a = ny tj(p), LR] tm(p))’
the weight matrix W = {w,;} is given by

P

wi = >, sdptip).

p=1
This is the sum of the outer product matrices required to store each association
separately. ‘

In general, we shall use the preceding formula or the more concise vector-
matrix form,)

P
W = 3 sT(p)t(p),
p=1

to set the weights for a net that uses Hebb learning. This weight matrix is described
by a number of authors [see, e.g., Kohonen, 1972, and Anderson, 1972].

Perfect recall versus cross talk

The suitability of the Hebb rule for a particular problem depends on the correlation
among the input training vectors. If the input vectors are uncorrelated (orthog-
onal), the Hebb rule will produce the correct weights, and the response of the

Sec. 3.1 Training Algorithms for Pattern Association 105

net when tested with one of the training vectors will be perfect recall of the input
vector’s associated target (scaled by the square of the norm of the input vector
in question). If the input vectors are not orthogonal, the response will include a
portion of each of their target values. This is commonly called cross talk. As
shown in some of the examples of Chapter 2, in some cases the cross talk is mild
enough that the correct response will still be produced for the stored vectors.

To see why cross talk occurs, recall that two vectors s(k) and s(p), k # p,
are orthogonal if their dot product is 0. This can be written in a number of ways,
including (if, as we assume, s(k) and s(p) are row vectors)

s(k)s’(p) = 0,
or

n

2 si(k)si(p) = 0.

i=1
Now consider the weight matrix W, defined as before to store a set of input-target
vector pairs. The response of the net (with the identity function for the activation
function rather than the threshold function) is y = xW. If the (testing) input signal
is the kth training input vector, i.e., if

x = s(k),

then the response of the net is
P

> s(k)sT(p)t(p)

p=1

s(k)sT(t(k) + 3 s(k)sT(p)t(p).

p#k

I

s(k)W

If s(k) is orthogonal to s(p) for p # k, then there will be no contribution to the
response from any of the terms in the summation; the response will then be the
target vector t(k), scaled by the square of the norm of the input vector, i.e.,
s(k)sT(k). :

"~ However, if s(k) is not orthogonal to the other s-vectors, there will be con-
tributions to the response that involve the target values for each of the vectors
to which s(k) is not orthogonal.

Summary

If a threshold function is applied to the response of a net, as described here, and
the cross talk is not too severe, the weights found by the Hebb rule may still be
satisfactory. (See Examples 2.7, 2.8, and 3.1.)

Several authors normalize the weights found by the Hebb rule by a factor
of 1/n, where n is the number of units in the system [Hertz, Krogh, & Palmer,
1991; McClelland & Rumelhart, 1988]. As the latter observe, the use of normal-
ization can preserve the interpretation of the weight w, j as representing the cor-

106 Pattern Association Chap. 3

relation between the activation of unit x; and unit y;, even when the activations
have means that are different from zero.

There are three aspects of a particular association problem that influence
whether the Hebb rule will be able to find weights to produce the correct output
for all training input patterns. The first is simply whether such weights exist. If
the input vectors are linearly independent, they do exist. This is the extension of
linear separability to the case of vector outputs. Second, there is the question of
correlation between (pairs of) the input training vectors. If the input vectors are
uncorrelated (orthogonal), then the weight matrix found by the Hebb rule will
give perfect results for each of the training input vectors. Finally, because the
weights of the Hebb rule represent the extent to which input units and output
units should be “‘on’” or “‘off”’ at the same time, patterns in which the input
activations are correlated strongly, unit by unit, with the target values will be able
to be learned by the Hebb rule. For this reason, the Hebb rule is also known as
correlation training or encoding.

3.1.2 Delta Rule for Pattern Association

The delta rule is an iterative learning process introduced by Widrow and Hoff
(1960) for the ApALINE neuron (see Chapter 2). The rule can be used for input
patterns that are linearly independent but not orthogonal. Mappings in which the
input vectors are linearly independent can be solved using single-layer nets as
described in this chapter. However, the delta rule is needed to avoid the difficul-
ties of cross talk which may be encountered if a simpler learning rule, such as
the Hebb rule, is used. Furthermore, the delta rule will produce the least
squares solution when input patterns are not linearly independent [Rumelhart,
McClelland, & the PDP Research Group, 1986].

In its original form, as introduced in Chapter 2, the delta rule assumed that
the activation function for the output unit was the identity function. A simple
extension allows for the use of any differentiable activation function; we shall
call this the extended delta rule, since some authors use the term *‘‘generalized
delta rule’’ synonymously with ‘‘backpropagation’” for multilayer nets. The no-
menclature we use is as follows:

o learning rate.

X training input vector.

t target output for input vector x.
Original delta rule

The original delta rule, for several output units, was derived in Section 2.4.4. It
is repeated here for comparison with the extended delta rule described in the next
section. The original rule assumes that the activation function for the output units

Sec. 3.1 Training Algorithms for Pattern Association 107

is the identity function; or, equivalently, it minimizes the square of the difference
between the net input to the output units and the target values. Thus, using y for
the computed output for the input vector x, we have

yi = 2 Xiwij,
i

and the weight updates are
wijnew) = wy(old) + o(t; —y)x; (G =1,...,mj=1,...,m).
This is often expressed in terms of the weight change
Aw;; = alt; — yi)xi,

which explains why this training rule is called the delta rule.

Extended delta rule

This minor modification of the delta rule derived in Chapter 2 allows for an ar-
bitrary, differentiable activation function to be applied to the output units. The
update for the weight from the Ith input unit to the Jth output unit is

Awuﬂ= a(ty — y)xf'(y-iny).

Derivation. The derivation of the extended delta rule given here follows
the discussion in Section 2.4.4 closely. However, we now wish to change the
weights to reduce the difference between the computed output and the target
value, rather than between the net input to the output unit(s) and the target(s).

The squared error for a particular training pattern is

E=2 (t - y)
Jj=1

E is a function of all of the weights. The gradient of E is a vector consisting of
the partial derivatives of E with respect to each of the weights. This vector gives
the direction of most rapid increase in E; the opposite direction gives the direction
of most rapid decrease in E. The error can be reduced most rapidly by adjusting
the weight w,; in the direction of — 9E/dw,,.

We now find an explicit formula for dE/éw,, for the arbitrary weight w,;.
First note that

oF :
w = (ty —)
owyy awl.ljgl ARG
d
= —(t; — y5)%
Wy

since the weight w,; only influences the error at output unit Y.

108 . Pattern Association Chap. 3

Furthermore, using the facts that

n
y_inJ = 2 XiW;ig and

Ti=1

ys = f(y-in,),
we have
oE ay_iny
= -2(t, -
owyy (J yJ) Wy

= ~2(t, -y)xf (y_in)).

Thus the local error will be reduced most rapidly (for a given learning rate o) by
adjusting the weights according to the delta rule

Awry = oty — yxf'(y=iny).

3.2 HETEROASSOCIATIVE MEMORY NEURAL NETWORK

Associative memory neural networks are nets in which the weights are determined
in such a way that the net can store a set of P pattern associations. Each asso-
ciation is a pair of vectors (s(p), t(p)), withp = 1,2, ..., P. Each vector s(p)
is an n-tuple (has n components), and each t(p) is an m-tuple. The weights may
be found using the Hebb rule (Sections 3.1.1) or the delta rule (Section 3.1.2). In
the examples in this section, the Hebb rule is used. The net will find an appropriate
output vector that corresponds to an input vector x that may be either one of the
stored patterns s(p) or a new pattern (such as one of the training patterns corrupted
by noise).

3.2.1 Architecture

The architecture of a heteroassociative memory neural network is shown in Figure
3.1 /

3.2.2 Application

Procedure

Step 0. Initialize weights using either the Hebb rule (Section 3.1.1) or the delta
rule (Section 3.1.2).
Step 1. For each input vector, do Steps 2-4.
Step 2. Set activations for input layer units equal to the current
input vector

Xi.

Sec. 3.2 Heteroassociative Memory Neural Network 109

see

Output Figure 3.1 Heteroassociative neural
Units Units net.

Step 3. Compute net input to the output units:

y_.inj = 2 xiW,'J'.
i

Step 4. Determine the activation of the output units:

1 ify_in; >0
Y = 0 ify..inj =0
-1 ify_.ln_, <0 .

(for bipolar targets).

The output vector y gives the pattern associated with the input vector x. This
heteroassociative memory is not iterative.

Other activation functions can also be used. If the target responses of the
net are binary, a suitable activation function is given by

; _J1 ifx>0;
f(")‘{o if x < 0.

A general form of the preceding activation function that includes a threshold 0;
and that is used in the bidirectional associative memory (BAM), an iterative net
discussed in Section 3.5, is

1 if y_in, > 8,
yi=19 y;i ifydin; =6;.
-1 if y_.inj < 0,-

The choice of the desired response for a neuron if its net input is exactly equal

110 Pattern Association Chap. 3

to the threshold is more or less arbitrary; defining it to be the current activation
of the unit Y; makes more sense for iterative nets; to use it for a feedforward
heteroassociative net (as we are discussing here) would require that activations
be defined for all units initially (e.g., set to 0). It is also possible to use the
perceptron activation function and require that the net input be greater than 6;
for an output of 1 and less than —6; for an output of —1.

If the delta rule is used to set the weights, other activation functions, such
as the sigmoids illustrated in Chapter 1, may be appropriate.

Simple examples

Figure 3.2 shows a heteroassociative neural net for a mapping from input vectors
with four components to output vectors with two components.

Example 3.1 A Heteroassociative net trained using the Hebb rule: algorithm

Suppose a net is to be trained to store the following mapping from input row vectors
s = (s, 52, 83, §4) to output row vectors t = (¢,, t5):

Sy S2 S3 S4 15 t

Ist s (1, 0, 0, 0) Ist ¢t (1, 0)
2nd s (1, 1, 0, 0) 2nd t (1, 0)
3 d s O, 0, 0, 1) 3rd t (0, 1)
4h s (0, 0, 1, 1) 4th t (0, 1)

These target patterns are simple enough that the problem could be considered one
in pattern classification; however, the process we describe here does not require
that only one of the two output units be ‘“on.”’ Also, the input vectors are not
mutually orthogonal. However, because the target values are chosen to be related
to the input vectors in a particularly simple manner, the cross talk between the first

Figure 3.2 Heteroassociative neural
net for simple examples.

Sec. 3.2 Heteroassociative Memory Neural Network 111

and second input vectors does not pose any difficulties (since their target values are
the same).

The training is accomplished by the Hebb rule, which is defined as

W,’j(nCW) = W,'j(Old) + S,'tj; i.e., AW,’j = S,'tj.

Training a
The results of applying the algorithm given in Section 3.1.1 are as follows (only the
weights that change at each step of the process are shown):

Step 0. Initialize all weights to 0.
Step 1. For the first s:t pair (1, 0, 0, 0):(1, 0):
Step 2. x; = 1 X2 = X3 =x4 =0.
Step 3. v = 1; y2 = 0.
Step 4. W||(neW) = W“(Old) + iy = 0+1
(All other weights remain 0.)
Step 1. For the second s:t pair (1, 1, 0, 0):(1, 0):
Step 2. x; = 1; X2 = 1; X3 = x4 = 0.
Step 3. v =1 y2 = 0.
Step 4. W||(neW) = W”(Old) + xin
wa(new) = wy(old) + xoy,
. (All other weights remain 0.)
Step 1. For the third s:t pair (0, 0, 0, 1):(0, 1):
Step 2. X, =Xx3 = x3 =0 xs = 1.
Step3. y, =0, y2 = 1.
Step 4. wa(new) = wpold) + x4, =0+ 1 = 1.
~ (All other weights remain unchanged.)
Step 1. For the fourth s:t pair (0, 0, 1, 1):(0, 1):
Step 2. X =x, =0; x3 = 1; xs = 1.
Step 3. yi =0 y2 = 1.
Step 4. wia(new) = wy(old) + x3y, =0+ 1 = [;
war(new) = wy(old) + Xey2=1+1=2
(All other weights remain unchanged.)

It
—

I
_— N

1+ 1
0+1

1

The weight matrix is

CO =N
N —_- O

Example 3.2 A heteroassociative net trained using the Hebb rule: outer products

This example finds the same weights/ as in the previous example, but using outer
products instead of the algorithm for the Hebb rule. The weight matrix to store the
first pattern pair is given by the outer product of the vector

s=1(1,0,0,0
and

t=(1,0).

112 Pattern Association Chap. 3

The outer product of a vector pair is simply the matrix product of the training vector
written as a column vector (and treated as an #n X 1 matrix) and the target vector
written as a row vector (and treated as a 1 X m matrix):

coo~
oy
=
1
coo~
cooco

Similarly, to store the second pair,

s=(, 1, 0, 0

and
t={(1, 0),
the weight matrix is
1 10
0|1 9]0 o
0] 00

To store the third pair,

and
t=(0, 1),
the weight matrix is
0 00
o|® =0 o
1 01

And to store the fourth pair,

and
t=(, 1,
the weight matrix is
0 00
R P
1 0 1

The weight matrix to store all four pattern pairs is the sum of the weight matrices
to store each pattern pair separately, namely,

Sec. 3.2 Heteroassociative Memory Neural Network 113

OO O -
—— D D
SO =N
N—-o O

Example 3.3 Testing a heteroassociative net using the training input

We now test the ability of the net to produce the correct output for each of the
training inputs. The steps are as given in the application procedure at the beginning
of this section, using the activation function

_J1 ifx>0;
f(")‘{o if x < 0,

The weights are as found in Examples 3.1 and 3.2.

Step 0. W =

SO =N
N-=-0 0

Step 1. For the first input pattern, do Steps 2-4.
Step 2. x = (1, 0,0, 0).
Step 3. y_inl = Xi1Wi1 + Xawz + Xx3w3; + XaWyq)

12) + 0(1) + 0(0) + 0(0)
= 2;
y-iny = xjwiz + XaWwpy + X3Wa + Xawao
1O + 0(0) + 0(1) + 0(2)
= 0.
Step 4. yi = fly-in)) = f(2) = 1;

y2 = f(y_iny) = f(0) = 0.
(This is the correct response for the first training pattern.)
Step 1. For the second input pattern, do Steps 2—4.
Step 2. x =(1,1,0,0).
Step 3. y.inl = X;Wi1 + Xaway + x3w3 + X4aWaqy

12) + 1(1) + 0(0) + 0(0)

Y=iny = X ;W2 + XaWa + X3W3 + XsWa

1

1(0) + 1(0) + 0(1) + 0(2)
=0.
Step 4. = f(y-im) = f3) = 1;

y2 = f(y-inz) = f(0) = 0.
(This is the correct response for the second training pattern.)

114

Step 1.

Step 1.

Pattern Association Chap. 3

For the third input pattern, do Steps 2-4.
Step 2. x=1(0,0,0,1).

Step 3. y_in, = X)W1 + XaWw3 + X3w3; + XaWaq
= 0(2) + 0(1) + 0(0) + 1(0)
= 0

y-iny = x;wiz + XaWx + X3w3 + X4Wa

0(0) + 0(0) + O(D) + 1(2)

2.
F(y-inmy) = £(0) = 0;

y2 = fly_in)) = f(2) = 1.
(This is the correct response for the third training pattern.)
For the fourth input pattern, do Steps 2—4.
Step 2. x=(0,01,1.

Step 4. v

Step 3. y_in, = Xiwn + Xawa + X3wi + Xawa
=02) + 0(1) + 1(0) + 10)

y-iny = xiwy2 + Xawa + X3w3 + XaWa

0(0) + 0(0) + 1(1) + 1(2)
=3,
Step 4. i = f(y-iny) = f(0) = 0;

y2 = f(y-in2) = f(2) = 1.
(This is the correct response for the fourth training pattern.)

The process we have just illustrated can be represented much more succinctly

using vector-matrix notation. Note first, that the net input to any particular output

unit is the (dot) product of the input (row) vector with the column of the weight
matrix that has the weights for the output unit in question. The (row) vector with
all of the net inputs is simply the product of the input vector and the weight matrix.

We repeat the steps of the application procedure for the input vector x, which
is the first of the training input vectors s.

Step 0.

Step 1.

2 0
10
01
0 2

w=

For the input vector:
Step 2. x=(1,0,0,0).
Step 3. X W = (y_in,, y_in,)

2 0
1 0| _
1,0,0,0 [o || =0,
0 2

Sec. 3.2 Heteroassociative Memory Neural Network 115

Step4.. fQ)=1; f0) = 0;
y = (1, 0).
The entire process (Steps 2-4) can be represented by
xW = (y_iny, y_in) > y

20
10
01
0 2

or, in slightly more compact notation,
(1,0,0,0'W = (2,0 — (1, 0).

Note that the output activation vector is the same as the training output vector that
was stored in the weight matrix for this input vector.

Similarly, applying the same algorithm, with x equal to each of the other three
training input vectors, yields

1,1,0,00W = (3,0)— (1, 0),
©0,0,0,)'W = (0,2) > (0, 1),
©0,0,1,)'W = (0,3) > (0, 1).

Note that the net has responded correctly to (has produced the desired vector of
output activations for) each of the training patterns.

1,0,0,0 =1(2,0 —(1,0),

Example 3.4 Testing a heteroassociative net with input similar to the training input

The test vector x = (0, 1, 0, 0) differs from the training vector s = (1, 1, 0, 0) only
in the first component. We have

©0,1,0,00W = (1,0)— (1, 0).
Thus, the net also associates a known output pattern with this input.

Example 3.5 Testing a heteroassociative net with input that is not similar to the training
input
The test pattern (0 1, 1, 0) differs from each of the training input patterns in at least
two components. We have

OLL,OW=(,1)—->(,1.

The output is not one of the outputs with which the net was trained; in other words,
the net does not recognize the pattern. In this case, we can view x = (0, 1, 1, 0) as
differing from the training vector s = (1, 1, 0, 0) in the first and third components,
so that the two ‘‘mistakes’’ in the input pattern make it impossible for the net to
recognize it. This is not surprising, since the vector could equally well be viewed
as formed from s = (0, 0, 1, 1), with ‘‘mistakes’’ in the second and fourth com-
ponents.

In general, a bipolar representation of our patterns is computationally pref-
erable to a binary representation. Examples 3.6 and 3.7 illustrate modifications

116 Pattern Association Chap. 3

of the previous examples to make use of the improved characteristics of bipolar
vectors. In the first modification (Example 3.6), binary input and target vectors
are converted to bipolar representations for the formation of the weight matrix.
However, the input vectors used during testing and the response of the net are
still represented in binary form. In the second modification (Example 3.7), all

vectors (training input, target output, testing input, and the response of the net)
are expressed in bipolar form.

Example 3.6 A heteroassociative net using hybrid (binary/bipolar) data representation

Even if one wishes to use binary input vectors, it may be advantageous to form the
weight matrix from the bipolar form of training vector pairs. Specifically, to store
a set of binary vector pairs s(p):t(p),p = 1, . .., P, where

s(p) = (si(p), . .., sdp)s - .., 5.(P))
and
tp) = (t(p)y . . ., (D), . . ., twl(p)),

using a weight matrix formed from the corresponding bipolar vectors, the weight
matrix W = {w,;} is given by

wij = 2 @2sdp) — DQu(p) — 1).
P

Using the data from Example 3.1, we have
s(1) =(1,0,0,0, t1) = (1, 0);
s@) =(1,1,0,0, t@2) = (1,0
s3) = (0,0,0, 1), t3) = (0, 1);
s4) =(0,0,1,1), t4 =(,1.

The weight matrix that is obtained

4 —4
w-l2
-4 4
Example 3.7 A heteroassociative net using bipolar vectors
To store a set of bipolar vector pairs s(p):t(p),p = 1, ..., P, where
s(p) = (51(p), .. ., sdp), . . ., su(pP))
and

t(P) = (tl(P), ey tj(P), ey tm(p))’
the weight matrix W = {w;;} is given by

wi = S sdp)tp).

p

Sec. 3.2 Heteroassociative Memory Neural Network 117

Using the data from Examples 3.1 through 3.6, we have
s(P=C 1, -1, -1, —1), td) =(1, —-1);
sQ=(1, 1,-1,-1), t2)=(1, -1
s(3) = (—-1,—-1, -1, 1), t3) = (-1, 1);
s4) = (-1, -1, 1, D, t4) = (-1,).

The same weight matrix is obtained as in Example 3.6, namely,

4 -4
o2 =2
W=1_ 2
-4 4

We illustrate the process of finding the weights using outer products for this example.
The weight matrix to store the first pattern pair is given by the outer product
of the vectors

s=({, -1, -1, =1

and
t=(, —-1).
The weight matrix is
1 1 -1
SR Rl
-1 -1 1
Similarly, to store the second pair,
s=(,1, -1, -1)
and
t=(1, -1,
the weight matrix is
1v 1 -1
LR P
-1 -1 1

To store the third pair,
s=(-1,-1, -1, 1)
and

t=(-1, D,

118 Pattern Association Chap. 3

the weight matrix is

-1
-1
-1
1 . —
And to store the fourth pair, ’
s=(~1,-1,1,1)

and
t=(-11,
the weight matrix is
-1 _ 1 -1
HERE
1 -1 1

The weight matrix to store all four pattern pairs is the sum of the weight matrices
to store each pattern pair separately, namely,

1 -1 1 -1 1 -1 1 -1 4 —4
-1 1 1 -1 1 -1 1 1| | 2 -2
S B IS T o RN B PR Il R
11 -1 1 11 -1 1 4 4

One of the computational advantages of bipolar representation of our pat-
terns is that it gives us a very simple way of expressing two different levels of
noise that may be applied to our training inputs to produce testing inputs for our
net. For convenience, we shall refer informally to these levels as “‘missing data’*
and ‘‘mistakes.” For instance, if each of our original patterns is a sequence of
Yyes or no responses, ‘‘missing data”’ would correspond to a response of unsure,
whereas a *‘mistake” would be a response of yes when the correct response was
no and vice versa. With bipolar representations, yes would be represented by
+1, no by —1, and unsure by 0.

Example 3.8 The effect of data representation: bipolar is better than binary

Example 3.5 illustrated the difficulties that a simple net (with binary input) expe-
riences when given an input vector 'with *‘mistakes’’ in two components. The weight
matrix formed from the bipolar representation of training patterns still cannot pro-

duce the proper response for an input vector formed from a stored vector with two
‘‘mistakes,” e.g.,

(-1, 1,1, =1))W = (0, 0) = (0, 0).

However, the net can respond correctly when given an input vector formed from a
stored vector with two components ‘‘missing.”” For example, consider the vector

Sec. 3.2 Heteroassociative Memory Neural Network 119

x = (0, 1, 0, —1), which is formed from the training vector s = (1, 1, -1, —1),
with the first and third components ‘‘missing’’ rather than ‘‘wrong.”” We have

0, 1,0, —1)W = (6, —6) = (1, — 1),

the correct response for the stored vector s = (1, 1, —1, —1). These ‘‘missing”
components are really just a particular form of noise that produces an input vector
which is not as dissimilar to a training vector as is the input vector produced with
the more extreme ‘‘noise’’ denoted by the term ‘‘mistake.”

Character recognition

Example 3.9 A heteroassociative net for associating letters from different fonts

A heteroassociative neural net was trained using the Hebb rule (outer products) to
associate three vector pairs. The x vectors have 63 components, the y vectors 15,
The vectors represent two-dimensional patterns. The pattern

I

is converted to a vector representation that is suitable for processing as follows: The
#s are replaced by I’s and the dots by —1’s, reading across each row (starting with
the top row). The pattern shown becomes the vector

(-1,1, -1, 1, -1,1, L 1,1, 1, -1,1 I, -1, 1.

The extra spaces between the vector components, which separate the different rows
of the original pattern for ease of reading, are not necessary for the network.
- Figure 3.3 shows the vector pairs in their original two-dimensional form.

e 0 e o o ####oo oo###-c
::*gﬁzz TR S (O T TR LSS TR T
TaTEELC §¥§ LA 44 L Dl .
IS8 P £ SSorL BN LU FEESH I L
#..'0.# ####.. ..###..

Figure 3.3 Training patterns for character recognition using heteroassocia-

tive net.

After training, the net was used with input patterns that were noisy versions
of the training input patterns. The results are shown in Figures 3.4 and 3.5. The
noise took the form of turning pixels ‘‘on’’ that should have been ‘‘off’’ and vice
versa. These are denoted as follows:

@ Pixel is now ‘‘on,”” but this is a mistake (noise).
O Pixel is now ‘‘off,”’ but this is a mistake (noise).

Figure 3.5 shows that the neural net can recognize the small letters that are

120 ‘ Pattern Association Chap. 3

kL ege @40

oooooo

e B il

o oot

Input Output Input Output
S0t TS
IR S I
T 1881 ¢
g% v -8:::8

g 1%

Figure 3.4 Response of heteroassociative net to several noisy versions of pat-
tern A.

Input Output Input Output Input Output

oo@ @

5 L #got. - @.4ot:0

9?§'§é? a ¥ e -a % #: 3# @93 44

GFE0. . 4 o828 Hi¥ LTI

oft8°sa . gord # e:--e

- @.qg. - LR) o‘ '# @,-o@.o RS

g.y?:g I'?I{,? #° ."9169 #
@ of#o: § { FISH

Figure 3.5 Response of heteroassociative net to patterns A, B, and C with mis-
takes in 1/3 of the components.

Sec. 3.3 Autoassociative Net 121

stored in it, even when given input patterns representing the large training patterns
with 30% noise.

3.3 AUTOASSOCIATIVE NET

Units

The feedforward autoassociative net considered in this section is a special case
of the heteroassociative net described in Section 3.2. For an autoassociative net,
the training input and target output vectors are identical. The process of training
is often called storing the vectors, which may be binary or bipolar. A stored vector
can be retrieved from distorted or partial (noisy) input if the input is sufficiently
similar to it. The performance of the net is judged by its ability to reproduce a
stored pattern from noisy input; performance is, in general, better for bipolar
vectors than for binary vectors. In Section 3.4, several different versions of it-
erative autoassociative nets are discussed.

It is often the case that, for autoassociative nets, the weights on the diagonal
(those which would connect an input pattern component to the corresponding
component in the output pattern) are set to zero. This will be illustrated in Example
3.14. Setting these weights to zero may improve the net’s ability to generalize
(especially when more than one vector is stored in it) [Szu, 1989] or may increase
the biological plausibility of the net [Anderson, 1972]. Setting them to zero is
necessary for extension to the iterative case [Hopfield, 1982] or if the delta rule
is used (to prevent the training from producing the identity matrix for the weights)
[McCleliand & Rumelhart, 1988].

3.3.1 Architecture

Figure 3.6 shows the architecture of an autoassociative neural net.

oo

Output
Units Figure 3.6 Autoassociative neural net.

122 Pattern Association Chap. 3

3.3.2 Algorithm

For mutually orthogonal vectors, the Hebb rule can be used for setting the weights
in an autoassociative net because the input and output vectors are perfectly cor-
related, component by component (i.e., they are the same). The algorithm is as

given in Section 3.1.1; note that there are the same number of output units as
input units.

Step 0. Initialize all weights, i = 1, .. ., n;j=1,.

., N
wi; = 0;
Step 1. For each vector to be stored, do Steps 2-4:

Step 2. Set activation for each input unit, i = L ...,n
X; = §;.

Step 3. Set activation for each output unit, j = 1, ..., n
Yi = 853

Step 4. Adjust the weights, i = 1, . . ., n,j=1,..., n:

wij(new) = w;;(old) + Xi¥j.

As discussed earlier, in practice the weights are usually set from the formula
P
W =3 sT(p)s(p),
p=1

rather than from the algorithmic form of Hebb learning.

3.3.3 Application

An autoassociative neural net can be used to determine whether an input vector
is ““known”’ (i.e., stored in the net) or ‘‘unknown.”’ The net recognizes a ‘‘known”’
vector by producing a pattern of activation on the output units of the net that is
the same as one of the vectors stored in it. The application procedure (with bipolar
inputs and activations) is as follows:

Step 0. Set the weights (using Hebb rule, outer product),

Step 1. For each testing input vector, do Steps 2-4.
Step 2. Set activations of the input units equal to the input vector.
Step 3. Compute net input to each output unit, Jj=1...,m

y_in,- = 2 XiWij.
i

Sec. 3.3 Autoassociative Net 123

Step 4. Apply activation function (j = 1, . . ., n):

_ . 1 if y_in; > 0;
yi = f(y-iny) = {_1 if y_in; < 0.

(or use f from p. 109. Step 4)
Simple examples

Example 3.10 An autoassociative net to store one vector: recognizing the stored vector

We illustrate the process of storing one pattern in an autoassociative net and then
recalling, or recognizing, that stored pattern.

Step 0. The vector s = (1, 1, 1, —1) is stored with the weight matrix:

1 ~1
1 -1
1 -1
-1 1

1 1
_ 1 1
W=1 1 1
-1 -1
Step 1. For the testing input vector:
Step 2. x = (,1,1, -1,
Step 3. -y.in = (4,4,4, —4).
Step 4. y f(4,4,4, -4) =(1,1,1, —-1).

Since the response vector y is the same as the stored vector, we can say the input
vector is recognized as a ‘‘known’’ vector.
The preceding process of using the net can be written more succinctly as

1L, 1L1L -DW=04,44-4->(1,1,1, -1.

Now, if recognizing the vector that was stored were all that this weight matrix
enabled the net to do, it would be no better than using the identity matrix for the
weights. However, an autoassociative neural net can recognize as ‘‘known’’ vectors
that are similar to the stored vector, but that differ slightly from it. As before, the
differences take one of two forms: ‘‘mistakes’ in the data or ‘‘missing’’ data. The
only ‘“‘mistakes’’ we consider are changes from +1 to — 1 or vice versa. We use the
term ‘‘missing’’ data to refer to a component that has the value 0, rather than either
+1lor —1.

Example 3.11 Testing an autoassociative net: one mistake in the input vector

Using the succinct notation just introduced, consider the performance of the net for
each of the input vectors x that follow. Each vector x is formed from the original
stored vector s with a mistake in one component.

(-1, I, 1,-DW=(2,2,2,-2)—>(1,1,1, —-1)
(L-1, 1,-BW=(2,22-2)->(0, L1, -1
(L L,-,-DW=1(,2,2-2)—>(,1,1, -1
(1L 1, 1, DW=(2,2,2 -2)—>(1,1,1, -1).

124 Pattern Association Chap. 3

Note that in each case the input vector is recognized as ‘‘known’ after a single
update of the activation vector in Step 4 of the algorithm. The reader can verify that
the net also recognizes the vectors formed when one component is ‘‘missing.”’ Those
vectors are (0, 1, 1, —1), (1,0, 1, —1), (1, 1, 0, —1), and a,1,1,0).

In general, a net is more tolerant of “‘missing’’ data than it is of ‘*mistakes”’
in the data, as the examples that follow demonstrate. This is not surprising, since
the vectors with ‘‘missing’’ data are closer (both intuitively and in a mathematical
sense) to the training patterns than are the vectors with ‘‘mistakes.”’

Example 3.12 Testing an autoassociative net: two “‘missing” entries in the input vector

The vectors formed from (1, 1, 1, —1) with two “‘missing’’ data are (0, 0, 1, —1),
0, 1,0, -1, 0, 1, 1,0, (1,0,0, —1), (1, 0, 1, 0), and (1, 1, 0, 0). As before,
consider the performance of the net for each of these input vectors:

©0,0,1, -1)'W =(2,2,2, -2) > (1, 1, 1, —1)
0, 1,0, -1)W = (2,2,2, -2)> (1, 1, 1, —1)
O, 1,1, OW=(,2,2-2)->(,1,1, -1
(1,0,0, D)W = (2,2,2, =2) > (1, 1, 1, —1)
(1,0,1, OW=0(,2,2-2)>(,1,1, -1
(L1L,0, OW=(,22 -2)->(,1,1, —1).

The response of the net indicates that it recognizes each of these input vectors as
the training vector (1, 1, 1, —1), which is what one would expect, or at least hope
for.

Example 3.13 Testing an autoassociative net: two mistakes in the input vector

The vector (-1, —1, 1, —1) can be viewed as being formed from the stored vector
(1, 1, 1, —1) with two mistakes (in the first and second components). We have:

(-1, -1, 1, —1)W = (0, 0, 0, 0).
The net does not recognize this input vector.

Example 3.14 An autoassociative net with no self-connections: zeroing-out the diagonal

It is fairly common for an autoassociative network to have its diagonal terms set to

zero, e.g.,
0 1 1 -1
1 o0 1 -1
Wo=1[1 1 o
-1 -1 -1 o

Consider again the input vector (=1, —1, 1, —1) formed from the stored vector
(1, 1, 1, — 1) with two mistakes (in the first and second components). We have:

(=L, -1, 1, -D):Wo = (-1, 1, =1, 1).

The net still does not recognize this input vector.

Sec. 3.3 Autoassociative Net 125

It is interesting to note that if the weight matrix W, (with 0's on the diagonal)
is used in the case of ‘‘missing’’ components in the input data (see Example 3.12),
the output unit or units with the net input of largest magnitude coincide with the
input unit or units whose input component or components were zero. We have:

0,0, 1, -DWe=2,2,1, -D)—>(1,1,1, ~-1)
01,0, -DW,=(2,1,2, -1~ (1,1,1, -1)
01,1, 0OW,=(@2,1,1,-2)—>(1,1,1, -1)
(1,0,0, —-1))Wo = (1,2,2, -1)—> (1,1, 1, - 1)
(1,0,1, 0OWo=(1,2,1,-2)—(1, 1,1, -1
1,1,0, 0O0Wo=1(1,1,2,-2)—>(1, 1,1, -1

The net recognizes each of these input vectors.
3.3.4 Storage Capacity

An important consideration for associative memory neural networks is the number
of patterns or pattern pairs that can be stored before the net begins to forget. In
this section we consider some simple examples and theorems for noniterative
autoassociative nets.

Examples

Example 3.15 Storing two vectors in an autoassociative net

More than one vector can be stored in an autoassociative net by adding the weight
matrices for each vector together. For example, if W, is the weight matrix used to
store the vector (1, 1, — 1, — 1) and W, is the weight matrix used to store the vector
(-1, 1, 1, —1), then the weight matrix used to store both (1, 1, —1, —1) and
(—-1,1,1, —1) is the sum of W; and W,. Because it is desired that the net respond
with one of the stored vectors when it is presented with an input vector that is similar
(but not identical) to a stored vector, it is customary to set the diagonal terms in the
weight matrices to zero. If this is not done, the diagonal terms (which would each
be equal to the number of vectors stored in the net) would dominate, and the net
would tend to reproduce the input vector rather than a stored vector. The addition
. of W, and W, proceeds as follows:

wl Wz wl+w2
0 1 -1 -1 0 -1 -1 1 0 0 -2 0
| 0o -1 -1 + -1 0 1 -1 _ 0 0 0 -2
-1 -1 0 1 -1 1 0 —1| | -2 0 0 0
-1 -1 1 0 1 -1 -1 0 0 -2 0 0

The reader should verify that the net with weight matrix W, + W, can rec-
ognize both of the vectors (1, 1, —1, —1)and (-1, i, 1, —1). The number of vectors
that can be stored in a net is called the capacity of the net.

126 Pattern Association Chap. 3

Example 3.16 Attempting to store two nonorthogonal vectors in an autoassociative net

Not every pair of bipolar vectors can be stored in an autoassociative net with four
nodes; attempting to store the vectors (1, —1, —1, 1) and (1, 1, —1, 1) by adding
their weight matrices gives a net that cannot distinguish between the two vectors it
was trained to recognize:

0 -1 -1 1 0 1 -1 1 00 -2 2
-1 0 1 -1 + 1 0 -1 1 _ 00 0 0
-1 1 0 -1 -1 -1 0 -1 -2 0 0 -2

I -1 -1 0 1 I -1 0 2.0 -2 0

The difference between Example 3.15 and this example is that there the vectors are
orthogonal, while here they are not. Recall that two vectors x and y are orthogonal
if

xyT=2x,-y,-=0.

Informally, this example illustrates the difficulty that results from trying to store
vectors that are too similar.

An autoassociative net with four nodes can store three orthogonal vectors
(i.e., each vector is orthogonal to each of the other two vectors). However, the
weight matrix for four mutually orthogonal vectors is always singular (so four
vectors cannot be stored in an autoassociative net with four nodes, even if the

vectors are orthogonal). These properties are illustrated in Examples 3.17 and
3.18.

Example 3.17 Storing three mutually orthogonal vectors in an autoassociative net

Let W, + W, be the weight matrix to store the orthogonal vectors (1, 1, —1, —1)
and (-1, 1, 1, —1) and W; be the weight matrix that stores (=1,1, —1, 1). Then
the weight matrix to store all three orthogonal vectors is W, + W, + W3, We have

W1+W2 W3 W|+WZ+W3

0 0 -2 0 0 ~-1 1 ~1 0 -1 -1 -1

0 0 0 -2 + -1 0 -1 Ly _ | -1 0 -1 -1
-2 0 0 0 1 -1 0 -1 -1 -1 0 -1

0 -2 0 0 -1 1 -1 0 -1 -1 -1 0

which correctly classifies each of the three vectors on which it was trained.

Example 3.18 Attempting to store four vectors in an autoassociative net

Attempting to store a fourth vector, (1, 1, 1, 1), with weight matrix W,, orthogonal
to each of the foregoing three, demonstrates the difficulties encountered in over
training a net, namely, previous learning is erased. Adding the weight matrix for the
new vector to the matrix for the first three vectors gives

Sec. 3.3 Autoassociative Net ’ 127

W, + W, + W3 W, W*

0 -1 -1 -1
-1 0 -1 -1
-1 -1 0 -1
-1 -1 -1 0

—— D
—— D =
— —
|
(===
(=]
[N —
(=T — =)

which cannot recognize any vector.

Theorems

The capacity of an autoassociative net depends on the number of components the
stored vectors have and the relationships among the stored vectors; more vectors
can be stored if they are mutually orthogonal.

Expanding on ideas suggested by Szu (1989), we prove that n — 1 mutually
orthogonal bipolar vectors, each with n components, can always be stored using
the sum of the outer product weight matrices (with diagonal terms set to zero),
but that attempting to store n mutually orthogonal vectors will result in a weight
matrix that cannot reproduce any of the sotred vectors. Recall again that
two vectors x and y are orthogonal if 3, x;y; = 0.

H

Notation. The kth vector to be stored is denoted by the row vector

a(k) = (ai(k), az(k), . . ., an(k)).
The weight matrix to store a(k) is given by

0 ai(k)ax(k) . . . a.(k)a,,(k)}

as(k)a (k) 0 .. .oax(Bank)
| Wk) = . . .o .
| aai k) anbaxk) . . . 0|
The weight matrix to store a(l), a(2), . . . , a(m) has the general element
0 ifi =j;
Wii =4 m |

S adp)aip) otherwise.

p=1

The vector a(k) can be recalled when it is input to a net with weight matrix
W if a(k) is an eigenvector of matrix W. To test whether a(k) is an eigenvector,
and to determine the corresponding eigenvalue, consider the formula

(al(k), a2(k), DI an(k)) w n n n
= (2 a(kwi, E a(kwi, . .., 2 ai(k)win> .

i=1 i=1 i=1

128 : Pattern Association Chap. 3

The jth component of a(k) W is

n m

2 aikwi; = 3 aik) 3 adplafp) = 3 aip)Y aikai(p).
i=1 I p=1 p=1 inj
Because the stored vectors are orthogonal,

n

> adk)ai(p) = 0 fork #p

i=1
and

=] —aik)ai(p) for k # p;
Ejai(k)ai(p) - { n—1 fOI'k = p.

Since the vectors are bipolar, it is always the case that [a;(k)]® = 1.
Combining these results, we get, for the Jth component of a(k) W,

m

> ai{p) 3, aik)alp)

S a(p) S aibaip) + o) S aikaip)

r=1 i#j pF*k is4j i#*j
= 2 a(p) [~aik)a/p)] + ajk)(n — 1)
Pk
= > —ajk) + aik)(n — 1)
Pk ‘
= —(m — Dayk) + ajk)}(n - 1)
= (n ~ m)a;(k).

Thus, a(k)W = (n — m)a(k), which shows that a(k) is an eigenvector of the
weight matrix W, with eigenvalue (n — m), where n is the number of components
of the vectors being stored and m is the number of stored (orthogonal) vectors.
This establishes the following result.)

Theorem 3.1. For m < n, the weight matrix is nonsingular. The eigenvalue
(n — m) has geometric multiplicity m, with eigenvectors a(l), a(2), . . . , a(m).
For m = n, zero is an eigenvalue of multiplicity n, and there are no nontrivial
eigenvectors.

The following result can also be shown.

Theorem 3.2. A set of 2* mutually orthogonal bipolar vectors can be con-
structed for n = 2* m (for m odd), and no larger set can be formed.
The proof is based on the following observations:

1. Let [v, v] denote the concatenation of the vector v with itself (producing a
vector with 2n components if v is an n-tuple).

Sec. 3.4 Iterative Autoassociative Net 129

2. If a and b are any two mutually orthogonal bipolar vectors (n-tuples), then
[a, a], [a, —al, [b, b], and [b, —b] are mutually orthogonal 2n-tuples.

3. Any number n can be expressed as 2 m, where m is odd and & = 0.

4, It is clear that it is not possible to construct a pair of orthogonal bipolar n-

tuples for n odd (k = 0), since the dot product of two bipolar n-tuples has
the same parity as n.

The construction of the desired set of mutually orthogonal vectors proceeds

as follows:
1. Form vector v,,(1) = (1, 1,1, ..., 1), an m-tuple.
2. Form
v2m(1) = [Vm(l), vm(l)]
and

Vom(2) = [vm(1), —vmu(D];

va..(1) and v,,,(2) are othogonal 2m-tuples.
3. Form the four orthogonal 4m-tuples

Vam(l) = [Vam(1), v2m(D)],
Vam(2) = [V2m(1), —Vam(D],
Vam(3) = [Vam(2), v2.(2)],
and
Vam(4) = [V2(2), —V2(2)].
4. Continue until v,(1), . . ., v,(2*) have been formed; this is the required set

of 2* orthogonal vectors with n = 2¥ m components.

The method of proving that the set of orthogonal vectors constructed by the
preceding procedure is maximal is illustrated here for n = 6. Consider the or-
thogonal vectors v(1) = (1, 1, 1, 1, 1, 1) and v(2) = (1, 1, 1, -1, ~1, —1)
constructed with the technique. Assume that there is a third vector,
(a, b, c, d, e, f), which is orthogonal to both v(1) and v(2). This requires that
a+b+ct+d+e+ f=0anda+b+c—d—-—e— f=0.Combining
these equations gives a + b + ¢ = 0, which is impossible for a, b, c € {1, —1}.

3.4 ITERATIVE AUTOASSOCIATIVE NET
We see frdm the next example that in some cases the net does not respond im-

mediately to an input signal with a stored target pattern, but the response may
be enough like a stored pattern (at least in the sense of having more nodes com-

130 Pattern Association Chap. 3

mitted to values of +1 or — 1 and fewer nodes with the ‘‘unsure’’ response of 0)
to suggest using this first response as input to the net again.

Example 3.19 Testing a recurrent autoassociative net: stored vector with second, third
and fourth components set to zero

The weight matrix to store the vector 1, 1,1, ~Dis

0 1 1 -1

11 o0 1 -

W=l 1 1 0 -
-1

-1 -1 0

The vector (1, 0, 0, 0) is an example of a vector formed from the stored vector
with three ‘missing” components (three zero entries). The performance of the net
for this vector is given next.

Input vector (1, 0, 0, 0):
(1’ 0’ 0’ 0)'w = (09 1, l, - 1) - iterate
(0) l’ 1’ _l).w = (3’ 2’ 2’ _2)-_)(1’ 1’ l’ _1)~

Thus, for the input vector (1, 0, 0, 0), the net produces the ‘‘known’’ vector
(1, 1, 1, —1) as its response in two iterations.

We can also take this iterative feedback scheme a step further and simply
let the input and output units be the same, to obtain a recurrent autoassociative
neural net. In Sections 3.4.1-3.4.3, we consider three that differ primarily in their
activation function. Then, in Section 3.4.4, we examine a net developed by Nobel
prize-winning physicist John Hopfield (1982, 1988). Hopfield’s work (and his
prestige) enhanced greatly the respectability of neural nets as a field of study in
the 1980s. The differences between his net and the others in this section, although
fairly slight, have a significant impact on the performance of the net. For iterative
nets, one key question is whether the activations will converge. The weights are
fixed (by the Hebb rule for example), but the activations of the units change.

3.4.1 Recurrent Linear Autoassociator

One of the simplest iterative autoassociator neural networks is known as the linear
autoassociator [McClelland & Rumelhart, 1988; Anderson et al., 1977]. This net
has n neurons, each connected to all of the other neurons. The weight matrix is
symmetric, with the connection strength w,; proportional to the sum over all
training patterns of the product of the activations of the two units x;and x;. In
other words, the weights can be found by the Hebb rule. McClelland and Rumel-
hart do not restrict the weight matrix to have zeros on the diagonal. Anderson et
al. show that setting the diagonal elements in the weight matrix to zero, which
they believe represents a biologically more plausible model, does not change the
performance of the net significantly.

Sec. 3.4 Iterative Autoassociative Net 131

The performance of the net can be analyzed [Anderson et al., 1977] using
ideas from linear algebra. An n X n nonsingular symmetric matrix (such as the
weight matrix) has » mutually orthogonal eigenvectors. A recurrent linear auto-
associator neural net is trained using a set of K orthogonal unit vectors f;, . . .,
fx, where the number of times each vector is presented, say, B, . . . , Bk, is not
necessarily the same. A formula for the components of the weight matrix could
be derived as a simple generalization of the formula given before for the Hebb
rule, allowing for the fact that some of the stored vectors were repeated. It is
easy to see that each of these stored vectors is an eigenvector of the weight matrix.
Furthermore, the number of times the vector was presented is the corresponding
eigenvalue.

The response of the net, when presented with input (row) vector x, is xW,
where W is the weight matrix. We know from linear algebra that the largest value
of IxW} occurs when x is the eigenvector corresponding to the largest eigenvalue,
the next largest value of |xW|| occurs when x is the eigenvector associated with
the next largest eigenvalue, etc. The recurrent linear autoassociator is intended
to produce as its response (after perhaps several iterations) the stored vector
(eigenvector) to which the input vector is most similar.

Any input pattern can be expressed as a linear combination of eigenvectors.
The response of the net when an input vector is presented can be expressed as
the corresponding linear combination of the eigenvalues (the net’s response to
the eigenvectors). The eigenvector to which the input vector is most similar is
the eigenvector with the largest component in this linear expansion. As the net
is allowed to iterate, contributions to the response of the net from eigenvectors
with large eigenvalues (and with large coefficients in the input vector’s eigenvector
expansion) will grow relative to contributions from other eigenvectors with smaller
eigenvalues (or smaller coefficients).

However, even though the net will increase its response corresponding to
components of the input pattern on which it was trained most extensively (.e.,
the eigenvectors associated with the largest eigenvalues), the overall response of
the system may grow without bound. This difficulty leads to the modification of
the next section.

3.4.2 Brain-State-in-a-Box Net

The response of the linear associator (Section 3.4.1) can be prevented from grow-
ing without bound by modifying the activation function (the identity function for
the linear associator) to take on values within a cube (i.e., each component is
restricted to be between — 1 and 1) [Anderson, et al., 1977]. The units in the brain-
state-in-a-box (BSB) net (as in the linear associator) update their activations si-
multaneously.

The architecture of the BSB net, as for all the nets in this section, consists
of n units, each connected to every other unit. However, in this net there is a
trained weight on the self-connection (i.e., the diagonal terms in the weight matrix

132 Pattern Association Chap. 3

are not set to zero). There is also a self-connection with weight 1. The algorithm
given here is based the original description of the process in Anderson et al. (1977);
it is similar to that given in Hecht-Nielsen (1990). Others [McClelland & Rumel-
hart, 1988] present a version that does not include the learning phase.

Algorithm

Step 0. Initialize weights (small random values).
Initialize learning rates, « and B.
Step 1. For each training input vector, do Steps 2-6.

Step 2. Set initial activations of net equal to the external input
vector x:
Yi = X
Step 3. While activations continue to change, do Steps 4 and 5:

Step 4. Compute net inputs:
y_in,- =Y + a 2 YiW;i.
Jj

(Each net input is a combination of the unit’s
previous activation and the weighted signal re-
ceived from all units.)

Step 5. Each unit determines its activation (output
signal):

1 ify_in,- > 1
Yi=4qyin, if —1=<y.in;<1
-1 if y_in; < —1.

(A stable state for the activation vector will
be a vertex of the cube.) '
Step 6. Update weights:

wii(new) = w;;(old) + By:y;.

3.4.3 Autoassociator With Threshold Function

A threshold function can also be used as the activation function for an iterative
autoassociator net. The application procedure for bipolar (+ 1 or ~ 1) vectors and
activations with symmetric weights and no self-connections, i.e.,

Wij = Wii,
wi = 0,

is as follows:

Sec. 3.4 Iterative Autoassociative Net 133

Step 0. Initialize weights to store patterns.
(Use Hebbian learning.)
Step 1. For each testing input vector, do Steps 2-5.
Set activations x.
While the stopping condition is false, repeat Steps 4 and

Step 2.
Step 3.

5.
Step 4.

Step 5.

Update activations of all units
(the threshold, 6;, is usually taken to be zero):

1 lfz XjW,'j> 9,-
J
Xi = X ‘_ifEXjW;_,' =0,

J
-1 if 2 XiWij < 6,'.
J

Test stopping condition: the net is allowed to
iterate until the correct vector x matches a
stored vector, or x matches a previous vector
X, or the maximum number of iterations
allowed is reached.

The results for the input vectors described in Section 3.3 for the autoas-
sociative net are the same if the net is allowed to iterate. Example 3.20 shows a
situation in which the autoassociative net fails to recognize the input vector on
the first presentation, but recognizes it when allowed to iterate.

Example 3.20 A recurrent autoassociative net recognizes all vectors formed from the
stored vector with three ‘“missing components®’

The weight matrix to store the vector (1, 1, 1, —1) is

w

0 1 1 -1
1 0 I -1
1 1 0 -1
-1 -1 -1 0

The vectors formed from the stored vector with three *‘missing’” components
(three zero entries) are (1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), and (0, 0, 0, —1). The
performance of the net on each of these is as follows:

First input vector, (1,0, 0, 0)

Step4: (1,0,0,00W = (0,1, 1, —1).
Step 5: 0, 1, 1, — 1) is neither the stored vector nor an activation vector produced
previously (since this is the first iteration), so we allow the activations

to be updated again.

Step 4: O 1.1, -D)W=0@G3,2,2,-2)->(,1,1, =1.
Step 5: (1, 1, 1, —1) is the stored vector, so we stop.

134 Pattern Association Chap. 3

Thus, for the input vector (I, 0, 0, 0), the net produces the “known” vector
(1, 1, 1, -1) as its response after two iterations.

Second input vector, (0, 1, 0, 0) B

Step 4: 0,1,0,00W=(,0,1,-1).

Step 5: (1, 0, 1, -1) is not the stored vector or a previous activation vector, so
we iterate.

Step 4. (1,0,1,-D)W=(2,3,2,-2) > (1, 1, 1, -1).

Step 5. (1, 1, 1, -1) is the stored vector, so we stop.

As with the first testing input, the net recognizes the input vector (0, 1, 0, 0) as the
“known” vector (1, 1, 1, -1).

Third input vector, (0, 0, 1, 0)

Step 4: 0,0,1,00W=(1,1,0,-1).

Step 5: (1, 1, 0, -1) is neither the stored vector nor a previous activation vector,
SO we iterate.

Step 4: 1,,0,-)W=(2,2,3,-2) >, 1,1,-1).

Step 5: (1, 1, 1, -1) is the stored vector, so we stop.

Again, the input vector, (0, 0, 1, 0), produces the “known” vector (1, 1, 1, -1).

Fourth input vector, (0, 0, 0, -1)

Step 4. 0,0,0,-1)W=(1,1,1,0)

Step 5: Iterate.

Step 4: 1, L1L,0W=(2,2,2,-3)~>(1,1,1,,-1).
Step 5: (1, 1, 1, 1) is the stored vector, so we stop.

Example 3.21 Testing a recurrent autoassociative net: mistakes in the first and second
components of the stored vector

One example of a vector that can be formed from the stored vector (1, 1, 1, -1)

with mistakes in two components (the first and second) is (-1, -1, 1, =1). The per-

formance of the net (with the weight matrix given in Example 3.20) is as follows.
For input vector (-1, -1, 1, 1).

Step 4: -1,-1,1,-)W=q,1,-1, 1).

Step 5: Iterate.

Step 4: (1, 1,-1, 1))W = (-1, -1, 1, -1).

Step 5: Since this is the input vector repeated, stop.

Sec. 3.4 Iterative Autoassociative Net 135

(Further iterations would simply alternate the two activation vectors produced al-
ready.)

The behavior of the net in this case is called a fixed-point cycle of length two.
It has been proved [Szu, 1989] that such a cycle occurs whenever the input vector
is orthogonal to all of the stored vectors in the net (where the vectors have been
stored using the sum of outer products with the diagonal terms set to zero). The
vector (—1, —1, 1, —1) is orthogonal to the stored vector (1, 1, 1, —1). In general,
for a bipolar vector with 2k components, mistakes in k components will produce a
vector that is orthogonal to the original vector. We shall consider this example further
in Section 3.4.4.

3.4.4 Discrete Hopfield Net

An iterative autoassociative net similar to the nets described in this chapter has
been developed by Hopfield (1982, 1984). The net is a fully interconnected neural
net, in the sense that each unit is connected to every other unit. The net has
symmetric weights with no self-connections, i.e.,

Wij = Wi
and
Wi = 0.

The two small differences between this net and the iterative autoassociative net
presented in Section 3.4.3 can have a significant effect in terms of whether or not

the nets converge for a particular input pattern. The differences are that in the
Hopfield net presented here,

1. only one unit updates its activation at a time (based on the signal it receives
from each other unit) and

2. each unit continues to receive an external signal in addition to the signal
from the other units in the net.

The asynchronous updating of the units allows a function, known as an energy
or Lyapunov function, to be found for the net. The existence of such a function
enables us to prove that the net will converge to a stable set of activations, rather
than oscillating, as the net in Example 3.21 did [Hopfield, 1982, 1984]. Lyapunov
functions, developed by the Russian mathematician and mechanical engineer
Alexander Mikhailovich Lyapunov (1857-1918), are important in the study of the
stability of differential equations. See Differential Equations with Applications
and Historical Notes [Simmons, 1972] for further discussion.

The original formulation of the discrete Hopfield net showed the usefulness
of the net as content-addressable memory. Later extensions [Hopfield & Tank,
1985] for continuous-valued activations can be used either for pattern association
or constrained optimization. Since there use in optimization problems illustrates

136 Pattern Association Chap. 3

the ‘‘value added’’ from the additional computation required for the continuous
activation function, we shall save our discussion of the continuous Hopfield net
until Chapter 7, where we discuss the use of other nets for constrained optimi-
zation problems.

Architecture

An expanded form of a common representation of the Hopfield net is shown in
Figure 3.7.

Figure 3.7 Discrete Hopfield net. '

Algorithm

There are several versions of the discrete Hopfield net. Hopﬁeld s first descrlptlon
[1982] used binary input vectors.
To store a set of binary patterns s(p), p = 1, ..., P, where

s(p) = (s1(p), . .., 5dp)s sa(p)),
the weight matrix W = {w,;} is given by
= > [2sdp) — H2s;(p) — 1] fori##j
P

and

Wi = 0.

Sec. 3.4 Iterative Autoassociative Net 137

Other descriptions [Hopfield, 1984] allow for bipolar inputs. The weight matrix
is found as follows:

To store a set of bipolar patterns s(p), p = 1, ..., P, where

s(p) = (s1(p), . . ., 54p), . . ., sa(P)),
the weight matrix W = {w,} is given by

wij = 2 sdp)si(p) fori##j

P

and
Wi = 0.

The application algorithm is stated for binary patterns; the activation func-
tion can be modified easily to accommodate bipolar patterns.

Application Algorithm for the Discrete Hopfield Net
Step 0. Initialize weights to store patterns.
(Use Hebb rule.)
While activations of the net are not converged, do Steps 1-7.
Step 1. For each input vector x, do Steps 2-6.
Step 2. Set initial activations of net equal to the external input
vector x:

yi=xi,i=1,...n)

Step 3. Do Steps 4-6 for each unit Y;.
(Units should be updated in random order.)
Step 4. Compute net input:

y_in,-A= X; + 2 Yiw;i.
J

Step 5. Determine activation (output signal):

1 if y_in; > 9;
Yi =Y if y_in; = 9;
0 if y_in; < 9,‘.

_ Step 6. Broadcast the value of y; to all other units.
(This updates the activation vector.)
Step 7. Test for convergence.

The threshold, 6;, is usually taken to be zero. The order of update of the
units is random, but each unit must be updated at the same average rate. There
are a number of variations on the discrete Hopfield net presented in this algorithm.
Originally, Hopfield used binary activations, with no external input after the first
time step [Hopfield, 1982]. Later, the external input was allowed to continue
during processing [Hopfield, 1984]. Although typically, Hopfield used binary ac-

138 Pattern Association Chap. 3

tivations, the model was formulated for any two distinct activation values. De-
scriptions by other authors use different combinations of the features of the orig-
inal model; for example, Hecht-Nielsen uses bipolar activations, but no external
input [Hecht-Nielsen, 1990].

The analysis of the Lyapunov function (energy function) for the Hopfield
net will show that the important features of the net that guarantee convergence
are the asynchronous update of the weights and the zero weights on the diagonal.
It is not important whether an external signal is maintained during processing or
whether the inputs and activations are binary or bipolar.

Before considering the proof that the net will converge, we consider an
example of the application of the net.

Application

A binary Hopfield net can be used to determine whether an input vector is a
‘‘*known’’ vector (i.e., one that was stored in the net) or an ‘‘unknown’’ vector.
The net recognizes a ‘‘known’’ vector by producing a pattern of activation on the
units of the net that is the same as the vector stored in the net. If the input vector
is an “‘unknown’’ vector, the activation vectors produced as the net iterates (re-
peats Step 3 in the preceding algorithm) will converge to an activation vector that
is not one of the stored patterns; such a pattern is called a spurious stable state.

Example 3.22 Testing a discrete Hopfield net: mistakes in the first and second
components of the stored vector

Consider again Example 3.21, in which the vector (1, 1, 1, 0) (or its bipolar equivalent
(1, 1, 1, —1)) was stored in a net. The binary input vector corresponding to the input
vector used in that example (with mistakes in the first and second components) is
©, 0, 1, 0). Although the Hopfield net uses binary vectors, the weight matrix is
bipolar, the same as was used in Example 3.16. The units update their activations
in a random order. For this example the update order is Y,, Y, Y3, Y>.

Step 0. Initialize weights to store patterns:
0 1 1 -1
_ 1 0 1 -1
W= 1 1 0 -1
-1 -1 -1 0

Step 1. The input vector is x = (0, 0, 1, 0). For this vector,
Step 2. y=1(0,0,1,0).
Step 3. Choose unit Y, to update its activation:
Step 4. yoiny = x; + D yw; =0+ 1.
J
. Step 5. yoiny > 0>y, = 1.
Step 6. y=1(,0,10).
Step 3. Choose unit Y, to update its activation:
Step4. yiing = x4+ X ywia =0+ (-2).
J

Sec. 3.4 Iterative Autoassociative Net 139

Step 5. y-ing < 0— y, = 0.
Step 6. y=1(,0,1,0).
Step 3. Choose unit Y; to update its activation:
Step 4. y-inyg = x3 + D yw;z =1+ 1.
J

Step 5. y-in3 > 0—>y; = 1.
Step 6. y=(1,0,1,0).
Step 3. Choose unit Y, to update its activation:
Step4. yiny =x+ D ywn =0+ 2.
J

Step 5. y-in, >0 =y, = 1,
Step 6. y=(,1,1,0).
Step 7. Test for convergence.

Since some activations have changed during this update cycle, at least one
more pass through all of the input vectors should be made. The reader can confirm
that further iterations do not change the activation of any unit. The net has converged
to the stored vector.

Analysis

Energy Function. Hopfield [1984] proved that the discrete net bearing his
name will converge to a stable limit point (pattern of activation of the units) by
considering an energy (or Lyapunov) function for the system. An energy function
is a function that is bounded below and is a nonincreasing function of the state
of the system. For a neural net, the state of the system is the vector of activations
of the units. Thus, if an energy function can be found for an iterative neural net,
the net will converge to a stable set of activations. An energy function for the
discrete Hopfield net is given by

E=-95 E 2 Yyiwi; — 2 Xiyi + 2 9:)’i~

i=j

If the activation of the net changes by an amount Ay;, the energy changes by an
amount

AE = — [2 Yiwi + xi — 9i]A)’i-
J

(This relationship depends on the fact that only one unit can update its activation
at a time.)

We now consider the two cases in which a change Ay; will occur in the
activation of neuron Y;.

If y; is positive, it will change to zero if

X; + 2 Yiw;i < 0,'.
J

This gives a negative change for y,. In this case, AE < 0.

140 Pattern Association Chap. 3

If y; is zero, it will change to positive if

X+ 2 ywii> 0.
J

This gives a positive change for y;. In this case, AE < 0.
Thus Ay;is positive only if [, y,w;; + x; — 6;]is positive, and Ay, is negative
J

only if this same quantity is negative. Therefore, the energy cannot increase.
Hence, since the energy is bounded, the net must reach a stable equilibrium such |
that the energy does not change with further iteration.

This proof shows that it is not necessary that the activations be binary. It
is also not important whether the external signals are maintained during the it-
erations. The important aspects of the algorithm are that the energy change depend
only on the change in activation of one unit and that the weight matrix be sym-
metric with zeros on the diagonal.

Storage Capacity. Hopfield found experimentally that the number of binary
patterns that can be stored and recalled in a net with reasonable accuracy, is given
approximately by

P = 0.15n,

where n is the number of neurons in the net.

Abu-Mostafa and St Jacques (1985) have performed a detailed theoretical
analysis of the information capacity of a Hopfield net. For a similar net using
bipolar patterns, McEliece, Posner, Rodemich, and Venkatesh (1987) found that

~_
2loga n

3.5 BIDIRECTIONAL ASSOCIATIVE MEMORY (BAM)

We now consider several versions of the heteroassociative recurrent neural net-
work, or bidirectional associative memory (BAM), developed by Kosko (1988,
1992a).

A bidirectional associative memory [Kosko, 1988] stores a set of pattern
associations by summing bipolar correlation matrices (an n by m outer product
matrix for each pattern to be stored). The architecture of the net consists of two
layers of neurons, connected by directional weighted connection paths. The net
iterates, sending signals back and forth between the two layers until all neurons
reach equilibrium (i.e., until each neuron’s activation remains constant for several
steps). Bidirectional associative memory neural nets can respond to input to either
layer. Because the weights are bidirectional and the algorithm alternates between
updating the activations for each layer, we shall refer to the layers as the X-layer
and the Y-layer (rather than the input and output layers).

Three varieties of BAM—binary, bipolar, and continuous—are considered

Sec. 3.5 Bidirectional Associative Memory (BAM) 141

wi wyj Wi Wy

Wit Wni y Wi Wim Wpnm

Figure 3.8 Bidirectional associative memory.

here. Several other variations exist. The architecture for each is the same and is
illustrated in Figure 3.8.

3.5.1 Architecture

The single-layer nonlinear feedback BAM network (with heteroassociative con-
tent-addressable memory) has n units in its X-layer and m units in its Y-layer.
The connections between the layers are bidirectional; i.e., if the weight matrix
for signals sent from the X-layer to the Y-layer is W, the weight matrix for signals
sent from the Y-layer to the X-layer is WT.

3.5.2 Algorithm
Discrete BAM

The two bivalent (binary or bipolar) forms of BAM are closely related. In each,
the weights are found from the sum of the outer products of the bipolar form of
the training vector pairs. Also, the activation function is a step function, with the
possibility of a nonzero threshold. It has been shown that bipolar vectors improve
the performance of the net [Kosko, 1988; Haines & Hecht-Nielsen, 1988].

Setting the Weights. The weight matrix to store a set of input and target
vectors s(p):t(p),p = 1, ..., P, where
s(p) = (su(p)s . . ., 5dp)s . . ., 54(P))
and
t(p) = (t|(p)1 o e ey tj(p)v o e ey tm(p))’

142 Pattern Association Chap. 3

can be determined by the Hebb rule. The formulas for the entries depend on
whether the training vectors are binary or bipolar. For binary input vectors, the
weight matrix W = {w;;} is given by

wii = > 2sdp) — 1) Qt(p) —).

For bipolar input vectors, the weight matrix W = {w,;} is given by

wi; = 2 sdp)tip).
P
Activation Functions. The activation function for the discrete BAM is the
appropriate step function, depending on whether binary or bipolar vectors are
used.
For binary input vectors, the activation function for the Y-layer is

I ify_in; >0
yi=9¥ ifyin; =0
0 if y_in; <0,

and the activation function for the X-layer is

1 ifx_in,' >0
Xi = X ifx_in,- =90
0 if x_in; < 0.

For bipolar input vectors, the activation function for the Y-layer is

1 if y_inj > ej
yi=1q ¥ ifylin;=9;
-1 if y_in; < 0,

and the activation function for the X-layer is

1 if x__ini > 0,'
Xi = Xi ifx._in; = 0;
-1 if x_in,- < 0,‘.

Note that if the net input is exactly equal to the threshold value, the activation
function ‘‘decides’’ to leave the activation of that unit at its previous value. For
that reason, the activations of all units are initialized to zero in the algorithm that
follows. The algorithm is written for the first signal to be sent from the X-layer
to the Y-layer. However, if the input signal for the X-layer is the zero vector, the
input signal to the Y-layer will be unchanged by the activation function, and the
process will be the same as if the first piece of information had been sent from
the Y-layer to the X-layer. Signals are sent only from one layer to the other at
any step of the process, not simultaneously in both directions.

Sec. 3.5 Bidirectional Associative Memory (BAM) 143

Algorithm. :
Step 0. Initialize the weights to store a set of P vectors;
initialize all activations to 0.
Step 1. For each testing input, do Steps 2-6.
Step 2a. Present input pattern x to the X-layer
(i.e., set activations of X-layer to current input pattern).
Step 2b. Present input pattern y to the Y-layer.
(Either of the input patterns may be the zero vector.)
Step 3. While activations are not converged, do Steps 4-6.
Step 4. Update activations of units in Y-layer.
Compute net inputs:

y_inj = 2 WiiXi.
i

Compute activations:
y; = f(y-in;).

Send signal to X-layer.
Step 5. Update activations of units in X-layer.
Compute net inputs:

x_in,- = E Wiiyi.
J

Compute activations:
xi = f(x_in).
Send signal to Y-layer.

Step 6. Test for convergence:
If the activation vectors x and y have reached
equilibrium, then stop; otherwise, continue.

Continuous BAM

A continuous bidirectional associative memory [Kosko, 1988] transforms input
smoothly and continuously into output in the range [0, 1] using the logistic sigmoid
function as the activation function for all units.

For binary input vectors (s(p), t(p)), p = 1, 2, ... , P, the weights are
determined by the aforementioned formula

wij = 2 (25{p) — DQt(p) — 1).

P
The activation function is the logistic sigmoid

1
1 + exp(—y_in;)’

f()’—i"j) =

144

Pattern Association

where a bias is included in calculating the net input to any unit

y_in,- = bj + 2 XiWij,
i

and corresponding formulas apply for the units in the X-layer.

A number of other forms of BAMs have been developed. In some, the ac-
tivations change based on a differential equation known as Cohen-Grossberg ac-
tivation dynamics [Cohen & Grossberg, 1983]. Note, however, that Kosko uses
the term ‘‘activation” to refer to the activity level of a neuron before the output
function (such as the logistic sigmoid function) is applied. (See Kosko, 1992a, for
further discussion of bidirectional associative memory nets.)

3.5.3 Application

Example 3.23 A BAM net to associate letters with simple bipolar codes

Consider the possibility of using a (discrete) BAM network (with bipolar vectors)
to map two simple letters (given by 5 x 3 patterns) to the following bipolar codes:

(-1,1)
The weight matrices are:

(to store A — —11)

1
-1

1
-1

To illustrate the use of a BAM, we first demonstrate that the net gives the
correct Y vector when presented with the x vector for either the pattern A or the

pattern C:

-1

—

-

(C—11)

r—l
1
1

~17]

1

gt“f

T

(1, 1)

(W, to store both)

OCNOCONOO

0

~2]

lNOOONNOONONNON

Sec. 3.5 Bidirectional Associative Memory (BAM) 145

INPUT PATTERN A
(11 -11-111111-111-11W =(-14,16)— (-1, 1).
INPUT PATTERN C
(-1111-1-11-1-11-1~-~1-1101DW =(14,16)— (1, 1).

~ To see the bidirectional nature of the net, observe that the ¥ vectors can also
be used as input. For signals sent from the Y-layer to the X-layer, the weight matrix
is the transpose of the matrix W, i.e.,

W™ = 002¢0 0 -2 0 -2 -2 0 0 -2 -2 20
-22 02 -2 062 0 02 -2 0 00 2"

For the input vector associated with pattern A, namely, (-1, 1), we have

(-1, DWT =
0 0 -2 0 -2 -2 0 0 -2 =22 0]
2

N o

00 2
("Ll)[—z 02 -2 02 0 02 -2 0 002
=(-22 22 -222222 -222 -22
S(-1 1 -1 1 -1 11111 11111,

This is pattern A.

Similarly, if we input the vector associated with pattern C, namely, (1, 1), we
obtain

a, DWT =

a, 0020 0 -20 -2 =20 0 -2 -2 20
’ -2 2 02 -2 02 o0 02 -2 0 002

=(-2 222 =2 =22 -2 =22 -2 -2 =222
-»(-t 111 -1 -1 1 -1 -1 1 -1 -1 —-111,
which is pattern C.
The net can also be used with noisy input for the x vector, the y vector, or
both, as is shown in the next example.

Example 3.24 Testing a BAM net with noisy input

In this example, the net is given a y vector as input that is a noisy version of one
of the training y vectors and no information about the corresponding x vector (i.e.,
the x vector is identically 0). The input vector is (0, 1); the response of the net is

0, DWT =

©. 1) 0020 0 -2 0 -2 -20 0 -2 =220
’ -2 2 02 -2 0 2 0 0 2 -2 0 00 2
2

=(-2 202 -20 002 -20002
-(-1 101 -101001 -100 0 1.

Pattern Association Chap. 3

Note that the units receiving 0 net input have their activations left at that value,
since the initial x vector is 0. This x vector is then sent back to the Y-layer, using
the weight matrix W:

]

(-1 101 -101001 -10001D/[0 -2
0 2
2 0
0 2
0 -2
-2 0
0 2
-2 0
-2 0
)
0 -2
-2 0
-2 0
2 0
0 2

> ©1).

This result is not too surprising, since the net had no information to give it a
preference for either A or C. The net has converged (since, obviously, no further
changes in the activations will take place) to a spurious stable state, i.e., the solution
is not one of the stored pattern pairs.

If, on the other hand, the net was given both the input vector y, as before,
and some information about the vector x, for example,

y=0)x=0 0 -1 0 01 0110011 -1 0),

the net would be able to reach a stable set of activations corresponding to one of
the stored pattern pairs.
Note that the x vector is a noisy version of

A=(11 -11 -1 11111 -111 -11),
where the nonzero components are those that distinguish A from
¢cC=(—-1111 -1 -11 -1 -1t 1 -1 -1 =11 1.

Now, since the algorithm specifies that if the net input to a unit is zero, the
activation of that unit remains unchanged, we get

o, NW' =
© l)[0020 0 -20 -2 -20 0 -2 -22 0]
’ -2202 -2 02 0 02 -2 0 002
=(-2202 -202002 -20002
—»(-11 -11 -111111~-111 =11,

which is pattern A.
Since this example is fairly extreme, i.e., every component that distinguishes

A from C was given an input value for A, let us try something with less information
given concerning x.

Sec. 3.5 Bidirectional Associative Memory (BAM) 147

For example, lety = (0 1) and x
©, HWT =

©, 1) 0020 0 -2 0 -2 -2 0 0 -2 -2 20
’ =220 2 -2 02 0 02 -2 0 o002

=(-2 202 ~-202002 -2000 2
=11 -11 -111101 -100 0 1),

which is not quite pattern A.
So we try iterating, sending the x vector back to the Y-layer using the weight

00-1001010000000). Then

matrix W:

(-1 1 -1 1 -1 11101 =1000 Do =27
0 2

2 0

o 2

0 -2

-2 0

0 2

-2 0

-2 0

0 2

0 -2

-2 0

-2 0

0

2d

= (=6,100—> (-1,).~

If this pattern is fed back to the X-layer one more time, the pattern A will be
produced.

Hamming distance

The number of different bits in two binary or bipolar vectors x, and x; is called
the Hamming distance between the vectors and is denoted by Hix,, x,]. The

. . .1 .
average Hamming distance between the vectors is ;I—H[x., X2], where n is the

number of components in each vector. The x vectors in Examples 3.23 and 3.24,
namely,

differ in the 3rd, 6th, 8th, 9th, 12th, 13th, and 14th positions. This gives an average
Hamming distance between these vectors of 7/15. The average Hamming distance
between the corresponding y vectors is 1/2.

148 « Pattern Association Chap. 3

Kosko (1988) has observed that ‘‘correlation encoding’” (as is used in the
BAM neural net) is improved to the extent that the average Hamming distance
between pairs of input patterns is comparable to the average Hamming distance
between the corresponding pairs of output patterns. If that is the case, input
patterns that are separated by a small Hamming distance are mapped to output
vectors that are also so separated, while input vectors that are separated by a
large Hamming distance go to correspondingly distant (dissimilar) output patterns.
This is analogous to the behavior of a continuous function.

Erasing a stored association

The complement of a bipolar vector x is denoted x°; it is the vector formed by
changing all of the 1’s in vector x to —1’s and vice versa. Encoding (storing the
pattern pair) s“:t¢ stores the same information as encoding s:t; encoding s°:t or
s:t° will erase the encoding of s:t [Kosko, 1988].

3.5.4 Analysis

Several strategies may be used for updating the activations. The algorithm de-
scribed in Section 3.5.2 uses a synchronous updating procedure, namely, that all
units in a layer update their activations simultaneously. Updating may also be
simple asynchronous (only one unit updates its activation at each stage of the
iteration) or subset asynchronous (a group of units updates all of its members’
activations at each stage).

Energy function

The convergence of a BAM net can be proved using an energy or Lyapunov
function, in a manner similar to that described for the Hopfield net. A Lyapunov
function must be decreasing and bounded. For a BAM net, an appropriate function
is the average of the signal energy for a forward and backward pass:

L = -0.5xWy? + yWix7).

However, since xWy” and yW”xT are scalars, and the transpose of a scalar is a
scalar, the preceding expression can be simplified to

L = —xWy”
= = 2 D xiwyy.
J=1i=1

For binary or bipolar step functions, the Lyapunov function is clearly bounded
below by

- % i [wis|.

Jj=1i=1

Sec. 3.6 Suggestions for Further Study 149

Kosko [1992a] presents a proof that the Lyapunov function decreases as the net
iterates, for either synchronous or subset asynchronous updates.

Storage capacity

Although the upper bound on the memory capacity of the BAM is min(n, m),
where n is the number of X-layer units and m is the number of Y-layer units,
Haines and Hecht-Nielsen [1988] have shown that this can be extended to min
(27, 2") if an appropriate nonzero threshold value is chosen for each unit. Their
-choice was based on a combination of heuristics and an exhaustive search.

BAM and Hopfield nets

The discrete Hopfield net (Section 3.4.4) and the BAM net are closely related.
The Hopfield net can be viewed as an autoassociative BAM with the X-layer and
Y-layer treated as a single layer (because the training vectors for the two layers
are identical) and the diagonal of the symmetric weight matrix set to zero.

On the other hand, the BAM can be viewed as a special case of a Hopfield
net which contains all of the X- and Y-layer neurons, but with no interconnections
between two X-layer neurons or between two Y-layer neurons. This requires all
X-layer neurons to update their activations before any of the Y-layer neurons
update theirs; then all Y field neurons update before the next round of X-layer
updates. The updates of the neurons within the X-layer or within the Y-layer can
be done at the same time because a change in the activation of an X-layer neuron

does not affect the net input to any other X-layer unit and similarly for the Y-
layer units.

3.6 SUGGESTIONS FOR FURTHER STUDY
3.6.1 Readings

The original presentation of the Hebb rule is given in The Organization of Behavior
[Hebb, 1949)]. The Introduction and Chapter 4 are reprinted in Anderson and
Rosenfeld [1988], pp. 45-56. The articles by Anderson and Kohonen that are
included in the Anderson and Rosenfeld collections, as well as Kohonen’s book,
Self-organization and Associative Memory, (1989a) provide good discussions of
the associative memory nets presented in this chapter.

For further discussion of the Hopfield net, the original articles included in
the Anderson and Rosenfeld collection give additional background and devel-
opment. The article by Tank and Hopfield (1987) in Scientific American is also
recommended.

The discussion of BAM nets in Neural Networks and Fuzzy Systems [Kosko,
1992a] provides a unified treatment of these nets and their relation to Hopfield

150 Pattern Association Chap. 3

nets and to the work of Grossberg (including adaptive resonance theory nets,
which we discuss in Chapter 5).

3.6.2 Exercises

Hebb rule

3.1 Show that yet another way of viewing the formation of the weight matrix for Hebb
learning is to form an n X p matrix S whose columns are the input patterns

s(p) = (su(p), ..., su(p), . . ., sa(p)), ice.,
si) - - - si(P)
S=1]s{l) - - - sdP)
sn(l) D S,,(P)
and a p X m matrix T whose rows are the output patterns
(p) = (1i(p), - . ., i(P)y . . ., ta(p)), i€,
)y . . . o)
T - . . .
nHhP) . .. tu(P)
Then the product S T gives the weight matrix W:
- . R _
2 sipp) . . . S si(p)tw(p)
r=1 pr=1
W=ST=
P : P
2 spp) . . . S su(P)m(p)
p=1 p=1

3.2 Show the computations for the first component of the response of a Hebb net for an
input vector and how this response depends on whether the input vector is orthogonal
to the other vectors stored in the net.

Heteroassociative neural net

3.3 Find the weight matrix for Example 3.1 using the results of Exercise 3.1.

3.4 Test Example 3.6 on the input training vectors. Then test on input vectors that are
similar to the input training vectors.

3.5 Test Example 3.7 using the training input vectors. Then test with input vectors that
are the training vector with one *‘‘mistake.”’

‘

Sec. 3.6 Suggestions for Further Study 151

3.6 a. Use the hybrid (binary/bipolar) form of Hebb rule learning as described in Example
3.6 to find the weight matrix for the associative memory network based on the
following binary input-output vector pairs:

sh=(1 00 00 «hH=Q1 0
s)=(0 0 0 D t2) =01 0
s3)=(0 1.0 0 t3) =0 1
s=0 11 0 4)=0 1

b. Using the unit step function (with threshold 0) as the output units’ activation
function, test the response of your network on each of the input patterns. Describe
the results obtained.

c. Test the response of your network on various combinations of input patterns with
*“‘mistakes’” or ‘‘missing data’ (as in Example 3.8). Discuss the results you ob-
serve.

3.7 Using the formation of Exercise 3.1, find the weight matrix for Example 3.7.

Autoassociative neural net

3.8 Use the Hebb rule to store the vectors (1, 1, 1, 1) and (1, 1, —1, —1) in an autoas-
sociative neural net.

Find the weight matrix. (Do not set diagonal terms to zero.)

Test the net, using the vector (1, 1, 1, 1) as input.

Test the net, using (1, 1, —1, —1) as input.

Test the net, using (1, 1, 1, 0) as input; discuss.

Repeat parts a—d with the diagonal terms in the weight matrix set to zero. Discuss

any differences you find in the response of the net.

3.9 Consider an autoassociative net with the bipolar step function as the activation func-
tion and weights set by the Hebb rule (outer products), with the main diagonal of
the weight matrix set to zero.

a. Find the weight matrix to store the vector

Vi=(,1,1,1,1,1).

b. Test the net, using V, as input.
c. Test the net, using

A

T =(,1,1,1, -1, —1).
d. Find the weight matrix to store the vector
Vo.=(, 1,1, -1, =1, —1).

Test the net, using V, as input.
f. Test the net, using

g

I,=(,1,1 -1,0,0).

g. Find the weight matrix to store both V, and V,.
h. Test the neton V,, V,, Ty, T>.

152

Pattern Association Chap. 3

Bidirectional associative memory (BAM)

3.10 a.

3.11 a.

3.6.3

Use the Hebb rule as described in Section 3.5.2 to find the weight matrix to store
the following (binary) input-output pattern pairs:

x(D)=¢ 0°1) yy=@a 0
x2)=0 1 0 y2y=@0 1

. Using the binary step function (with threshold 0) as the activation function for

both layers, test the response of your network in both directions on each of the
binary training patterns. In each case, when presenting an input pattern to one
layer, the initial activation of the other layer is set to zero.

. Using the bipolar step function (with threshold 0) as the activation function for

both layers, convert the training patterns to bipolar form and test the network
response in both directions again. Initialize activation as in part b.

. Test the response of your network on each of the following noisy versions of the

bipolar form of the training patterns. Iterate as required for stability.
(@0 -1 1) 0o o0 @a o 0

d (-1 0 -1 e (-1 0 0 OO o -1

(® (1 0 -1 M1 o o n

. In which case does the network stabilize to a correct response, in which cases to

an incorrect response, and in which cases to an indefinite or indeterminate re-
sponse?
Use the outer product version of Hebb rule learning to find the weight matrix in

bipolar form for the bidirectional associative memory network based on the fol-
lowing binary input-output vector pairs:

sth =1 0 0 0 (1) =00 o0
s2Q)=01 0 0 1 12)=0 0
s@3=0 1 0 0 =0 D
s4=0 11 0 =0 b

. Using the unit step function (with threshold 0) as the output units’ activation

function, test the response of your network on each of the input patterns. Describe
the results obtained.

. Test the response of your network on various combination of input patterns with

““mistakes’ or ‘‘missing data’’ (as in Example 3.24). Discuss the results you ob-
serve.

Projects

Heteroassociative neural net

3.1 Write a computer program to implement a heteroassociative neural net using the Hebb
rule to set the weights (by outer products). The program should read an x vector

Sec. 3.6 Suggestions for Further Study 153

from a 9 X 7 array, followed by the corresponding y vector from a 5 x 3 array. Start
by using the patterns in Example 3.9. Expand your training set to include more letters,
taking the x patterns from one of the fonts in Figure 2.20 (or creating your own) and
using the y patterns in Project 3.4 (or creating your own). Explore the number of
pattern pairs that can be stored in the net, and the ability of the net to respond to
noisy input. You may find it convenient to represent your training patterns by arrays
with an entry of ‘2’ if the pixel is on, ‘0"’ if it is off. Your program should then
subtract 1 from each entry to form the bipolar pattern vector. This approach has the
advantage that missing data (for testing) can be entered as a **1°’ which the program
will convert to zero as desired.

Autoassociative neural net

3.2 Write a computer program to implement an autoassociative neural net using the Hebb
rule to set the weights (outer products). The program should read input froma7 X 5
array into an x vector (a 35-tuple) and should have a training mode in which the
weights are set (by outer products). The number of inputs may be specified in ad-
vance, but it will be more convenient to prompt the user interactively for more input.
The program should also have a test mode in which the weights are not changed but
the response of the net is determined. This response should be printed asa 7 X §
array. It is good practice to display the input array, followed by the output array.

The input patterns to be stored are as follows:

S i . :3”& H .*.“f##
% FORNY PR FFHL i PR
EHEE EEEEE e LT 444
TR §###§ ITH B

SR P Hat e PR

Try to answer the following questions:

1. How many patterns can you store (and recall successfully)?
Does it matter which ones you try to store? (Consider whether any of these input
vectors are orthogonal or nearly so; how is that relevant?)
Does it matter whether you use binary or bipolar patterns?

2. How much noise can your net handle?
Does the amount of noise that can be tolerated (i.e., for which the net will still
give the original stored pattern as its response) depend on how many patterns are
stored?

3. Does the performance of the net improve if it is allowed to iterate, either in the
“‘batch mode’’ iteration of Section 3.4.1-3 or the ‘‘one unit at a time’’ form of the
discrete Hopfield net of Section 3.4.4?

154 Pattern Association Chap. 3

Discrete Hopficld net

3.3 Write a computer program to implement a discrete Hopfield net to store the letters
from one of the fonts in Figure 2.20. Investigate the number of patterns that can be
stored and recalled correctly, as well as the ability of the net to respond correctly
to noisy input.

Bidirectional associative memory -

3.4 Write a computer program to implement a bipolar BAM neural network. Ailow for
(at least) 15 units in the X-layer and 3 units in the Y-layer.
a. Use the program to store the association given in Example 3.23, i.e.,

A—=(-11),
C—-(11.

Try to illustrate the same cases as discussed in the text. Try some other
cases of your own design. You might test the net on some noisy version of the
letter C, for instance.

b. Use your program to store the following patterns (the X-layer vectors are the
‘“‘letters’’ given in the S X 3 arrays; the associated Y-layer vectors are given below

each X pattern):
AF ¥ A4 "
gfg *s *: : :i
. #. -#* #.
(-1,-1,-1) (-1,1, 1) (-1, 1,-1) -1,1,1)
&4 k4 A4 :
¥ ¥ ﬁ: ¥
LN J .# L
(1,-1,-1) (1,-1, 1) (1,1,-1) (1,1,1)

Is it possible to store all eight patterns at once? If not, how many can be stored
at the same time? Try some experiments with noisy data, as in part a.

The following table gives the Hamming distance between the letters denoted
by the foregoing patterns:

A B C D E F G H
A 0 4 7 4 6 6 5 3
B 0 7 2 4 4 7 5
C 0 7 3 5 2 8
D 0 6 6 5 5
E 0 2 5 5
F 0 8 5
G 0 6
H 0

Sec. 3.6 Suggestions for Further Study 158

Determine the Hamming distances between the Y-layer patterns associated with each
of these letters. From the ratios of the Hamming distances, try to determine which
pattern pairs will be most likely to be stored successfully.

Since the upper limit on the number of arbitrary pattern pairs that can be stored
is min(n, m) (the number of components in the X- and Y-layer patterns respectively),
you should consider carefully any case in which more than that number of patterns
are stored. (Test whether the net can respond correctly in both directions.)

When using noisy patterns, the net is not retrained on then; they are used simply
for testing the response of the net.

CHAPTER 4

Neural Networks Based on
Competition

Among the simple examples of pattern classificatin in Chapter 2 we encountered
a situation in which we had more information about the possible correct response
of the net than we were able to incorporate. Specifically, when we applied a net
that was trained to classify the input signal into one of the output categories, A,
B, C, D, E, J, or K, the net sometimes responded that the signal was both a C
and a K, or both an E and a K, or both a J and a K. In circumstances such as
this, in which we know that only one of several neurons should respond, we can
include additional structure in the network so that the net is forced to make a
decision as to which one unit will respond. The mechanism by which this is
achieved is called competition.

The most extreme form of competition among a group of neurons is called
Winner Take All. As the name suggests, only one neuron in the competing group
will have a nonzero output signal when the competition is completed. A specific
competitive net that performs Winner-Take-All competition is the MAaXNET, de-
scribed in Section 4.1.1. A more general form of competition, the Mexican Hat,
or On-Center-Off-Surround contrast enhancement, is described in Section 4.1.2.
All of the other nets we discuss in this chapter and the next use Winner-Take-
All competition as part of their operation. In computer simulations of these nets,
if full neural implementation of the algorithms is not of primary importance, it is
easy to replace the iterative competition phase of the process with a simple search
for the neuron with the largest input (or other desired criterion) to choose as the
winner.

156

Neural Networks Based on Competition 157

With the exception of the fixed-weight competitive nets (Section 4.1), all of
the other nets in Chapters 4 and 5 combine competition with some form of learning
to adjust the weights of the net (i.e., the weights that are not part of any inter-
connections in the competitive layer). The form of learning depends on the purpose
for which the net is being trained. The learning vector quantization (LVQ) net-
work, discussed in Section 4.3, and the counterpropagation network, examined
in Section 4.4, are trained to perform mappings. Target values are available for
the input training patterns; the learning is supervised.

‘Neural network learning is not restricted to supervised learning, wherein
training pairs are provided, as with the pattern classification and pattern asso-
ciation problems introduced in Chapters 2 and 3 and the more general input-output
mappings (Sections 4.3 and 4.4, Chapter 6, and Section 7.2). A second major type
of learning for neural networks is unsupervised learning, in which the net seeks
to find patterns or regularity in the input data. In Section 4.2, we consider the
self-organizing map, developed by Kohonen, which groups the input data into
clusters, a common use for unsupervised learning. Adaptive resonance theory
nets, the subject of Chapter 5, are also clustering nets. (The term *‘pattern clas-
sification’” is applied to these nets, too, but we shall reserve our use of it for
situations in which the learning is supervised and target classifications are pro-
vided during training.) Other examples of unsupervised learning, which do not
include competition, are described in Section 7.2.

In a clustering net, there are as many input units as an input vector has
components. Since each output unit represents a cluster, the number of output
units will limit the number of clusters that can be formed.

The weight vector for an output unit in a clustering net (as well as in LVQ
nets) serves as a representative, or exemplar, or code-book vector for the input
patterns which the net has placed on that cluster. During training, the net deter-
mines the output unit that is the best match for the current input vector; the weight
vector for the winner is then adjusted in accordance with the net’s learning al-
gorithm. The training process for the adaptive resonance theory nets discussed
in Chapter 5 involves a somewhat expanded form of this basic idea.

Several of the nets discussed in this chapter use the same learning algorithm,
known as Kohonen learning. In this form of learning, the units that update their
weights do so by forming a new weight vector that is a linear combination of the
old weight vector and the current input vector. Typically, the unit whose weight
vector was closest to the input vector is allowed to learn. The weight update for
output (or cluster) unit j is given as

w.(new) = w,(old) + a[x — w./old)]

ax + (I — a)w.(old),

where x is the input vector, w.; is the weight vector for unit j (which is also the
Jth column of the weight matrix), and «, the learning rate, decreases as learning
proceeds.

158 Neural Networks Based on Competition Chap. 4

Two methods of determining the closest weight vector to a pattern vector
are commonly used for self-organizing nets. Both are based on the assumption
that the weight vector for each cluster (output) unit serves as an exemplar for the
input vectors that have been assigned to that unit during learning.

The first method of determining the winner uses the squared Euclidean dis-
tance between the input vector and the weight vector and chooses the unit whose
weight vector has the smallest Euclidean distance from the input vector.

The second method uses the dot product of the input vector and the weight
vector. The dot product of an input vector with a given weight vector is simply
the net input to the corresponding cluster unit, as it has been calculated in the
nets presented in the previous chapters (and as defined in Chapter 1). The largest
dot product corresponds to the smallest angle between the input and weight vec-
tors if they are both of unit length. The dot product can be interpreted as giving
the correlation between the input and weight vectors.

For vectors of unit length, the two methods (Euclidean and dot product) are
equivalent. That is, if the input vectors and the weight vectors are of unit length,
the same weight vector will be chosen as closest to the input vector, regardless
of whether the Euclidean distance or the dot product method is used. In general,
for consistency and to avoid the difficulties of having to normalize our inputs and
weights, we shall use the Euclidean distance squared.

4.1 FIXED-WEIGHT COMPETITIVE NETS

Many neural nets use the idea of competition among neurons to enhance the
contrast in activations of the neurons. In the most extreme situation, often called
Winner-Take-All, only the neuron with the largest activation is allowed to remain
“on.”” Typically, the neural implementation of this competition is not specified
(and in computer simulations, the same effect can be achieved by a simple, non-
neural sorting process). In Section 4.1.1, a neural subnet is given which achieves
the Winner-Take-All competition. In Section 4.1.2, a more general contrast-
enhancing net, known as the Mexican Hat, is described. In Section 4.1.3, the
Hamming net is presented. This is a simple clustering net that uses fixed exemplars
and the MAXNET subnet, discussed next.

4.1.1 MAxNET

MAXNET [Lippmann, 1987] is a specific example of a neural net based on com- ;
petition. It can be used as a subnet to pick the node whose input is the largest. |
The m nodes in this subnet are completely interconnected, with symmetric
weights. There is no training algorithm for the MAXNET; the weights are fixed.

Sec. 4.1

Fixed-Weight Competitive Nets 159

Ari:hitecture

p—

—

Application

1 Figure 4.1 MAXNET.

The activation function for the MAXNET is

_Ix if x > 0;
F) = {O otherwise.

The application procedure is as follows:

Step 0.

Step 1.

. . 1
Initialize activations and weights (set 0 < € < -):

a;(0)

W,'j={

input to node A;,

1 ifi =j;

—€ if i #j.

While stopping condition is false, do Steps 2—4.

Step 2.

Step 3.

Step 4.

Update the activation of each node: Forj =1, ..., m,

aj(new) = fla;old) — € > a.(old)].

k#=j
Save activations for use in next iteration:
ajold) = ai{new),j=1,...,m.

Test stopping condition:

If more than one node has a nonzero activation, continue;
otherwise, stop.

160 Neural Networks Based on Competition Chap. 4

Note that in Step 2, the input to the function f is simply the total input to
node A, from all nodes, including itself. Some precautions should be incorporated
to handle the situation in which two or more units have the same, maximal, input.

Example 4.1 Using a MaxneT

Consider the action of a MAXNET with four neurons and inhibitory weightse = 0.2
when given the initial activations (input signals)

ai(0) =02 ax(0) =04 a300) = 0.6 as(0) = 0.8
The activations found as the net iterates are

ai(1) = 0.0 ax(1) = 0.08 a3(1) = 0.32 a,l) = 0.56

ai(2) = 0.0 a22) = 0.0 a;2) = 0.192 a,2) = 0.48

a;(3) = 0.0 ax(3) = 0.0 a33) = 0.096 a,(3) = 0.442

ai4) = 0.0 a:4) =00 a34) = 0.008 a,4) = 0.422

ai(5) =00 a5 =00 a5 = 0.0 as(5) = 0.421

Although we have shown the activations as a function of the iteration, it is not
necessary in general to save all of the previous values; only the activations from the
previous step are actually needed, as shown in the algorithm,

4.1.2 Mexican Hat

The Mexican Hat network [Kohonen, 1989a] is a more general contrast-enhancing
subnet than the Max~NET. Each neuron is connected with excitatory (positively
weighted) links to a number of ‘‘cooperative neighbors,’” neurons that are in close
proximity. Each neuron is also connected with inhibitory links (with negative
weights) to a number of ‘‘competitive neighbors,” neurons that are somewhat
further away. There may also be a number of neurons, further away still, to which
the neuron is not connected. All of these connections are within a particular layer
of a neural net, so, as in the case of MAXNET in Section 4.1.1 , the neurons receive
an external signal in addition to these interconnection signals. The pattern of
interconnections just described is repeated for each neuron in the layer. The
interconnection pattern for unit X; is illustrated in Figure 4.2. For ease of de-
scription, the neurons are pictured as arranged in a linear order, with positive
connections between unit X; and neighboring units one or two positions on either
side; negative connections are shown for units three positions on either side. The
size of the region of cooperation (positive connections) and the region of com-
petition (negative connections) may vary, as may the relative magnitudes of the
positive and negative weights and the topology of the regions (linear, rectangular,
hexagonal, etc.).

The contrast enhancement of the signal s, received by unit X;is accomplished

Sec. 4.1 Fixed-Weight Competitive Nets 161

by iteration for several time steps. The activation of unit X; at time ¢ is given by

xi0) = flsit) + 2, wixieilt — D],
k

where the terms in the summation are the weighted signals from other units (co-
operative and competitive neighbors) at the previous time step. In the example
illustrated in Figure 4.2, the weight w, from unit X; to unit X , , is positive for
k=-2,-1,0, 1, and 2, negative for k = -3, and 3, and zero for units beyond
these.

Architecture

The interconnections for the Mexican Hat net involve two symmetric regions
around each individual neuron. The connection weights within the closer region—
weights between a typical unit X; and units X;.,, Xi2, Xi—1, and X;_,, for
example—are positive (and often are taken to have the same value). These weights
are shown as w, and w> in Figure 4.2. The weights between X; and units X;. 3
and X;_1 are negative (shown as wj in the figure). Unit X; is not connected to
units X;_4 and X4 in this sample architecture. In the illustration, units within
a radius of 2 to the typical unit X; are connected with positive weights; units within
a radius of 3, but outside the radius of positive connections, are connected with

negative weights; and units further than 3 units away are not connected.

Yo

letef 2lz

84

Figure 4.2 Mexican Hat interconnections for unit X,.

Algorithm

The algorithm given here is similar to that presented by Kohonen {1989a]. The
nomenclature we use is as follows:

Rz Radius of region of interconnections; X; is connected to units X;, x
and X;,_,fork =1,... ’Rz'

R 1 Radius of region with positive reinforcement; R, < Rz-

Wi Weight on interconnections between X; and units X, and X, _:

wy is positive for 0 = k = R,
wy is negative for R, < k = R,

162

x..old
t_max

Neural Networks Based on Competition Chap. 4

Vector of activations.

Vector of activations at previous time step.

Total number of iterations of contrast enhancement.
External signal.

As presented, the algorithm correspoﬁds to the external signal being given
only for the first iteration (Step 1) of the contrast-enhancing iterations. We have:

Step 0.

Step 1.

Step 2.

Initialize parameters t_max, R,, R> as desired.
Initialize weights:

Wk=C|f0rk=0,...,R|(C|>O)
wk=C2fork=R1 + 1,.,..,R2(C2<O).

Initialize x_old to 0.
Present external signal s:

X =8,
Save activations in array x_old (for i = 1,...,n):
x.old; = x,.

Set iteration counter: ¢ = 1.
While # is less than 7_max, do Steps 3-7.
Step 3. Compute netinput i = 1, . . . , n):

Ry
xi=Cy 3 x-old

k= —R)
—Ri—1 R2
+ C, 2 x_old;, ;. + C, 2 x-old; ;.

k= —R> k=Ri+1

Step 4. Apply activation function (ramp function from 0 to X_max,
slope 1):
x; = min(x_max, max(©0, x)) (i = 1, ..., n).

Step 5. Save current activations in x_old:

xoldi =x;(i=1,...,n).
Step 6. Increment iteration counter:
t=1+ 1.

Step 7. Test stopping condition:
If t < t_max, continue; otherwise, stop.

In a computer implementation of the algorithm, one simple method of dealing

Sec. 4.1 Fixed-Weight Competitive Nets 163

with the units near the ends of the net, i.e., for i close to 1 or close to n, which
receive input from less than the full range of units i — R, toi + R,,istodimension
the array x_old from 1 — R, to n + R, (rather than from 1 to n). Then, since
only the components from 1 to n will be updated, the formulas in Step 3 will work
correctly for all units.

The positive reinforcement from nearby units and negative reinforcement
from units that are further away have the effect of increasing the activation of
units with larger initial activations and reducing the activations of those that had
a smaller external signal. This is illustrated in Example 4.2.

Application
Example 4.2 Using the Mexican Hat Algorithm

We illustrate the Mexican Hat algorithm for a simple net with seven units. The
activation function for this net is

0 ifx<0
fix) =3x f0=x=<2
2

if 2 < x.
Step 0. Initialize parameters:
R, =1,
R, = 2;
C, = 0.6;
C, = —-04.

Step 1. (t =0).
The external signal is (0.0, 0.5, 0.8, 1.0, 0.8, 0.5, 0.0), so

x = (0.0, 0.5, 0.8, 1.0, 0.8, 0.5, 0.0).
Save in x_old:
xold = (0.0, 0.5, 0.8, 1.0, 0.8, 0.5, 0.0).

Step 2. (t=1)
The update formulas used in Step 3 are listed as follows for reference:

0.6 x_old, + 0.6 x_old, — 0.4 x_old;

fl

X
x; = 0.6 x_old, + 0.6 x_old, + 0.6 x_old; — 0.4 x_old,

x3 = —0.4x_old; + 0.6 x—old> + 0.6 x_old; + 0.6 x_old, — 0.4 x_old;
x4 = —0.4x_old, + 0.6 x_old; + 0.6 x_old, + 0.6 x_olds — 0.4 x_old,
xs = —0.4x_old; + 0.6 x_old, + 0.6 x_olds + 0.6 x_old, — 0.4 x_old,
x¢ = —0.4 x_old, + 0.6 x_olds + 0.6 x_olds + 0.6 x_old

x7 = —0.4 x_olds + 0.6 x_oldg + 0.6 x_old,.

164 Neural Networks Based on Competition Chap. 4

Step 3. (t=1). -
x,=0.6(0.0) + 0.6(0.5) — 0.4(0.8) = —0.2
x2=0.6(0.0) + 0.6(0.5) + 0.6(0.8) — 0.4(1.0) = 0.38
x3= —0.4(0.0) + 0.6(0.5) + 0.6(0.8) + 0.6(1.0) — 0.4(0.8) = 1.06

x4= —0.4(0.5) + 0.6(0.8) +0.6(1.0) + 0.6(0.8) — 0.4(0.5) = 1.16
xs= —0.4(0.8) + 0.6(1.0) + 0.6(0.8) + 0.6(0.5) — 0.4(0.0) = 1.06
x¢= —0.4(1.0) + 0.6(0.8) + 0.6(0.5) + 0.6(0.0) = 0.38

x7= -0.4(0.8) + 0.6(0.5) + 0.6(0.0) = —0.2.

Step 4.
x = (0.0, 0.38, 1.06, 1.16, 1.06, 0.38, 0.0).

Steps 5-7. Bookkeeping for next iteration.
Step 3. (t =2).

x1=0.6(0.0) + 0.6(0.38) — 0.4(1.06) = —0.196

x2=0.6(0.0) + 0.6(0.38) + 0.6(1.06) — 0.4(1.16) = 0.39

x3= —0.4(0.0) + 0.6(0.38) + 0.6(1.06) + 0.6(1.16) — 0.4(1.06) = 1.14
—0.4(0.38) + 0.6(1.06) + 0.6(1.16) + 0.6(1.06) — 0.4(0.38) = 1.66
—0.4(1.06) + 0.6(1.16) + 0.6(1.06) + 0.6(0.38) — 0.4(0.0) = 1.14
x6= —0.4(1.16) + 0.6 (1.06) +>0.6(0.38) +0.6(0.0) = 0.39

il

X4

Xs

x7=—0.4(1.06) + 0.6(0.38) + 0.6(0.0) = -0.196

Step 4.
x = (0.0, 0.39, 1.14, 1.66, 1.14, 0.39, 0.0).

Steps 5-7. Bookkeeping for next iteration.
The pattern of activations is shown for t = 0, 1, and 2 in Figure 4.3.

4.1.3 Hamming Net

A Hamming net [Lippmann, 1987; DARPA, 1988] is a maximum likelihood clas-
sifier net that can be used to determine which of several exemplar vectors is most
similar to an input vector (an n-tuple). The exemplar vectors determine the weights
of the net. The measure of similarity between the input vector and the stored
exemplar vectors is # minus the Hamming distance between the vectors. The
Hamming distance between two vectors is the number of components in which
the vectors differ. For bipolar vectors x and y,

xy=a-—d,

Sec. 4.1 Fixed-Weight Competitive Nets 165

Figure 4.3 Results for Mexican Hat
st X X3 X4 X X X7 example.

where a is the number of components in which the vectors agree and d is the
number of components in which the vectors differ, i.e., the Hamming distance.
However, if n is the number of components in the vectors, then

d=n-a
and

Xy = 2a — n,
or

2a = X'y + n.

By setting the weights to be one-half the exemplar vector and setting the value
of the bias to n/2, the net will find the unit with the closest exemplar simply by
finding the unit with the largest net input. The Hamming net uses MAXNET as a
subnet to find the unit with the largest net input.

The lower net consists of n input nodes, each connected to m output nodes
(where m is the number of exemplar vectors stored in the net). The output nodes
of the lower net feed into an upper net (MAXNET) that calculates the best exemplar
match to the input vector. The input and exemplar vectors are bipolar.

Architecture

The sample architecture shown in Figure 4.4 assumes input vectors are 4-tuples,
to be categorized as belonging to one of two classes.

166 Neural Networks Based on Competition Chap. 4

Wip W21 W31 Wy Wia W23 Wiz Wi

e e g @ Figure 4.4 Hamming net.

~ Application

Given a set of m bipolar exemplar vectors, e(1), e(2), . . . , e(m), the Hamming
net can be used to find the exemplar that is closest to the bipolar input vector x.
The net input y_in; to unit ¥;, gives the number of components in which the input
vector and the exemplar vector for unit Y; e(j), agree (n minus the Hamming
distance between these vectors).

The nomenclature we use is as follows:

n number of input nodes, number of components of any input vector;
m number of output nodes, number of exemplar vectors;
e(j) the jth exemplar vector:

e(j) = (el(j)’ LR ei(j)’ R) en(j))-

The application procedure for the Hamming net is:

Step 0. To store the m exemplar vectors, initialize the weights:
w,~,=ﬁ;—1—),(z’= Lo mj=1,...,m.

And initialize the biases:

b=2,G=1...,m).

Step 1. For each vector x, do Steps 2—4.

Sec. 4.1 Fixed-Weight Competitive Nets 167

Step 2. Compute the net input to each unit ¥;:

y_inj = bj + Ex,-wij, (_] = 1, e ey m)
Step 3. Initialize activations for MAXNET:
yi0) =y_in;, (j=1,...,m).
Step 4. MaxNET iterates to find the best match exemplar.

Example 4.3 A Hamming net to cluster four vectors
Given the exemplar vectors
e(l) =(1, -1, =1, =1)
and
e2) = (-1, -1, =1, 1),

the Hamming net can be used to find the exemplar that is closest to each of the
bipolar input patterns, (1, 1, —1, —1), (1, =1, —1, -1, (-1, -1, —1, 1), and

(-1, —-1,1, 1.
Step 0. Store the m exemplar vectors in the weights:
S -5
-5 -5
W=[_5 _5
-.5 S
Initialize the biases:
bl = bz = 2.

Step 1. For the vector x = (1, 1, —1, — 1), do Steps 2-4.
Step 2. y_il'll = bl + Ex,-W“

2+ 1 =3

y_inz = bz + 2 XiWi
i

=2-1=1

These values represent the Hamming similarity because
(1,1, =1, — 1) agrees withe(1) = (1, — 1, — 1, —1) in the first,
third, and fourth components and because a, 1, -1, —-p
agrees with e(2) = (=1, —1, —1, 1) in only the third com-
ponent.

Step 3. »i(0) = 3;

¥2(0) = 1.

168

Step 1.

Step 1.

Step 1.

Neural Networks Based on Competition . Chap. 4

Step 4. Since y,(0) > y,(0), Maxner will find that unit ¥, has the
best match exemplar for input vector x = (1, 1, —1, —1).

For the vector x = (1, —1, —1, —1), do Steps 2-4.

Step 2. y_in| = bl + Zx,-w“

it

2+2=4

y-in; = by + 3 x;wp
;

=2+0=2.

Note that the input vector agrees with e(1) in all four com-
ponents and agrees with e(2) in the second and third com-

ponents.
Step 3. ¥1(0) = 4;
¥200) = 2.

Step 4. Since y;(0) > y,(0), Maxnet will find that unit Y, has the
best match exemplar for input vectorx = (1, —1, —1, —1).

For the vectorx = (~1, —1, —1, 1), do Steps 2-4.

Step 2. y-in, = b, + Ex,w,-.

=24+0=2
y_inz = b2 + Ex,-w,»z
=2+2=4

The input vector agrees with e(1) in the second and third
components and agrees with e(2) in all four components.
Step 3. »1(0) = 2;

y2(0) = 4.

Step 4. Since y,(0) > y,(0), MaxneT will find that unit Y, has the
best match exemplar for input vectorx = (-1, —1, —1, 1).

For the vector x = (~1, -1, 1, 1), do Steps 2-4.

Step 2. y-in, = b, + 2x,~w,~.

=2-1=1;
y_inz=b2+2x,~w,—z
=2+1=3.

The input vector agrees with e(1) in the second component
and agrees with e(2) in the first, second, and fourth com-
ponents.

Sec. 4.2 Kohonen Self-Organizing Maps - 169

Step 3. y,(0) = 1;

¥2(0) = 3.
Step 4. Since y2(0) > y,(0), MaxneT will find that unit Y, has the
best match exemplar for input vector x = (-1, —=1,1,1).

4.2 KOHONEN SELF-ORGANIZING MAPS

The self-organizing neural networks described in this section, also called topology-
preserving maps, assume a topological structure among the cluster units. This
property is observed in the brain, but is not found in other artificial neural net-
works. There are m cluster units, arranged in a one- or two-dimensional array;
the input signals are n-tuples [Kohonen, 1989a].

The weight vector for a cluster unit serves as an exemplar of the input
patterns associated with that cluster. During the self-organization process, the
cluster unit whose weight vector matches the input pattern most closely (typically,
the square of the minimum Euclidean distance) is chosen as the winner. The
winning unit and its neighboring units (in terms of the topology of the cluster units)
update their weights. The weight vectors of neighboring units are not, in general,
close to the input pattern. For example, for a linear array of cluster units, the
neighborhood of radius R around cluster unit J consists of all units j such that
max(l,J — R) =j < min(J + R, m)).

The architecture and algorithm that foliow for the net can be used to cluster
a set of p continuous-valued vectors x = (xy, ..., x;, ... , X,) into m clusters.
Note that the connection weights do not multiply the signal sent from the input
units to the cluster units (unless the dot product measure of similarity is being
used).

4.2.1 Architecture

The architecture of the Kohonen self-organizing map is shown in Figure 4.5.

Neighborhoods of the unit designated by # of radii R = 2, 1, and O in a
one-dimensional topology (with 10 cluster units) are shown in Figure 4.6.

The neighborhoods of radii R = 2, 1 and 0 are shown in Figure 4.7 for a
rectangular grid and in Figure 4.8 for a hexagonal grid (each with 49 units). In
each illustration, the winning unit is indicated by the symbol “‘#’* and the other
units are denoted by **x.”

Note that each unit has eight nearest neighbors in the rectangular grid, but
only six in the hexagonal grid. Winning units that are close to the edge of the grid
will have some neighborhoods that have fewer units than that shown in the re-
spective figure. (Neighborhoods do not “‘wrap around’’ from one side of the grid
to the other; ‘“‘missing’’ units are simply ignored.)

170 Neural Networks Based on Competition Chap. 4

R A

Wim Wi

Figure 4.5 Kohonen self-organizing map.

* * * {* (* [#] *) *) L *
{ I1R=2 ()R=1 (IR=0

Figure 4.6 Linear array oi cluster units.

4.2,2 Algorithm

Step 0. Initialize weights w;;. (Possible choices are discussed below.)
Set topological neighborhood parameters.
Set learning rate parameters.
Step 1. While stopping condition is false, do Steps 2-8.
Step 2. For each input vector x, do Steps 3-5.
Step 3. For each j, compute:
D(j) = X (wi; — xi)%.
Step 4. Find index J such that D(J) is a minimum.
Step 5. For all units j within a specified neighborhood
of J, and for all i:

wi(new) = wi(old) + alx; — w;;(old)].

Step 6. Update learning rate.

Sec. 4.2 Kohonen Self-Organizing Maps

% %k % % %
C T TTTTTTh
: * * * * * :
| i
l !
: * * * * *
|
1 t
l !
ok * # * *
i |
: |
Lo * * * * |
- |
: (
| * * * * |
I |
S S 4
* %k % % %
R=2—-—-
R=] ——
R=0ecoeee
* * %* %* %
[T \
/ \\
% ,’ %k % * \ % *
/ \
/ \
/ \
! % * N\ %
\
JOTT Yoy \
s \
Y o
“ S /
(TYY YT) [
,l
\ * * * /%
\ /
\ /
\)
* N\ %k %* 7 * %
\ /
| SO /
* % * % %
R=2——-~
R=1——

R=0Qoeece-

*

Figure 4.7 Neighborhoods for
rectangular grid.

Figure 4.8 Neighborhoods for
hexagonal grid.

171

172 Neural Networks Based on Competition Chap. 4

Step 7. Reduce radius of topological neighborhood at specified
times.

Step 8. Test stopping condition.

Alternative structures are possible for reducing R and a.

The learning rate « is a slowly decreasing function of time (or training ep-
ochs). Kohonen (1989a, p. 133) indicates that a linearly decreasing function is
satisfactory for practical computations; a geometric decrease would produce sim-
ilar results.

The radius of the neighborhood around a cluster unit also decreases as the
clustering process progresses. '

The formation of a map occurs in two phases: the initial formation of the
correct order and the final convergence. The second phase takes much longer
than the first and requires a small value for the learning rate. Many iterations
through the training set may be necessary, at least in some applications [Kohonen,
1989a].

Random values may be assigned for the initial weights. If some information
is available concerning the distribution of clusters that might be appropriate for
a particular problem, the initial weights can be taken to reflect that prior knowl-
edge. In Examples 4.4—4.9, the weights are initialized to random values (chosen
from the same range of values as the components of the input vectors).

4.2.3 Application

Neural networks developed by Kohonen have been applied to an interesting va-
riety of problems. One recent development of his is a neural network approach
to computer-generated music [Kohonen, 1989b]. Angeniol, Vaubois, and Le Tex-
ier (1988) have applied Kohonen self-organizing maps to the solution of the well-
known traveling salesman problem. These applications are discussed briefly later
in this section. A more common neural network approach to the traveling salesman
problem is discussed in Chapter 7.

Simple example
Example 4.4 A Kohonen self-organizing map (SOM) to cluster four vectors
Let the vectors to be clustered be
(1,1,0,0);0,0,0, 1); (1,0,0,0); (0,0, 1, 1).

The maximum number of clusters to be formed is
\\, m = 2.
Suppose the learning rats (geometric decrease) is
a(0) = .6,

a(t + 1) = .5 a1).

Sec. 4.2 Kohonen Self-Organizing Maps 173

With only two clusters available, the neighborhood of node J (Step 4) is set so that
only one cluster updates its weights at each step (i.e., R = 0).

Step 0. Initial weight matrix:

2 8
6 4
ST
9 3

Initial radius:
R = 0.

Initial learning rate:
a(0) = 0.6.

Step 1. Begin training.
Step 2. For the first vector, (1, 1, 0, 0), do Steps 3-5.
Step3. D) =(2-1)%+(6 - 17

+ (.5 =07 + (9 - 0y = 1.86;
D(2) = (.8 —1)> + (4 - 1)?
+ (.7 -0 + (3 - 0)2 = 0.98,

Step 4. The input vector is closest to output node 2, so
J=2.
Step 5. The weights on the winning unit are updated:

wi(new) = wp(old) + .6 [x; — wp(old)]
= 4 W,'z(Old) + .6 X;.

This gives the weight matrix

2.9
.6 .76
S .28
9 .12
Step 2. For the second vector, (0, 0, 0, 1), do Steps 3-5.

Step 3.
D) =(2 -0® + (6 -0

+ (5 -0+ (9 - 1) = 0.66;
D(2) = (92 - 0 + (.76 — O)?
+ (.28 — 02 + (.12 — 1)> = 2.2768.
Step 4. The input vector is closest to output node 1, so
J=1

174

Step 2.

Step 2.

Step 6.

Neural Networks Based on Competition Chap. 4

Step 5. Update the first column of the weight matrix:

.08 .92
24 76
20 .28
96 .12

For the third vector, (1, 0, 0, 0), do Steps 3-5.
Step 3.

D(1) = (.08 — 1)? + (.24 — 0)?

+ (.2 = 0+ (.96 — 0)> = 1.8656;
DQ2) = (92 -1)* + (.76 — 0)?
+ (.28 — 0)* + (.12 — 0)> = 0.6768.
Step 4. The input vector is closest to output node 2, so
J=2.
Step 5. Update the second column of the weight matrix:
.08 .968
24 304
20 112
96 .048

For the fourth vector, (0, 0, 1, 1), do Steps 3-5.
Step 3.

D(1) =(.08 —0)>+ (24 —0)
+(2 -1+ (9 - 1Y = 0.7056;
D(2) = (.968 — 0)> + (.304 — 0)®
+ (112 = 1) + (048 — 1) = 2.724.
Step 4.
J=1.
Step 5. Update the first column of the weight matrix:

032 .968
.096 .304
.680 .112
984 .048

Reduce the learning rate:

a=.5(0.6)=.3

The weight update equations are now

w;(new)

I

W,'j(old) + .3 {x,' - W,‘j(Old)]
= 7W,J(Old) + .3X,'.

Sec. 4.2 Kohonen Self-Organizing Maps

175

The weight matrix after the second epoch of training is

016
.047
.630
.999

980
.360
.055
.024

Modifying the adjustment procedure for the learning rate so that it decreases
geometrically from .6 to .01 over 100 iterations (epochs) gives the following results:

Iteration 0: Weight matrix:

Iteration 1: Weight matrix:

Iteration 2: Weight matrix:

Iteration 10: Weight matrix:

Iteration 50: Weight matrix:

Iteration 100: Weight matrix:

oo v
TORN I)

.032 .970
096 .300
680 .110
| 980 .048

[.0053 .9900]
—.1700 .3000

.7000 .0200
| 1.0000 .0086

[1.5¢-7 1.0000]
4.6e-7 3700
6300 5.4e-7
[10000 2.3e-7

[1.9e-19 1.0000
5.7e-15 .4700
.5300 6.6e-15
| 1.0000 2.8e-15 |

[6.7e-17 1.0000]
2.0e-16 .4900
5100 2.3e-16
| 1.0000 1.0e-16 |

These weight matrices appear to be converging to the matrix

0.0

1.0

0.0 05
05 001"
1.0 0.0

the first column of which is the average of the two vectors placed in cluster 1 and
the second column of which is the average of the two vectors placed in cluster 2.

176 Neural Networks Based on Competition Chap. 4

Character Recognition

Examples 4.5-4.7 show typical results from using a Kohonen self-organizing map
to cluster input patterns representing letters in three different fonts. The input
patterns for fonts 1, 2, and 3 are given in Figure 4.9. In each of the examples, 25
cluster units are available, which means that a maximum of 25 clusters may be
formed. Results are shown only for the units that are actually the winning unit
for some input pattern after training. The effect of the topological structure is
seen in the contrast between Example 4.5 (in which there is no structure), Example
4.6 (in which there is a linear structure as described before), and Example 4.7 (in
which a rectangular structure is used). In each example, the learning rate is re-
duced linearly from an initial value of .6 to a final value of .01.

Example 4.5 A SOM to cluster letters from different fonts: no topological structure

If no structure is assumed for the cluster units, i.e., if only the winning unit is allowed
to learn the pattern presented, the 21 patterns form 5 clusters:

UNIT PATTERNS

3 C1,C2,C3

13 B1, B3, DI, D3, El, KI, K3,E3
16 Al, A2, A3

18 J1, 72,13

24 B2, D2, E2, K2

Example 4.6 A SOM to cluster letters from different fonts: linear structure

A linear structure (with R = 1) gives a better distribution of the patterns onto the
available cluster units. The winning node J and its topological neighbors (J + 1 and
J — 1) are allowed to learn on each iteration. Note that in general, the neighboring
nodes that learn do not initially have weight vectors that are particularly close to
the input pattern.

UNIT PATTERNS UNIT PATTERNS
6 K2 20 C1,C2,C3
10 J1,72,13 22 D2
14 El, E3 23 B2, E2
16 K1, K3 25 Al, A2, A3
18 B1, B3, Di, D3

Note also that in many cases there are unused units between a pair of units
that have clusters of patterns associated with them. This suggests that units which
are being pulled in opposite directions during training do not learn any pattern very
well. (In other words, in most cases, these input patterns form very distinct classes.)

Example 4.7 A SOM to cluster letters from different fonts: diamond structure

In this example, a simple two-dimensional topology is assumed for the cluster units,
so that each cluster unit is indexed by two subscripts. If unit X, is the winning unit,
the units X,., ;, X;—1.s, Xry+1, and X; ;_, also learn. This gives a diamond to-

Sec. 4.2 Kohonen Self-Organizing Maps 177

Input from e
Font 1

o 00000 o
B o ofEe o og
B o ok o o
e o ofEe o ok

Bo o ofke o o3k
o e I o

E - BRI A R Y

Al Bl c

(L]

L R R
Fe o0 000 0
FEo 00000 of
FEe o0 000 ogp
ofe v 0 0 o
o‘mlo
B o o

oo ok o o
e oo 0o 0 o3k
B$=tE e o 0 0 0 o

o o0 000 o

o
[
[}
[
[]
[y
by
[

:::§::: L4444 ey
Input from igtes S L
Font 2 LI a4 iiF 8::::::
: #*.*?g: :::::ﬁ Pao oot
ogo Y X3 #####o .?# ?o

#EHRie seeee

sssss§ i
""" : M #

“HiE-

e oo
oo o
o oo
¢ o ofp

o
N
o)
N
G
N
A
()

Input from
Font 3 :

¢ o0 ofke o
o0 0 ok o
oo o oo o
¢ o0 oo o

MM o I o
o oFke o oYk

oo o000 0p
o oM o o
oo o o 0 ofe
oo o000 o
e e o000 o
Feo 00000 o
oo o 00 ofke

w 2
W o
*®
n
W

L4 DS

$e oo 000 o
.
)
.
.
Ho o 0000 0

!
J3

000000 o

Moo 0000 op
e o offe o o
LECIES X1 - XN
LAY - XECAY XY
ke o 0 0 ot
o 0000 0

A
w

Figure 4.9 Training input patterns for character recognition examples.

178 Neural Networks Based on Competition Chap. 4
i\j 1 2 3 4 5
1 J1,12,13 D2
2 C1,C2,C3 D1,D3 B2, E2
3 Bl K2
4 El, E3, B3 A3
S K1,K3 Al, A2

Figure 4.10 Character recognition with rectangular grid.

pology, rather than the entire rectangle illustrated in Figure 4.7. The results are |
shown in Figure 4.10. '

Spanning tree
Example 4.8 Using a SOM: Spanning Tree Data

The 32 vectors [Kohonen, 1989a] shown in Figure 4.11 were presented in random
order to a Kohonen self-organizing map with a rectangular topology on its cluster
units. There were 70 cluster units arranged in a 10 X 7 array. The pattern names
are for ease of identification of the results. The relationships between the patterns
can be displayed graphically, as in Figure 4.12 [Kohonen, 1989a); patterns that are
adjacent to each other in the diagram differ by exactly 1 bit.

The net was used with random initial weights. In this example, the initial radius,
R = 3, was reduced by 1 after each set of 75 iterations. During these 75 iterations,
the learning rate was reduced linearly from .6 to .01. If unit X, , is the winning unit,
the units X;; for all fand jsuch that/ - R<i=<I+ RandJ - R<j=<J + R
also learn (unless the value of i or j falls outside the permissible range for the topology
and number of cluster units chosen). Note that when R = 3, as many as 49 units
will learn (see Figure 4.7). When the Kohonen net is used with R = 0, only the
winning cluster node is allowed to learn.

Figures 4.13-4.16 show the evolution of the solution, as R is decreased, for
the data in Figure 4.11, using a rectangular array for the cluster units. The structure
of the data is shown in Figure 4.16 to indicate how the positioning of the patterns
on the cluster units reflects the spanning tree relationships among the patterns.

A hexagonal grid can also be used for a two-dimensional topology. The final
results obtained using such a grid are shown in Figure 4.17. As in Figure 4.16, the
structure of the data is also indicated to show how the position of the patterns on
the cluster units reflects the original spanning tree. The same iteration scheme was
used as before, i.e., 75 iterations at each radius, starting with R = 3 and decreasing
toR = 0.

Other examples

Example 4.9 Using a SOM: A Geometric Example

The cluster units in a Kohonen self-organizing map can viewed as having a position
(given by their weight vector). For input patterns with two components, this position
is easy to represent graphically. The topological relationships between cluster units

179

Kohonen Self-Organizing Maps

Sec. 4.2

COMPONENTS

PATTERN

CoOCooOooooooD e

[~ == - NN - =]

COOCOOCOCODOOO —A

COOCOCO =N MNMFT NN

honil o Mo T~ oW o o T o o B o o W o o W o s B o 2 W o 0]

(=== = —]

cCoocoo o —

NN NO~0 e

TRt NN N

NN h o

(=== —

o

on

o

o

o

o

on

o

<

[ag}

o

o

COOOC—NNITWV

— AN T NN NANN

O N OO OO OO

[B s B o B s e B o S T s o T o s T o s WY o 01

[T Ao T T a e B s o o o T o s MR o o o 01

CAVAREODN Y A ZO0OAOMEnED>E XN —a = <"

Spanning tree test data [Kohonen, 1989a].

Figure 4.11

Figure 4.12 Spanning tree test data structure [Kohonen, 1989a].

180 Neural Networks Based on Competition = Chap. 4

1 HK - G F - ABCDE
LM - - - - - -

s TU - - v - YZ

N - - - - X -

o - - - - - -

- - - 1 - 2 -

P - w - - - 3
QR - - - - - 45,6

Figure 4.13 Results after 75 iterations with R = 3.

H1J - G AB F C DE
K - - - - - -
LM S - U - - Y.Z
- - - ' - - X
N - - - - - -
o - - 1 - - -
P w - 2 3 - -
QR - - - - 4 5.6
Figure 4.14 Results after 75 additional iterations with R = 2.

LJ - G A B C DE
- H - - - F -

- K - - - - -

L - - - v - Z

M - S T U - Y

N - - - - - X

(o] - - w - 1 -

P - - - - 2 -

Q - 6 - 4 - -

R - - 5 - -

Figure 4.15 Results after 75 more iterations with R = 1.

Sec. 4.2 Kohonen Self-Organizing Maps 181

Figure 4.16 Results after another 75 iterations with R = 0.

Figure 4.17 Results of spanning tree example using hexagonal array.

182 Neural Networks Based on Competition Chap. 4

in Kohonen self-organizing maps are often indicated by drawing lines connecting the
units.

In this example, we assume a linear structure. The initial weights are chosen
randomly, with each component having a value between —1 and 1. There are 50
cluster units. The 100 input vectors are chosen randomly from within a circle of
radius 0.5 (centered at the origin). The initial learning rate is 0.5; it is reduced linearly
to 0.01 over 100 epochs. Throughout training, the winning unit and its nearest neigh-
bor unit on either side (units J, J + 1, and J — 1) are allowed to learn.

Figure 4.18 shows the training patterns. Figures 4.19-4.23 show the cluster
units initially and after 10, 20, 30, and 100 epochs, respectively. Not only have the
cluster units moved to represent the training inputs (i.e., all of the weight vectors
for the cluster units now fall within the unit circle), but the curve connecting the
cluster units has smoothed out somewhat as training progresses. An even smoother
curve can be obtained by starting with a larger radius and gradually reducing it to
0. This would involve using more training epochs. (See Kohonen, 1989a for many
other interesting examples of this geometric interpretation of self-organizing maps.)

Example 4.10 Using a SOM: The Traveling Salesman Problem

In this example, we illustrate the use of the linear topology for the cluster units in
a Kohonen self-organizing map to solve a classic problem in constrained optimi-
zation, the so-called traveling salesman problem (TSP). Several nets that are designed
for constrained optimization problems are discussed in Chapter 7. The aim of the
TSP is to find a tour of a given set of cities that is of minimum length. A tour consists

Kohonen net input

1.0

08 |-

06 |-

04 |-

021

-1.0]]]]]] |]]
-1.0 -08 -0.6 -04 -0.2 00 02 04 06 08 10
X1

Figure 4.18 Input patterns.

Sec. 4.2 Kohonen Self-Organizing Maps 183

Kohonen self-organizing map Epoch 0 Alpha = 0.5000
1.0 o

0.8
0.6

04

-0.8

-1.0
-1.0 -0.8 -06 -04 02 00 02 04 06 08 10
w1

Figure 4.19 Initial cluster units.

Kohonen self-organizing map Epoch 10 Alpha=0.4510
1.0

08 |-

0.6 |-

04 |-

. 02

00 |-

w2

-02}

0.4}

0.6 -

0.8 -

-1.0 1 | J]]]]]]
-1.0 -08 06 04 02 00 02 04 06 08 10
w1

Figure 4.20 Cluster units after 10 epochs.

184 Neural Networks Based on Competition Chap. 4

Kohonen self-organizing map Epoch 20 Alpha = 0.4020
1.0 -

08—

06

02

w2
o
=)
|

-1.0] J |]]]]]]
-1.0 -08 -06 -04 -02 00 02 04 06 08 10
Wi

Figure 4.21 Cluster units after 20 epochs.

Kohonen self-organizing map Epoch 30 Alpha =0.3530
1.0 -

081
06

04

W
b4
=)

1

-1.0 ! { [L | ! ! |
-1.0 -0.8 -0.6 -0.4 02 00 02 04 06 08 10
w1

Figure 4.22 Cluster units after 30 epochs.

Sec. 4.2 Kohonen Self-Organizing Maps 185

Kohonen self-organizing map Epoch 100 Alpha=0.0100
1.0

08—

06—

02

w2
o
[~
|

-1.0 |] I I] | | I]
-1.0 0.8 -06 -04 -0.2 00 02 04 06 08 10
w1

Figure 4.23 Cluster units after 100 epochs.

of visiting each city exactly once and returning to the starting city. Angeniol, Vau-
bois, and Le Texier (1988) have illustrated the use of a Kohonen net to solve the
TSP. The net uses the city coordinates as input; there are as many cluster units as
there are cities to be visited. The net has a linear topology, with the first and last
cluster unit also connected. Figure 4.24 shows the initial random position of the
cluster units; Figure 4.25 shows the results after 100 epochs of training with R = 1
(learning rate decreasing from 0.5 to 0.4). The final tour after 100 epochs of training
with R = 0 is shown in Figure 4.26.

This tour is ambiguous in terms of the order in which city B and city C are
visited, because one cluster unit is positioned midway between the cities (rather than
being directly on one city). Another unit has been trapped between city J and cities
B and C; it is not being chosen as the winner when any input is presented and is
therefore ‘‘wasted.”” However, the results can easily be interpreted as representing
one of the tours

ADEFGHIJBC

and 7
ADEFGHI1JCB.

The coordinates of and distances between the cities are given in Chapter 7.

The same tour (with the same ambiguity) was found, using a variety of initial
weights. Choosing initial weights within a small region of the input space (the center
or any of the four corners), as is often done, did not change the results.

w2

186 Neural Networks Baséd on Competition Chap. 4

1.0

08 |-

06

04 -

02}

0.0

1.0

Figure 4.24 Initial position of cluster units and location of cities

Epoch 100 Alpha = 0.4000 Radius =1
1.0

09 -

08|

0.7

0.6 -

05

04

03—

02~

0l

0.0 l]] ! | J]]] Figure 4.25 Position of cluster units
00 01 02 03 04 05 06 07 08 09 10 and location of cities after 100 epochs
wi with R = 1. :

w2

1.0

0.9

0.8

0.7

0.6

0.5

04

0.3

02

0.1
0.0

Sec. 4.3 Learning Vector Quantization 187

Epoch 100 Alpha=0.2000 Radius=0

*

! | !]]] J] I Figure 4.26 Position of cluster units

00 01 02 03 04 05 06 07 08 09 10 and location of cities after additional

wi 100 epochs with R = 0.

4.3 LEARNING VECTOR QUANTIZATION

Learning vector quantization (LVQ) [Kohonen, 1989a, 1990a] is a pattern clas-
sification method in which each output unit represents a particular class or cat-
egory. (Several output units should be used for each class.) The weight vector
for an output unit is often referred to as a reference (or codebook) vector for the
class that the unit represents. During training, the output units are positioned (by
adjusting their weights through supervised training) to approximate the decision
surfaces of the theoretical Bayes classifier. It is assumed that a set of training
patterns with known classifications is provided, along with an initial distribution
of reference vectors (each of which represents a known classification).

After training, an LVQ net classifies an input vector by assigning it to the
same class as the output unit that has its weight vector (reference vector) closest
to the input vector.

4.3.1 Architecture

The architecture of an LVQ neural net, shown in Figure 4.27, is essentially the
same as that of a Kohonen >if-organizing map (without a topological structure
being assumed for the output units}. In addition, each output unit has a known
class that it represents.

188 Neural Networks Based on Competition Chap. 4

Figure 4.27 Learning vector quantization neural net.

4.3.2 Algorithm

The motivation for the algorithm for the LVQ net is to find the output unit that

is closest to the input vector. Toward that end, if x and w. belong to the same

class, then we move the weights toward the new input vector; if x and w,. belong

to different classes, then we move the weights away from this input vector.
The nomenclature we use is as follows:

X training vector (xi1, . .., Xi, . . ., Xn).

T correct category or class for the training vector.

w; weight vector for jth output unit (wys, . . ., wij, . . ., wp)).

C; category or class represented by jth output unit.

lx — wy|l Euclidean distance between input vector and (weight vector for)

Jth output unit.

Step 0. Initialize reference vectors (several strategies are discussed shortly);
initialize learning rate, a(0).
Step 1. While stopping condition is false, do Steps 2-6.
Step 2. For each training input vector x, do Steps 3-4.
Step 3. Find J so that |lx — w,|| is a minimum.

Sec. 4.3 Learning Vector Quantization 189

Step 4. Update w; as follows:
if T = C,, then

w (new) = wy(old) + alx — w,(old)];
if T# C_], then

wy(new) = w,(old) — a[x — w,(old)].

Step 5. Reduce learning rate.

Step 6. Test stopping condition:
The condition may specify a fixed number of iterations
(i.e., executions of Step 1) or the learning rate reaching a
sufficiently small value.

4.3.3 Application

The simplest method of initializing the weight (reference) vectors is to take the
first m training vectors and use them as weight vectors; the remaining vectors
are then used for training (Kohonen, 1989a]. This is the method of Example 4.11.
Another simple method, illustrated in Example 4.12, is to assign the initial weights
and classifications randomly.

Another possible method of initializing the weights is to use K-means clus-
tering [Makhoul, Roucos, & Gish, 1985] or the self-organizing map [Kohonen,
1989a] to place the weights. Each weight vector is then calibrated by determining
the input patterns that are closest to it, finding the class that the largest number
of these input patterns belong to, and assigning that class to the weight vector.

Simple Example

Example 4.11 Learning vector quantization (LVQ): five vectors assigned to two classes

In this very simple example, two reference vectors will be used. The following input
vectors represent two classes, 1 and 2:

VECTOR CLASS
(1,1,0,0 1
0,0,0, 1) 2
©,0,1,1) 2
(1,0,0,0 1
0,1,1,0) 2

The first two vectors will be used to initialize the two reference vectors. Thus, the
first output unit represents class 1, the second class 2 (symbolically, C; = 1 and
C> = 2). This leaves vectors ©,0,1,1,(1,0,0, 0), and (0, 1, 1, 0) as the training
vectors. Only one iteration (one epoch) is shown:

190 Neural Networks Based on Competition Chap. 4

Step 0. Initialize weights:
wi = (1, 1,0,0); : \
w, = (0,0,0,1).

Initialize the learning rate: o = .1.

Step 1. Begin computations.
Step 2. For input vector x = (0,0, 1, 1) with T = 2, do Steps 3-4.
Step 3. J = 2, since x is closer to w, than to w,.

Step 4. Since T = 2 and C, = 2, update w, as follows:
w2 =(0,0,0,1) + .1[(0,0,1,1) - (0,0,0, 1)]
=(0,0,.1,1).

Step 2. For input vector x = (1, 0, 0, 0) with T = 1, do Steps 3-4.
Step 3. J=1.
Step 4. Since T = 1 and C, = 1, update w, as follows:
w, =(1,1,0,0) + .1[(1,0,0,0) — (1,1,0,0)]
=(1,.9,0,0).

Step 2. For input vectorx = (0, 1, 1, 0) with T = 2, do Steps 3-4.
Step 3. J=1.

Step 4. Since T = 2, but C, = 1, update w, as follows:
W, = (1"990’0) -.1 [(09 19 1,0) - (19 -9,0y0)]
=(1.1,.89, —.1,0).

Step 5. This completes one epoch of training.
Reduce the learning rate.
Step 6. Test the stopping condition.

Geometric example

Example 4.12 Using LVQ: a geometric example with four cluster units

This example shows the use of LVQ to represent points in the unit square as be-
longing to one of four classes, indicated in Figures 4.28-4.33 by the symbols +, 0,
#, and @. There are four cluster units, one for each class. The weights are initialized
so that the cluster units are positioned in the four corners of the input region when
training starts: '

INITIAL WEIGHTS

Class 1 (+) 0 0
Class 2 (0) 1 1
Class 3 (*) 1 0
Class 4 (#) 0 1

Sec. (1.3 Learning Vector Quantization 191

gg§§§§§ §§§§§§ gggggﬁ
+++++++§§ g +++++ ++++
+++++ 4+ ++++++ ++++++
+++++++%* ++++++t** +4++++RRN
+++++++%% +++++t * % +++++t***
+++++++Ex +++44xRk% +++++RRkR%
+++++++** +++++rhkk +++++hhhk
Figure 4.28 Figure 4.29 . Figure 4.30
Training data Results after one epoch. Results after two epochs.

Initial Weights: Weights after epoch 1: Weights after epoch 2:
"+" © 0.00 0.00 "+ 0.44 0.52 "+" 041 0.55
"o" 1.00 1.00 "0" 0.90 093 "0" 0.88 0.92
Mkt 1.00 0.00 ok 1.03 0.17 " 1.03 0.24
"# 0.00 1.00 "# 0.13 1.02 "#' 022 1.02

B
4t
4+ e

++ et
F SRS e
+++++0000
% % % % #OOOO
% % % % HOOO0O
% % % % HOOO0O

*
*
*
+++ *
Figure 4.31 Figure 4.32 Figure 4.33
Results after three epochs. Results after 10 epochs. Results after 40 epochs.

Weights after epoch 3: Weights after epoch 10: Weights after epoch 40:
"+' 0.36 0.57 "+" 0.34 0.44 "+ 0.30 0.31
"0" 0.89 0.92 "0" 0.89 0.91 0" 092 0.93
"k 105 0.26 " 1,10 0.26 " 111 0.26
#0027 1.00 ¥ 030 1.03 w027 1.09

The training data are shown in Figure 4.28; the results of testing the net on
the same input points as are used for training are shown in Figures 4.29-4.33.

Example 4.13 Using LVQ: more cluster units improves performance

Using the training data as shown in Figure 4.28 (training input for points (x, y):
x=01i,i=1,...,9y=0.1j,j=1,...,9), we now use 20 output units, with
their weights and class assignments initialized randomly. Of course, this ignores
available information during initialization, but we do so for purposes of demonstra=———._

\

192 Neural Networks Based on Competition Chap. 4

tion. In practice, one would select a representative sample of patterns from each
class to use as the initial reference vectors. Using a fixed learning rate of .1, 1,000
epochs of training were performed. The larger number of epochs required is a result
of the random initialization of the weights. In order to show the regions more clearly,
we test on all points (x, y) for x = 0.05i, i = 2, ., 18y =1005,j=2... s
18.

Figures 4.34-4.40 show the results at selected stages of training. Notice that
much of the redistributing of the cluster vectors occurs during the first 100 epochs.
However, three cluster vectors (one for each of Classes 2, 3, and 4) are “‘caught’”
in the region where the input vectors are from Class 1 (shown with the symbol ‘* +°),
The results after 100, 200, 400, 600, and 800 epochs show that the net shifts these
vectors in various directions, before they are pushed off the right hand side of the
figure. The final classification of the test points does not resolve the L-shaped region
shown with the symbol 0’ much more distinctly than in the previous example.
This is due, at least in part, to the random initialization of the weights. Although
more vectors were available for each class, since they were poorly positioned when
training began, many of the clusters were forced to positions in which they failed
to be the ““winner’’ for any of the input points, Suitable initialization of the weights
for the cluster units greatly improves the performance of LVQ.

4.3.4 Variations

We now consider several improved LVQ algorithms, called LVQ2, LVQ2.1 [Ko-
honen, 1990a], and LVQ3 [Kohonen, 1990b]. In the original LVQ algorithm, only
the reference vector that is closest to the input vector is updated. The direction
it is moved depends on whether the winning reference vector belongs to the same
class as the input vector. In the improved algorithms, two vectors (the winner
and a runner-up) learn if several conditions are satisfied. The idea is that if the
input is approximately the same distance from both the winner and the runner-
up, then each of them should learn.

LVQ2

In the first modification, LVQ2, the conditions under which both vectors are
modified are that:

1. The winning unit and the runner-up (the next closest vector) represent dif-
ferent classes.

2. The input vector belongs to the same class as the runner-up.

3. The distances from the input vector to the winner and from the input vector

to the runner-up are approximately equal. This condition is expressed in
terms of a window, using the following notation:

X current input vector;
Ve reference vector that is closest to x;

T

Sec. 4.3

SR T PR R AR
R L T T S A
+++++ttF bbb+
LR B R R A AR
++++ttE e+t

LT i
+++HEfrrrnenn

+ ##
[X XX X X X) #
a8 SRR
ﬁ #%#00

00

Figure 4.34

Results with random initial weights.

++#ft##E#+ 440
+++
+++##00+++++++000
+++*H000+++++++**
+H+FRRO00 4 bbb RN
FHE+*R00++++ 4R R wR
4+ **00 444 TR
++ttdtr bbby ER
AL T LR T Sl
++++d bttt ER
++++F bbb EER
AR L LR R L TR Sl
LR R L E L EEE TS il
AR T TR EEE TR

#0000000
00000000
+0000000
00000
0000

Figure 4.37
Results after 400 epochs.

Learning Vector Quantization

##########08

90
HiiH
++++ +++000

+++++++++4+++00
++++++++++++++000
e T P LR L X X Sl
IR LT R TR L
R T L R RS L R i
+++++H BB rh e
++++ PP RRQ R kR
+++++**RQ00+4****
+++++**000+ 44 ¥ N xe
+++++**00++4+++* %Y
++++++ %04+ 4R Rk
LA R X TR A A
++++++0 e+ a R R

Figure 4.35
Results after 100 epochs.

ﬁOOOOOOO
ﬁ 0000000
0000000
+++#####+++000000
00000
0000

+++tt bt 4+

++tr+re 4

+4++++++++++++4+400*
IR E LR LR i
R L T L X L S
+++++ > it
+++++§§§ﬁ§*******

+++++ I I

R EEEE T LAl R Rl
R I LR I AL i
++++++HR RN

AL XL LR il
AT LI L LR L LA

Figure 4.38
Results after 600 epochs.

EiEbEe LY

0
0
fit 17000
+++## +++00
++++++++++++0
++++++t++ -+ 4
+++t+ b4+
LT LR E R LT S
IZ T L LR Y i
XTI L 2R X i
R L L E LT X T LY S i
S R A i]
ST E TR Sl
+++++ bbb RERR
LR LI YL LR E R S S
+++dt bR RS
LR E LT TR E S i

0000
0000
0000
0000
0000
0000

000

Figure 4.40
Results after 1,000 epochs.

193

HHHHHHEH

i

00

00
++++ +++000
+++++++++4+++00
+H+++tr 4+
ST EEE T T EEE R Sdhdhd
R T T Sl
S LT LT L L LS i
+++++++ e+ QRN R
++++++*00000*****

00

000
000
000
000
000
000

++++++***00 i
++++++**** ****
++++++****#ﬁ§***#
XTI L L L £ ARl

T XL L LY T EE S il
ST TR L R LY

Figure 4.36
Results after 200 epochs.

ﬁOOOOOOO
0000000
0000000

00000

0000

000

+++####++++0
+++++++4++++4+0
+++++++++++++0
LTI E LT LR Sl
L ET L L LR Sl
ST LT L L Y Sl
SR T L EE L L X Sl
R T L LT Y TR Rl
T R AR R NR Rk A
L T T T s ##**
+++t -+ RHORE
RL LI EEEELE LT Sl
L R L LT TR L Sl
IET TR T TR AR

Figure 4.39
Resuits after 800 epochs.

194 Neural Networks Based on Competition Chap. 4

y- reference vector that is next to closest to x (the runner-up);
d. distance from x to y.;
d, distance from x to y,.

To be used in updating the reference vectors, a window is defined as follows:
The input vector x falls in the window if

ﬁd-5>l — €
d,

and
i<l+e
d. ’

where the value of € depends on the number of training samples; a value of .35
is typical [Kohonen, 1990a].

In LVQ2, the vectors y. and y, are updated if the input vector x falls in the
window, y. and y, belong to different classes, and x belongs to the same class as
y-. If these conditions are met, the closest reference vector and the runner up are
updated:

Ye(t + 1) = yo(1) — a(D)[x(t) — yo(D)];
YAt + 1) = yAt) + a(t)[x(2) — yA(D)].

LV@2.1

In the modification called LVQ2.1 Kohonen (1990a) considers the two closest
reference vectors, y.; and y.,. The requirement for updating these vectors is that
one of them, say, y.,, belongs to the correct class (for the current input vector
x) and the other (y.2) does not belong to the same class as x. Unlike LVQ, LVQ2.1
does not distinguish between whether the closest vector is the one representing
the correct class or the incorrect class for the given input. As with LVQ2, it is
also required that x fall in the window in order for an update to occur. The test
for the window condition to be satisfied becomes

min [d"' Q] >1—¢

dc2 ’ dcl

and

dcl d¢-2
—,— | <1 + e
max [. dd] 1 €

The more complicated expressions result from the fact that we do not know
whether x is closer to y.; or to y,,.

Sec. 4.4 Counterpropagation 195

If these conditions are met, the reference vector that belongs to the same
class as x is updated according to

Ya(t + 1) = yau (@) + a@)x() — ya(0],

and the reference vector that does not belong to the same class as x is updated
according to

yeo(t + 1) = yea(t) — a()[x(8) — ye2(0)].

Lv@3

A further refinement, LVQ3 [Kohonen, 1990b], allows the two closest vectors to
learn as long as the input vector satisfies the window condition

min [42 @] > - o + o),

d(2 ’ dc‘l
where typical values of € = 0.2 are indicated. (Note that this window condition
is also used for LVQ2 in Kohonen, 1990b.) If one of the two closest vectors, y.i,
belongs to the same class as the input vector x, and the other vector y., belongs
to a different class, the weight updates are as for LVQ2.1. However, LVQ3 ex-
tends the training algorithm to provide for training if x, y.1, and y., belong to the
same class. In this case, the weight updates are

ye(t + 1) = ye(1) + BOIX(?) — ye(0)]

for both y., and y... The learning rate B(¢) is a multiple of the learning rate a(¢)
that is used if y., and y.» belong to different classes. The appropriate multiplier
is typically between 0.1 and 0.5, with smaller values corresponding to a narrower
window. Symbolically,

B(t) = ma(t) for0.1 <m <0.5.

This modification to the learning process ensures that the weights (codebook
vectors) continue to approximate the class distributions and prevents the code-

book vectors from moving away from their optimal placement if learning contin-
ues.

4.4 COUNTERPROPAGATION

Counterpropagation networks [Hecht-Nielsen, 1987a, 1987b, 1988] are multilayer
networks based on a combination of input, clustering, and output layers. Coun-
terpropagation nets can be used to compress data, to approximate functions, or
to associate patterns.

A counterpropagation net approximates its training input vector pairs by
adaptively constructing a look-up table. In this manner, a large number of training

196 Neural Networks Based on Competition Chap. 4

data points can be compressed to a more manageable number of look-up table
entries. If the training data represent function values, the net will approximate a
function. A heteroassociative net is simply one interpretation of a function from
aset of vectors (patterns) x to a set of vectors y. The accuracy of the approximation
is determined by the number of entries in the look-up table, which equals the
number of units in the cluster layer of the net.

Counterpropagation nets are trained in two stages. During the first stage,
the input vectors are clustered. In the original definition of counterpropagation
nets, no topology was assumed for the cluster units. However, the addition of a
linear topology, as discussed in Section 4.2, can improve the performance of the
net. The clusters that are formed may be based on either the dot product metric
or the Euclidean norm metric. During the second stage of training, the weights
from the cluster units to the output units are adapted to produce the desired
response. More details on training counterpropagation nets are given in Sections
4.4.1 and 4.4.2.

There are two types of counterpropagation nets: full and forward only. Full
counterpropagation is the subject of Section 4.4.1, forward-only counterpropa-
gation of Section 4.4.2.

4.4.1 Full Counterpropagation \

Full counterpropagation was developed to provide an efficient method of rep-
resenting a large number of vector pairs, x:y by adaptively constructing a look-
up table. It produces an approximation x* :y* based on input of an x vector (with
no information about the corresponding y vector), or input of a y vector only, or
input of an x:y pair, possibly with some distorted or missing elements in either
or both vectors.

Full counterpropagation uses the training vector pairs x:y to form the clus-
ters during the first phase of training. In the original definition, the competition
in the cluster (or Kohonen) layer chose the unit that had the largest net input as
the winner; this corresponds to using the dot product metric. Whenever vectors
are to be compared using the dot product metric, they should be normalized.
Although it is possible to normalize them without losing information by adding
an extra component (see Exercise 4.10), to avoid this effort and provide the most
direct comparison between full and forward-only counterpropagation, we shall
use the Euclidean norm for both (as well as for Kohonen self-organizing maps
and LVQ).

Architecture

Figure 4.41 illustrates the architecture of a full counterpropagation network; for
simplicity, the weights are not shown. Figures 4.42 and 4.43, which indicate the
units that are active during each of the two phases of training a full counterprop-
agation net, show the weights.

Sec. 4.4 Counterpropagation

198 Neural Networks Based on Competition Chap. 4

s &

-
X Input Cluster YInput
Layer Layer® Layer

Figure 4.42 Active units during the first phase of counterpropagation training.

un tn i
Uz i —»@
. Yim tn :
¥ Qutput XOutput Figure 4.43 Second phase of
Layer

Layer counterpropagation training.

Sec. 4.4 Counterpropagation 199

Algorithm

Training a counterpropagation network occurs in two phases. During the first
phase, the units in the X input, cluster, and ¥ input layers are active. The units
in the cluster layer compete; the interconnections are not shown.

In the basic definition of counterpropagation, no topology is assumed for
the cluster layer units; only the winning unit is allowed to learn. The learning rule
for weight updates on the winning cluster unit is

\ vis(new) = (1 -)v;;(0ld) + ax;, i = L ...,n

wis(new) = (1 — Byw,(old) + By, k=1,...,m.

This is standard Kohonen learning, which consists of both the competition among
the units and the weight updates for the winning unit.

During the second phase of the algorithm, only unit J remains active in the
cluster layer. The weights from the winning cluster unit J to the output units are
adjusted so that the vector of activations of the units in the ¥ output layer, y*,
is an approximation to the input vector ¥y; x* is an approximation to x.

The weight updates for the units in the Y output and X output layers are

upnew) = (1 — aj)uy(old) + ay, k=1,..., m;

tynew) = (1 — b, old) + bx;, i = I, ...,n.

This is known as Grossberg learning, which, as used here, is a special case of the
more general outstar learning [Hecht-Nielsen, 1990]. Outstar learning occurs for
all units in a particular layer; no competition among those units is assumed. How-
ever, the forms of the weight updates for Kohonen learning and Grossberg learning
are closely related.

The learning rules for the output layers can also be viewed as delta rule
learning. To see this, observe that Y« is the target value for unit Y} and uyi(old)
is the computed activation of the unit (since the signal sent by unit Z, is 1). Now,
simple algebra gives

un(new) = (1 — a)un(old) + ay,

us(old) + a(yx — uyi(old)).

Thus, the weight change is simply the learning rate a times the error. Exactly the
same comments apply to the weight updates for the units in the X output layer
[Dayhoff, 1990].

The nomenclature we use in the counterpropagation algorithm is as follows:

X input training vector:
x=(x|,...,x,~,...,x,,).
y target output corresponding to input x:

y=()’l,---,)’k,---,}’m)-

200 Neural Networks Based on Competition = Chap. 4

% activation of cluster layer unit Z;.

x* computed approximation to vector x.

y* computed approximation to vector y.

Vij weight from X input layer, unit X;, to cluster layer, unit Z;.

Wi weight from Y input layer, unit Y, to cluster layer, unit Z;.

Uk weight from cluster layer, unit Z;, to Y output layer, unit Y%.

ti weight from cluster layer, unit Z;, to X output layer, unit X7.

a, B learning rates for weights into cluster layer (Kohonen learning).

a, b learning rates for weights out from cluster layer (Grossbe;g learning).

The training algorithm for full counterpropagation is:

Step 0. Initialize weights, learning rates, etc.
Step 1. While stopping condition for phase 1 training is false, do Steps 2-7.
Step 2. For each training input pair x:y, do Steps 3-5.
Step 3. Set X input layer activations to vector x;
set Y input layer activations to vector y.
Step 4. Find winning cluster unit; call its index J;
Step 5. Update weights for unit Z,:

'U,'J(DCW) = (1 - (!)U,'J(Old) + ox;,

i=1,...,n
wis(new) = (1 — Bywis(old) + By,
k=1, , m
Step 6. Reduce learning rates o and .
Step 7. Test stopping condition for phase 1 training.

Step 8. While stopping condition for phase 2 training is false, do Steps 9-15.
(Note: a and B are small, constant values during phase 2.)

Step 9. For each training input pair x:y, do Steps 10-13.
Step 10. Set X input layer activations to vector x;
‘ set Y input layer activations to vector y.
Step 11. Find winning cluster unit; call its index J.

Step 12. Update weights into unit Z,:

vis(new) = (1 — a)vis(old) + ax;,
i=1L...,m

wis(new) = (1 — B)wyy(old) + By,
k)l,...,m.

Sec. 4.4 Counterpropagation 201

Step 13. Update weights from unit Z, to the output
layers:

uyi(new) = (1 — a)uyi(old) + ayq,
k=1,...,m.
t,,-(new) = (1 - b)tji(old) + bxi,

" i=1,...,n
Step 14. Reduce learning rate.
Step 15. Test stopping condition for phase 2 training.

In Steps 4 and 11:

In case of a tie, take the unit with the smallest index.

To use the dot product metric, find the cluster unit Z; with the largest net
input:

Z—iﬂj = 2 Xivy; + 2 YWy
i k

The weight vectors and input vectors should be normalized to use the dot product
metric.

To use the Euclidean distance metric, find the cluster unit Z ;» the square of
whose distance from the input vectors is smallest:

D;=3 (xi — v, + 2 vk — w2
7 k

Application

After training, a counterpropagation neural net can be used to find approximations
x* and y* to the input, output vector pair x and y. Hecht-Nielsen [1990] refers to
this process as accretion, as opposed to interpolation between known values of
a function. The application procedure for counterpropagation is as follows:

Step 0. Initialize weights.
Step 1. For each input pair x:y, do Steps 2-4.

Step 2. Set X input layer activations to vector X;
set Y input layer activations to vector y;
Step 3. Find the cluster unit Z, that is closest to the input pair.
Step 4. Compute approximations to x and y:
xt =ty
YE = up.

The net can also be used in an interpolation mode; in this case, several units
are allowed to be active in the cluster layer. The activations are set so that

202

Neural Networks Based on Competition Chap. 4

> z; = 1 (in order to form a convex combination of values). The interpolated

J

approximations to x and y are then

x¥ = 2 Zitji,
J

YE = 2zl
A

The accuracy of approximation is increased by using interpolation.

For testing with only an x vector for input (i.e., there is no information about

the corresponding y), it may be preferable to find the winning unit J based on
comparing only the x vector and the first n components of the weight vector for
each cluster layer unit.

1
Example 4.14 A full counterpropagation net for the function y = ”

In this example, we consider the performance of a full counterpropagation net to
form a look-up table for the function y = 1/x on the interval [0.1, 10.0]. Suppose
we have 10 cluster units (in the Kohonen layer); there is 1 X input layer unit, 1 Y
input layer unit, 1 X output layer unit, and 1 Y output layer unit. Suppose further
that we have a large number of training points (perhaps 1,000), with x values between
0.1 and 10.0 and the corresponding y values given by y = 1/x. The training input
points, which are uniformly distributed along the curve, are presented in random
order.

If our initial weights (on the cluster units) are chosen appropriately, then after
the first phase of training, the clusters units will be uniformly distributed along the
curve. If we use a linear structure (as for a Kohonen self-organizing map) on the
cluster units, this will improve the chances that the weights will represent the points
on the curve in a statistically optimal manner.

Typical results give the following weights for the cluster units. These can be
interpreted as the positions (in the x-y plane) that the cluster units represent. The
first weight for each cluster unit is the weight from the X input unit, the second
weight the weight from the Y input unit. We have:

CLUSTER UNIT v w
Z 0.11 9.0
Z, 0.14 7.0
Z, 020 5.0
Zs 030 3.3
Zs 06 1.6
Ze 1.6 06
Z; 3.3 0.30
Zs 50 0.20
Zo 7.0 0.14

Zo 9.0 0.11

Sec. 4.4 Counterpropagation 203

After the second phase of training, the weights to the output units will be
approximately the same as the weights into the cluster units,

The weights are shown on a diagram of the net in Figure 4.44 and on a graph
of the function in Figure 4.45.

\be can use this net to obtain the approximate value of yfor x = 0.12 as
follows:

Step 0. Initialize weights.
Step 1. For the input x = 0.12, y = 0.0, do Steps 2-4.

Step 2. Set X input layer activations to vector X;
set Y input layer activations to vector y;
Step 3. Find the index J of the winning cluster unit;

the squares of the distances from the input to each of the
cluster units are;:

Dy = (0.12 - 0.11)* + (0.00 — 9.00) = 81
Dz = (0.12 - 0.14)> + (0.00 — 7.00)2 = 49
D3 = (0.12 - 0.20)* + (0.00 — 5.00) = 25
D4y = (0.12 - 0.30)* + (0.00 — 3.30)* = 11
Ds = (0.12 - 0.60) + (0.00 — 1.60)> = 2.8
De = (0.12 - 1.60)> + (0.00 — 0.60)> = 2.6
D7 = (0.12 - 3.30)> + (0.00 — 0.30)2 = 10.2
Dg = (0.12 - 5.00* + (0.00 — 0.20)2 = 23.9
Dy = (0.12 - 7.00)°> + (0.00 — 0.14)2 = 47.4
Do = (0.12 - 9.00)> + (0.00 — 0.11)2 = 78.9

Thus, based on the total input, the closest cluster unit is

J =6.
~ Step 4. Compute approximations to x and y:
X*=1, =16
y* = Uy = 0.6.

Clearly, this is not really the approximation we wish to find. Since we only
have information about the x input, we should use the earlier mentioned modi-
fication to the application procedure. Thus, if we base our search for the winning
cluster unit on distance from the x input to the corresponding weight for each
cluster unit, we find the following in Steps 3 and 4:

Sec. 4.4 Counterpropagation

Step 3. Find the index J of the winning cluster unit;

X

Figure 4.45

Graph of y = I/x,
showing position of cluster units.

205

the squares of the distances from the input to each of the
cluster units are:

D, = (0.12
D, = (0.12
D; = (0.12
D4 = (0.12
Ds = (0.12
D¢ = (0.12
D; = (0.12
Dg = (0.12
Do = (0.12
Dy = (0.12

~- 0.11)> = 0.0001
- 0.14* = 0.0004
- 0.20)* = 0.064
- 0.30> = 0.032
- 0.60)> = 0.23
- 1.60)* = 2.2

- 3.30)* = 10.1

- 5.00)* = 23.8

- 7.00)* = 47.3

~ 9.00)* = 81

Thus, based on the input from x only, the closest cluster

unitis J = 1.

206 Neural Networks Based on Competition Chap. 4

Step 4. Compute approximations to x and y:
x* = ty = 011,
y* = u; = 9.00.

Observations and Comments. The weight matrix V from the X input layer
to the cluster layer is almost identical to the weight matrix T from the cluster
layer to the X output layer. Similarly, the weight matrices (W and U) for Y and
Y* are also essentially the same. But these are to be expected, since the form of
the learning rules are the same and the same initial learning rates have been used.
The slight differences reflect the fact that some patterns may be learned by one
unit early in the training (of the cluster layer), but may eventually be learned by
a different unit. This “*migration”’ does not affect the learning for the output layer
(T matrix and U matrix). Another factor in the differences in the weight matrices
is the additional learning (at a very low rate) that occurs for the V and W matrices
while the U and T matrices are being formed.

4.4.2 Forward-Only Counterpropagation

Forward-only counterpropagation nets are a simplified version of the full coun-
terpropagation nets discussed in Section 4.4.1. Forward-only nets are intended
to approximate a function y = f(x) that is not necessarily invertible; that is,
forward-only counterpropagation nets may be used if the mapping from x to y is
well defined, but the mapping from y to x is not.

Forward-only counterpropagation differs from full counterpropagation in
using only the x vectors to form the clusters on the Kohonen units during the first
stage of training. The original presentation of forward-only counterpropagation
used the Euclidean distance between the input vector and the weight (exemplar)
vector for the Kohonen unit (rather than the dot product metric used in the original
development of full counterpropagation). However, either metric can be used for
either form of counterpropagation.

Architecture

Although the architecture of a forward-only counterpropagation net, as illustrated
in Figure 4.46, appears to be the same as the architecture of a backpropagation
net, the counterpropagation net has interconnections among the units in the cluster
layer, which are not shown. In general, in forward-only counterpropagation, after
competition, only one unit in that layer will be active and send a signal to the
output layer.

Algorithm

The training procedure for the forward-only counterpropagation net consists of
several steps, as indicated in the algorithm that follows. First, an input vector is
presented to the input units. The units in the cluster layer compete (winner take

© X

Sec. 4.4 Counterpropagation 207

Cluster Output
Layer Layer Layer

Figure 4.46 Forward-only counterpropagation.

all) for the right to learn the input vector. After the entire set of training vectors
has been presented, the learning rate is reduced and the vectors are presented
again; this continues through several iterations.

After the weights from the input layer to the cluster layer have been trained
(the learning rate has been reduced to a small value), the weights from the cluster
layer to the output layer are trained. Now, as each training input vector is pre-
sented to the input layer, the associated target vector is presented to the output
layer. The winning cluster unit (call it J) sends a signal of 1 to the output layer.
Each output unit £ has a computed input signal w,, and target value Y. Using
the difference between these values, the weights between the winning cluster unit
and the output layer are updated. The learning rule for these weights is similar
to the learning rule for the weights from the input units to the cluster units:

LEARNING RULE FOR WEIGHTS FROM INPUT UNITS TO CLUSTER UNITS

vis(new) = vy + a(x; — viy)

(1 — o)vis(0ld) + ax;.

208 Neural Networks Based on Competition Chap. 4

LEARNING RULE FOR WEIGHTS FROM CLUSTER UNITS TO OUTPUT UNITS
winew) = wyr + a(yr — wix)
= (1 — a)w,(old) + ay,

However, if w,, is interpreted as the computed output (i.e., yx = wy;), and the
activation of the cluster units is included, viz.,

[ifj=y
Y 0 otherwise,

then the learning rule for the weights from the cluster units to the output units
can be written in the form of the delta rule:

wir(new) = wye + aziyr — wie).

The training of the weights from the input units to the cluster units continues
at a low learning rate while the learning rate for the weights from the cluster units
to the output units is gradually reduced. The nomenclature used is as follows:

a, a learning rate parameters:
S<a<.g,

0<axl1

(suggested initial values, a = .1, a = .6 [Hecht-Nielsen, 1988]).
X activation vector for input units:

X = (X1y ooy XiyoonyXn)
x — vi Euclidean distance between vectors x and v.

As with full counterpropagation,; no topological structure was assumed for the
cluster units in the original formulation of forward-only counterpropagation. How-
ever, in many cases, training can be improved by using a linear structure on the
cluster units, as described in Section 4.2. The structure helps to ensure that, after
training, the weights for the cluster units are distributed in a statistically optimal
manner.

The training algorithm for the forward-only counterpropagation net is as
follows:

Step 0. Initialize weights, learning rates, etc.
Step 1. While stopping condition for phase 1 is false, do Steps 2-7.
Step 2. For each training input x, do Steps 3-5.
Step 3. Set X input layer activations to vector x.
Step 4. Find winning cluster unit; call its index J.
Step 5. Update weights for unit Z;:

'U,'J(I'ICW) = (1 - (l)'U,'_[(Old) + ox;,
i=1,...,n.

Sec. 4.4 Counterpropagation 209

Step 6. Reduce learning rate a.
Step 7. Test stopping condition for phase 1 training.

Step 8. While stopping condition for phase 2 training is false, do Steps 9-15.
(Note: a is a small, constant value during phase 2.)

Step 9. For each training input pair x:y, do Steps 10-13.
Step 10. Set X input layer activations to vector x;
set ¥ output layer activations to vector y.
Step 11. Find the winning cluster unit; call its index
J

Step 12. Update weights into unit Z, (« is small);

'U,'J(l’leW) = (1 - a)v,-,(old) + ox;,
i=1,...,n

Step 13, Update weights from unit Z, to the output
units:

wik(new) = (1 - a)w,i(old) + ay,,
k=1,...,m.

Step 14. Réduce learning rate a.
Step 15. Test stopping condition for phase 2 training.

In Steps 4 and 11:

In case of a tie, take the unit with the smallest index.

To use the dot product metric, find the cluster unit Z, with the largest net
input:

z_in,- = 2 XiUij.
i

To use the Euclidean distance metric, find the cluster unit Z,, the square
of whose distance from the input pattern,

Dj = 2 (x; — Uij)z,
is smallest.

Applications

The application procedure for foward-only counterpropagation is:

Step 0. Initialize weights (by training as in previous subsection).
Step 1. Present input vector x.

Step 2. Find unit J closest to vector x.

Step 3. Set activations of output units:

Y = Wyk.

210 Neural Networks Based on Competition Chap. 4

A forward-only counterpropagation net can also be used in an *‘interpolation
mode. In this case, more than one Kohonen unit has a nonzero activation with

2 Zj = I.
I
The activation of the output units is then given by
Vi = 2 ZiWik.
J
Again, accuracy is increased by using the interpolation mode.

1
Example 4.15 A forward-only counterpropagation net for the function y = x

In this example, we consider the performance of a forward-only counterpropagation
net to form a look-up table for the functiony = 1/x on the interval {0.1, 10.0]. Suppose
we have 10 cluster units (in the cluster layer); there is 1 X input layer unit and 1 Y
output layer unit. Suppose further that we have a large number of training points
(the x values for our function) uniformly distributed between 0.1 and 10.0 and pre-
sented in a random order.

If we use a linear structure on the cluster units, the weights (from the input
unit to the 10 cluster units) will be approximately 0.5, 1.5, 2.5, 3.5, ..., 9.5 after
the first phase of training.

After the second phase of training, the weights to the Y output units will be
approximately 5.5, 0.75, 0.4, . . ., 0.1. Thus, the approximations to the function
values will be much more accurate for large values of x than for small values. Figure
4.47 illustrates the weights associated with each cluster unit.

Comparing these results with those of Example 4.14 (for full counterpropa-
gation), we see that even if the net is intended only for approximating the mapping
from x to y, the full counterpropagation net may distribute the cluster units in a

Figure 4.47 Results for y = 1/x using
1 2 3 10 x forward-only counterpropagation.

Sec. 4.5 Suggestions for Further Study 211

manner that produces more accurate approximations over the entire range of input
values.

4.5 SUGGESTIONS FOR FURTHER STUDY
4.5.1 Readings

Fixed-weight nets

Lippmann, R. P. (1987). *‘An Introduction to Computing with Neural Nets.”’ [EEE ASSP
Magazine, 4:4-22.

Kohonen self-organizing maps

ANGeNIOL, B., G. Vausois, and J-Y. Le TEXIER. (1988). *‘Self-organizing Feature Maps
and the Travelling Salesman Problem.”’ Neural Networks, 1(4):289-293.
Kononen, T. (1982). **Self-organized Formation of Topologically Correct Feature Maps.”’

Biological Cybernetics, 43:59—69. Reprinted in Anderson and Rosenfeld [1988] pp. 511-
521.

Kouonen, T. (1989a). Self-organization and Associative Memory, 3rd ed. Berlin: Springer-
Verlag.

KoHoNEN, T. (1990a). “‘Improved Versions of Learning Vector Quantization.”’ Interna-
tional Joint Conference on Neural Networks, 1, pp. 545-550.

KoHoneN, T. (1990b). *“The Self-Organizing Map.” Proceedings of the IEEE, 78(9):1464—
1480.

Counterpropagation

HEecHT-NieLsen, R. (1987a). **Counterpropagation Networks.”’ Applied Optics, 26(23),
4979-4984.

HEecHT-NieLsen, R. (1987b). **Counterpropagation Networks.”’ [EEE International Con-
ference on Neural Networks, I, pp- 19-32.

4.5.2 Exercises
Introduction

4.1 Show that if the weight vectors are not the same length, it is possible that the weight
vector that appears to be closest to the input vector will not be the weight vector
that is chosen when the dot product metric is used. More specifically, consider two
weight vectors w, and w, with lengths |lw,|| and .| and angles with a horizontal
axis of 8, and 0,, respectively. For an arbitrary input vector s, what is the inequality
relation (in terms of the lengths and angles of the three vectors w,, w», and s) that
determines when the neuron represented by w; would be chosen as the winner (using
the dot product metric). Give an example where this might not be the desired choice.

Kohonen self-organizing maps

4.2 a. Given a Kohonen self-organizing map with weights as shown in the following
diagram, use the square of the Euclidean distance to find the cluster unit C, that
is closest to the input vector (.5, .2).

212 Neural Networks Based on Competition Chap. 4
0.3 0.7 0.6 090.1 0504 03 08 0.2

b. Using a learning rate of .2, find the new weights for unit C;. é
¢. If units C,;_, and C, ., are also allowed to learn the input pattern, find their new g‘
weights. |

4.3 Repeat the preceding exercise for the input vector (.5, .5), witha = .1.

4.4 Consider a Kohonen net with two cluster units and five input units. The weight
vectors for the cluster units are

w; = (1.0, 0.8, 0.6, 0.4, 0.2)
and
wy = (0.2, 0.4, 0.6, 0.8, 1.0).

Use the square of the Euclidean distance to find the winning cluster unit for the input
pattern

x = (0.5, 1.0, 0.5 0.0, 0.0).

Using a learning rate of .2, find the new weights for the winning unit.

Learning vector quantization

4.5 Consider an LVQ net with two input units and four target classes: C,, C,, C3, and
C,4. There are 16 classification units, with weight vectors indicated by the coordinates
on the following chart, read in row-column order. For example, the unit with weight
vector (0.2, 0.4) is assigned to represent Class 3, and the classification units for Class
1 have initial weight vectors of (0.2, 0.2), (0.2, 0.6), (0.6, 0.8), and (0.6, 0.4).

X2

1.0

0.8 C3 C4 CI C2
0.6 C, C, C3 C4
0.4 C; Cy C G
0.2 C, C, C3 C4
0.0

00 0.2 04 06 08 1.0 x;

Using the square of the Euclidean distance (and the geometry of the diagram, to avoid
having to do any distance calculations), determine the changes that occur as you do
the following:

Sec. 4.5 Suggestions for Further Study 213

a. Present an input vector of (0.25, 0.25) representing Class 1. Using a learning rate
of @ = 0.5, show which classification unit moves where (i.e., determine its new
weight vector).

b. Present an input vector of (0.4, 0.35) representing Class 1. What happens?

c. Instead of presenting the second vector as in part b, present the vector (0.4, 0.45).
What happens?

d. Suppose the training inplit‘s are drawn from the following regions:
Class1 00=x,<05 00=<x,<0.5
Class2 05=x, <10 00=<x,<05
Class3 00=x,<0.5 05=x,=<1.0
Class4 05=x,=<10 05=<x,=<1.0.
From a short-term point of view, which of the second vectors presented-—(0.4,

0.35) in part b or (0.4, 0.45) in part c—has a better éffect in moving the classi-
fication units toward their desired positions to represent the input data?

Counterpropagation

4.6 Consider thie following full counterpropagation net:

Using the input pair

x=(1,0,0,0), y=(1,0),

perform the first phase of traihing (one step only). Find the activation of the cluster
layer units. Update the weights using a learning rate of .3.

4.7 Repeat Exercise 4.6, except use x = (1, 0, 1, 1) and y = (0, 1).

214

4.8
4.9

4.10

4.11

Neural Networks Based on Competition Chap. 4

Modify Exercise 4.6 to use forward-only counterpropagation.

Design a counterpropagation net to solve the problem of associating a group of binary

x vectors (sextuples) with the appropriate binary y vectors (with two components),
defined as follows:

If two or more of the first three components of the x vector are 1’s, then the first
component of the y vector is to be 1 (otherwise it is to be 0). Similarly, if two or
more of the last three components of the x vector are 1’s, then the second component
of the y vector is to be 1 (otherwise it is to be 0).

Discuss how to choose the number of units for the Kohonen layer. Describe the
process of training the net. Illustrate the process for the pair

1,1,0,0,1,0) & (1, 0).

Show that input vectors (n-tuples) can be converted to normalized (n + 1)-tuples by
the following process:

Find N such that N > |[4]| for every vector v. For each vector, its (n + 1)st component
is VN2 — |v|?.

Show also that the augmented vector has norm N.

Show that forward-only and full counterpropagation are equivalent if the training
input pairs x, y for full counterpropagation are concatenated and the concatenated
vector is treated as both the training input and the target pattern for a forward-only
counterpropagation net.

4.5.3 Projects

Kohonen self-organizing maps

4.1

Write a computer program to implement a Kohonen self-organizing map neural net.
Use 2 input units, 50 cluster units, and a linear topology for the cluster units. Allow
the winner and its nearest topological neighbor to learn. (In other words, if unit J is
the winner, then units J — 1 and J + 1 also learn, unless J — 1 < lorJ + 1 > 50.)

Use an initial learning rate of 0.5, and gradually reduce it to 0.01 (over 100
epochs). The initial weights on all cluster units are to be random numbers between
—1 and 1 (for each component of the weight vector for each unit).

Generate a training data file as follows:

Choose two random numbers between —0.5 and 0.5, and call them x, and x..
Put the point (x,, x») in the training set if

X7+ x2<0.25.
Repeat until you have a set of 100 training points.

After every 10 epochs of training, graph the cluster units (by using their weight
vector as a position in the two-dimensional Euclidean plane); draw a line connecting

Sec. 4.5

Suggestions for Further Study

215

Cy to Cy, C, to Cs, etc., to show their topological relationships. You should start
with a real mess for the initial positions of the weights, which will gradually smooth
out to give a line that winds its way through the region from which the training points
were chosen.

LvVg

4.2 Write a computer program to implement the LVQ net described in Exercise 4.5.
Train the net with the data given in part d of that exercise. Experiment with different
learning rates, different numbers of classification units, different geometries for the

input data, etc.

4.3 Repeat Example 4.13, using a random input order for the training points and using
the first five training points from each class to initialize the weights for the five cluster
vectors for that class.

4.4 Repeat Example 4.13, using variant LVQ2 of the learning vector quantization method.
Repeat again, this time using LVQ2.1.

Counterpropagation

4.5 Write a program to implement the counterpropagation algorithm with 63 input units,
26 units in the cluster layer, and 15 units in the Y-layer. Read initial weights from a

file.

a. In the training mode, use a linear reduction of learning rates 0.9, 0.8, . . ., 0.1,
Input the training vector pairs from a file. (Print their values out upon first pre-
sentation.) Save the final weights to a file also.

b. In testing mode, input a test pattern, print it out, and determine the approximate
pair of patterns. Use inputs that correspond to each of the x vectors used in training
(with 0’s for the corresponding y’s), inputs that correspond to each of the y vectors
used in training (with 0’s for the corresponding x’s), and noisy versions of the
training patterns.

¢. Try the dot product metric, with inputs normalized to unit length (the Euclidean

distance). Repeat, using the Hamming distance to normalize the vectors.

Input from
Font 1

i HLY
itiiit

$he v o

$Ee o oo s 0

$o o o0 0 0 ok

oo edbe cdtgE
e ot ¢ o

o oA o4k

*..l.'...

o ot o3

B v o0 0 0 agE
B o o000 oy
ke o o o o

Hke o ok o o

B v o000 ode

e e 0 0 0 0 0 0 0

= TR

$Ee e s 00 00

s oo s o
e s efke o s

3=
*

o o 00 0 e ogp

#,
5.
i el
::3 L
H#i-
#
|l
#..

R
$ee o otttk o

oflte o o o offe
BEe o v 00 ok
E R Y+
4
ooo.ooo

otk o o o oy

o o ofite e o
DY AT X

e o o o o o

SR o000 0 o

*'.l#
e o o

o
VMY

216 Neural Networks Based on Competition Chap. 4

:::g::: A S 4 F L5 M
Input from A ARSI F :::::§ LIS SRRREE I &4 4
Font 2 ST 3?& ib324F §#; g:::::: §::
:gﬁﬁfgz . :::::§ LA AR S L

‘¥ HERHH i 2.1 X

1444 A& 444 Sl A
ool LIS SODOGEII +.i SRSSI % 35 S SRR 4
N :§ LA SONEE 4.4 SRR #.ﬁ el Res
PSSP I LA MOSST L dE T LA S04 MARE AL

H#H#- - it # s H## L X

Y S ¥ ?*?#i :;##?;a
gmmtﬁvnl % 35 SRR FENS FRFTAINE (UL SESREL BN 1
ont3 .#... . # oo o oo #' e o000 0 ..
.###. . . oo a0 .# oo 0 0 s 0 .o
:::::§ DS $hd LA FRORIA S L L

#e--% #HEHEH- o 12 R

b4 344 3 43444 A 5 34 L3 1008 44
X ERER #. . ..g.. ###.. .#
¥ R B . ## o s e o e s ee#... #.
il :ﬁ % S0 SO it SRSAASS & ;:ﬂ 5 S g;:
.::&. #. . ::::. ## .&... . .#. : ::‘f... .#

Hedd- - # ##### K 11 # #~-##

4.6 Implement a full counterpropagation program for Example 4.14.
4.7 Implement a forward-only counterpropagation program for Example 4.15.
4.8 Let the digits 0, 1, 2, . . . , 7 be represented as

0: 1 0 o0 o 6o 0 0 0
I: 0 1 0 0 0 0 o 0
2: 0 0 1 0 0 0 (U
3: 0o 0 0 1 0 0 6 0
4: 0 0 o 0 1 0 0 0
5 0 0 0 0 0 1 0 0
6: 0 0 o 0 0 0 1 0
7: 0 0 0 0 0 0 0 1

Use a counterpropagation net (full or forward only) to map these digits to their binary
representations:

Sec. 4.5 Suggestions for Further Study 217

0: 0 0 0
I 0 0 1
2: 0 1 0
3: 0 1 1
4: 1 0 0
s: 1 0 1
6: 1 1 0
7: 1 1 1

a. Use the Euclidean distance metric.
b. Repeat for the dot product metric, with inputs and targets normalized.

4.9 Use counterpropagation to solve the problem in Example 4.12, and compare the
results with the preceding ones.

CHAPTER 5

Adaptive Resonance Theory

5.1 INTRODUCTION

Adaptive resonance theory (ART) was developed by Carpenter and Grossberg
[1987a]. One form, ART1, is designed for clustering binary vectors; another, ART?2
[Carpenter & Grossberg, 1987b], accepts continuous-valued vectors. These nets
cluster inputs by using unsupervised learning. Input patterns may be presented
in any order. Each time a pattern is presented, an appropriate cluster unit is chosen
and that cluster’s weights are adjusted to let the cluster unit learn the pattern. As
is often the case in clustering nets, the weights on a cluster unit may be considered
to be an exemplar (or code vector) for the patterns placed on that cluster.

5.1.1 Motivation

Adaptive resonance theory nets are designed to allow the user to control the
degree of similarity of patterns placed on the same cluster. However, since input
patterns may differ in their level of detail (number of components that are non-
zero), the relative similarity of an input pattern to the weight vector for a cluster
unit, rather than the absolute difference between the vectors, is used. (A difference
in one component is more significant in patterns that have very few nonzero
components than it is in patterns with many nonzero components).

As the net is trained, each training pattern may be presented several times.
A pattern may be placed on one cluster unit the first time it is presented and then

218

Sec. 5.1 Introduction 219

placed on a different cluster when it is presented later (due to changes in the
weights for the first cluster if it has learned other patterns in the meantime.) A
stable net will not return a pattern to a previous cluster; in other words, a pattern
oscillating among different cluster units at different stages of training indicates
an unstable net.

Some nets achieve stability by gradually reducing the learning rate as the
same set of training patterns is presented many times. However, this does not
allow the net to learn readily a new pattern that is presented for the first time
after a number of training epochs have already taken place. The ability of a net
to respond to (learn) a new pattern equally well at any stage of learning is called
plasticity. Adaptive resonance theory nets are designed to be both stable and
plastic.

Also, attention has been paid to structuring ART nets so that neural pro-
cesses can control the rather intricate operation of these nets. This requires a
number of neurons in addition to the input units, cluster units, and units for the
comparison of the input signal with the cluster unit’s weights.

5.1.2 Basic Architecture

The basic architecture of an adaptive resonance neural net involves three groups
of neurons: an input processing field (called the F, layer), the cluster units (the
F; layer), and a mechanism to control the degree of similarity of patterns placed
on the same cluster (a reset mechanism). The F layer can be considered to consist
of two parts: the input portion and the interface portion. Some processing may
occur in the input portion (especially in ART2). The interface portion combines
signals from the input portion and the F layer, for use in comparing the similarity
of the input signal to the weight vector for the cluster unit that has been selected
as a candidate for learning. We shall denote the input portion of the F; layer as
F(a) and the interface portion as F,(b).

To control the similarity of patterns placed on the same cluster, there are
two sets of connections (each with its own weights) between each unit in the
interface portion of the input field and each cluster unit. The F,(b) layer is con-
nected to the F, layer by bottom-up weights; the bottom-up weight on the con-
nection from the ith F, unit to the jth F> unit is designated b;;. The F, layer is
connected to the F(b) layer by top-down weights; the top-down weight on the
connection from the jth F> unit to the ith F, unit is designated ¢;;.

The F, layer is a competitive layer: The cluster unit with the]argest net
input becomes the candidate to learn the input pattern. The activations of all other
F, units are set to zero. The interface units now combine information from the
input and cluster units. Whether or not this cluster unit is allowed to learn the
input pattern depends on how similar its top-down weight vector is to the input
vector. This decision is made by the reset unit, based on signals it receives from
the input (a) and interface (b) portions of the F, layer. If the cluster unit is not
allowed to learn, it is inhibited and a new cluster unit is selected as the candidate.

220 Adaptive Resonance Theory Chap. 5

The supplemental units needed to control the processing of information in
the ART nets are described for ART1 and ART?2 in Sections 5.2.1 and 5.3.1,
respectively.

5.1.3 Basic Operation

It is difficult to describe even the basic architecture of adaptive resonance theory
nets without discussing the operation of the nets. Details of the operation of ART1
and ART?2 are presented later in this chapter.

A learning trial in ART consists of the presentation of one input pattern.
Before the pattern is presented, the activations of all units in the net are set to
zero. All F; units are inactive. (Any F> units that had been inhibited on a previous
learning trial are again available to compete.) Once a pattern is presented, it
continues to send its input signal until the learning trial is completed.

The degree of similarity required for patterns to be assigned to the same
cluster unit is controlled by a user-specified parameter, known as the vigilance
parameter. Although the details of the reset mechanism for ART1 and ART?
differ, its function is to control the state of each node in the F, layer. At any time,
an F, node is in one of three states:

active (“‘on,” activation = d; d = 1 for ART1, 0 < d < 1 for ART2),

inactive (“*off,” activation = 0, but available to participate in competition), or
inhibited (‘‘off,” activation = 0, and prevented from participating in any further
competition during the presentation of the current input vector).

A summary of the steps that occur in ART nets in general is as follows:

Step 0. Initialize parameters.
Step 1. While stopping condition is false, do Steps 2-9.
Step 2. For each input vector, do Steps 3-8.
Step 3. Process F, layer.
Step 4. While reset condition is true, do Steps 5-7.

Step 5. Find candidate unit to learn the current input
pattern:
F> unit (which is not inhibited) with largest
input.

Step 6. F(b) units combine their inputs from F,(a) and
F;.

Step 7. Test reset condition (details differ for ART1 and
ART2):

If reset is true, then the current candidate unit
is rejected (inhibited); return to Step 4.

If reset is false, then the current candidate unit
is accepted for learning; proceed to Step 8.

T T

Sec. 5.1 Introduction 221

Step 8. Learning: Weights change according to differential
equations.
Step 9. Test stopping condition.

The calculations in Step 2 constitute a ‘‘learning trial,”’ i.e., one presentation
of one pattern. Although ART does not require that all training patterns be pre-
sented in the same order, or even that all patterns be presented with the same
frequency, we shall refer to the calculations of Step 1 (one presentation of each
training pattern) as an epoch. Thus, the foregoing algorithmic structure, while
convenient, is not the most general form for ART. The learning process may
involve many weight updates and/or many epochs.

Learning

In adaptive resonance theory, the changes in the activations of units and in weights
are governed by coupled differential equations. The net is a continuously changing
(dynamical) system, but the process can be simplified because the activations are
assumed to change much more rapidly than the weights. Once an acceptable
cluster unit has been selected for learning, the bottom-up and top-down signals
are maintained for an extended period, during which time the weight changes
occur. This is the ‘‘resonance’’ that gives the net its name.

Two types of learning that differ both in their theoretical assumptions and
in their performance characteristics can be used for ART nets. In the fast learning
mode, it is assumed that weight updates during resonance occur rapidly, relative
to the length of time a pattern is presented on any particular trial. Thus, in fast
learning, the weights reach equilibrium on each trial. In the slow learning mode
the weight changes occur slowly relative to the duration of a learning trial; the
weights do not reach equilibrium on a particular trial. Many more presentations
of the patterns are required for slow learning than for fast learning, but fewer
calculations occur on each learning trial in slow learning. In order to achieve the
performance characteristics of slow learning to the fullest extent, we shall assume
that only one weight update, with a relatively small learning rate, occurs on each
learning trial in the slow learning mode.

In fast learning, the net is considered stabilized when each pattern chooses
the correct cluster unit when it is presented (without causing any unit to reset).
For ART1, because the patterns are binary, the weights associated with each
cluster unit also stabilize in the fast learning mode. The resulting weight vectors
are appropriate for the type of input patterns used in ART1. Also, the equilibrium
weights are easy to determine, and the iterative solution of the differential equa-
tions that control the weight updates is not necessary. This is the form of learning
that is typically used for ART1 and is the only algorithm we consider.

In general, for ART2, the weights produced by fast learning continue to
change each time a pattern is presented. The net stabilizes after only a few pre-
sentations of each training pattern. However, since the differential equations for
the weight updates depend on the activation of units whose activations change

222 Adaptive Resonance Theory Chap. 5

during the resonance process, it is not as straightforward to find the equilibrium
weights immediately for ART2 as it is for ART1. The process of solving the weight
update equations by letting the net iterate as resonance occurs is illustrated in
several examples in Section 5.3.3.

In the slow learning mode, weight changes do not reach equilibrium during
any particular learning trial and more trials are required before the net stabilizes
[Carpenter & Grossberg, 1987a, 1987b]. Although slow learning is theoretically
possible for ART], it is not typically used in this form. For ART2, however, the
weights produced by slow learning may be much more appropriate than those
produced by fast learning for certain types of data. Examples of the use of slow
learning for ART2 are given in Section 5.3.3.

5.2 ART1

ART1 is designed to cluster binary input vectors, allowing for great variation in
the number of nonzero components, and direct user control of the degree of
similarity among patterns placed on the same cluster unit. The architecture of an
ART1 net consists of two fields of units—the F, units and the F, (cluster) units—
together with a reset unit to control the degree of similarity of patterns placed on
the same cluster unit. (For convenience, we have expanded the description of the
Fy units from the original presentation of the net in Carpenter and Grossberg
(1987a) to include an explicit set of input units, the F;(a) units, as well as the
F(b) units, which exchange information with the F> units.) The F, and F > layers
are connected by two sets of weighted pathways. In addition, several supplemental
units are included in the net to provide for neural control of the learning process.

The learning process is designed so that it is not required either that patterns
be presented in a fixed order or that the number of patterns to be clustered be
known in advance (i.e., more patterns can be added to the data set during the
training process if desired). Updates for both the bottom-up and top-down weights
are controlled by differential equations. However, it is assumed that the ARTI
net is being operated in the fast learning mode, in which the weights reach equi-
librium during each learning trial (presentation of a pattern). Since the activations
of the F, units do not change during this resonance phase, the equilibrium weights
can be determined exactly, and the iterative solution of the differential equations
is not necessary.

5.2.1 Architecture

The architecture of ART1 consists of computational units and supplemental units.

Sec. 5.2 ART1 223

Computational units

The architecture of the computational units for ART1 consists of F; units (input
and interface units), F units (cluster units), and a reset unit that implements user
control over the degree of similarity of patterns placed on the same cluster. This
main portion of the ART1 architecture is illustrated in Figure 5.1.

F;Layer
h ¥ Y) (Cluster Units)
R
A b;
Li
Fy (b) Layer
X; X, &nw_fm)
. s Fy (a) Layer
" (Input)

Figure 5.1 Basic structure of ART1.

Each unit in the Fy(a) (input) layer is connected to the corresponding unit
in the F(b) (interface) layer. Each unit in the F,(a) and F,(b) layer is connected
to the reset unit, which in turn is connected to every F» unit. Each unit in the
F1(b) layer is connected to each unit in the F> (cluster) layer by two weighted
pathways. The F,(b) unit X; is connected to the F> unit ¥; by bottom-up weights
b;;. Similarly, unit ¥; is connected to unit X; by top-down weights ¢;;. Only one
representative weight b;; is indicated on the connections between the F, and F»
layer; similarly, ¢;; is a representative weight for the connections between the F;
and F, layer. The F; layer is a competitive layer in which only the uninhibited

- node with the largest net input has a nonzero activation.

224 Adaptive Resonance Theory Chap. 5

Supplemental units

The supplemental units shown in Figure 5.2 are important from a theoretical point
of view. They provide a mechanism by which the computations performed by the
algorithm in Section 5.2.2 can be accomplished using neural network principles.
However, this theoretical discussion of the necessary supplemental units is not
required to be able to use the computational algorithm. The reader may proceed
directly to the algorithm if desired.

F3 Layer (Cluster Units) N
+

A
/ by Y \G,

/
—

Y
F, (b) Layer (Interface Units) ~tt——+— Gy

| T f

+ +

Fi (a) Layer (Input Units)

Figure 5.2 The supplemental units for ART1. Adapted from [Carpenter & Gross-
berg, 1987a]

The computational algorithm for ART1 represents a more involved neural
process than can be represented in terms of just the F, units, the F units, and
the reset unit in Figure 5.1. The difficulty is that these units are required to respond
differently at different stages of the process, and a biological neuron does not
have a method for deciding what to do when. For example, units in the F, interface
region (F,(b) units) should be ‘‘on’’ when an input signal is received (from F(a))
and no F, units are active. However, when an F, unit is active, an F 1(b) unit
should remain ‘‘on’" only if it receives (nonzero) signals from both the F, layer
and the input units.

The operation of the reset mechanism also poses a challenge in terms of
implementation within a neural processing system. F, units must be inhibited (and
prevented from competing) under certain conditions, but returned to availability
on subsequent learning trials.

Both of these problems can be solved by introducing two supplemental units
(called gain control units) G, and G,, in addition to the reset unit R shown in
Figure 5.1. Each of these three special units receives signals from, and sends its

Sec. 5.2 ART1 225

signal to, all of the units in the layers indicated in Figure 5.2. Excitatory signals
are indicated by ‘‘+ ' and inhibitory signals by ‘“—’’. A signal is sent whenever
any unit in the designated layer is ‘“‘on.”

Each unit in either the F(b) (interface region) or F; layer of the ART1 net
has three sources from which it can receive a signal. F(b) interface units can
receive signals from an F;(a) unit (an input signal), from an F, node (a top-down
signal), or from the G, unit. Similarly, an F> unit can receive a signal from the
F, interface units, unit R, or the G, unit. An F,(b) (interface) or F, unit must
receive two excitatory signals in order to be ‘‘on.”’ Since there are three possible
sources of signals, this requirement is called the two-thirds rule.

The F,(b) (interface) nodes are required to send a signal (to the F> nodes
and the reset unit) whenever an input vector is presented and no F, node is active.
However, after an F, node has been chosen in the competition, it is necessary
that only the F,(b) nodes whose top-down signal and input signal match remain
active. This is accomplished through the use of the G, and G units and the two-
thirds rule. The G, unit is inhibited whenever any F, unit is on. When no F, unit
is on, each F, interface unit receives a signal from the G, unit; in this case, all
of the units that receive a positive input signal from the input vector that is pre-
sented will fire. In a similar manner, the G unit controls the firing of the F5 units;
they must obey a two-thirds rule, too. The two-thirds rule also plays a role in the
choice of parameters and initial weights, considered in Section 5.2.4.

The reset unit R controls the vigilance matching. As indicated in Figure 5.2
when any unit in the F;(a) input layer is on, an excitatory signal is sent to unit
R. The strength of that signal depends on how many F, (input) units are on.
However, R also receives inhibitory signals from the F, interface units that are
on. If enough F,(b) interface units are on (as determined by the vigilance param-
eter set by the user), unit R is prevented from firing. If unit R does fire, it inhibits
any F, unit that is on. This forces the F; layer to choose a new winning node.

5.2.2 Algorithm

In the first two parts of this section, we provide a description of the training
process for ART1 (using fast learning) and a step-by-step algorithm for the train-
ing. A discussion of the choice of parameter values and initial weights follows
the training algorithm. The notation we use is as follows:

n number of components in the input vector.

m maximum number of clusters that can be formed.
b;; bottom-up weights (from F(b) unit X; to F> unit Y;).
t; top-down weights (from F> unit ¥; to F; unit X;).

P vigilance parameter.

) binary input vector (an n-tuple).

X activation vector for F(b) layer (binary).
1] norm of vector x, defined as the sum of the components x;.

226 Adaptive Resonance Theory Chap. 5

Description

A binary input vector s is presented to the F,(a) layer, and the signals are sent
to the corresponding X units. These F,(b) units then broadcast to the F» layer
over connection pathways with bottom-up weights. Each F, unit computes its net
input, and the units compete for the right to be active. The unit with the largest
net input sets its activation to 1; all others have an activation of 0. We shall denote
the index of the winning unit as J. This winning unit becomes the candidate to
learn the input pattern. A signal is then sent down from F, to F,(b) (multiplied
by the top-down weights). The X units (in the interface portion of the F, layer)
remain ‘‘on’’ only if they receive nonzero signals from both the F,(a) and F,
units.

The norm of the vector x (the activation vector for the interface portion of
F) gives the number of components in which the top-down weight vector for the
winning F, unit t; and the input vector s are both 1. (This quantity is sometimes
referred to as the match.) If the ratio of |x|| to |ls| is greater than or equal to the
vigilance parameter, the weights (top down and bottom up) for the winning cluster
unit are adjusted.

However, if the ratio is less than the vigilance parameter, the candidate unit
is rejected, and another candidate unit must be chosen. The current winning clus-
ter unit becomes inhibited, so that it cannot be chosen again as a candidate on
this learning trial, and the activations of the F, units are reset to zero. The same
input vector again sends its signal to the interface units, which again send this as
the bottom-up signal to the F, layer, and the competition is repeated (but without
the participation of any inhibited units).

The process continues until either a satisfactory match is found (a candidate
is accepted) or all units are inhibited. The action to be taken if all units are inhibited
must be specified by the user. It might be appropriate to reduce the value of the
vigilance parameter, allowing less similar patterns to be placed on the same clus-
ter, or to increase the number of cluster units, or simply to designate the current
input pattern as an outlier that could not be clustered.

In the theoretical formulation of the ART process, learning occurs during
the resonance phase, in which the signals continue to flow throughout the net.
Care is taken in setting the parameter values so that a reset cannot suddenly occur
as the weights change, nor will a new winning unit be chosen after a candidate
unit is accepted for learning (see Section 5.2.4). Since the activations of the F 1
units do not change as learning progresses in ART1, the equilibrium weight values
can be found directly (see Section 5.2.4). The algorithm given shortly uses these
equilibrium values in Step 8.

At the end of each presentation of a pattern (normally, after the weights
have been adjusted), all cluster units are returned to inactive status (zero acti-
vations, but available to participate in the next competition).

The use of the ratio of the match to the norm of the input vector in the reset
calculations described allows an ART1 net to respond to relative differences. This

Sec. 5.2 ART1 227

reflects the fact that a difference of one component in vectors with only a few
nonzero componénts is much more significant than a difference of one component
in vectors with many nonzero components.

Training algorithm

The training algorithm for an ART1 net is presented next. A discussion of the
role of the parameters and an appropriate choice of initial weights follows.
Step 0. Initialize parameters:
L>1,
0<p=1.
Initialize weights:
L

(1) Y —
0<biO<r—7+a

tj,'(O) = l

Step 1. While stopping condition is false, do Steps 2-13.
J Step 2. For each training input, do Steps 3—-12.
Step 3. Set activations of all F, units to zero.
Set activations of F,(a) units to input vector s.
Step 4. Compute the norm of s:

Il = 3 s

Step 5. Send input signal from F,(a) to the F,(b) layer:
Xi = Si.

Step 6. For each F, node that is not inhibited:
Ifyj # —1, then

yi = 2 b,-,-x,-.
Step 7. While reset is true, do Steps 8-11.
Step 8. Find J such that y, = y; for all nodes j.
If y, = —1, then all nodes are inhibited and

this pattern cannot be clustered.
Step 9. Recompute activation x of F(b):

X; = Sityi.
Step 10. Compute the norm of vector x:

¥ = 3 xi.

228 Adaptive Resonance Theory Chap. 5

Step 11. Test for reset:

If"—’Eu < p, then

lisl
ys = —1 (inhibit node J) (and continue,

executing Step 7 again).

lix|
If— =p,
s~ P

then proceed to Step 12.
Step 12. Update the weights for node J (fast learning):
Lx,~
L-1+]|x|’

t;i{new) = Xi.

b;s(new) =

Step 13. Test for stopping condition.

Comments. Step 3 removes all inhibitions from the previous learning trial
(presentation of a pattern).

Setting y = — 1 for an inhibited node (in Step 6) will prevent that node from 3
being a winner. Since all weights and signals in the net are nonnegative a unit :
with a negative activation can never have the largest activation.

In Step 8, in case of a tie, take J to be the smallest such index.

In Step 9, unit X; is ““on’’ only if it receives both an external signal s; and
a signal sent down from F, to F,, t,;.

The stopping condition in Step 13 might consist of any of the following:

No weight changes,
no units reset, or
maximum number of epochs reached.

The ART]1 training process is often described in terms of setting the acti-
vation of the winning F, unit to 1 and all others to 0. However, it is easy to
implement the algorithm without making explicit use of those activations, so in
the interest of computational simplicity, they are omitted here.

The user must specify the desired action to be taken in the event that all
the F; nodes are inhibited in Step 8. The possibilities include adding more cluster
units, reducing the vigilance, and classifying the pattern as an outlier that cannot
be clustered (with the given parameters).

Note that ¢;; is either 0 or 1, and once it is set to 0 during learning, it can
never be set back to 1 (which provides the stable learning mentioned before).

Sec. 5.2 ART1 229
Parameters

User-defined parameters with restrictions indicated for permissible values [Car-
penter & Grossberg, 1987a] and sample values [Lippmann, 1987] are as follows:

PARAMETER PERMISSIBLE RANGE SAMPLE VALUE

L L>1 2

p O0<p=1l 9
(vigilance parameter)

b,‘j L ' 1

0<b,0) < —F—ro
/(0 L-1+n I +n

(bottom-up weights)

ti 1;:(0) = 1 1

(top-down weights)

The derivation of the restrictions on the initial bottom-up and top-down
weights is given in Section 5.2.4. Larger values for the initial bottom-up weights
may encourage the net to form more clusters. The sample values of b;0) (one-
half of the maximum allowed value for L = 2) are used in the examples of Section
5.2.3.

The equilibrium weights, which are used in the ART1 algorithm are derived
in Section 5.2.4. The algorithm uses fast learning, which assumes that the input
pattern is presented for a long enough period of time for the weights to reach
equilibrium. Since none of the activations of the F; units change during resonance,
it is not necessary actually to perform the iterations to solve the weight-update
differential equations numerically,

Several values of p are illustrated in the examples of Section 5.2.3.

5.2.3 Applications

Simple examples

The following two examples show in detail the application of the algorithm in the
previous section, for a simple case with input vectors that are ordered quadruples
and three cluster units. The role of the vigilance parameter is illustrated by the
differences between the examples: The first example uses a relatively low value
of p, the second a somewhat higher value,

230 Adaptive Resonance Theory Chap. 5

Example 5.1 An ART1 net to cluster four vectors: low vigilance

The values and a description of the parameters in this example are:

n = 4 number of components in an input vector;

m = 3 maximum number of clusters to be formed;

P = 0.4 vigilance parameter;

L = 2 parameter used in update of bottom-up weights;

b;;(0) = | initial bottom-up weights (one-half the maximum value al-
1+n lowed);

50 = 1 initial top-down weights.

The example uses the ART1 algorithm to cluster the vectors (1,1,0,0),(0,0,0, 1),
(1,0,0,0), and (0, 0, 1, 1), in at most three clusters.
Application of the algorithm yields the following:

Step 0. Initialize parameters:
L =2,
p =04,
Initialize weights:
b,~j(0) = 0.2,
Ij,'(O) = l
Step 1. Begin computation.
Step 2. For the first input vector, (1, 1, 0, 0), do Steps 3-12.
Step 3. Set activations of all F» units to zero.
Set activations of F,(a) units to input vector
s =(1,1,0,0).
Step 4. Compute norm of s:
lIs| = 2.
Step 5. Compute activations for each node in the F. 1 layer:
x=(1,1,0,0).
Step 6. Compute net input to each node in the F; layer:
»i=.2(1) + .2(1) + .2(0) + .2(0) = 0.4,
y2 = .2(1) + .2(1) + .2(0) + .2(0) = 0.4,
y3 = .2(1) + .2(1) + .2(0) + .2(0) = 0.4.

Step 7. While reset is true, do Steps 8-11.
Step 8. Since all units have the same net input,

J=1

Sec. 5.2 ART1 231

Step 9. Recompute the F, activations:
x; = s;ity; currently, £, = (1, 1, 1, 1);

therefore, x = (1, 1, 0, 0)

Step 10. Compute the norm of x:
Il = 2.

Step 11. Test for reset:

M _ 0= 0.4;
lsi

therefore, reset is false.
Proceed to Step 12.
Step 12. Update b,; for L = 2, the equilibrium weights are

i

I+ x|

b;i(new) =

Therefore, the bottom-up weight matrix becomes

67 2 2
167 2 2
0 2 22
0 2 2

Update t;; the fast learning weight values are
t;i(new) = x;,

therefore, the top-down weight matrix becomes

1100
1111
1111
Step 2. For the second input vector, (0, 0, 0, 1), do Steps 3-12.
Step 3. Set activations of all F» units to zero.
Set activations of F(a) units to input vector
s =(0,0,0, 1.
Step 4. Compute norm of s:
lisl| = 1.
Step 5. Compute activations for each node in the F, layer:

x=(0,0,0,1).

232 Adaptive Resonance Theotry Chap. 5

Step 6. Compute net input to each node in the F, layer:
yi = .67(0) + .67(0) + 0(0) + O(1) = 0.0,
y; = 2000 + .2000 + .2(00) + .2(1) = 0.2,
y3= 2000 + .2(0) + .2(0) + .2(1) = 0.2.
Step 7. While reset is true, do Steps 8-11.
Step 8. Since units Y, and Y; have the same net input
J =2
Step 9. Recompute the activation of the F; layer:
Xi = Sity;

currently t, = (1, 1, 1, 1); therefore,
x=1(0,0,0,1).
Step 10. Compute the norm of x:
Il = 1.
Step 11. Test for reset:

therefore, reset is false. Proceed to Step 12.
Step 12, Update b, ; the bottom-up weight matrix becomes

1.0 = 0.4;

67 0 .2
67 0 .2
0 0 2
0 1 2

Update t;; the top-down weight matrix becomes

100
000 1
1111

Step 2. For the third input vector, (1, 0, 0, 0), do Steps 3-12.
Step 3. Set activations of all F, units to zeéro.
Set activations of F(a) units to iriput vector
s=(1,0,0,0).

Step 4. © Compute norm of s:
sl = 1.

Step 5. Contpute activations for each node in the F, lz/xyer:
x=(1,0,0,0).)

Sec. 5.2 ART1 233

Step 6. Compute net input to each node in the F» layer:
y1=.67(1) + .67(0) + 0(0) + 0(0) = 0.67,
y2= 01+ 00)+ 00) + 1(0) = 0.0,
y3= 2()+ .2(0) + .2(0) + .2(0) = 0.2.

Step 7. While reset is true, do Steps 8-11.
Step 8. Since unit Y; has the largest net input,

J =1
Step 9. Recompute the activation of the F, layer:
Xi = Sily;;

current, £, = (1, 1, 0, 0); therefore,

x =(1,0,0,0).
Step 10. Compute the norm of x:
el = 1.
Step 11. lixd| / [lsff = 1.0 Proceed to Step 12.
Step 12, Update b, ; the bottom-up weight matrix becomes
(1 0 .2
00 .2
00 .2
01 2

Update t, ; the top-down weight matrix becomes

[1 0 0 O
0001
1 1 11

Step 2. For the fourth input vector, (0, 0, 1, 1), do Steps 3-12.
Step 3. Set activations of all F, units to zero.
Set activations of F(a) units to input vector
s=(0,0,1,1).
Step 4. Compute norm of s:
sl = 2.
Step 5. Compute activations for each node in the F, layer:

x=1(0,0,1,1).

Step 6. Compute net input to each node in the F, layer:
yi= 10)+ 00+ 0(1) + 0() = 0.0,
y2= 000) + 00) + o) + 1(1) = 1.0,
¥3=.2(0) + .2(0) + .2(1) + .2(1) = 0.4.

234

Adaptive Resonance Theory Chap. 5

Step 7. While reset is true, do Steps 8-11.
Step 8. Since unit Y- has the largest net input,
J =2
Step 9. Recompute the activation of the F, layer:
X = §ily;
currently, 1> = (0, 0, 0, 1); therefore,
x = (0,0,0,1).
Step 10. Compute the norm of x:
x|l =
Step 11. Test for reset:
“"H =0.5=04;
therefore, reset is false. Proceed to Step 12.
Step 12. Update by; however, there is no change in the bottom-up
weight matrix:
1 0 .2
00 .2
00 2
[0 1 .2
Similarly, the top-down weight matrix remains
1 0 0 O
0 0 01
1111

Step 13. Test stopping condition.
(This completes one epoch of training.)

The reader can check that no further learning takes place on subsequent pre-
sentations of these vectors, regardless of the order in which they are presented.
Depending on the order of presentation of the patterns, more than one epoch may
be required, but typically, stable weight matrices are obtained very quickly.

Example 5.2 An ART1 net to cluster four vectors: moderate vigilance

The same vectors are presented to the ART1 net (in the same order) as in Example
5.1. The vigilance parameter is set at 0.7. The training for vectors (1, 1, 0, 0),
0, 0,0, 1), and (1, 0, 0, 0) proceeds as before, giving the bottom-up weight matrix

oo o -
-oc oo
[SIE SR RS

Sec. 5.2 ART1

235

and the top-down weight matrix

1 000
0 0 01
I 111

However, for the fourth input vector, s = (0, 0, 1, 1), the results are different. We

obtain:

Step 2. For the fourth input vector, (0, 0, 1, 1), do Steps 3-12.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.

Set activations of all F, units to zero.
Set activations of F(a) units to vector s=00,0,1, 1.
Compute norm of s;

lisll = 2.
Compute activations for each node in the F layer:
x=(0,0,1,1).

Compute net input to each node in the F; layer:

yi= 10)+ 00)+ 0(1) + 0(1) = 0.0,
y2= 00) + 00) + 0(1) + 1(1) = 1.0,
¥3=.2(0) + .2(0) + .2(1) + .2(1) = 0.4.
While reset is true, do Steps 8-11.
Step 8. Since unit ¥, has the largest net input,
J =2
Step 9. Recompute the activation of the F, layer:
Xi = §;ty;

currently, t, = (0, 0, 0, 1); therefore,

x =(0,0,0,1).

Step 10. Compute the norm of x:
Ixll = 1.

Step 11. Check the vigilance criterion:
Il =0.5<0.7;

Isl
therefore, reset is true, so inhibit Y

y» = —1.0.
Proceed with Step 7.

236 Adaptive Resonance Theory Chap. 5

Step 7. While reset is true, do Steps 8-11.

Step 8. Now the values for the F, layer are
n= 00,
Y2= - 1'0,
y3= 0.4.

So unit ¥; has the largest net input, and

J = 3.

Step 9. Recompute the activation of the F,; layer:
Xi = Sit3;

currently, t; = (1, 1, 1, 1); therefore,

x=1(0,0,1,).
Step 10. Compute the norm of x:
fixll = 2.

Step 11. Test for reset:

M _ 10207

therefore, reset is false. Proceed with Step 12.
Step 12. Update bs; the bottom-up weight matrix becomes

1 0 0
000
0 0 .67
L0 1 .67
Update t;; the top-down weight matrix becomes
1 0 0 0
0001
0011

Step 13. Test stopping condition.

Now, when the first vector is presented again, the vigilance criterion will not
be satisfied for any of the F, nodes. The user may decide to add another F unit,
classify the first input vector as an outlier, or use a lower vigilance parameter. In
contrast to some other neural networks, an ART net will not automatically force all
input vectors onto a cluster if they are not sufficiently similar.

Character recognition

Examples 5.3-5.5 show the results of employing ART1 to cluster the patterns in
Figure 5.3, using a representative selection of different values of the vigilance
parameter, different input orders for the patterns, and different values for the
maximum number of cluster units. Note that the weight vector for each cluster
reflects all of the patterns placed on the cluster during training; the net does not

Sec.

5.2 ART1

Input from
Font 1

Input from
Font 2

Input from
Font 3

$ke o o000 ofp

Figure 5.3 Training input patterns for character recognition examples.

o o ofk o oiiitE
Ao odEHE. o o

g T
it 2 0 0 o
*coluooo.

>
[N

oo o ofp

etk e o3k

oo e 0 o3

ooooo

e o000 0 03

oooooo
oooooo

oooooo
oooooo
oooooo

ooooo
ooooo

BEeo 0 0000 ogp

o3

Bo o0 0 00 o
fo o odfe o o3
Sk o oFpe o ofp
Hee o oo o

B o otpEe o o

)
ey

o e s 0 .
ooooo .
® e o o0 .
ooooo .
ooooo .

o
N

B oo e 00 o
Be o o odpoe o
ke oo oFke o
e oo ofko odp
$he o 0 oqke o

ot o

B3
OB 5 4.

e o0 00 0 o
S e
o o oo ofpe o
e ofe o o ofEe

e o 0 0 0 ogE
o e 0000 o

Yo oo
offe o
o ofEe
.o o3

¢ o 0 oo 0 0

oo o
- X
ek e o
e

(2]

$Ee e 00 00 o
$o o ok o o3
o o oot o0
o otk o ok o

et o o o oHEtE
e e o0 00 o

]
w

238

Adaptive Resonance Theory

Chap. 5

forget patterns that were placed on the unit and later moved to another unit. Also,
remember that there is no particular significance to patterns placed on cluster
units whose indices are close together (in contrast to the topological interpretation
of the indices for the Kohonen self-organizing feature maps).
The final weights associated with each cluster are shown in a two-dimen-
sional array, since the input patterns represented two-dimensional patterns.

Example 5.3 An ART1 net to cluster letters from three fonts: low vigilance
Using the pattern input order
Al, A2, A3, B1, B2, B3, C1, C2,C3, ...,J1,)2, J3, K1, K2, K3,

with a vigilance parameter of 0.30 and a maximum of 10 cluster units, results in stable
cluster formation (and no weight changes) after three epochs of training. The place-
ment of patterns during training is as follows:

CLUSTER EPOCH 1

1 Al, A2, A3

2 B1, B2, B3
C1,C2,C3
1

3 D1, D2, D3
El, E2, E3

4 12,13

5 K1, K2

6 K3

7

FINAL WEIGHTS

£
* o0 0 ofEe oo
¢ o oFEe v o 00

® s 0 0 0 0 0

Cluste

0 0 0 oFpe e
oo e 0 0 oo o
e o 00 0 0 ok,

Fe o 0 00 0 o3
e o o ofpe o o0
e o0 0 0 0 o

Cluste

L]

-

$Eo 0o 00 00 o3
e e o 0 00 o3

ke s o000
e v 0000 00

Cluster 2

3%
3
=

oefEe o o 0 ok

E - R
e o0 00

5 Cluster 6

EPOCH 2
Al, A2, A3

B1, B2, B3
C1,C2,C3

J1,712,13
K1, K2

D1, D2, D3,
K3

El, E2, E3

Moo o e o e 0k
e s 0000 o
e 000 0 0 o3

EPOCH 3

Al, A2, A3

C1,C2,C3

J1,712,13
K1, K2

D1, D2, D3,
K3

Bl1, B2, B3
El, E2, E3

Cluster 3

e o ok o

e s s o e
e s s oo
e oo oo
oo o

E - N S

eaits

Cluster 7

sfke o0 0 0 00
E -
E BRI N
JEe o000 0 00

Cluster 4

Sec. 5.2 ART1 239

Using the pattern input order

Al, Bl1, C1, DI, El, J1, K1, A2, B2, C2, D2, E2, J2, K2, A3, B3, C3,
D3, E3, J3, K3,

with a vigilance parameter of 0.30 and 10 cluster units available, results in stable
cluster formation (and no weight changes) after two epochs of training, shown as

follows:
CLUSTER EPOCH 1 EPOCH 2
1 Al, Bi, C1 Cl
2 D1, E1, 11 12
C2, 2

3 K1, A2 Al, A2

4 B2, D2, E2, K2 B2,D2, E2, K2

5 A3, B3, E3 A3

6 C3,D3,13 J1,C2,C3, 13

7 K3 Bl1, DI, E1, K1

B3, D3, E3, K3
FINAL WEIGHTS

..##... R e s e 006 00 R
SEEEEE SEEEEE x# SEEEE
Tl Tl 5 S T
i PN) 0000 e
Cluster 1 Cluster 2 Cluster 3 Cluster 4
SEEEE ity e
:#¥:¥:: Tl 5 S
PP :?&;;?; P
Cluster 5 Cluster 6 Cluster 7

Example 5.4 An ART1 net to cluster letters from three fonts: higher vigilance and an
insufficient number of clusters

Using a higher vigilance parameter of 0.70, but still allowing a maximum of only 10
cluster units, results in stable cluster formation (and no weight changes) after two
epochs of training; however, some patterns cannot be placed on clusters. (These are
shown as CNC, for “*could not cluster,” in the table that follows.) The pattern input

240 Adaptive Resonance Theory Chap. 5

order for this example is

Al, A2, A3, Bl, B2, B3, Cl1, C2, C3, D1, D2, D3, El, E2, E3,
J1, 32, J3, K1, K2, K3

We have:
CLUSTER EPOCH 1 EPOCH 2

1 Al, A2 A2

2 A3 A3

3 B1, B2 B1, B2

4 B3, D1, D3 B3, D1, D3

5 C1, C2, K2 C1, C2

6 C3 C3

7 D2 D2

8 El, E3, K1, E1l, E3

K3

9 E2 E2

10 n,nn J1,32,J13

CNC Al, K2

FINAL WEIGHTS

...*... ...x... #UEBHSH [T O T 110K
e v o oo o P PP e e s e 0 0 e o oo oo -#-.--o
s bk E;;;;ﬂ 3 HSH - TS
. S04 & °¥¥*!*.*¥' ,::::::i : ::::f cioio
T RRRR #oo ok 3 TFTRTTL S FHAOSN P
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
.. .. . ## e oo oot
#####3 Y Hew AELELINERS ¢
SESEEUNNE SEEEES SRS SESESTNNE 11T IERNNESERS ¢
ORI ORI S SO SRS A0S &
kE 11 O #h#4- LET RRE T HitHH4# Rk £ 1 D

Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

Example 5.5 Higher vigilance (and more clusters) reduces sensitivity to order of input.

Using the same vigilance parameter as in Example 5.4 (p = 0.7), but allowing a
maximum of 15 cluster units, results in stable cluster formation (and no weight
changes) after two epochs of training. The clusters formed are less dependent on
the pattern input order for the higher vigilance than were the results in Example 5.3

Sec. 5.2 ART1 241
for the lower vigilance. Using the first pattern input order,
Al, A2, A3, Bl, B2, B3, C1, C2, C3, D1, D2, D3, El, E2, E3,
1,12, J3, K1, K2, K3,
we obtain the following results:
CLUSTER EPOCH 1 EPOCH 2
1 Al, A2 A2
2 A3 A3
3 B1, B2 B1, B2
4 B3, D1, D3 B3, D1, D3
5 Cl1, C2 C1, C2
6 C3 C3
7 D2 D2
8 El, E3,K1,K3 KI, K3
9 E2 E2
10 11,12, 13 11,12, 13
11 K2 K2
12 Al
13 El, E3
FINAL WEIGHTS
:::ﬁ::: 0t SO & 4555 M 5 £55 MO £ 1 S
ST PR B S B i
S S0 ¥ A TTLE ::::::3 : ::::ﬁ Sl
SEEHINE FRHH QEFTHT I ST L P
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
P H G N (TS |
.{,III,}‘.“ Y I | DI DI “#... 8-
TR CTTTLRE PR T CTTTT TS T T
Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10
....#. ..#g... # ####
ZI;‘.“ZZ DS SE)5 DI
P S ::a:k:: 5 S B
o#o e .S # g. X TR
ZI‘.";}:I S SIS IS S
S PR O PR PP
Cluster 11 Cluster 12 Cluster 13

242 Adaptive Resonance Theory Chap. 5
The results for the second pattern input order,
Al, Bl1, Cl1, D1, El, J1, K1, A2, B2, C2, D2, E2, J2, K2, A3,
B3, C3, D3, E3, J3, K3,
are quite similar (but not identical) to those for the first input order:
CLUSTER EPOCH 1 EPOCH 2
1 Al, A2 A2
2 B1, D1, D3 B1, DI, D3
3 C1,C2 Ci1, C2
4 El, K1, K3 El, K1, K3
5 31,12, 13 J1,12,13
6 B2, D2 B2, D2
7 E2 E2
8 K2 K2
9 A3 A3
10 B3, E3 B3, E3
11 C3 Cc3
12 Al
FINAL WEIGHTS
::3::: 15 44 POUIEEIA & & SO 5 § S04 £ NS S
ZIﬁZ#IZ # R $..0. e
5 3004 SRS SOAS 8:::::: 5 0 SODINE S
............ .#..... e o e e e .#...
#eovoeo- # HHHHH- - s - H##- Bk -## s H##-
Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5
#. . # oo o e . “ o e ..
........... -#.... o . - .###..
...... ### « oo 0 . e o o . . e 00 0
SR | :::?:: ’:‘?;,: '#?#?#' 15 SO
FPPPELINNE FEPRPIE EEACTRINNE PSRN B FRPSY
Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10
TIEL) B I¥
ﬁ;i L. ﬁmi
KR 12 Y # #-4#4
Cluster 11 Cluster 12

Sec. 5.2 ART1 243
5.2.4 Analysis

Learning in ART1

In this section, we present a simple derivation of the fast learning equations. In
fast learning, it is assumed that the weights reach equilibrium during the learning
trial (presentation of the training vector). The equilibrium values of these weights
are easy to derive for ARTI, since the activations of the F; units do not change
while the weights are changing. Because only the weights on the winning F unit
(denoted by the index J) are modified, the differential equations that define the
weight changes are given only for weights ¢;; and b,;. Vector x contains the ac-
tivations of the F, units after the test for reset is performed (Step 11 in the al-
gorithm in Section 5.2.2); therefore, x; is 1 if unit X; receives both a nonzero input
signal s5; and a nonzero top-down signal ¢,; and x; is 0 if either s; or t,; is 0.

The differential equation for the top-down weights (on the winning F, unit
J)is

p ty = Kol—Ejit;; + xi].

Following the derivation of Carpenter and Grossberg [1987a] for ART1, we make
the simple choices

Kz = 1, Ej,’ = 1.

The differential equation then becomes

— 1ty = —ty + xi.
dt!t Ji i

Since this is a linear differential equation with constant coefficients, for fast learn-
ing we set

E tyii =0,

in order to find the equilibrium values of the weights. In this manner, we find
that

ty; = Xi.
The differential equation for the bottom-up weights (on the winning F> unit
J) has essentially the same form as the equation for the top-down weights:
E’_ biy = K\[-E;;b;; + x;]
d t iJ 1 ijoiJ 20

However, in order for ART]1 to respond to relative differences in patterns (which
may vary greatly in the number of components that are 1 rather than 0), it is

244 Adaptive Resonance Theory Chap. 5

important for the equilibrium bottom-up weights to be (approximately) inversely
proportional to the norm of the vector of F; activations. This can be accomplished
by taking

Eij=x; + L™' > xx (for some positive constant L)

k=i
and
K, = KL,

so that the differential equation becomes

d

—biy = KL[=biyx; — biyL™ "' 3, xix + x]

dt k=i

= K[(1 — bis)Lx; — biy 2 xxl.
k<

It is convenient to consider separately the cases when the F, unit X is inactive
and when it is active:

(i) If the F, unit X; is inactive, then

x,—=0—>

> xe = |Ix}

k#~i

(because all active units are mcluded in the summation). The differential
equation becomes

g; K[bis EI xk] = K[—by |Ix]].
As before, in order to find the equilibrium weights
bu =0,
we set the derivative to zero and solve for b;, in the resulting equation:
“ = K[—bus I,
(ii) If the F; unit X; is active, then
xi=1-—>
2 %=~ 1

k=i

(because active unit X; is not included in the summation). The differential
equation becomes

E; biy = KI(1 = biy)L — bis(Ix|| — D).

Sec. 5.2 ART1 248

As before, to find the equilibrium weights

L

biy = ————0,
TTL -1+ x|

we set the derivative to zero and solve for b;, in the resulting equation:

= K[(1 - b;y))L ~ by (xll = DI

~The formulas for the equilibrium bottom-up weights (in both cases) can
be expressed by the single formula

) Lx,-
L -1+ |x|.

(since x; is 1 if X; is active and x; is 0 if X; is inactive).

by =

To sum up, the equilibrium top-down weights are
tyi = xi,
and the equilibrium bottom-up weights are

L.Xi
b““L—1+mw

Activations in ART1

The activations of the F, (interface) units are controlled by a differential equation
of the form

editx' = —x;i+ (1 -~ Ax)I* — (B + Cx)I™,

where I is the total excitatory input received by unit X; (whose activation is x;)
and I~ is the total inhibitory input received by X;.
It is assumed that activations change much more rapidly than signals are

_sent or weights change, so that each unit reaches its equilibrium activation vir-
tually instantaneously.

When no F; unit is active, the equation for an F; (interface) unit becomes

€ th, -x; + (1 — Ax))s;,

which gives

§;

xi=1+As-

at equilibrium. The algorithm in Section 5.2.2 uses the simplest form of this equa-
tion, namely, A = 0.

246 Adaptive Resonance Theory Chap. 5

When one F, unit is active (say, unit J, with activation D and top-down
weight vector t;), the equation for an F, (interface) unit becomes

editx,- = —x; + (1 - Axi)(si + Dt_],') - (B + Cx,-),

which gives

_ Si+DtJ[_B
- 1 +A(S,'+Dtj,')+c

at equilibrium. A threshold function is applied to x; to obtain

X;

x; = 1if s; and ¢;; are both 1; x; = 0 otherwise.

The algorithm in Section 5.2.2 is based on these results, with A = 0, D = 1,
B =15and C = 0.

Initial weights for ART1

The following restrictions on the choice of initial weights for ART1 ensure that
neither the reset mechanism nor the winner-take-all competition in the F, layer
can interfere with the learning process in undesirable ways.

The initial top-down weights should be chosen so that when an uncommitted
node (a cluster unit that has not learned any patterns yet) is first chosen as the
candidate for learning, the reset mechanism does not reject it. This will be the
case if the top-down weights are initialized to 1.

The initial bottom-up weights should be smaller than or equal to the equi-
librium value

in

big= ——
TTL -1+ |

Otherwise, during learning, a vector could suddenly choose a new, uncommitted
node. Larger initial bottom-up weights favor creation of new nodes over attempt-
ing to put a pattern on a previously trained cluster unit.

5.3 ART2

ART?2 is designed to perform for continuous-valued input vectors the same type
of tasks as ART1 does for binary-valued input vectors. The differences between
ART?2 and ART]1 reflect the modifications needed to accommodate patterns with
continuous-valued components. The more complex F field of ART2 is necessary
because continuous-valued input vectors may be arbitrarily close together. The
F, field in ART?2 includes a combination of normalization and noise suppression,
in addition to the comparison of the bottom-up and top-down signals needed for

Sec. 5.3 ART2 247

the reset mechanism. The learning process for ART2 is summarized in Section
5.3.2 and discussed in more detail in 5.3.4.

There are two types of continuous-valued inputs for which ART2 may be
used. The first might be called ‘‘noisy binary”’ signals. These consist of patterns
whose information is conveyed primarily by which components are ‘‘on’’ or *‘vir-
tually off,”’ rather than by the differences in the magnitude of the components
that are positive. The equilibrium weights found by the fast learning mode are
suitable for this type of data. However, it is not as easy to find equilibrium weights
in ART2 asitis for ART1, because the differential equations for the weight updates
depend on activations in the F, layer, which are changing as learning progresses.

For patterns in which the range of values of the components carries signif-
icant information and the weight vector for a cluster unit is to be interpreted as
an exemplar for the patterns placed on that unit, the slow learning mode may be
more appropriate. We can think of this second type of data as ‘‘truly continuous.”
Both forms of learning are included in the algorithm in Section 5.3.2.

5.3.1 Architecture

A typical ART? architecture [Carpenter & Grossberg, 1987b] is illustrated in Fig-
ure 5.4. The F, layer consists of six types of units (the W, X, U, V, P, and Q
units). There are n units of each of these types (where n is the dimension of an
input pattern). Only one unit of each type is shown in the figure. A supplemental
unit between the W and X units receives signals from all of the W units, computes
the norm of the vector w, and sends this (inhibitory) signal to each of the X units.
Each of these also receives an excitatory signal from the corresponding W unit.
Detail of this portion of the net is shown in Figure 5.5. A similar supplemental
unit performs the same role between the P and Q units, and another does so
between the V and U units. Each X unit is connected to the corresponding V unit,
and each Q unit is connected to the corresponding V unit also.

The symbols on the connection paths between the various units in the F,
layer in Figure 5.4 indicate the transformation that occurs to the signal as it passes
from one type of unit to the next; they do not indicate multiplication by the given
quantity. However, the connections between units P; (of the F, layer) and ¥; (of
the F, layer) do show the weights that multiply the signal transmitted over those
paths. The activation of the winning F unit is d, where 0 < d < 1. The activation
function applied to x and q will be discussed later. The symbol --> indicates nor-
malization; i.e., the vector q of activations of the Q units is just the vector p of
activations of the P units, normalized to approximately unit length.

The action of the F; layer (units Y; in Figure 5.4) is essentially unchanged
from the action in ART1. The units compete in a winner-take-all mode for the
right to learn each input pattern. As in ARTI1, learning occurs only if the top-
down weight vector for the winning unit is sufficiently similar to the input vector.
The tests for reset in ART1 and ART?2 differ. (See the algorithm in Section 5.3.2
for details of the test used in ART2.)

248 Adaptive Resonance Theory Chap. 5

Si

Figure 5.4 Typical ART2 architecture [Carpenter & Grossberg, 1987b].

Figure 5.5 Detail of connections from W units to X units, showing the supple-
mental unit N to perform normalization.

Sec. 5.3 ART2 249

CTNC—\\ P

N\
\

Figure 5.6 Expanded diagram of the F, layer of a typical ART?2 architecture.

250 Adaptive Resonance Theory Chap. 5

The U units perform a similar role to the input phase of the F, layer in ART].
However, in ART2, some processing of the input vector is necessary because the
magnitudes of the real-valued input vectors may vary more than for the binary
input vectors of ART1. ART2 treats small components as noise and does not
distinguish between patterns that are merely scaled versions of each other. The
P units play the role of the interface F, units in the ART1 architecture. The role
of the supplemental units in ART1 has been incorporated within the F, layer.

Figure 5.6 presents an expanded diagram of the F, layer of the ART2 net
illustrated in Figure 5.4. In keeping with the diagrams for other nets (in other
chapters), only weights are shown on the connections between units. (If no weight
is indicated, the signal traverses that pathway without modification.)

Units X; and Q; apply an activation function to their net input; this function
suppresses any components of the vectors of activations at those levels that fall
below the user-selected value 6. The connection paths from U to W and from Q to
V have fixed weights a and b, respectively.

5.3.2 Algorithm

This section provides a description of the training algorithm for ART2 (for both
fast and slow learning), a step-by-step statement of the algorithm, and a summary
of the basic information about the parameters and choice of initial weights nec-
essary to implement the algorithm. Examples in Section 5.3.3 illustrate the influ-
ence of some of these parameters. Derivations of the restrictions on the choice
of parameter values and initial weights are given in Section 5.3.4.

Description

A learning trial consists of one presentation of one input pattern. The input signal
s = ($1,...,8;,...,s,) continues to be sent while all of the actions to be
described are performed. At the beginning of a learning trial, all activations are
set to zero.

The computation cycle (for a particular learning trial) within the F, layer
can be thought of as originating with the computation of the activation of unit U;
(the activation of unit V; normalized to approximately unit length). Next, a signal
is sent from each unit U; to its associated units W; and P;. The activations of
units W; and P; are then computed. Unit W; sums the signal it receives from U,
and the input signal s;. P; sums the signal it receives from U, and the top-down
signal it receives if there is an active F, unit. The activations of X; and Q; are
normalized versions of the signals at W; and P;, respectively. An activation func-
tion is applied at each of these units before the signal is sent to V. V; then sums
the signals it receives concurrently from X; and Q;; this completes one cycle of
updating the F layer.

The activation function

_Jx ifx=90
fu)‘{o ifx <o

Sec. 5.3 ART2 251

is used in examples in Carpenter and Grossberg’s (1987b) original paper and here.
With this function, the activations of the U and P units reach equilibrium after
two updates of the F; layer. This function treats any signal that is less than 6 as
noise and suppresses it (sets it to zero). The value of the parameter 6 is specified
by the user. Noise suppression helps the net achieve stable cluster formation.
The net is stable when the first cluster unit chosen for each input pattern is ac-
cepted and no reset occurs. For slow learning, the weight vectors for the clusters
will also converge to stable values.

After the activations of the F; units have reached equilibrium, the P units
send their signals to the F, layer, where a winner-take-all competition chooses
the candidate cluster unit to learn the input pattern. (It is not important how fast
this competition takes place relative to iterations in the F, layer, since the acti-
vations of the U and P units there will not change until the top-down signal from
the winning F» unit is received by the P units.)

The units U; and P; in the F, layer also send signals to the corresponding
reset unit R;. The reset mechanism can check for a reset each time it receives a
signal from P;, since the necessary computations are based on the value of that
signal and the most recent signal the unit R, had received from U;. However, this
needs to be done only when P; first receives a top-down signal, since parameter
values are chosen such that no reset will occur if no F- unit is active, or after
learning has started. The reset mechanism will be considered in more detail in
Section 5.3.4.

After the conditions for reset have been checked, the candidate cluster unit
either will be rejected as not similar enough to the input pattern or will be accepted.
If the cluster unit is rejected, it will become inhibited (prevented from further
participation in the current learning trial), and the cluster unit with the next largest
net input is chosen as the candidate. This process continues until an acceptable
cluster unit is chosen (or the supply of available cluster units is exhausted). When
a candidate cluster unit is chosen that passes the reset conditions, learning will
occur.

In slow learning, only one iteration of the weight update equations occurs
on each learning trial. A large number of presentations of each pattern is required,
but relatively little computation is done on each trial. For convenience, these
repeated presentations are treated as epochs in the algorithm that follows. How-
ever, there is no requirement that the patterns be presented in the same order or
that exactly the same patterns be presented on each cycle through them.

In the fast learning mode, the weight updates (alternating with updates of
the F layer activations) continue until the weights reach equilibrium on each trial.
Only a few epochs are required, but a large number of iterations through the
weight-update—F-update portion of the algorithm must be performed on each
learning trial (presentation of a pattern). In fast learning, the placement of the
patterns on clusters stabilizes (no reset occurs), but the weights will change for
each pattern presented.

252 Adaptive Resonance Theory Chap. 5

Training algorithm

The algorithm that follows can be used for either fast learning or slow learning.
In fast learning, iterations of weight change followed by updates of F, activations
proceed until equilibrium is reached. In slow learning, only one iteration of the
weight-update step is performed, but a large number of learning trials is required
in order for the net to stabilize. [Carpenter & Grossberg, 1987b]. Fast learning
and slow learning are compared in the examples in Section 5.3.3.

Calculations for Algorithm. The following calculations are repeated at sev-
eral steps of the algorithm and will be referred to as ‘“‘update F, activations.”
Unit J is the winning F node after competition. If no winning unit has been chosen,
d will be zero for all units. Note that the calculations for w; and p: can be done
in parallel, as can the calculations for x; and g;.

The update F, activations are:

U;
u; = ,
Coe+ vl
w; = §; + au;, pi = u; + dty;,
X=— g = —2
Toe + i’ Coe+pl’

vi = f(x:) + bf(q.).

The activation function is

_Jx ifx=6
fx) = {0 if x < 0.

Algorithm

Step 0. Initialize parameters:
a,b,8,c,d e a,np

Step 1. Do Steps 2-12 N_EP times.
(Perform the specified number of epochs of training.)
Step 2. For each input vector s, do Steps 3-11.
Step 3. Update F; unit activations:

§;

U; = 0, X = —— s
' Coe+ i
w; = §;,
i i q; = 0’
Pi = 0,

v; = f(x;).

Sec. 5.3 ART2 253

Update F, unit activations again:

U;
e+ v’

Uu; =

w; = §; + au;,

Pi = u;,

_ Wi
SPIT
qi = pi s

e + [pl

Ui

f(xi) + bf(q).
Step 4. Compute signals to F, units:

yi = 2 bipi.
Step 5. While reset is true, do Steps 6-7.
Step 6. Find F, unit Y, with largest signal. (Define J

such thaty, = y;forj=1,...,m)
Step 7. Check for reset:

U;
e+ v’

U; =

pi = u; + dty;,
u; + cp;
e + lujl + clipl”
If |ir] < p —e, then
yr = —1 (inhibit J)

(reset is true; repeat Step 5);
If I = p — e, then

r;i =

w; = §; + au;,

w;
X = ———
Toe vl
Di
q. = _—,
" e+ |pl

v; = f(x;) + bf(q)).

Reset is false; proceed to Step 8.

2584 Adaptive Resonance Theory Chap. 5

Step 8. Do Steps 9-11 N_IT times.
(Perform the specified number of learning iterations.)
Step 9. Update weights for winning unit J:

tyi = adu; + {1 + ad (d - 1)}[1,‘,
b,'_[= ozdu,- + {1 + (!d (d — 1)}b,_1
Step 10. Update F, activations:

Uy

U = ———
e+ |vi|’

~.

w; = 8; + au;,

Di = u; + dty;,
— Wi
AR
q: = P ’

e + [pll

vi = f(x;) + bf(qy).

Step 11. Test stopping condition for weight updates.
Step 12. Test stopping condition for number of epochs.

Comments. In the preceding algorithms, we have made use of the following
facts:

1. Reset cannot occur during resonance (Step 8).
2. A new winning unit cannot be chosen during resonance.

We have not used the facts that:

1. Typically, in slow learning N_IT = 1, and Step 10 can be omitted.

2. In fast learning, for the first pattern learned by a cluster, u will be parallel
to ¢ throughout the training cycle and the equilibrium weights will be

ty; =

bis

(See Exercise 5.6.)

Sec. 5.3 ART?2 255

Other possible stopping conditions are as follows:

Repeat Step 8 until the weight changes are below some specified tolerance.
For slow learning, repeat Step 1 until the weight changes are below some specified
tolerance. For fast learning, repeat Step 1 until the placement of patterns on the
cluster units does not change from one epoch to the next.

Steps 3 through 11 constitute one learning trial (one presentation of a pat-
tern). It will be convenient (especially in describing the implementation of fast
learning and slow learning using this algorithm) to refer to the performance of a
learning trial for each input pattern as an epoch. It is not necessary that the
patterns be presented in the same order on each epoch. Note that the action of
updating the F; activations during the extended resonance phase of the fast learn-
ing mode (the computations in Step 8) causes the values of the u; that appear in
the weight update equations to change as learning progresses.

Choices

® Parameters. A summary of the role of the various parameters used in the
algorithm is given here. Derivations of some of these restrictions are given in
Section 5.3.4. The parameters and their roles are as follows:

n number of input units (F, layer);
m number of cluster units (F; layer);
a, b fixed weights in the F layer; sample values are a = 10, b = 10. Setting

either a = 0 or b = 0 produces instability in the net; other than that,
the net is not particularly sensitive to the values chosen.

c fixed weight used in testing for reset; a sample value is ¢ = .1. A small
c gives a larger effective range of the vigilance parameter (see Section
5.3.4).
d activation of winning F unit; a sample value is d = .9. Note that ¢ and
d must be chosen to satisfy the inequality
cd =1
1-d

(in order to prevent a reset from occurring during a learning trial). The
ratio should be chosen close to 1 to achieve a larger effective range for
vigilance (see Section 5.3.4).

e a small parameter introduced to prevent division by zero when the norm
of a vector is zero. This value prevents the normalization to unity from
being exact. A value of zero is typically used in the hand computations
and derivations that follow and may be used in the algorithm if the nor-
malization step is skipped when the vector is zero.

] noise suppression parameter, a sample value is 6 = 1/\/n. The sample
value may be larger than desired in some applications. Components of
the normalized input vector (and other vectors in the F, loop) that are
less than this value are set to zero.

256 Adaptive Resonance Theory Chap. 5

o learning rate. A smaller value will slow the learning in either the fast or
the slow learning mode. However, a smaller value will ensure that the
weights (as well as the placement of patterns on clusters) eventually
reach equilibrium in the slow learning mode.

p vigilance parameter. Along with the initial bottom-up weights, this pa-
rameter determines how many clusters will be formed. Although, theo-
retically, values from 0 to 1 are allowed, only values between approx-
imately 0.7 and 1 perform any useful role in controlling the number of
clusters. (Any value less than 0.7 will have the same effect as setting p
to zero.) Some choices of values for ¢ and d will restrict the effective
range of values for p even further.

Initial Weights. The initial weights for the ART2 net are as follows:

£;i(0) initial top-down weights (must be small to ensure that no reset will
occur for the first pattern placed on a cluster unit);
t j,'(O) = 0
b;(0) initial bottom-up weights; must be chosen to satisfy the inequality
1
b;j(0) = ———,
! (1 - d)yVn

to prevent the possibility of a new winner being chosen during *‘res-
onance’’ as the weights change. Larger values of b;; encourage the net
to form more clusters.

Learning Mode. Fast learning and slow learning differ not only in the theo-
retical assumptions on which they are based (in terms of the speed of learning
relative to the duration of presentation of a pattern during any one learning trial),
but also in the performance characteristics of the clusters and weight vectors
formed when they are used. Some differences in the performance of fast and slow
learning are summarized here and are illustrated in the examples of the next
section.

Fast learning results in weight vectors that have some of the same char-
acteristics as the weights found by ART1. Typically, a component of the weight
vector for a particular cluster unit that is set to zero during a learning trial will
not become nonzero during a subsequent learning trial. Furthermore, if a pattern
being learned by a cluster has one or more components that are zero after noise
suppression is applied, the corresponding components of the weight vector will
be set to zero during learning. However, the weights of the nonzero components
will change on each learning trial to reflect the relative magnitudes of the nonzero
components of the current input vector. This suggests that fast learning may be
more appropriate for data in which the primary information is contained in the
pattern of components that are ‘‘small’’ or ‘‘large,”” rather than for data in which
the relative sizes of the nonzero components is important.

Sec. 5.3 ART2 257

Slow learning requires many epochs of training, with only one weight update
iteration performed on each learning trial. The weight vector for each cluster is
the average of the patterns it has learned, which may make the weight vector a
more suitable exemplar for the cluster for certain types of applications. The
weights reach equilibrium (to within a tolerance determined by the learning rate).
In some applications, slow learning may also produce clustering that is less in-
fluenced by the order of presentation of the patterns than the clustering produced
by fast learning.

5.3.3 Applications

Simple examples

We now consider several examples of the operation of ART?2 for input with two
components. In each of these examples, the parameter values are as follows:

a = 10,
b =10,
c = 0.1,
d =109,

e = 0 (not shown in subsequent formulas, for simplicity).
Example 5.6 ART2 with fast learning: first pattern on a given cluster

This example illustrates that the first time a first cluster unit is chosen as the winner,
it learns the noise-suppressed input pattern. No reset can occur for the first pattern
learned by a cluster unit. The final weights are 1/(1 — d) times the noise-suppressed
input vector.

The parameter values are:

p =09, 6 = 0.7.

The initial bottom-up weight vector (approximately the largest permissible value) is

b; = (7.0, 7.0) for each cluster unit.
The initial top-down weight vector is

t; = (0.0, 0.0) for each cluster unit.
The input is

s = (0.8, 0.6).

All other activations are initially zero. For the first F; loop, we have:

Yy
[ivll
w=s+ au = (0.8, 0.6),

u-= = (0.0, 0.0),

258

Adaptive Resonance Theory Chap. 5

p=u = (0.0, 0.0),
=X = (0.8, 0.6),
(Iwll
P
=P = (0.0, 0.0),
L™

v = f(x) + bf(q) = (0.8, 0.0).

For the second F, loop;

v

w= = (1.0, 0.0).

wW=s+au = (0.8, 0.6) + 10 (1.0, 0.0)
= (10.8, 0.6),

pPp=o1u = (1.0, 0.0),

X = H:—" = (0.998, 0.055),

q-= ﬁ = (1.0, 0.0),

v = f(x) + bf(q) = (0.998, 0.0) + 10 (1.0, 0.0)
= (10.998, 0.0).

Further iterations will not change u or p, so we now proceed to send a signal
from the P units so that the F, layer can find a winner. ,

Since this is the first pattern presented, and the bottom-up weights for all
cluster units are initialized to the same values, all F, units will receive the same
input. Taking the usual tie breaker of letting the unit with the lowest index win,
cluster unit 1 will be chosen as the winner.

In the loop that tests for a reset,

u= A
Iivil

As soon as the P units receive a top-down signal from the winning cluster unit
(unit J), the test for a reset is performed. However, since this unit has not learned
any patterns previously (and the top-down weights are initialized to zero), the ac-
tivation of the P units is unchanged by the top-down signal; i.e.,

p =u + dt, = (1.0, 0.0) + 0.9 (0.0, 0.0).

= (1.0, 0.0).

Since

pP=u
the check for a reset gives

[l + cul

el =l + < =

Sec. 5.3 ART2 259

For this cluster unit to learn, we must have

el = p.

However, |r| = 1 = p for any valid value of p (since p = 1), so the winning cluster
unit will be allowed to learn the current pattern. This example shows that a reset
cannot occur for the first pattern on any cluster unit.

Now, we finish the F, loop calculations:

W=s+au = (0.8, 0.6) + 10 (1.0, 0.0)
= (10.8, 0.6),
X = — = (0.998, 0.055),
[Iwi|
- P = (1.0, 0.0),
Ipl
v = fx) + bf(g) = (0.998, 0.0) + 10 (1.0, 0.0)
= (10.998, 0.0).

We update the weights, using a learning rate of 0.6:

t;(new) = 0.6 (0.9 + [1.0 ~ 0.6 (0.9)(0.1)]t,(old)
= 0.54u + 0.946t,(old),
t; = (0.54, 0.0).
b,(new) = 0.6 (0.9u + [1.0 — 0.6 (0.9)(0.1)]b,(0ld)

0.54u + 0.946b,(old),
b; = (0.54, 0.0) + (6.62, 6.62),

= (7.16, 6.62).
For the F, loop,
v
u= = (1.0, 0.0),
e + |v|
W=s+ au = (0.8, 0.6) + 10 (1.0, 0.0)
= (10.8, 0.6),
p=u+dt =(1.0,00) + .9 (0.54, 0.0),
-2 = (0.998, 0.055),
iwli
- B = (1.0, 0.0),
(ipl

v = f(x) + bf(q) = (0.998, 0.0) + 10(1.0, 0.0)
= (10.998, 0.0).

260 Adaptive Resonance Theory Chap. 5

We update the weights again:
t;(new) = 0.54u + 0.946t,(old),
t; = (0.54, 0.0) + 0.946 (0.54, 0.0) = (1.05, 0.0).
b, (new) = 0.6 (0.9 + [1.0 — 0.6 (0.9) (0.1)] b,(old)
= 0.54u + 0.946b,(old),
b, = (0.54, 0.0) + (6.77, 6.26),

= (7.32, 6.26).
For the F, loop,
u= ﬁ = (1.0, 0.0),
w = (0.8, 0.6) + 10 (1.0, 0.0) = (10.8, 0.6),
= (1.0, 0.0) + 0.9 (1.05, 0.0),
x = (0.998, 0.055),
q = (1.0, 0.0),

v = (0.998, 0.0) + 10 (1.0, 0.0).

Thus, p never gets a contribution to the component that is zero, q does not
change, u does not change, and t, gradually grows to a multiple of u. In fact, since
u will not change during learning, the equilibrium values of the weights can be found
immediately from the following formulas:

Et,,- = du; + d(d —)y,

0 =du; + dd - Dty

lu
l_dn

(10, 0).

hy =

t

Although the bottom-up weights start from different initial values than the top-
down weights, the differential equations are the same, and the same analysis shows
that they converge to the same values. Thus, we see that the equilibrium weights
for the first pattern learned by any cluster unit can be found without iterative solution
of the differential equations for the weights.

There are two special aspects to this example, namely, that the pattern is
the first one learned by the cluster unit and some components of the input are
suppressed. The original formulation of ART2 suggested 8 = 1/\/n, which gives
an approximate value of 6 = 0.7 for n = 2. However, it is easy to see that using
this value of 8 will drive any input (whose components are not exactly equal to
each other) to u = (1, 0) or u = (0, 1) on the first iteration. Thus, we see that the

Sec. 5.3 ART2 261

choice of the noise parameter 6 can have a significant effect on the performance
of the net. Noise suppression is considered in more detail in Section 5.3.4.

The preceding computations would be the same for slow learning, down to
the point where the first weight update was performed. However, after that, a
new pattern would be presented to the net, rather than an alternation of F; and
weight updates. We shall consider the effect of slow and fast learning further in
the examples that follow.

We now consider some examples with no effect from noise suppression.
Except for the parameter values given for Examples 5.7 and 5.8, all other param-
eters are as specified in Example 5.6.

Example 5.7 Effect of initial bottom-up weights in ART2 cluster formation

We illustrate the effect of the initial bottom-up weights on the number of clusters
formed using fast learning. The noise suppression parameter and input vector are:

6 =10.1, s = (0.8, 0.6).

All other activations are initially zero.
For the first F; loop, we have:

u = (0.0, 0.0),

w=s8+ au = (0.8, 0.6), p = u = (0.0, 0.0),
w P
=2 -(08,0.6), =L - (00,00,
il 7 ol
v = f(x) + bf(q) = (0.8, 0.6).
For the second F; loop,
U=~ = (0.8, 0.6),
[\l
W=s5+au = (0.8, 0.6) + 10 (0.8, 0.6) = (8.8, 6.6),
=u = (0.8, 0.6),
. = (0.8, 0.6),
iwli
=2 = (0.8, 0.6),
Ipll :

v = f(x) + bf(q) = (0.8, 0.6) + 10 (0.8, 0.6) = (8.8, 6.6).

Further iterations will not change u or p, so the F;—F; iteration to find a winner can
be started:

Signals are sent from the P units to the F; layer.
The F, units that are not inhibited compete to find the winning unit.

The winning F, unit sends a signal back down to the F| layer, but since this
is the first pattern learned by this cluster (and the top-down weights are ini-
tialized to zero), the signal is zero.

262

Adaptive Resonance Theory Chap. 5

In general, we would update the activations of the P units to incorporate the
top-down signal from the winning F, unit and then check the reset condition. (f the
condition is met, we would update the rest of the F, activations). However, as ob-
served in Example 5.6, a reset will not occur for the first pattern on a cluster if the
top-down weights are initialized to zero. We have:

v
vl
P = u + dt; = (0.8, 0.6).

Test for a reset would occur at this point.

= (0.8, 0.6).

W=s+a = (0.8, 0.6) + 10 (0.8, 0.6) = 8.8, 6.6),
X = — = (0.8, 0.6),
[Iwli
=L = (0.8, 0.6),
(el

v = f(x) + bf(q) = (0.8, 0.6) + 10 (0.8, 0.6).
We update the weights, using a learning rate of 0.6:
tyi(new) = 0.6 (0.9)u; + [1.0 — 0.6 (0.9)(0.1)]z,,(old)
= 0.54u; + 0.946¢,,(01d),
0.54 (0.8, 0.6) = (0.432, 0.324).

-
I

Next, we update F;:

u = (0.8, 0.6),

w = (0.8, 0.6) + 10(0.8, 0.6) = 11 (0.8, 0.6),

p = (0.8, 0.6) + 0.9(0.432, 0.324) = 1.486 (0.8, 0.6),

x = (0.8, 0.6),

q = (0.8, 0.6),

v = (0.8, 0.6) + 10 (0.8, 0.6) = 11 (0.8, 0.6).
Now we update the top-down weights:

t = 0.54u + 0.946t(old)

0.54 (0.8, 0.6) + 0.946 (0.54)(0.8, 0.6),
1.05 (0.8, 0.6).

Since all of the vectors are multiples of (0.8, 0.6), it is easy to see that the top-down
weights will converge to a multiple of (0.8, 0.6). In fact, since u is constant, the
equilibrium top-down and bottom-up weights are defined from the following for-
mulas:

Sec. 5.3 ART2 263

%t,, = du; + d(d — iy,
0 = du; + d(d - Diy;,
ty; = L ui,
1 -d
t; = 10(0.8, 0.6) = (8.0, 6.0),
b, = 10(0.8, 0.6) = (8.0, 6.0).

We continue the example by presenting a second pattern. The bottom-up
weights are now

b, = (8.0, 6.0), b, = (7.0, 7.0).
The top-down weights are
t; = (8.0, 6.0), t: = (0.0, 0.0).
We present a second input pattern, namely,
s = (0.6, 0.8).

All other activations are initially zero. For the first F, 1 loop, we have:

u = (0.0, 0.0),
w =S8+ qu = (0.6, 0.8),
pP=u = (0.0, 0.0),
X = — = (0.6, 0.8),

]

P
=2 = (0.0, 0.0),

= ipl

v =f® + bf(g) = (0.6, 0.8).
For the second F, loop,

\4

u=-— = (0.6, 0.8),
vl
W =358+ qgu = (0.6, 0.8) + 10 (0.6, 0.8) = (6.6, 8.8),
=u = (0.6, 0.8),
w
X = — = (0.6, 0.8),
wi 0609
P
= —— = (0.6, 0.8),
T ol ©:6.08

v = f(x) + bf(g) = (0.6, 0.8) + 10 (0.6, 0.8) = (6.6, 8.8).

264 Adaptive Resonance Theory Chap. 5

Further iterations will not change u or p, so the F,-F; iterations to find a winner

can be started. Signals are sent from the P units to the F, layer. The net input to
cluster unit 1 is

(0.6, 0.8)(8.0, 6.0) = 4.8 + 4.8 = 9.6.
The net input to cluster unit 2 is
(0.6, 0.8)(7.0,7.0) = 4.2 + 5.6 = 9.8.

Thus, the winner is cluster unit 2. ,

Cluster unit 2 would learn this pattern in a manner similar to that already
described for the first pattern being learned by cluster unit 1.

However, if the initial bottom-up weights are taken to be (5.0, 5.0), rather than
the maximum permissible value of (7.0, 7.0), the second pattern will pick the first

cluster as the winner. The value of the vigilance parameter will determine whether
the first cluster will learn this pattern.

Example 5.8 Equilibrium weights for ART2: fast learning and no noise suppression

We continiue Example 5.7, using a low enough value of the vigilance parameter so
that the first cluster unit will learn the second pattern. Thus, pattern 1 = (0.8, 0.6)
has been presented, aind the top-down and bottom-up weights for cluster unit 1 are
(8.0, 6.0). The second pattern (0.6, 0.8), is presented to the net, and the F, loop
iterations dre performed as in Example 5.7. The computations continue to determine
the winning F, unit.

The net input to cluster unit 1 is

0.6, 0.8)8.0, 6.0) = 4.8 + 4.8 = 9.6.
The net input to cluster unit 2 is
0.6, 0.8)(5.0, 5.0) = 3.0 + 4.0 = 7.0.

Now, cluster unit 1 is the winner, '
The winning unit sends a top-down signal, and the reset condition is checked:

Y
(vl
P =u+dt = (0.6,0.8) + 0.98.0, 6.0)
= (1.8, 6.2).

Il

u = (0.6, 0.8),

The reset condition requires that, in order for this unit to be allowed to learn, we
have

_u+ cpll

el = a5 < o~

Sec. 5.3 ART2 265

In this case,

u + cp = (0.6, 0.8) + (0.78, 0.62) = (1.38, 1.42),
lu + cpll = 1.98,
lpll = 9.964,
[ulf = 1.0,

lufl + .1[pll = 1.9964,
IFl = 0.992 > 0.9 = p.

The winning unit is accepted, so the rest of the F, activations are updated:

w =28+ au = (0.6, 0.8) + 10 (0.6, 0.8) = (6.6, 8.8),

w

=2 -6 0.8),
(Iwl|

=2 _ (0.7, 062,
p!

Next, the weights are updated, using a learning rate of 0.6:
ti(new) = 0.6 (0.9u; + [1.0 — 0.6 (0.9)(0.1)]¢,(old)
= 0.54u; + 0.946¢,,(old),
t

0.54 (0.6, 0.8) + .946 (8, 6) = (7.9, 6.1).

During learning, an F, loop follows each weight update. The evolution of the weights
is shown in Figure 5.7.

Note that the final weights are essentially the second input vector; virtually
all information about the first vector learned by this cluster unit has been lost.

— W] - W)

Figure 5.7 Weight changes for Example 5.8.

266 Adaptive Resonance Theory Chap. 5

Example 5.9 Equilibrium weights for ART2: slow learning and no noise suppression

If we repeat Example 5.8 using slow learning, we see that the weight vector even-
tually becomes the average of the two patterns that were placed on the cluster. This
is illustrated in Figure 5.8.

Figure 5.8 Weight changes for Example 5.9.

Example 5.10 Equilibrium weights for ART2: fast learning and moderate noise
suppression
This example illustrates the fact that, after training a cluster that has learned pre-
viously, the weights are zero for any component for which either the previous weight
vector or the noise-suppressed input vector is zero. The nonzero components are
simply scaled versions of the corresponding components of the input vector.
Figure 5.9 shows the effect of first presenting the vector

0.2, 0.4, 0.6, 0.8, 1.0)
followed by the vector
(1.0, 0.8, 0.6, 0.4, 0.2).

The parameters of the net are selected so that both vectors will be placed on the
same cluster unit. The noise suppression parameter is set so that only the smallest
component in each input vector will be suppressed.

The preceding results show that the weight component that was zero from
the first pattern remains zero throughout training for the second pattern, in spite
of the fact that the input vector has its largest component in that position (the
first component).

Furthermore, if we monitor the vectors u and p, we find that within the first
100 iterations, they have shifted from the values they had when learning started

Sec. 5.3 ART2 267

t 7]

— -y ———— 5

....-.-u-o.-ooo-o'o.oo--o t2

~~-
~
-----——'h--------- A

3

2 —

1 F

0]]])] | | N ;55
1,000 2,000 3,000 4,000 5,000

Figure 5.9 Weight changes for Example 5.10.

(representing the noise-suppressed input vector) to reflect quite accurately the
weight vector for the winning cluster unit. The vectors u and p are very close to
parallel at this stage of training; they will become virtually parallel by the 200th
iteration and remain so throughout the rest of the learning trial. However, they
move gradually toward the direction of the input vector. The last component of
u and p (which is small enough in the input vector to be suppressed to zero)
decreases gradually until about iteration 3,600, when it suddenly reaches the noise

suppression level and is set to zero. Following this, the other components change
1

so that ||t = T —da |

The relatively large value of d (0.9) forces the weight vector to have a large
magnitude (10). This helps to ensure that weights once set to zero stay zero (a
property of the equilibrium weights in ART1 that carries over to the fast learning
mode for ART2). However, this large a value slows down the iterative solution
of the weight update equations during fast learning. (See Section 5.3.4 for an
alternative ‘‘shortcut.”’)

268 Adaptive Resonance Theory Chap. 5

Example 5.11 Equilibrium weights for ART2: slow learning and moderate noise
suppression

This example illustrates the fact that, using slow learning, after training a cluster
that has learned previously, the weights are the average of the patterns placed on
that cluster.
Figure 5.10 shows the effect of first presenting the vector
0.2, 0.4, 0.6, 0.8, 1.0)
followed by the vector
(1.0, 0.8, 0.6, 0.4, 0.2).

The parameters of the net are selected so that both vectors will be placed on the
same cluster unit (in this case by having only one cluster unit; the same effect could
be achieved by choosing the initial bottom-up weights sufficiently small). The noise
suppression parameter is set so that only the smallest component in each input vector
will be suppressed.

Top-down Weights:
—— $] AN 5 - ;2,:3,andt4

4 ——_____—————--.

’—

1 1 1

100 200 300
Figure 5.10 Weight changes for Example 5.11.

Spanning tree data

Sample data developed by Kohonen [1989a] can be used to illustrate the behavior
of ART?2 neural networks. The relationships between the patterns can be displayed
graphically as in Figure 5.11 [Kohonen, 1989a]. Patterns that are displayed in a
row or a column differ in only one component. Furthermore, the distance between
patterns in the same row or column on the diagram in Figure 5.11 corresponds
directly to the Euclidean distance between the vectors. For example, patterns X
and Y are adjacent; they differ only in the fourth component and the Euclidean
distance between (3, 3, 6, 2, 0) and (3, 3, 6, 3, 0) is one. The original data are
given in Figure 5.12. Because of this nice structure, we shall refer to these test
data as the spanning tree example.

269

ART2

Sec. 5.3

Figure 5.11 Spanning tree test data structure [Kohonen, 1989a].

COMPONENTS

PATTERN

cCoocoocoooQ

SO OCOoOOoOoOC

SCoocoCcooooC

COOOCOO NN

NN NN nen

<CAUAMRMLO T~

COOOCODDOOOOODOOoOOoOOOoOOO —

C OO OO PO =N T ~NN T

S = NN TN O Wen NN oo WO\ NO

VI en enoen o NN onenoMmnoenononon oo oo

[e s T o e T o g T o 2T o e TN o e T o A N 2 A TN 2 A T 0 e B o s T o S TN o T o 2 T o S T o AW o 0]

A ZO0AOMnED>E XN —

Figure 5.12 Spanning tree test data [Kohonen, 1989a].

270 Adaptive Resonance Theory Chap. 5

Example 5.12 Spanning tree data clustered by ART2: high vigilance and noise suppression

The clusters formed using spanning tree data and fast learning are indicated in Figure
5.13; the results for slow learning are shown in Figure 5.14. The vigilance and noise
suppression parameter values are relatively high, namely, p = .99 and 6 = .447.

(oA B ¢ p E)

F

HKL)GANO)PQ@
"(
x 1 2 3)(a 5)

Y

®

Figure 5.13 Spanning tree test data as clustered by ART2;
fast learning, p = .99, 8 = .447.

< a7 w

(A B c p E)

F
G
H XK L)M N 0P Q R)
I s w
J T x 1 2 3)(4 5 6)
U Y
v ®

Figure 5.14 Spanning tree test data as clustered by ART?2;
slow learning, p = .99, 8 = .447.

;
l
;
:

Example 5.13 Spanning tree data clustered by ART2: moderate vigilance and high noise
suppression

For the moderate vigilance and high noise suppression parameter values
p = .95, 6 = .447,

the clusters formed using fast and slow learning are indicated in Figures 5.15 and 3
5.16, respectively. :

Sec. 5.3 ART2

271

Note that the net is sensitive to fairly small changes in the vigilance parameter.

As expected (and desired), more clusters are formed for the higher vigilance param-
" eter:

CLUSTERS FORMED

p=.9 p=.95
Fast 8 6
Slow 7 4

In each of these cases, 1,000 epochs with one weight update iteration per epoch

were performed for the slow learning; three epochs of training were performed for
the fast learning.

(A B c p E)

F

G

H X)M N ofP Q R)
I s W

I

1 2 3)(4 5 o)

T X
U Y
\J Z

Figure 5.15 Spanning tree test data as clustered by ART?;
fast learning, p = .95, 0 = .447.

(A B ¢ p E)
N

(H X L M N 0)P Q R)
1 w(

Y

Z

Figure 5.16 Spanning tree test data as clustered by ART?2;
slow learning, p = .95, 0 = .447.

272 Adaptive Resonance Theory Chap. 5

Example 5.14 Spanning tree data clustered by ART2: high vigilance and moderate noise
suppression

For the high vigilance and moderate noise suppression parameter values
p=.99, 0= .2,

there is more difference in the number of clusters formed by fast and slow learning,
as illustrated in Figures 5.17 and 5.18, than there was for the higher noise suppression
(Example 5.12). In each of these examples the net was allowed a maximum of 10
cluster units. Fast learning used all 10 units, whereas slow learning only uses 6 units.

(A B c p E)

(F)
9
@@LMNOPQR
I
X
Y

< C 4

3 1@(3456) |
z

Figure 5.17 Spanning tree test data as clustered by ART?; j
fast learning, p = .99, 0 + .2.

(ABC‘DQ

&f
L M N)(O P Q R
S w

Figure 5.18 Spanning tree test data as clustered by ART?2;
slow learning, p = .99, 8 = .2.

Sec. 5.3 ART2 ’ 273

Character recognition

Example 5.15 Clustering letters from different fonts using ART2 with slow learning

ART?2 can be used for binary data. Using slow learning gives weights that may be
more useful as exemplars than those formed by ART1 (see Example 5.3). The clusters
formed are much less sensitive to the order of presentation than were those in that
example.

Here, we take as input vectors the representations of seven letters from each
of the three fonts presented in Figure 5.3. The results that follow use the standard
valuesof a = 10, b = 10, ¢ = 0.1, and d = 0.9, together with vigilance parameter
p = 0.8 and noise suppression parameter 8 = 0.126.

If the order of presentation is Al, A2, A3, Bl, B2, B3, . . ., the patterns are
clustered as follows:

CLUSTER PATTERNS

1 Al, A2

2 A3

3 Ci, C2, C3, D2

4 B1, Di, El, K1,
B3, D3, E3, K3

5 K2

6 J1,12, 33

7 B2, E2

If the data are input in the order Al, B1, C1, ..., A2, B2, C2, ..., the results

are:
CLUSTER PATTERNS

1 Al, A2

2 B1, DI, E1, K1,
B3, D3, E3, K3

3 C1,C2,C3

4 J1,732,)3

5 B2, D2, E2

6 K2

7 A3

Note that although the order of the clusters is different for the two orders of pre-
sentation, the patterns placed together are almost identical.

The top-down weights can be shown in a two-dimensional array (just as the
original input data represented a two-dimensional pattern). The weights are either
0 (indicated by) or the average of the input signals for the patterns placed on that
cluster (indicated by #).

274 Adaptive Resonance Theory Chap. 5

The weights for the clusters formed with the first order of presentation are:

Cluster 1 Cluster 2 Cluster 3

334 § sab #7%

Cluster 4 Cluster 5 Cluster 6 Cluster 7
f#f#t s 3 1. #####‘

s 0o . e o0
ooooo

e o o000 o
o0 0 ofko s 00
o o oo o o
o ofbe o ofpe o
[LIS X
BEo e o000 o
®e e

.

E 3 .

**

%%

*

*

.

The top-down weights for the second order of presentation are:

Cluster 1 Cluster 2 Cluster 3

*
3*
+*

e 2 o0 ol

SHAEIE o o RNl

B v 0000 o
o e o oo

H XECAAE - R
3o oo

Cluster 4 Cluster 5 Cluster 6 Cluster 7

SR i L 9IRS
R0 ¥ ;;;;:g st sEE
:&::: : S | B PO 2 THERE
Hak: i it HEH

Sec. 5.3 ART2 275
5.3.4 Analysis

Variations

The following computationally streamlined variations of ART?2 produce essentially
the same final clusters and weight vectors as the iterative (resonating) algorithms
for fast and slow learning. In each variation, several iterative computations have
been replaced by shortcut (nonneural) approaches.

Instant ART2. Instant ART2 is computationally streamlined algorithm for
ART? that exhibits the same stability and clustering characteristics as the fast
learning algorithm analyzed in the preceding sections.

There is no need to check for reset for the first pattern being learned by a
cluster unit. (This can be determined by checking whether the top-down weights
are zero, since they are initialized to zero, but at least some components will be
nonzero after the unit has learned a pattern.)

Carpenter and Grossberg (1987b) indicate that ART? is designed to have
components that are set to zero—in either the previous weight vector or the noise-
suppressed input vector—remain zero after fast learning. This is illustrated in
Examples 5.8 and 5.11, and forms the basis for the Instant ART?2 algorithm.

Note that in the following algorithm, the parameter ¢ has been taken to be
zero. Some protection against division by zero should therefore be included in
any computer implementation of this algorithm.

Training Algorithm for Instant ART2

Step 0. Initialize parameters:
a; b’ e, C’ dy a, p.

Step 1. Do Steps 2-9 N_EP times.
(Perform specified number of epochs of training.)
Step 2. For each input vector s, do Steps 3-8.
Step 3. Update F,; unit activations:

w; = §;,
= 35
ST
vi = f(x).
Update F; unit activations again:
= Y
“T e

w; = §; + au;,

276

Adaptive Resonance Theory Chap. 5
pi = u,
oo i
T wl’
gi= 2
llpll ”
vi = f(xi) + bf(q.).
Step 4. Compute signals to F» units:
Y= 2 bip:.
Step 5. While reset is true, do Steps 6-7.
Step 6. Find F, unit with largest signal.
(Define J such thaty, 2 y;forj = 1,. .., m.)
If y; = —1 all cluster units are inhibited; this
pattern cannot be clustered.
Step 7. If t, = 0, proceed to Step 8.

Ift, # 0, then check for reset:

_ Y

e

pi = u; + dty;,
Ui+ ep;

"7l + clpl

If v < p, then
(inhibit J).

(Reset is true; repeat Step 5).
If |ir] = p, then

yr= —1

w; = §; + au;,
_ W

T wl
_pi

T el

v = f(x) + bf(qi).
Reset is false; proceed to Step 8.

Sec. 5.3 ART2 277

Step 8. Update weights for winning unit J:
If t; # 0, then
If t;; # 0,

tyi

biJ = 1 = du,-.

Ift, = 0, then

t, =

bJ=

T—a"
Step 9. Test stopping condition for number of epochs.

Derivations

The derivations in this section follow the original development by Carpenter and
Grossberg (1987b) closely.

Differential Equations for Activations. The general form of the differential
equation for the activation of an arbitrary unit Z in the F, layer is
dz

_— = + -
ar Az + T -,

where A is a positive constant, J* is the total excitatory input to the unit, and
J~ is the total inhibitory input to the unit.

In ART nets, the assumption is made that activations change much more
rapidly than any other process. Thus, the activations reach equilibrium before
any input signals have time to change. This leads to the general form of the
equation for the equilibrium activation:

J+
TA+JT
We have chosen the value of A to obtain the simplest form of the equation for
the activations.

For the units that receive no inhibitory input, we take A = 1. Inhibitory
input is indicated in Figure 5.4 by dashed arrows. Thus, the W units receive no

inhibitory input; their excitatory input comes from the U units and the input signal.
The equilibrium activation for the generic W unit, W, is

Z

w; = §; + au;.

278 Adaptive Resonance Theory Chap. 5

Similarly, the P units receive excitatory input from the U units and the F, units.
The activation of an F, unit is zero if it is not active and d if it is the current
winner. We denote the winning unit’s index by J, so that the equilibrium activation
for the generic P unit, P;, is

pi = u; + dty,

where ¢,; is the top-down weight from unit Y, to unit P;. If no F, unit is active,
the activation of unit P; is simply

Pi = U;.

The role of inhibition in ART?2 is to normalize the activations at certain points
in the computation cycle. For units that receive inhibitory inputs, we take A equal
to a small parameter e. This protects against difficulties that would otherwise arise
if the unit received no input signal, but allows the unit to normalize the vector to
(approximately) unit length. Each X unit receives an excitatory signal from the
corresponding W unit and an inhibitory signal equal to the norm of the vector of
activations of the W units; thus, the activation is

w;

Xi = ———.
Coe+ |l

Similarly, each Q unit receives an excitatory signal from the corresponding P unit
and an inhibitory signal equal to the norm of the vector of activations of the P
units, leading to the same form of an equation for the activation of a Q unit:

Di
e + |pl

For the V units we take A = 1, and for the U units we take A = e, as described
before for the other units of the F1 layer. We obtain

qi =

vi = f(x;) + bf(q),
U = —=
et vl

Differential Equations for Weight Changes. The differential equations for
the top-down weights (where J denotes the winning cluster unit) are

d
_62; ty; = du; + d(d - I)tji.

These can be approximated by the difference equations

t;i(new) — t_],'(Old) = a[du; + d(d - l)t_],'(OId)],
or

t;inew) = adu; + [1 + ad(d — 1)]t,:(0ld),

where o is the step size or learning rate.

Sec. 5.3 ART2 279

In the same manner, the differential equations for the bottom-up weights,

d

E‘t b,'_] = dll,' + d(d - l)b,'_],

can be approximated by the difference equations
b,-,(new) = adu,- + [1 + ad(d - 1)]b,_](01d)

For fast learning, an input pattern is presented for a long enough period so
that the weights reach equilibrium during each learning trial (presentation). How-
ever, unless we assume that learning progresses sufficiently rapidly that no it-
erations in the F, loop occur as the weights change, the activations of the U units
will be changing as the top-down weights change. Thus, in general, an iterative
process of learning is required for ART?2 nets.

Reset Mechanism. The test for reset is

if Ir|l = p, then accept the winning F, unit and proceed with learning:
if |lrfl < p, then reject (inhibit) the winning F, unit and reset all activations to 0;

where

lu + cpl

lIef| = :
lhall + ¢ lipl

Before a winner is chosen in the F, layer,
P=w
therefore,

Ieff = 1.

This shows that it is not necessary to check for a reset until an F> winner has
been chosen.

It is desired that after a winner has been accepted to learn, no reset should
suddenly cause the unit to stop being acceptable. In order to analyze the pre-
cautions that are necessary to ensure that this cannot happen, we now consider
the possible changes in |irf| during learning.

After a winning F, unit has been chosen,

P=u+ dt
therefore,

lllf + c |ipl

280 Adaptive Resonance Theory Chap. 5

can be written as

1 + ctu + cdt
I +clu+ di

lell =

Using the law of cosines, we obtain
I+ u + cdt? = (1 + el? + lledt? + 21 + c)ul fledt] cos(u, t)
= (1 + ¢)* + Jledt|? + 2(1 + c) |lcdt|| cos(u, t)
and

la + dtl? = [lul® + |dti* + 2 |fu] |dt] cos(u, t)

1 + |4t + 2 ||dt|| cos(u, t),

from which we find that

VA + ¢)? + Jledt? + 21 + c) [ledt] cos(u, t)
1+ ¢ V1 + ||atfF + 2[dt[cos(u,)

liell =

If we let X = ||cdtf] and 8 = cos(u, t), then we can write ||| as a function of X
and the parameter B as follows:

VO +c+20 +0)BX + X2

Iell = 1+ Ve? + 2cBX + X2

The minimum value of |r|| occurs at X, = V3c? + 4¢ + 1.

Figure 5.21 shows a sketch of |jr|| as a function of X for three values of the
parameter B: 0, .5, and 1. These values correspond to the cases in which the
vectors u and t are orthogonal, at an angle of /3, and parallel, respectively.
Clearly, the minimum value of ||r|| occurs when 8 = 0. In this case, the minimum
is

VA + ¢+ 3% +4c + 1
1+ Ve #3274+ 4c + 1

V4c? + 6¢c + 2 V2c + 1
1+ VAT t4dc+1 V2 + 2
Since 0 < ¢ < 1, the minimum value of |r| ranges between 1/A/2 and
V/3/2. Thus, although the vigilance parameter can be set to any value between 0
and 1, values below approximately 0.7 will have no effect; the results will be the
same as if the vigilance parameter were set to 0. However, it is not likely to have
a pattern u assigned to a cluster with top-down weight vector t such that B =

cos(u, t) = 0. Therefore, larger values of p are necessary before the reset mech-
anism will have any effect.

”r”min =

Sec. 5.3 ART2 281

krlt Wl
10 B=1 10 B=1
09 B=.5 0,9&7%0
B=0
08 |- 0.8 |-
!

0.7 1 X 0.7 1 X
c=0.1 c=05

Figure 5.19 The effect of parameter ¢ on the relation between Irll and X = Jlcdt||
for selected values of B = cos(u, t).

(@ ¢ =0.1

(b)c =05

Figure 5.19 also shows why a small value of ¢ is preferable to larger value:
For small ¢, the minimum value of llrfl is closer to 1//2, and the effective range
for the vigilance parameter will be as wide as possible.

It is desired that the winning unit, once accepted by the reset mechanism,
should not be rejected during learning. We know that |t = 1/(1 — d) if the weights
have been trained on a previous pattern (and we know that the reset mechanism
will never reject a cluster unit the first time it is chosen as the winner). However,
it may decrease during training, before returning to 1/(1 — d). Since the minimum
value of [rl occurs for X mi, (Which is greater than 1), we can ensure that |jr|] does
not decrease during training as long as the initial value of X is less than 1. If this
is guaranteed, then ||r|| will increase if lItll decreases. The initial value of X will be
less than 1 if

lledtff < 1,

or

cd
1-d

This analysis shows that as long as the parameters are chosen to satisfy these
constraints, it is not necessary to check for a reset during training.

Again, the graph illustrates the advantage in choosing the parameters ¢ and
d so that the ratio cd/(1 — d) is close to 1. The initial value of X (i.e., [lcdt]) will
determine the effective range of the vigilance parameter, since X can move only
to the left during training.

<.

Initialization of Weights. The top-down weights are initialized to zero to
prevent a reset when a cluster unit that has not learned any patterns previously
(an uncommitted node) is first selected as the winner. (If the top-down weights
were nonzero, the combination of u and t might not be sufficiently similar to u
to pass the reset check.)

282 Adaptive Resonance Theory Chap. 5

The norm of the initial bottom-up weights for any unit should be less than
or equal to 1/(1 — d), since that is the norm of the weights after training. If the
norm of the initial bottom-up weights were larger than the norm of the weights
after learning, then the weights would decrease during learning, and a new winner
might suddenly be chosen. Once a unit is allowed to start learning a pattern,
nothing should cause it to stop learning (before equilibrium is reached for fast
learning).

The components of the bottom-up vector are typically taken to be equal to
each other, and bottom-up weights are often chosen to be the same for all cluster
units.

Choosing initial bottom-up weights (with equal components) equal to the
maximum possible norm would result in

1
A —-dVn'

This will give new cluster units (units not previously selected to learn) the best
chance of being selected the winner. However, if there are input vectors that are
very similar to each other, they may be assigned to several different clusters,
rather than being grouped together. Choosing smaller values for the initial bottom-
up weights may reduce the number of clusters formed, since units that have
learned previously will be selected preferentially to new units. In this case, the
vigilance will play a stronger role in determining the nature of the clusters formed.
If the vigilance parameter is relatively low, the net may change the weights on
the clusters that are already formed (rather than forming a new cluster) more often
than is desirable.

bij(o) =

5.4 SUGGESTIONS FOR FURTHER STUDY
5.4.1 Readings
The standard reference for ART1 is

CARPENTER, G. A., & S GrossBeRG. (1987a). ‘A Massively Parallel Architecture for a
Self-Organizing Neural Pattern Recognition Machine.’” Computer Vision, Graphics, and
Image Processing, 37:54-115.

The presentation of ART2 is given in

CARPENTER, G. A., & S. GROSSBERG. (1987b). *ART2: Self-organization of Stable Category
Recognition Codes for Analog Input Patterns.’” Applied Optics, 26:4919-4930. Reprinted
in Anderson, Pellionisz, & Rosenfeld (1990), pp. 151-162.

Chap. 5 Exercises 283

5.4.2 Exercises

ART1

5.1

5.2

Consider an ART1 neural net with four F, units and three F, units. After some train-
ing, the weights are as follows:

Bottom-up weights b,;

0.67 0.0 0.2
00 00 0.2
00 00 02
0.0 0.67 0.2

Top-down weights t;,

1 000
0 0 0 1
1111

Determine the new weight matrices after the vector (0, 0, 1, 1) is presented if
a. the vigilance parameter is 0.3;
b. the vigilance parameter is 0.7.

Consider an ART1 network with nine input (F,) units and two cluster (F>) units.
After some training, the bottom-up weights (b;;) and the top-down weights (¢;;) have
the following values:

Bottom-up weights b;;

173 /10
0 1/10
173 1/10
0 1/10
1/3 110
0 1/10
1/3 110
0 1/10
173 1/10

Top-down weights t;

1 o1 010101
11111111

The pattern (1, 1, 1, 1, 0, 1, 1, 1, 1) is presented to the network. Compute the action
of the network if

a. the vigilance parameter is 0.5;

b. the vigilance parameter is 0.8.

284 Adaptive Resonance Theory Chap. 5
ART2
5.3 Consider an ART2 network with two input units (n = 2). Show that using 6 = 0.7

5.4

5.5

5.6

will force the input patterns (0.71, 0.69) and (0.69, 0.71) to different clusters. What
role does the vigilance parameter play in this situation?
Consider an ART2 network intended to cluster the input vectors

(0.6, 0.8, 0.0), (0.8, 0.6, 0.0), (0.0, 1.0, 0.0), (1.0, 0.0, 0.0)
(0.0, 0.6, 0.8), (0.0, 0.8, 0.6), (0.0, 0.0, 1.0).

Under what circumstances will the net place the first two vectors listed, namely,
(0.6, 0.8, 0.0) and (0.8, 0.6, 0.0), together? When will it place (0.6, 0.8, 0.0) together
with (0.0, 1.0, 0.0)? Use the noise suppression parameter value 8 = 1/V3 = 0.577,
and consider different values of the vigilance and different initial weights. Assume
fast learning. (Several of the vectors listed do not enter into the computations for
this problem. They are included simply to illustrate a situation in which it might be
reasonable to expect the first four vectors to be viewed as ordered triples rather than
using n = 2.)

Continue Exercise 5.4, assuming that the net has placed the vectors (0.6, 0.8, 0.0)
and (0.8, 0.6, 0.0) together. What will happen if the vector (0.55, 0.84, 0.0) is presented
to the net? Does the value of the vigilance parameter or the initial weights on the
cluster units that have not learned any patterns affect the action of the net?

Show that the vector u does not change during the iterations in the F, layer for the
first pattern being learned by a cluster unit. Therefore, the equilibrium values of the
weights in the fast learning mode for the first pattern placed on a cluster can be found
as we did for ART1:

d
"Eth = du; + d(d — Dt,;,
0 = du; + dd — Dt,,,
ty = L Ui,
Ji — 1 _ d is
and in a similar manner,
ib~ = du; + dld— 1)b;
dt iJ — U; iJs
0 = du; + d(d -)by,
by = ! u;

I -d

The value of u when the winning F unit is chosen is simply the input vector nor-
malized and with any components that are less than the noise suppression parameter
0 set to zero.

Chap. 5 Exercises 285

5.7

5.8

5.9

Show that if the formulas in Exercise 5.6 were used for a cluster that had learned
previously, the results would depend on precisely when in the F\—F; iterations they
were applied. Consider the results in the following cases:

a. if they were applied immediately after the winning unit was accepted for learning,
but before the new values for the activations of the P units had reached the U
units;

b. if they were applied after the top-down signal was incorporated into n. Will com-
ponents of the input vector that have been noise suppressed be set to zero in the
new weight vector? Will components of the weight vector that were zero remain
zero (if the corresponding component of the input vector is nonzero)?

Show that two iterations of signals through the F, layer are sufficient to suppress all

noise. (Activations of some units may change after this time, but not activations of

the units that determine the winning F> units or that determine a reset or acceptance
of the winning unit.)

Start with all activations zero, and take the parameter ¢ to be zero. Assume
that the first component of the vector x (the input vector after it is normalized to
unit length) falls below 8 (on the first iteration) and the other components do not.
Define the vector ss = (0, 52, . . ., 5,) as the input vector, with the component that
is *‘noise suppressed”’ by the activation function set to zero.

a. Compute the activations of the F, units for the first iteration. Compute the ac-
tivations for u and w for the second iteration.

b. Show that [iss| + a < |lw|| = |ls| + a.

¢. Using the results from part b, show that the norm of w increases from the first
iteration to the second. On the first iteration, w = (s, s», . . . , 5,,); on the second
iteration, w = (s;, $2 + aua, . .., S, + au,).

d. Show that the components of x that were set to zero on the first iteration will be

set to zero again on the next iteration and that the components that were not set
to zero on the first iteration will not be set to zero on subsequent iterations.

Using fast learning, show that noise suppression can help to prevent instability in
pattern clustering by considering the performance of an ART2 net for the following
input patterns:

Pat 10 = (0.984798, 0.173648),
Pat 20 = (0.939683, 0.342017),
Pat 30 = (0.866018, 0.499993),
Pat 40 = (0.766034, 0.642785),
Pat 50 = (0.642785, 0.766034),
Pat 60 = (0.499993, 0.866018),
Pat 70 = (0.342017, 0.939683),
Pat 80 = (0.173648, 0.984798).

Use the standard parameter values (¢ = 10, b = 10, ¢ = 0.10, d = 0.90), together
with a vigilance of 0.99 and initial bottom-up weights of (6.50, 6.50). Use the fact
that for fast learning, each cluster unit learns the current input pattern perfectly.

286

Adaptive Resonance Theory Chap. 5

Present the patterns in the following order: Pat 40, Pat 30, Pat 20, Pat 10, Pat 40,
Pat 50, Pat 60, Pat 70, Pat 80, Pat 20, Pat 30, Pat 40.

a. Use 0 = 0.0.

b. Use 8 = 0.2.

5.4.3 Projects

ART1

5.1

Write a computer program to implement the ART! neural network. Explore the per-

formance of the net for various input orders of the training patterns used in the
examples in the text.

ART2

5.2

5.3

Write a computer program to implement the ART? neural network, allowing for either
fast or slow learning, depending on the number of epochs of training and the number
of weight update iterations performed on each learning trial. Use this program to
explore the relationships between fast learning and slow learning for various input
patterns.

Because the ART2 net normalizes its input, it is sometimes advisable to create an
additional component for each of the vectors before presenting the data to the net.
This extra component is constructed so that the new vectors have the same first
components as the original vectors, but the new vectors will have the same norm N
[Dayhoff, 1990]. N can be chosen to be any number larger than the norm of the largest
of the original vectors.

Applying this process to the spanning tree patterns and using N = 10 gives the
patterns shown in the table that follows. The sixth component of each vector is the
square root of the quantity N minus the norm of the original vector.

Using this form of the data, repeat the spanning tree example. Compare and
discuss your results.

PATTERN ' COMPONENTS
A 1.0 0.0 0.0 0.0 0.0 9.9498
B 2.0 0.0 0.0 0.0 0.0 9.7979
C 3.0 0.0 0.0 0.0 0.0 9.5393
D 4.0 0.0 0.0 0.0 0.0 9.1651
E 5.0 0.0 0.0 0.0 0.0 8.6602
F 3.0 1.0 0.0 0.0 0.0 9.4868
G 3.0 2.0 0.0 0.0 0.0 9.3273
H 3.0 3.0 0.0 0.0 0.0 9.0553
I 3.0 4.0 0.0 0.0 0.0 8.6602
J 3.0 5.0 0.0 0.0 0.0 8.1240
K 3.0 3.0 1.0 0.0 0.0 9.0000
L 3.0 3.0 2.0 0.0 0.0 8.8317

Chap. 5 Exercises

PATTERN

AR LLN-NRXE<CHNROTOZEZ

3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0

3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0
3.0

COMPONENTS
3.0 0.0
4.0 0.0
5.0 0.0
6.0 0.0
7.0 0.0
8.0 0.0
3.0 1.0
3.0 2.0
3.0 3.0
3.0 4.0
6.0 1.0
6.0 2.0
6.0 3.0
6.0 4.0
6.0 2.0
6.0 2.0
6.0 2.0
6.0 2.0
6.0 2.0
6.0 2.0

0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
0.0
1.0
2.0
3.0
5.0
4.0
6.0

8.5440
8.1240
7.5498
6.7823
5.7445
4.2426
8.4852
8.3066
8.0000
7.5498
6.7087
6.4807
6.0827
5.4772
6.4031
6.1644
5.7445
4.1231
5.0990
2.4494

287

CHAPTER 6

Backpropagation Neural Net

6.1 STANDARD BACKPROPAGATION

The demonstration of the limitations of single-layer neural networks was a sig-
nificant factor in the decline of interest in neural networks in the 1970s. The
discovery (by several researchers independently) and widespread dissemination
of an effective general method of training a multilayer neural network [Rumelhart,
Hinton, & Williams, 1986a, 1986b; McClelland & Rumelhart, 1988] played a major
role in the reemergence of neural networks as a tool for solving a wide variety
of problems. In this chapter, we shall discuss this training method, known as
backpropagation (of errors) or the generalized delta rule. 1t is simply a gradient
descent method to minimize the total squared error of the output computed by
the net.

The very general nature of the backpropagation training method means that
a backpropagation net (a multilayer, feedforward net trained by backpropagation)
can be used to solve problems in many areas. Several of the applications men-
tioned in Chapter 1-—for example, NETtalk, which learned to read English
aloud—were based on some variation of the backpropagation nets we shall de-
scribe in the sections that follow. Applications using such nets can be found in
virtually every field that uses neural nets for problems that involve mapping a
given set of inputs to a specified set of target outputs (that is, nets that use su-
pervised training). As is the case with most neural networks, the aim is to train
the net to achieve a balance between the ability to respond correctly to the input
patterns that are used for training (memorization) and the ability to give reasonable

289

290 Backpropagation Neural Net Chap. 6

(good) responses to input that is similar, but not identical, to that used in training
(generalization).

The training of a network by backpropagation involves three stages: the
feedforward of the input training pattern, the caiculation and backpropagation of
the associated error, and the adjustment of the weights. After training, application
of the net involves only the computations of the feedforward phase. Even if train-
ing is slow, a trained net can produce its output very rapidly. Numerous variations
of backpropagation have been developed to improve the speed of the training
process.

Although a single-layer net is severely limited in the mappings it can learn,
a multilayer net (with one or more hidden layers) can learn any continuous map-
ping to an arbitrary accuracy. More than one hidden layer may be beneficial for
some applications, but one hidden layer is sufficient.

In Section 6.1, we shall describe standard backpropagation, including a few
of the choices that must be made in designing a net with this feature. In the next
section, we mention a few of the many variations of backpropagation that have
been developed. Finally, the mathematical derivation of the training algorithm
and a brief summary of some of the theorems dealing with the ability of multilayer
nets to approximate arbitrary (continuous) functions are given.

6.1.1 Architecture

A multilayer neural network with one layer of hidden units (the Z units) is shown
in Figure 6.1. The output units (the Y units) and the hidden units also may have
biases (as shown). The bias on a typical output unit Y, is denoted by wor; the
bias on a typical hidden unit Z; is denoted vo;. These bias terms act like weights
on connections from units whose output is always 1. (These units are shown in
Figure 6.1 but are usually not displayed explicitly.) Only the direction of infor-
mation flow for the feedforward phase of operation is shown. During the back-
propagation phase of learning, signals are sent in the reverse direction.

The algorithm in Section 6.1.2 is presented for one hidden layer, which is
adequate for a large number of applications. The architecture and algorithm for
two hidden layers are given in Section 6.2.4.

6.1.2 Algorithm

As mentioned earlier, training a network by backpropagation involves three
stages: the feedforward of the input training pattern, the backpropagation of the
associated error, and the adjustment of the weights.

Sec. 6.1 Standard Backpropagation 291

Figure 6.1 Backpropagation neural network with one hidden layer.

During feedforward, each input unit (X;) receives an input signal and broad-
casts this signal to the each of the hidden units Z;, . . . , Z,. Each hidden unit
then computes its activation and sends its signal (z;) to each output unit. Each
output unit (Y;) computes its activation (y,) to form the response of the net for
the given input pattern.

During training, each output unit compares its computed activation y, with
its target value ¢, to determine the associated error for that pattern with that unit.
Based on this error, the factor 8, (k = 1, ..., m) is computed. 8 is used to
distribute the error at output unit Y, back to all units in the previous layer (the
hidden units that are connected to Y,). It is also used (later) to update the weights
between the output and the hidden layer. In a similar manner, the factor §;
(j=1,...,p)is computed for each hidden unit Z;. It is not necessary to
propagate the error back to the input layer, but §; is used to update the weights
between the hidden layer and the input layer.

After all of the & factors have been determined, the weights for all layers
are adjusted simultaneously. The adjustment to the weight w;x (from hidden unit
Z; to output unit Y;) is based on the factor 3, and the activation z; of the hidden
unit Z;. The adjustment to the weight v;; (from input unit X; to hidden unit Z;) is
based on the factor §; and the activation x; of the input unit.

292 . Backpropagation Neural Net Chap. 6

Nomenclature

The nomenclature we use in the training algorithm for the backpropagation net
is as follows:

X Input training vector;
X = (X050 uyXiyennyXn)
t Output target vector:
t=(t, ooy tpy oo,) 4
&x Portion of error correction weight adjustment for w;i that is due to an

error at output unit Y;; also, the information about the error at unit Y,
that is propagated back t6 the hidden units that feed into unit Ye.

S; Portion of error correction weight adjustment for v;; that is due to the

backpropagation of error information from the output layer to the hidden

unit Z iy \X}

Learning rate. k

Input unit 7

For an input unit, the input signal and output signal are the same, namely,

Xis

Voj Bias on hidden unit j.

Z; Hidden unit j: \ ;
The net input to Z; is denoted z_in;: :

E<Q

z_inj = vo; t+ 2 XiUjj.
i

The output signal (activation) of Z; is denoted z;:
z; = f(z_in;).
Wok Bias on output unit k.

Yy Output unit £:
The net input to Y is denoted y_in,:

y—ing = woir + 2 ZiWjk.
J

The output signal (activation) of Y, is denoted Yi:

Y = f(y—ing).

Activation function

An activation function for a backpropagation net should have several important
characteristics: It should be continuous, differentiable, and monotonically non-
decreasing. Furthermore, for computational efficiency, it is desirable that its de-

Sec. 6.1 Standard Backpropagation 293

rivative be easy to compute. For the most commonly used activation functions,
the value of the derivative (at a particular value of the independent variable) can
be expressed in terms of the value of the function (at that value of the independent
variable). Usually, the function is expected to saturate, i.e., approach finite max-
imum and minimum values asymptotically.

One of the most typical activation functions is the binary sigmoid function,
which has range of (0, 1) and is defined as

1

f1(x) =-lm,

with

. fix) = F1&M = £
This fun@ﬁgn is illustrated in Figure 6.2.

Ax)

Figure 6.2 Binary sigmoid, range (0, 1).

—

Another common activation function is bipblar sigmoid, which has range of
(-1, 1) and is defined as

2
fax) = T+ exp(—n) 1,

with
£10) = 311+ LI = f00

This function is illustrated in Figure 6.3. Note that the bipolar sigmoid function
is closely related to the function

X X

eX — e~
tanh(x) = —— .
nh(x) = S

(See Section 1.4.3.)

294 Backpropagation Neural Net Chap. 6

fx)

Figure 6.3 Bipolar sigmoid, range (-1, 1).

Training algorithm |

Either of the activation functions defined in the previous section can be used in
the standard backpropagation algorithm given here. The form of the data (espe-
cially the target values) is an important factor in choosing the appropriate function.
The relevant considerations are discussed further in the next section. Other suit-
able activation functions are considered in Section 6.2.2. Note that because of
the simple relationship between the value of the function and its derivative, no
additional evaluations of the exponential are required to compute the derivatives
needed during the backpropagation phase of the algorithm.
The algorithm is as follows:

Step 0. Initialize weights.
(Set to small random values).
Step 1. While stopping condition is false, do Steps 2-9.
Step 2. For each training pair, do Steps 3-8.

Feedforward:

Step 3. Each input unit (X;,i = 1, ..., n) receives
input signal x; and broadcasts this signal to all
units in the layer above (the hidden units).

Step 4. Each hidden unit (Z;,j = 1, .. ., p) sums its
weighted input signals,

z__inj = vo; + 2 XiUij,

i=1

applies its activation function to compute its
output signal,

z; = f(z-iny),

and sends this signal to all units in the layer
above (output units).

Sec. 6.1 Standard Backpropagation 295

Step 5.

Each output unit (Y, k = 1, ..., m) sums
its weighted input signals,
P

y-ing = wor + 3, zjwix
J=1

and applies its activation function to compute
its output signal,

Yi = f(y—ing).)

Backpropagation of error:

Step 6.

Step 7.

Each output unit (Y, k = 1,. . ., m) receives
a target pattern corresponding to the input

training pattern, computes its error informa-
tion term,

Ok = (te — y)f'(y-iny),

calculates its weight correction term (used to
update w;, later),

Aij = asij,

calculates its bias correction term (used to up-
date wy, later),

Awo = ady,

and sends 8, to units in the layer below.
Each hidden unit (Z;,j = 1, . . ., p) sums its
delta inputs (from units in the layer above),

m
8_in,~ = 2 Sijk,
k=1

multiplies by the derivative of its activation
function to calculate its error information
term,

8j = S_inj f’(z_in,-),

.. calculates its weight correction term (used to

update v;; later),
A’U,'j = aﬁjx;,

and calculates its bias correction term (used
to update vy, later),

Avoj = (!8j.

296 Backpropagation Neural Net Chap. 6

Update weights and biases: ;
Step 8. Each output unit (Y,, k = 1, . . ., m) updates

its bias and weights (j = 0, . . ., p)
ij(neW) = ij(old) + Aij.

Each hidden unit (Z;,j = 1, ..., p) updates

its bias and weights (i = 0, . . . , n):

vij(new) = 'U,'j(Old) + Av,'j.

Step 9. Test stopping condition.

Note that in implementing this algorithm, separate arrays should be used for
the deltas for the output units (Step 6, 8,) and the deltas for the hidden units (Step
7, 8)). _

An epoch is one cycle through the entire set of training vectors. Typically,
many epochs are required for training a backpropagation neural net. The foregoing
algorithm updates the weights after each training pattern is presented. A common
variation is batch updating, in which weight updates are accumulated over an
entire epoch (or some other number of presentations of patterns) before being
applied.

‘Note that f'(y—in) and f'(z-in;) can be expressed in terms of y, and z;,
respectively, using the appropriate formulas on page 293 (depending on the choice
of activation furiction). ,

The mathematical basis for the backpropagation algorithm is the optimiza-
tion technique known as gradient descent. The gradient of a function (in this case,
the function is the error and the. variables are the weights of the net) gives the
direction in which the function increases more rapidly; the negative of the gradient
gives the direction in which the function decreases most rapidly. A derivation of
the weight update rules is given in Section 6.3.1. The derivation clarifies the reason
why the weight updates should be done after all of the 3, and d; expressions have
been calculated, rather than during backpropagation.

Choices

Choice of initial weights and biases.

Random Initialization. The choice of initial weights will influence whether
the net reaches a global (or only a local) minimum of the error and, if so, how
quickly it converges. The update of the weight between two units depends on
both the derivative of the upper unit’s activation function and the activation of
the lower unit. For this reason, it is important to avoid choices of initial weights
that would make it likely that either activations or derivatives of activations are
zero. The values for the initial weights must not be too large, or the initial input
signals to each hidden or output unit will be likely to fall in the region where the

Sec. 6.1 Standard Backpropagation 297

derivative of the sigmoid function has a very small value (the so-called saturation
region): On the other hand, if the initial weights are too small, the net input to a
hidden or output unit will be close to zero, which also causes extremely slow
learning.

A common procedure is to initialize the weights (and biases) to random
values between —0.5 and 0.5 (or between —1 and 1 or some other suitable in-
terval). The values may be positive or negative because the final weights after
training may be of either sign also. Section 6.2.2 presents some possible modi-
fications to the logistic sigmoid function described before that can customize the
function to help prevent difficulties caused by very small activations or deriva-
tives. A simple modification of random initialization, developed by Nguyen and
Widrow [1990], is given here.

Nguyen-Widrow Initialization. The following simple modification of the
common random weight initialization just presented typically gives much faster
learning. The approach is based on a geometrical analysis of the response of the
hidden neurons to a single input; the analysis is extended to the case of several
inputs by using Fourier transforms. Weights from the hidden units to the output
units (and biases on the output units) are initialized to random values between
—0.5 and 0.5, as is commonly the case.

The initialization of the weights from the input units to the hidden units is
designed to improve the ability of the hidden units to learn. This is accomplished
by distributing the initial weights and biases so that, for each input pattern, it is
likely that the net input to one of the hidden units will be in the range in which
that hidden neuron will learn most readily. The definitions we use are as follows:

n number of input units
p number of hidden units
B scale factor:

B =07 =07Vp

The procedure consists of the following simple steps:
for each hidden unit (j = 1, . .., p):
Initialize its weight vector (from the input units):

vi;(0ld) = random number between —0.5 and 0.5 (or between —+ and).

Compute [, 0ld)|. =VVj(0ld)? +V4;(0ld)* + ... + V,:(old):
Reinitialize weights: ‘

- B'U,'j(()ld)
Y lvdold)|
Set bias:

vo; = random number between —f and B.

298 Backpropagation Neural Net Chap. 6

The Nguyen-Widrow analysis is based on the activation function

X _ X

‘ e e
tanh(x) = ——
) e* + e~

)

which is closely related to the bipolar sigmoid activation function in Section 6.1.2.
In Example 6.4, we demonstrate that using Nguyen-Widrow initialization gives
improved training for the Xor problems considered in Examples 6.1-6.3.

How long to train the net. Since the usual motivation for applying a back-
propagation net is to achieve a balance between correct responses to training
patterns and good responses to new input patterns (i.e., a balance between mem-
orization and generalization), it is not necessarily advantageous to continue train-
ing until the total squared error actually reaches a minimum. Hecht-Nielsen (1990)
suggests using two sets of data during training: a set of training patterns and a
set of training-testing patterns. These two sets are disjoint. Weight adjustments
are based on the training patterns; however, at intervals during training, the error
is computed using the training-testing patterns. As long as the error for the train-
ing-testing patterns decreases, training continues. When the error begins to in-
crease, the net is starting to memorize the training patterns too specifically (and
starting to lose its ability to generalize). At this point, training is terminated.

How many training pairs there should be. A relationship among the number
of training patterns available, P, the number of weights to be trained, W, and the
accuracy of classification expected, e, is summarized in the following rule of
thumb. For a more precise statement, with proofs, see Baum and Haussler, (1989).
The question to be answered is ‘‘Under what circumstances can I be assured that
a net which is trained to classify a given percentage of the training patterns cor-
rectly will also classify correctly testing patterns drawn from the same sample
space?”’ Specifically, if the net is trained to classify the fraction 1 — (e/2) of the
training patterns correctly, where 0 < e < 1/8, can I be sure that it will classify
1 — e of the testing patterns correctly? The answer is that if there are enough
training patterns, the net will be able to generalize as desired (classify unknown
testing patterns correctly). Enough training patterns is determined by the con-
dition

LA
P— ’

or
w
P==.
€

For example, with e = 0.1, a net with 80 weights will require 800 training patterns
to be assured of classifying 90% of the testing patterns correctly, assuming that
the net was trained to classify 95% of the training patterns correctly.

Data Representation. In many problems, input vectors and output vectors
have components in the same range of values. Because one factor in the weight

Sec. 6.1 Standard Backpropagation 299

correction expression is the activation of the lower unit, units whose activations
are zero will not learn. This suggests that learning may be improved if the input
is represented in bipolar form and the bipolar sigmoid is used for the activation
function.

In many neural network applications, the data (input or target patterns) may
be given by either a continuous-valued variable ora “‘set orranges’’. For example,
the temperature of food could be represented by the actual temperature (a con-
tinuous-valued variable) or one of the four states (ranges of temperature): frozen,
chilled, room temperature, or hot. In the later case, four neurons, each with
bipolar values, would be appropriate; in the former case a single neuron would
be used. In general, it is easier for a neural net to learn a set of distinct responses
than a continuous-valued response. However, breaking truly continuous data into
artificial distinct categories can make it more difficult for the net to learn examples
that occur on, or near, the boundaries of the groups. Continuous-valued inputs
or targets should not be used to represent distinct quantities, such as letters of
the alphabet [Ahmad & Tesauro, 1989; Lawrence, 1993].

Number of Hidden Layers. For a neural net with more than one layer of
hidden units, only minor modifications of the algorithm on page 294 are required.
The calculation of the §’s is repeated for each additional hidden layer in turn,
summing over the §’s for the units in the previous layer that feed into the current
layer for which 8 is being calculated. With reference to the algorithm, Step 4 is
repeated for each hidden layer in the feedforward phase, and Step 7 is repeated
for each hidden layer in the backpropagation phase. The algorithm and architec-
ture for a backpropagation net with two hidden layers are given in Section 6.2.4.
The theoretical results presented in Section 6.3 show that one hidden layer is
sufficient for a backpropagation net to approximate any continuous mapping from
the input patterns to the output patterns to an arbitrary degree of accuracy. How-
ever, two hidden layers may make training easier in some situations.

Application procedure

After training, a backpropagation neural net is applied by using only the feed-
forward phase of the training algorithm. The application procedure is as follows:

Step 0. Initialize weights (from training algorithm).
Step 1. For each input vector, do Steps 2-4.
Step 2. Fori =1, ..., n: set activation of input unit
Xis
Step 3. Forj=1,...,p:

n
zin; = vo; + E XiVij;

i=1

;= f(z_ln,)

300 . Backpropagation Neural Net Chap. 6

Step 4. Fork=1,...,m:

p

y—ing = wor + 3, ZiWi;
i=1

Yk = f(y-ing).

6.1.3 Applications

Simple examples

The simple examples given here illustrate the training of a 2-4-1 backprop net
(a net with two input units, four hidden units in one hidden layer, and one output
unit) to solve the Xor problem. Example 6.1 uses binary data representation for
this problem, with the binary sigmoid for the activation function on all hidden
and output units. Example 6.2 uses bipolar data representation and the bipolar
sigmoid function.

In each of these examples, the same set of initial weights is used; random
values were chosen between —0.5 and +0.5.

The initial weights to the hidden layer are:

—0.3378 0.2771 0.2859 —0.3329 (biases to the four hidden units)
0.1970 0.3191 -0.1448 0.3594 (weights from the first input unit)
0.3099 0.1904 —0.0347 —0.4861 (weights from the second input unit).

The initial weights from the hidden units to the output unit are:

—0.1401 (bias on the output unit)

0.4919 (weight from the first hidden unit)
—0.2913 (weight from the second hidden unit)
—0.3979 (weight from the third hidden unit)

0.3581 (weight from the fourth hidden unit)

Although the training speed varies somewhat for different choices of the
initial weights, the relative speeds shown here for these variations are typical.
The learning rate for each of the examples is 0.02. Training continued until the
total squared error for the four training patterns was less than 0.05.

Example 6.1 A backprop net for the Xor function: binary representation

Training using binary input is relatively slow; any unit that receives an input of zero
for a particular pattern cannot learn that pattern. For the binary case, training took
almost 3,000 epochs (see Figure 6.4).

Sec. 6.1 Standard Backpropagation 301

Error

1.0

| | |] . 1

500 1,000 1,500 2,000 2,500 3,000
Number of epochs

Figure 6.4 Total squared error for binary representation of Xor problem.

Example 6.2 A backprop net for the Xor function: bipolar representation

Using bipolar representation for the training data for the Xor problem and the bipolar
sigmoid for the activation function for the hidden and output units gives much faster

training than for the binary case illustrated in Example 6.1. Now, training takes only
387 epochs (see Figure 6.5).

l | ;
100 200 300 390
Number of epochs

Figure 6.5 Total squared error for bipolar representation of Xor problem.

302 Béckpropagation Neural Net Chap. 6

Example 6.3 A backprop net for the Xor function: modified bipolar representation

Convergence is often improved for target values that are not at the asymptotes of
the sigmoid function, since those values can never be reached. Using the same initial
weights and bipolar training input vectors as before, but targets of +0.8 or —0.8,
gives convergence (total squared error <.05) in 264 epochs of training.

Example 6.4 A backprop net for the Xor function: Nguyen-Widrow weight initialization

Using Nguyen-Widrow weight initialization improved the training performance of
the nets considered in Examples 6.1-6.3 (binary, standard bipolar, and bipolar with
targets of +0.8 and —0.8). The weights from the hidden units to the output units
were the same in each case. The Nguyen-Widrow initialization for the weights to
the hidden units started with the values used in the previous examples. The weights
were scaled so that the weight vector for each hidden unit was of length 0.7 V4 =
1.4. The biases were scaled so that they fell between —1.4 and 1.4 (rather than
between —0.5 and 0.5). The epochs required were as follows:

RANDOM NGUYEN-WIDROW

Binary Xor 2,891 1,935
Bipolar Xor 387 224
Modified bipolar Xor 264 127

(targets = +0.8 and —0.8)

In these examples, the use of Nguyen-Widrow initialization not only im-
proved the training speed, but also greatly reduced the chances of generating
initial weights for which the net fails to converge. To study the sensitivity of these
simple backpropagation nets to the choice of initial weights, eight different sets
of random weights were used in the examples. For the binary representation, with
random initial weights, only one of the eight cases converged in fewer than 3,000
epochs. Using the Nguyen-Widrow modification resulted in only one of the eight
cases failing to converge; for the other seven cases, the training times ranged
from 1,605 to 2,556 epochs.

In Examples 6.2 and 6.3, four of the weight sets caused the net to freeze
(with all weights and biases equal to zero). With Nguyen-Widrow initialization,
both forms of the bipolar Xor problem converged for all eight of the modified
weights sets. For the standard bipolar data (Example 6.2), the training times
ranged from 224 to 285 epochs. For the modified bipolar data (Example 6.3), with
targets of +0.8 and —0.8, the training times ranged from 120 to 174 epochs.

Data compression

Example 6.5 A backprop net for data compression

Backpropagation can be used to compress data by training a net to function as an
autoassociative net (the training input vector and target output vector are the same)
with fewer hidden units than there are input or output units [Cottrell, Munro, &
Zipser, 1989].

Sec. 6.1 Standard Backpropagation 303

In this simple example, the image data set chosen was the set of characters
A, B, ...,] shown in Figure 6.6. Each character was defined in terms of binary
values on a grid of size 7 x 9 pixels.

Pattern 1 Pattern 2 Pattern 3 Pattern 4 Pattern 5
::#g::: L3 {244 FLAA SRR J LA FORENN 5 L 11) &

S5t FESURINRE 1545 FRRFT 1401 DO LA£ 7S
% 55 ARG 144 N SOOI Sh0¢ S #§:::
b L ‘ ihisil:

Pattern 6 Pattern 7 Pattern 8 Pattern 9 Pattern 10
L 007 SUNNNDHL LS5 SO 5 T30 11 BNNNNE 132 SRR T

...... .

< Bt E##g#

it

HE

o o

IR TTLER " PR RO PR

Figure 6.6 Total patterns for Example 6.5.

Because each character is represented in the input data as a vector with 63
binary components, the input layer of the neural network has 63 input units. The
hidden layer is given a smaller number of units (for compression). It is known
[Rumelhart, McClelland, & PDP Research Group, 1986] that a set of N orthogonal
input patterns can be mapped onto log,N hidden units to form a binary code with
a distinct pattern for each of the N input patterns. Because the characters in the set
of input patterns are not orthogonal, the value of log>N can be taken as a theoretical
lower bound for the number of hidden units that can be used for compression if
perfect reconstruction of the characters is required. (This is called lossless recon-
struction.) The number of hidden units was varied as part of the investigation. The
output layer had 63 units (for restoration).

The net is considered to have learned a pattern if all computed output values
are within a specified tolerance of the desired values (0 or 1). The results shown in
Figure 6.7 give the number of epochs required for the net to learn the 10 input patterns
for two values of the tolerance. Points marked by an ‘‘x’’ are based on a tolerance
of 0.2, In other words, the response of a unit was considered correct if its activation
was no greater than 0.2 and the pixel (in the training pattern) corresponding to that
unit was *‘off.”” Similarly, a unit corresponding to a pixel than was “‘on’’ had to have
an activation that was no less than 0.8 to be considered correct. For a tolerance of
0.1, the corresponding values are ‘‘no more than 0.1”* and “‘no less than 0.9”. All
units in the net had to have the correct activation (to within the specified tolerance)
for all training patterns before learning was considered successful.

304 Backpropagation Neural Net Chap. 6

It is important to note that the accuracy of these results was evaluated in terms
of 100% correctness of the reconstructed characters in the training set. In some
applications, (e.g., some types of communications) this requirement for lossless re-
construction is intrinsic. In other applications, (e.g., some types of image sets [Aro-
zullah & Namphol, 1990; Cottrell, Munro, & Zipser, 1989; Sonehara, Kawato, Mi-
yake, & Nakane, 1989]) some level of degradation is tolerable in the reconstructed
pattern.

The results shown in Figure 6.7 are for one set of starting weights for each
architecture and each tolerance. The larger number of epochs required for 21 and
24 hidden units, using a larger tolerance, reflects the variation in training time for
different initial weights. The case for 18 hidden units and a tolerance of 0.2 did not
converge.

IIlIIIII!

LU L

Legend: @tol =017
700 xtol =021~
*
600
500
&
g 400 v
N)
220
z [X
3
200 T o9
"THW
‘ XX ' ;"I..
100
X
0 10 20 30

Number of hidden units

Figure 6.7 Number of epochs required as a function of number of hidden units.

Sec. 6.2 Variations 305

6.2 VARIATIONS

Several modifications can be made to the backpropagation algorithm presented
on page 294 which may improve its performance in some situations. The modi-
fications we discuss involve changes to the weight update procedure, alternatives
to the sigmoid activation functions presented previously, a variation to improve
biological plausibility and computational power, and finally an explicit statement
of the backpropagation algorithm for 2 hidden layers.

6.2.1 Alternative Weight Update Procedures

Momentum

In backpropagation with momentum, the weight change is in a direction that is a
combination of the current gradient and the previous gradient. This is a modifi-
cation of gradient descent whose advantages arise chiefly when some training data
are very different from the majority of the data (and possibly even incorrect), It
is desirable to use a small learning rate to avoid a major disruption of the direction
of learning when a very unusual pair of training patterns is presented. However,
itis also preferable to maintain training at a fairly rapid pace as long as the training
data are relative similar.

Convergence is sometimes faster if a momentum term is added to the weight
update formulas. In order to use momentum, weights (or weight updates) from
one or more previous training patterns must be saved. For example, in the simplest
form of backpropagation with momentum, the new weights for training step
t + 1 are based on the weights at training steps f and r — 1. The weight update
formulas for backpropagation with momentum are

wilt + 1) = wi(t) + adiz; + rlwin(t) — wi(t — 1)),

or
Aij(t +1) = OLSij + H.ijk(t),
and
'U,'j(t + 1) = 'U,'j(t) + a8,-x,~ + }L[U,’j(l) - ‘U,‘j(l - 1)],
or

Avy(t + 1) = adjx; + pA (1),
where the momentum parameter K is constrained to be in the range from 0 to 1,
exclusive of the end points.
Momentum allows the net to make reasonably large weight adjustments as

long as the corrections are in the same general direction for several patterns, while
using a smaller learning rate to prevent a large response to the. error from any

306 Backpropagation Neural Net Chap. 6

one training pattern. It also reduces the likelihood that the net will find weights
that are a local, but not global, minimum. When using momentum, the net is
proceeding not in the direction of the gradient, but in the direction of a combination
of the current gradient and the previous direction of weight correction.

As in the case of delta-bar-delta updates, momentum forms an exponentially
weighted sum (with p as the base and time as the exponent) of the past and present
weight changes. Limitations to the effectiveness of momentum include the fact
that the learning rate places an upper limit on the amount by which a weight can
be changed and the fact that momentum can cause the weight to be changed in
a direction that would increase the error [Jacobs, 1988].

Example 6.6 A backprop net with momentum for the Xor function: bipolar
representation

Using the same initial weights and architecture as in Examples 6.1-6.3 and target
values of + 1.0 and — 1.0, adding momentum (0.9) with a learning rate as before (0.2)
reduces the training requirements from 387 epochs to 38 epochs.

Batch updating of weights

In some cases it is advantageous to accumulate the weight correction terms for
several patterns (or even an entire epoch if there are not too many patterns) and
make a single weight adjustment (equal to the average of the weight correction
terms) for each weight rather than updating the weights after each pattern is
presented. This procedure has a smoothing effect on the correction terms. In
some cases, this smoothing may increase the chances of convergence to a local
minimum.

Adaptive learning rates

The standard backpropagation algorithm modifies weights in the direction of most
rapid decrease of the error surface for the current weights. In general, this does
not move the weights directly toward the optimal weight vector. For further elab-
oration, see a standard work on adaptive filter theory, such as Widrow and Stearns
(1985). A variety of methods to modify the direction of the weight adjustment
have been proposed and studied.

One way in which researchers have attempted to improve the speed of train-
ing for backpropagation is by changing the learning rate during training. Some
adjustable learning rate algorithms are designed for specific problems, such as
classification problems in which there are significantly fewer training patterns
from some classes than from others. If the traditional approach, duplication or
creating noisy copies of the training patterns from the underrepresented classes,
is not practical, the learning rate may be increased when training patterns from
the underrepresented classes are presented [DeRouin, Brown, Beck, Fausett, &
Schneider, 19911].

Sec. 6.2 Variations 307

Another type of adjustable learning rate algorithm is based on determination
of the maximum safe step size at each stage of training [Weir, 1991]. Although
this algorithm requires additional computations of gradients that are not calculated
in standard backpropagation, it provides protection against the overshoot of the
minimum error that can occur in other forms of backpropagation.

Perhaps the most extensive work in adjustable learning rate algorithms deals
with ‘‘risk-taking”’ algorithms. Algorithms of this type have been developed by
many researchers, among them Cater (1987), Fahlman (1988) and Silva and Al-
meida (1990). The method described here, delta-bar-delta [Jacobs, 1988], is an
extension of previous work by a number of other researchers [Kesten, 1958;
Saridis, 1970; Sutton, 1986; and Barto and Sutton, 1981].

Delta-Bar-Delta. The general approach of the delta-bar-delta algorithm is
to allow each weight to have its own learning rate, and to let the learning rates
vary with time as training progresses. In addition to the assumptions that each
weight has its own learning rate and that the learning rates vary with time, two
heuristics are used to determine the appropriate changes in the learning rate for
each weight. If the weight change is in the same direction (increase or decrease)
for several time steps, the learning rate for that weight should be increased. (The
weight change will be in the same direction if the partial derivative of the error
with respect to that weight has the same sign for several time steps.) However,
if the direction of the weight change (i.e. » sign of the partial derivative) alternates,
the learning rate should be decreased. Note that no claim is made that these
heuristics will always improve the performance of the net, although in many ex-
amples they do.

The delta-bar-delta rule consists of a weight update rule and a learning rate
update rule. Let w;,(¢) denote an arbitrary weight at time ¢, let ; () be the learning
rate for that weight at time ¢, and let E represent the squared error for the pattern
presented at time ¢.

The delta-bar-delta rule changes the weights as follows:

oE

wi(t + 1) —
Jk

ij'(t) - (ljk(l + 1)

= ij(t) + ajk(t + l)sij.

This is the standard weight change for the backpropagation, with the modification
that each weight may change by a different proportion of the partial derivative
of the error with respect to that weight. Thus the direction of change of the weight
vector is no longer in the direction of the negative gradient,

For each output unit, we define a “‘delta’’ :

oE
Ajk =

= = —Bkz.'
aij 77

308 Backpropagation Neural Net Chap. 6
and for each hidden unit:

oF
ij = a_'U,; = —8jx,-.
The delta-bar-delta rule uses a combination of information about the current and
past derivative to form a ‘‘delta-bar’’ for each output unit:

A1) = (1 — B)AK() + BA(— 1),

and each hidden unit:
Ay = (1 = BAL(1) + BA,(— 1);

the value of the parameter § must be specified by the user (0 < 8 < 1).

The heuristic that the learning rate should be increased if the weight changes
are in the same direction on successive steps is implemented by increasing the
learning rate (by a constant amount) if A;(z — 1) and A;x(¢) are of the same sign.
The learning rate is decreased (by a proportion vy of its current value) if
A;(t —1) and Ay (r) are of the opposite sign.

The new learning rate is given by:

olf) + x if Aj(t — DA(L) > 0,
(!jk(t + D1 - 'y)(!jk(t) if Ajk(t - I)Ajk(t) <0,
ok (8) . otherwise.

The values of parameters k and y must be specified by the user.

The comparison of methods summarized here, is presented in Jacobs (1988).
Twenty-five simulations of the Xor problem (with different sets of initial weights)
were performed, using a net with two input units, two hidden units, and one output
unit. The Xor problem was formulated with binary input, and target values of 0.1
and 0.9. The simulations used batch updating of the weights. Successful comple-
tion was based on attaining a total squared error (per epoch) of less than 0.04,
averaged over 50 epochs. The following parameter values are used.

a 18 K Y 1]
Backpropagation 0.1

Backpropagation 0.75 0.9
with momentum

Delta-bar-delta 0.8 0.035 0.333 0.7

The results summarized here show that, although the delta-bar-delta modi-
fication of backpropagation training may not always converge (22 successes for
25 simulations), when it does succeed, it does so very rapidly.

Sec. 6.2 Variations 309

METHOD SIMULATIONS SUCCESSES MEAN EPOCHS
Backpropagation 25 24 16,859.8
Backpropagation 25 25 2,056.3
with momentum
Delta-bar-delta 25 22 447.3

6.2.2 Alternative Activation Functions

Customized sigmoid function for training patterns

As suggested earlier, the range of the activation function should be appropriate
for the range of target values for a particular problem. The binary sigmoid function
presented in Section 6.1.2, viz.,

1
fx) = 1 + exp(—x)’
with

F'(x) = foll — fx)),

can be modified to cover any range desired, to be centered at any desired value
of x, and to have any desired slope at its center.

The binary sigmoid can have its range expanded and shifted so that it maps
the real numbers into the interval [a, b] for any a and b. To do so, given an
interval [a, b], we define the parameters

¥y=b-a,
n= —a.
Then the sigmoid function
g(x) = yf(x) — m
has the desired property, namely, its range is (a, b). Furthermore, its derivative
also can be expressed conveniently in terms of the function value as ‘

ﬂﬂ=§m+mmh—n—mm.

For example, for a problem with bipolar target output, the appropriate activation
function would be

glx) = 2f(x) — 1,
with

wn=%u+mmn—mm.

310 Backpropagation Neural Net Chap. 6

However, it may be preferable to scale the range of the activation function so
that it extends somewhat beyond the largest and smallest target values.

The logistic sigmoid (or any other function) can be translated to the right or
left by the use of an additive constant on the independent variable. However, this
is not necessary, since the trainable bias serves the same role.

The steepness of the logistic sigmoid can be modified by a slope parameter
o. This more general sigmoid function (with range between 0 and 1) is

1
1 + exp(—ox)’

Flx) =

with
F'(x) = of ()1 — f(x)].

Sfx)

= I =’ 1 I 1

Figure 6.8 Binary sigmoid witho = 1 and ¢ = 3.

The function f is illustrated in Figure 6.8 for o = 1 and o = 3. The slope may
be determined so that the sigmoid function achieves a particular desired value
for a given value of x. Combining the variations just defined gives

1
1 + exp(—ox)’
F'(x) = of ()l — f(x)],
g(x) = vf(x) —

1 + exp(—ox) ’

fx) =

Sec. 6.2 Variations 311

and
g') = 2 + g@lly ~ n - gl

Suppose we have a logistic sigmoid with the following properties:

INPUT DATA:
centeredat x = 0,
domain (xmina xmax)a

Xmin = —Xmax.

FUNCTION VALUES:
range (a, b).
We define
d = 5(Xmax = Xmin).

Then

¢ = 5(Xmax + Xmin) (and Xmayx = ¢ + d).

Further, we define _
Yy=b-—aq,
m= —a.
Then g(x) >y ~m = basx— ®,and g(x) > —m = gas x - —,

The binary sigmoid f(x) = 1/(1 + exp(—x)) often used for input values
between —1 and 1, has a value of approximately 0.75 when x = 1 and approxi-
mately 0.25 when x = — 1. Therefore, it may be reasonable to choose the slope
parameter o for a more general sigmoid so that the function value when x has its
largest value is approximately three-fourths of the distance from its smallest value,
a, to its largest value, . For

Y

8(x) = 1+ exp(‘—crx) -

M

this condition becomes

3b + a

g(xmax) = 4

312 Backpropagation Neural Net Chap. 6

Solving for o gives

- 1 4y
7= x,mln [3b + a + 4n 1]

__ 1, [4(b—a)_1]
T e 1306 - a)
1 1
B Xmax ln (5)
In(3)

xmax

Adaptive slope for sigmoid

The preceding algorithms have been presented in terms of a single activation
function for the entire net (except for the input units that use the identity function
as their activation function). The variations on the ‘‘original’’ sigmoid function
involve setting one or more parameters to adjust the shape of the sigmoid to the
range of input and output values for a particular application. Perhaps the param-
eter for which the appropriate value is most difficult to determine a priori is the
slope parameter a. In this section, we show that the slope can be adjusted during
training, in a manner very similar to that used for adjusting the weights. The
process is illustrated for a general activation function f(x), where we consider
the net input x to be of the form ’

X = (rky_ink
for an output unit Y, or

x = o;x-in;
for the hidden unit Z;. However, since

y_in; = 2 Wik,
J
the activation function for an output unit depends on both weights on connections
coming into the unit and on the slope o for that unit. Similar expressions apply
for the hidden units, Note that each unit can have its own slope parameter, but
we are assuming for simplicity that all units have the same form of the activation
function.

Letting the net adjust the slopes allows a different value of o to be used for
each of the hidden units and for each of the output units. This will often improve
the performance of the net. In fact, the optimal value of the slope for any unit
may vary as training progresses.

—_—

Sec. 6.2 Variations 313

With the abbreviations
Y& = flowy-ing)
and
zj = f(oyz_in))

to simplify the notation, the dérivation is essentially the same as for standard
backpropagation; it is given in Section 6.3.1. As in the standard backpropagation
algorithm, it is convenient to define

8 = [t — yulf'(yi)
and

8]. = - 2 SkO'ijkfl(Zj)'
k

The update for the weights to the output units are
Awjr = adiosz;
and for the weights to the hidden units are
Avy; = adjox;.
Similarly, the updates for the slopes oh the output units are
Aoy = adry_ing
and for the slopes on the hidden units. are
Ao = ad;z_in;.

See Tepedelenliogu, Rezgui, Scalero, and Rosario, 1991 for a related discussion
(using the bipolar sigmoid) and sample results.

~ Another sigmoid function

The arctangent function is also used as an activation function for backpropagation
nets. It saturates (approaches it asymptotic values) more slowly than the hyper-
bolic tangent function, tanh(x), or bipolar sigmoid. Scaled so that the function
values range between —1 and + 1, the function is

fx) = E arctan(x),
v

with derivative

—

flix) =

ERES

314 Backpropagation Neural Net Chap. 6

Nonsaturating activation functions

Hecht-Nielsen [1990] uses the identity function as the activation function on out-
put units, especially if the target values are continuous rather than binary or
bipolar. For some applications, where saturation is not especially beneficial, a
nonsaturating activation function may be used. One suitable example is

_ log(1 + x) forx >0
fx) = {—log(l -x) forx<o.

Note that the derivative is continuous at x = 0:

1
1 +x

forx >0

f'ix) =
1

—_— forx < 0.
1 — x

This function can be combined with the identity function on the output units in
some applications.

Example 6.7 A backprop net for the Xor function: log activation function

Fewer epochs of training are required for the Xor problem (with either standard
bipolar or modified bipolar representation) when we use the logarithmic activation
function in place of the bipolar sigmoid (see Examples 6.2 and 6.3). The following
table compares the two functions with respect to the number of epochs of they

require: -

PROBLEM LOGARITHMIC BIPOLAR SIGMOID
standard bipolar Xor 144 epochs 387 epochs
modified bipolar Xor 77 epochs 264 epochs ~

(targets of +0.8 or —0.8)
Example 6.8 A backprop net for the product of sine functions

A neural net with one hidden layer can be trained to map input vectors (x;, x;) to
the corresponding output value y as follows:

Input points (x,, x;) range between 0 and 1 in steps of 0.2;
the corresponding target output is given by y = sin(2 mx,)-sin(2 wx,).

This is a surprisingly difficult problem for standard backpropagation. In this example,
we used the logarithmic activation function for the hidden units and the identity
function for the output units. With a learning rate of .05, the net achieved a mean
squared error of 0.024 in 5,000 epochs. The results are shown in the following table,
with target values given in italics and actual results from the net in bold (the example
used one hidden layer with 10 hidden units):

Sec. 6.2 Variations 315

X2
1.0 0.00 0.00 0.00 0.00 0.00 0.00
-0.01 -0.05 -0.12 -0.09 -0.01 -0.00
0.8 0.00 ©—0.90 -0.56 0.56 0.90 0.00
-0.03 -0.91 -0.55 -0.53 -0.97 -0.02
0.6 0.00 —-0.56 -0.36 0.36 0.56 0.00
-0.00 " -0.59 -0.32 -0.37 -0.51 -0.03
0.4 0.00 0.56 ©0.36 -0.36 -0.56 0.00
-0.01 -0.57 -0.33 -0.35 -0.55 -0.00
0.2 0.00 0.90 0.56 -0.56 —-0.90 0.00
-0.02 -0.84 -0.57 -0.57 —-0.89 -0.01
0.0 0.00 0.00 - 0.00 0.00 0.00 0.00
-0.02 —-0.02 -0.02 -0.02 -0.03 —-0.02
X1 0.0 0.2 04 i 0.6 0.8 1.0

Nonsigmoid activation functions

N
Radial basis functions, activation functions with a local field of response, are also
used in backpropagation neural nets. The response of such a function is non-
negative for all values of x; the response decreases to 0 as Ix —c|—> = A
common example is the Gaussian function illustrated in Figure 6.9. The function
is defined as

_ f(x) = exp(—x?);
its derivative is given by

f'(x) = —2xexp(—x?) = —2xf(x).

Ax)

l |
-2 -1 1 2 x

Figure 6.9 Gaussian activation function.

316 Backpropagation Neural Net Chap. 6

Radial basis function networks (RBFN) can be used for approximating func-
tions and recognizing patterns [Park & Sandberg, 1991; Moody & Darken, 1989;
Leonard, Kramer, & Ungar, 1992]. Gaussian potential functions [Lee & Kil, 1991]
are also used in networks known as regularization networks [Poggio, 1990].
Regularization theory deals with techniques for transforming ill-posed problems,
in which there is insufficient information in the data, into well-posed problems
by introducing constraints [Hertz, Krogh, & Palmer, 1991]. The probabilistic
neural net, which we discuss in Chapter 7, uses Gaussian potential functions for
its activation functions.

6.2.3 Strictly Local Backpropagation

Backpropagation has been criticized by some as inappropriate for neurological
simulation because it lacks biological plausibility. One of the arguments has been
that the backpropagation algorithm requires sharing of information among pro-
cessors, which is in violation of accepted theories on the functioning of biological
neurons. The modified version [D. Fausett, 1990] described here alleviates this
deficiency. ,

In this version of backpropagation, the net is viewed as consisting of three
types of units: cortical units, synaptic units, and thalamic units. Each type per-
forms certain calculations with information that is strictly local to it. The action
of each during the feedforward phase of the strictly local backpropagation training
algorithm is described next.

A cortical unit sums its inputs and sends the resulting value as a signal to
the next unit above it. By contrast, input cortical units receive only one input
signal, s0 no summation is necessary. Hidden cortical units sum their input signals
and broadcast the resulting signal to each synaptic unit connected to them above.
Output cortical units also sum their input signals, but each output cortical unit is
connected to only one synaptic unit above it.

The function of the synaptic units is to receive a single input signal (from a
cortical unit), apply an activation function to that input, multiply the result by a
weight, and send the result to a single unit above. The input synaptic units (be-
tween the input cortical units and the hidden cortical units) use the identity func-
tion as their activation function. The weight for each output synaptic unit is 1;
each sends its signal to a thalamic unit.

The purpose of the thalamic unit is to compare the computed output with
the target value. If they do not match, the thalamic unit sends an error signal to
the output synaptic unit below it.

Sec. 6.2 Variations 317

It is during the backpropagation phase of the traditional backpropagation
algorithm that information must be shared between units. The difficulty occurs
in the calculation of the weight update terms

Aij = (XSij
and

A'Uij = aS,-x,-.

The weight update term Awj; requires information from both output unit & and
hidden unit j, thus violating the requirement for local computation. A similar
comment applies to Av;;, which requires information from hidden unit j and input
unit i.

The action of the thalamic, synaptic, and cortical units in strictly local back-
propagation avoids this criticism of the traditional algorithm. Each output synaptic
unit receives the error signal from the thalamic unit above it, multiplies this signal
by its weight which is 1, and multiplies again by the derivative of its activation
function. The result, 3., is sent to the output cortical unit below.

Each output cortical unit sends its lone input signal construed as a sum 3,
to the hidden synaptic units below it. Each hidden synaptic unit computes the
weight update term to be used later (the product of its input signal 8, its activation,
and a learning rate). It then multiplies its input signal by its weight and by the
derivative of its activation function and sends the resulting value to the hidden
cortical unit below it.

Next, the hidden cortical unit sums its input signals and sends the resulting
value to the input synaptic unit below it. The input synaptic unit then computes
its weight update term to be used later (the product of its input signal 3, its
activation, and a learning rate).

In addition to addressing some of the biological implausibility objections to
the traditional backpropagation algorithm, the strictly local backpropagation al-
gorithm expands the computational power of the net by allowing even more varia-
tion in the activation functions used. Since the activation function now ‘‘lives’’
on a synaptic unit, there may be as many different functions as there are weights
in the net. In the case in which the activation functions differ only in the value
of their slope parameters, these parameters can be adjusted (trained) by a process
similar to that used for the weights. The derivation is essentially the same as that
for adjusting the slope parameters when each hidden or output unit can have a
different form of the activation function. In the strictly local algorithm, each slope
parameter would be double indexed to correspond to a particular synaptic unit.

318 Backpropagation Neural Net Chap. 6

Architecture

The architecture of a strictly local backpropagation neural net is illustrated in
Figure 6.10.

Thalamic
Units

Output
Synaptic
Units

Input
Cortical
Units

Figure 6.10 Strictly local backpropagation neural net.

Algorithm

The following outline of the computations needed to train a feedforward back-
propagation neural net is presented to facilitate comparison between the standard
and strictly local backpropagation algorithms. It illustrates the fact that the com-
-putations are the same; they are just arranged differently.

Sec. 6.2 Variations

STANDARD BACKPROPAGATION

Feedforward
Input unit:
Receives input signal

Path from input to hidden unit:
Multiples by weights

Hidden unit:
Sums input signals
Applies activation function

Path from hidden to output unit:

Multiplies by weights
Output unit:

Sums input signals

Applies activation function

Backpropagation of error
Output unit:
Calculates error

Multiplies by f’

Path from output to hidden unit:

Multiplies by weights

Calculates weight correction

Hidden unit:
Sums input from units above
Multiplies by f’

Path from hidden to input unit:
Calculates weight correction

Weight update

319

STRICTLY LOCAL BACKPROPAGATION

Feedforward

Input cortical unit:
Receives input signal

Input synaptic unit:

Multiplies by weight
Hidden cortical unit:
Sums input signals

Hidden synaptic unit: .
Applies activation function
Multiplies by weight

Output cortical unit:

Sums input signals

Output synaptic unit:
Applies activation function

Backpropagation of error
Thalamic unit:

Calculates error
Output synaptic unit:

Multiplies by f'

Output cortical unit:
Sends input 8, to units below
Hidden synaptic unit:
Calculates weight correction
Multiplies 8, by weight
Multiplies by f’
Hidden cortical unit:
Sums input from units above

Input synaptic unit:
Calculates weight correction
Weight update

320 Backpropagation Neural Net Chap. 6

6.2.4 Number of Hidden Layers

Although a single hidden layer is sufficient to solve any function approximation
problem, some problems may be easier to solve using a net with two hidden layers.
For example, bounds on the number of samples needed for successful classifi-
cation of M clusters have been found for a net with two hidden layers [Mehrotra,
Mohan, & Ranka, 1991]. In such a net, the first hidden layer often serves to
partition the input space into regions and the units in the second hidden layer
represent a cluster of points. If these clusters are separable, the output units can
easily make the final classification. In this scenario, the number of boundary
samples is of the order min(n, p)-M, where # is the dimension of the input space
(the number of input units) and p is the number of hidden nodes.

Figure 6.11 Backpropagation neural network with two hidden layers.

Sec. 6.2 Variations 321

Architecture—two hidden layers

A multilayer neural network with two layers of hidden units (the Z units and the
ZZ units) is shown in Figure 6.11. The output units (Y units) and hidden units
may also have biases (as shown). The bias on a typical output unit Y, is denoted
woxk; the bias on a typical hidden unit Z; is denoted vg;. These bias terms act like
weights on connections from ‘‘units’’ whose output is always 1. (These ‘‘units”’
are not shown.) The main difficulty in generalizing the algorithm for this net is
in bookkeeping (naming the units, weights, etc.). It is possible to use multiple
indexing for the quantities dealing with the hidden layers, with the additional index
denoting to which hidden layer an index refers.

Algorithm: two hidden layers

During feedforward, each input unit receives an input signal and broadcasts this

signal to the each of the hidden units, Z,, . . . , Z,, in the first layer. (X;is a
typical input unit.) Each of these hidden units then computes its activation and
sends its signal to the hidden units, ZZ,, . . . , ZZ,, in the second layer. (Z,, is

a typical unit in the first hidden layer.) Next, each hidden unit in the second layer
computes its activation and sends its signal to the output units. Finally, each output
unit computes its activation (y, is the activation of a typical output unit Y;) to
form the response of the net for the given input pattern.

During training, each output unit compares its computed activation y; with
its target value fx to determine the error associated with that unit. Then, based
on this error, the factor 3, is computed (k = 1, . . ., m). 8, is used to distribute
the information on the error at output unit Y, back to all units in the next lower
layer. It is also used later to update the weights between the output and the second
hidden layer. The factor §,(j = 1, ..., p) is computed for hidden unit ZZ; and
is then used to distribute the information on the error back to all units in the
previous layer (units Z,, . . . , Z;, . .., Z,). It is also used later to update the
weights between the second hidden layer and the first hidden layer. The factor
d3,(h =1,...,q)is computed for hidden unit Z,. It is not necessary to propagate
the error back to the input layer, but 3, is used to update the weights between
the first hidden layer (with units Z,, . . . , Z,, . . . , Z,) and the input layer.

After all of the 8 factors have been determined, the weights for all layers
are adjusted simultaneously. The adjustment to the weight w;, (from hidden unit
ZZ; to output unit Y;) is based on the factor 8, and the activation of the hidden
unit ZZ;. The adjustment to the weight v,; (from hidden unit Z, to hidden unit
ZZ;) is based on the factor §; and the activation of unit Z,. The adjustment to
the weight u;, (from input unit X; to hidden unit Z,) is based on the factor 8, and
the activation of the input unit.

The steps for standard backpropagation for a net with two hidden layers
are summarized next. The form of the activation function and its derivative are
not explicitly specified; appropriate choices are as discussed for standard back-
propagation.

322 ' Backpropagation Neural Net Chap. 6

Feedforward.

Each input unit (X;,i = 1,..., n):
broadcasts input signal to hidden units.

Each hidden unit (Z, h = 1, .. ., ¢):

computes input signal

zdny = uop + 3, Xilti,
i=]
applies activation function to compute output signal
zZn = f(z-inyg),

and sends its output signal to the units in the second hidden layer.
Each hidden unit (2Z;,j =1, . . ., p):
computes input signal

n
2z1n; = vo; + 3, Zpvnj,
h=1

applies activation function to compute output signal
Z; = f(ZZ_inj).

and sends its output signal to output units.
Each output unit (Y, k =1, . . ., m):

‘sums weighted input signal

' P

y-ing = wor + 2 Wk
j=

and applies activation function to compute its output signal

I

Yi = f(y-ing).

Backpropagation of error.
Each output unit (Y, k = I, ..., m):
calculates its error

ex = (te — yi).

for the current training pattern, multiplies by derivati(ze of activation
function (expressed in terms of Yi) to get

3 = erf'(y=iny),
calculates weight correction term (used to update w;, later)

Awj = ad,zz),

Sec. 6.2 Variations 323

calculates bias correction term (used to update woy later)
Awor = ady,

and sends 3, to hidden units Zz;,j=1,...,p).
Each hidden unit (ZZ;,j = 1, ..., p):
sums weighted input from units in layer above to get

m

S_inj = E Sijk,
k=1

multiplies by derivative of its activation function (expressed in terms
of zz;) to get -

8j = S_injf'(zz_inj),
calculates weight correction term (used to update vy, later)

Av,; = ad;Z,
calculates bias correction term (used to update vq ; later)
A'U()j = aBj,

and sends 3; to hidden units (Z,, h = 1, . . ., q).
Each hidden unit (Z,, h = 1, ..., q):
sums weighted input from units in layer above to get

p
8_inh = 2 8J-v,,j,
J=1

multiplies by derivative of its activation function (expressed in terms
of z,) to get

dn = dinnf'(z_iny),
calculates weight correction term (used to update v;; later)
Auip = adux;,

and calculates bias correction term (used to update vo, later)

Avg; = ad;.
Update Weights and Biases.
Foreachoutputunit (j =0,...,p;k=1,...,m):
wir(new) = wi(old) + Awjy.
For each hidden unit ZZ; (h = 0, .. . ,q;j=1,...,p):
vp(new) = vy(old) + Avy,.
For each hidden unit Z, (i = 0,...,n;h =1,..., q):

Uin (HCW) = Uin (Old) + A Uin.

324 Backpropagation Neural Net Chap. 6

6.3 THEORETICAL RESULTS
6.3.1 Derivation of Learning Rules

Standard backpropagation

As in the derivation of the delta rule in Chapter 3, we shall denote by w,k the
weight between the hidden unit Z, and the output unit Y ; these units are con-
sidered arbitrary, but fixed. The subscripts 1J are used analogously for the weight
between input unit X, and hidden unit, Z,. With this notation, the corresponding
lowercase letters can serve as summation indices in the derivation of the weight
update rules. We shall return to the more common lowercase indices following
the derivation. - ‘

The derivation is given here for an arbitrary activation function f(x). The
derivative of the activation function is denoted by f'. The dependence of the

activation on the weights results from applying the activation function f to the
net input

y_ing = 2 Wik
J

to find f(y_ing).
The error (a function of the weights) to be minimized is

E =53 [t — v~
x

By use of the chain rule, we have

oF 0

aWJK anK

S22t — P
k

0
= m Sltx = f(y-ing)P?

i

—{tx — yx] 5—6—- fly-ing)
Wik

—ltx — ykl f'Cy-ink) éa_ (y-ing)
Wik

= —ltx — yxl f'(y_ing)z,.

It is convenient to define 5x:

8 = l[tx — yx] f'(y_ink).

Sec. 6.3 Theoretical Results 325

For weights on connections to the hidden unit Z,:

oE 0
—_— = = te — —_—
0vys Ek: [. Yk] vy Y
oo d ,
= =2 {tx — vl f'(y-ing) 3o, YN
k (95
a
= —2 Sk —— y_in;
dvrs
d
= —2 SxWwik — 24
durs
= =2 dewr f'(ziny)lxil.
k
Define:
8] =

> Sewaf'(z-iny)
%

Thus, the updates for the weights to the output units (returning to the more com-
mon lower case subscripts) are given by:
oE

Awjp = — o —
4 aij

alty — yilf' (y—inu)z;
= adiz;;

and for the weights to the hidden units:

oF

A'Uij = - (!5_;;‘_
ij

Olf'(z—inj)xi 2 8ijk,
P

= (Xij,'.

Generalized backpropagation—adaptive slope parameters

The derivation of the weight update rules for backpropagation with adaptive slope
parameters is similar to that given in the previous section for standard back-
propagation. As explained there, we use capitol letters for subscripts on the
fixed, but arbitrary units and weights during the derivation to distinguish them
from the corresponding indices of summation, returning to the more common
notatiop (lowercase subscripts) for the tinal formulas. This derivation uses an

326 Backpropagation Neural Net Chap. 6

arbitrary activation function f(x); we consider the net input, x, to be of the form
X = ggy-ing

for an output unit, Yx or
x = oyz-iny

for the hidden unit Z,. Thus, since

y-ing = 3 zwix,
J

the activation function for an output unit depends on both weights on connections
coming into the unit, and on the slope parameter, o x, for that unit. Similar expres-
sions apply for the hidden units. Note that each unit can have its own slope
parameter, but we are assuming, for simplicity, that all units have the same form
of the activation function. It is easy to generalize the derivation that follows to
remove this assumption.-

The error (a function of both the slope parameters and the weights) to be
minimized is

E= 5% [t — nP
k

v

By the use of the chain rule, we find that

oE]
wyx dwyk

St — wil?
3

3

= Sltk — flogxy-ink))?

]

d
—[t _ —_— '
[tx ¥kl Wk flo KY-ing)

. d .
—[tx — yklf'(oky—ing) — (oxy_ing)
oWk

= —[tx — yxIf'(oxy—ink)oxz,.
Similarly,

E
60'K

l

. d .
—[tx — yx1f'(oxy—ink) — (oxy_ink)
aO'K

= —[tx — yxIf'(oxy—ing)y_ing.
As in the standard backpropagation algorithm, it is convenient to define

Ok = [tk — yxIf'(oky-ink).

Sec. 6.3 Theoretical Results 327

For weights on connections to a hidden unit (Z),

O

a
Y01y zk: [tx — yil 01y Yk

, . 9 .
=2 [t — yilf'(ory—ing) — owy_iny,
k 6'UI.I

d
-, o — y_in
% kkavIJka

d
—2 koW g — 27
k 31)11

=2 duoiwf (o 2-in oy [xi].
x

Similarly,

oF d
_— = — te — _
30, ; [k yi] 36, Y&

, . ad .
=2 [t = ylf'(ory—ing) — ory_iny
k 60'_]

d .
=~ d0x — y_ing
k 60'_/

d
= ‘“2 skUkWJk T 2
k 80'_]

= —E SkO'kWka'((TJZ_inJ)Z_inJ.
k

Now we define
3, = 2 SkaWka'(UJZ—inJ)-
k
Returning to the usual lowercase subscripts, we have, for the updates for the
weights to the output units,

oF
aij

Awp = —a

alte — yilf'(ory—ing)orz;

= aSkO'ij;

328 Backpropagation Neural Net Chap. 6

and for the weights to the hidden units;

oE
Avy = —a—
av,-,-

ao;f'(0z-0n)x; D, dx0iwin,
k

= a8j0'jx,-.
Similarly, the updates for the slope parameters on the outpilt units are
oE

Aoi = —a—
k aﬂ'k

—aft, - yilf (o ry-ini)y_ing
= adry—ing;
and for the slope parameters on the hidden units,

oE
Ao; = —a—
60',-

- 2 SkO'ijkf,(O'jZ_inj)Z_inj,
k
= ad;z_in;.

6.3.2 Multilayer Neural Nets as Universal Approximators

One use of a neural network is to approximate a continuous mapping f. Since
there are very simple mappings that a single-layer net cannot represent, it is natural
to ask how well a multilayer net can do. The answer is given by the **Kolmogorov
mapping neural network existence theorem,’” which states that a feedforward
neural network with three layers of neurons (input units, hidden units, and output
units) can represent any continuous function exactly [Kolmogorov, 1957;
Sprecher, 1965]. The following statements of the Kolmogorov and Sprécher theo-
rems are based on the presentation by Funahashi (1989). The Hecht-Nielsén theo-
rem, casting the Sprecher theorém in the terminology of neural nets, is as pre-
serited in Hecht-Nielsen (1987c¢).

Kolmogorov theorem

Any continuous function f(xy, ... , x,) of several variables defined on I"
(n = 2), where I = [0, 1], can be represented in the form

2n+1 n
fx)y= > x,-(tb.-j(x,-)> ,
i=1

Sec. 6.3 Theoretical Results 329

where x; and {;; are continuous functions of one variable and j are monotonic
functions that do not depend on f.

Sprecher theorem

For each integer n = 2, there exists a real, monotonically increasing function (x),
$:[0, 1] — [0, 1], depending on # and having the following property: For each
preassigned number 3 > 0, there is a rational number €, 0 < € < 9, such that
every real continuous function of n variables, f(x), defined on I”, can be repre-
sented as

2n+1 n
f) =3 x (E MNi(x; + e(j — 1) +j ~ 1) ,
Jj=1

i=1

where the function x is real and continuous and \ is a constant that is independent
of f.

Hecht-Nielsen theorem

Given any continuous function f:I" — R™, where I is the closed unit interval
[0, 1], f can be represented exactly by a feedforward neural network having n
input units, 2n + 1 hidden units, and m output units.

The input units broadcast the input signal to the hidden units. The activation

function for the jth hidden unit is z; = <2 Nd(x; + ¢) + j) where the real

i=1
constant A and the continuous, real, monotonically increasing function y are in-
dependent of f (although they do depend on n) and the constant € satisfies the

conditions of the Sprecher theorem. The activation function for the output units
2n+1

is y» = D guz;, where the functions g, are real and continuous (and depend on
Jj=1

f and €).

Hornik, Stinchcombe, and White (1989) extended the foregoing results, in
which the activation functions of at least some of the units depend on the function
being approximated, to show that multilayer feedforward networks with arbitrary
squashing functions can approximate virtually any function of interest (specifi-
cally, any Borel measurable function from one finite dimensional space to another
finite dimensional space). A squashing function is simply a nondecreasing function
f(x) such that 0 < f(x) < I for all x, f(x) = 0 as x — —~o, and f(x) —» 1 as
x — ». These results require a sufficiently large number of hidden units; the
authors do not address the number of units needed. Hornik, Stinchcombe, and
White (1990) have aiso shown that with fairly mild assumptions and little additional
work, a neural network can approximate both a function and its derivative (or
generalized derivative). This is useful for applications such as a robot learning
smooth movement [Jordan, 1989].

330 Backpropagation Neural Net Chap. 6

White (1990) has shown that the weights needed to achieve the approxi-
mation can be learned; i.e., the probability of the network error exceeding any
specified level goes to zero as the size of the training set increases. In addition,
the complexity of the net increases with the size of the training set.

It is not surprising that there has been a great deal of interest in determining
the types of activation functions required to be assured that a multilayer neural
net can approximate an arbitrary function to a specified accuracy. Kreinovich
(1991) has shown that a neural network consisting of linear neurons and neurons
with a single arbitrary (smooth) nonlinear activation function can represent any
function to any specified (nonzero) precision. However, he assumes an unlimited
number of hidden layers. Geva and Sitte (1992) have demonstrated a constructive
method for approximating multivariate functions using muitilayer neural net-
works. They combine two sigmoid functions to produce an activation function
that is similar to a Gaussian potential function [Lee & Kil, 1991] or radial basis
function [Chen, Cowan, & Grant, 1991] (which only respond to local information).

6.4 SUGGESTIONS FOR FURTHER STUDY
6.4.1 Readings

HEecHT-NIELSEN, R. (1989). *‘Theory of the Backpropagation Neural Network.”’ Interna-
tional Joint Conference on Neural Networks, Washington, DC, 1-593:605.

McCreLLaND, J. L., & D. E. RuMELHART. (1988). Explorations in Parallel Distributed
Processing, Cambridge, MA: MIT Press.

Ncuyen, D., & B. Wiprow. (1990). “‘Improving the Learning Speed of Two-Layer Neural
Networks by Choosing Initial Values of the Adaptive Weights.’’ International Joint
Conference on Neural Networks, San Diego, CA, 111:21-26.

RumMELHART, D. E., G. E. HINTON, & R. J. WiLLIAMS. (1986b). ‘‘Learning Representations
by Back-Propagating Error.”” Nature, 323:533-536. Reprinted in Anderson & Rosenfeld
(1988), pp. 696-699.

RuMELHART, D. E.,; J. L. McCLELLAND, & the PDP ResearcH Group. (1986). Parallel

Distributed Processing, Explorations in the Microstructure of Cognition; Vol. 1: Foun-
dations, Cambridge, MA: MIT Press.

6.4.2 Exercises

Exercises 6.1-6.5 use the neural net illustrated in Figure 6.12.

6.1 Find the new weights when the net illustrated in Figure 6.12 is presented the input
pattern (0, 1) and the target output is 1. Use a learning rate of a = 0.25, and the
binary sigmoid activation function.

6.2 Find the new weights when the net illustrated in Figure 6.12 is presented the input

pattern (— 1, 1) and the target output is 1. Use a learning rate of a = 0.25, and the
bipolar sigmoid activation function.

Chap. 6 Exercises 331

6.3

6.4

6.5

6.6

Figure 6.12 Neural network for Exercises 6.1-6.5.

Find the new weights when the net illustrated in Figure 6.12 is presented the input
pattern (0, 1) and the target output is 0.8. Use a learning rate of @ = 0.25, and the
binary sigmoid activation function.

Find the new weights when the net illustrated in Figure 6.12 is presented the input

pattern (—1, 1) and the target output is 0.8. Use a learning rate of o = 0.25, and the
bipolar sigmoid activation function.

Repeat Exercises 6.1-6.4 using a slope parameter of o = 3.0. Does this increase, or
decrease the amount of learning (size of the weight changes)?

A neural network is being trained on the data for Xor problem. The architecture and
the values of the weights and biases are shown in Figure 6.13.

Figure 6.13 Neural network for Exercise 6.6.

332 Backpropagation Neural Net Chap. 6

a. Using the binary sigmoid, compute the activations for each of the units when the
input vector (0, 1) is presented. Find the delta factors for the output and hidden
units. Using a learning rate of a = 0.25, compute the weight corrections. Find
the new weights (and biases).

b. Repeat for the input vector (1, 0).

c. Interpret the differences between the weight changes on the connection to the
output unit and the weight changes to the hidden units in parts a and b.

6.7 Explore the role of the weights in backpropagation training by finding weights that
are reasonable in size, but for which very little learning will occur. For example, in
Exercise 6.1, if vy, + vy, = 0, then z, = 0 so that A w,, = 0, even if an error occurs
at the output unit. Are there combinations of other weights for which very little
learning will occur? Consider the situation for Exercise 6.2.

6.4.3 Projects

6.1 Code a computer program to implement a backpropagation neural network with one
hidden layer. Use a bias on each hidden unit and each output unit. Use the bipolar
sigmoid activation function. For each test case, print the initial weights, final weights,
learning rate, number of training epochs, and network response to each input pattern
at the end of training. The training data are given in the following table:

BIPOLAR Xor

s(h) =(, -1 (1) =1
s2) = (=11 t2) =1
s3) =1, 13) = -1
s@=(1-1) 4=-1

Use initial weights distributed randomly on (—0.5, 0.5), and a learning rate of (i)
0.05, (ii) 0.25, and (iii) 0.5. For each learning rate, perform 1,000, 10,000, and 25,000
epochs of training (using the same initial weights in each case). Use two input units,
two hidden units, and one output unit. »

6.2 Code a computer program to implement a backpropagation neural network with one
hidden layer. Use a bias on each hidden unit and each output unit; use 10 input units,
4 hidden units, and 2 output units. Use the bipolar sigmoid activation function.

The input patterns are:

s(1)
sQ2)
s(3)
s(4)
s(5)
s(6)
s(7)
s(8)

o
O =Wk OOV
S WO RN =-JN
NS~ 1w oo W
[SN S RV I N
‘AW RN R W
.NMWO‘—‘WWO\
200 \O L 0o AN~
WANYO & = 00
0 - B \O OO

Chap. 6

6.3

6.4

6.5

Exercises 333

The corresponding ouput (target) patterns are:

(= -1 -1 t(5) = 1 1
1(2) = I 1 t(6) = 1 -1
t3 = -1 1) = -1 1
t4) = 1 -1 t® = -1 -1

Use random initial weights distributed on (—0.5, 0.5) and a learning rate of (i)
0.05 and (ii) 0.5. For each learning rate, perform 5,000 and 50,000 epochs of training
(using the same initial weights in each case).
Code a backpropagation network to store the following patterns. The input patterns
are the “‘letters’” given in the 5 X 3 arrays, and the associated target patterns are
given below each input pattern:

T * L F
3?&" e §:: :ﬂ
. # . Iy ## # -
(-1,-1,-1) -1,-1, 1) -1, 1,-1 L1,
a4 44 g :
#: ¥ ﬁ : g H
. e . # ® .
(1,-1,-1) (L,-1, 1) (L 1,-1 (L1, D
Experiment with the number of hidden units (no more than 15), the learning rate,
and the initial weight values. Compare your results with those from the BAM network

project.

Code a computer program to implement a backpropagation neural network with one
hidden layer. Use a bias on each hidden unit and each output unit. Use a bipolar
sigmoid activation function. The net is to be trained to learn the function

Yy = f(x1, x2) = sin2mx;) sinQmx,)

for0 =x, = 1,0 < x, < 1. The number of hidden units may be varied as part of the

experiment.

a. Try equally spaced training points (i/5, JByfori=0,...,5j=0,...,5.
Scramble the order of presentation of the training points, and compute the correct
target value for each point. Test the net on the points (i/10, j/10) fori = 0, . . .,
10,j = 0, ... ,10. Display your results in a form similar to that of Example 6.8.
Is the response better after 10,000 epochs than it was after 1,000 epochs? This
example is (perhaps surprisingly) difficult.

b. Try using more points for which the target value is non-zero and few, if any,
points for which the target is zero.

c. Try using randomly generated training points.

Write a computer program to implement a backpropagation net for the data compres-

sion problem in Example 6.5. Use bipolar representation of the patterns. The target

pattern is the same as the input pattern. (It is only necessary to use 56 input units
and output units.)

CHAPTER 7

A Sampler of Other
Neural Nets

In this final chapter, we consider a variety of neural networks, each somewhat
more specialized than those in the previous chapters. The level of detail will not
be as great as before, since the intent is to suggest the ways in which the basic
structures have been modified and adapted to form nets for particular applications.

The first group of nets are designed for constrained optimization problems,
such as the traveling salesman problem. These nets have fixed weights that in-
corporate information concerning the constraints and the quantity to be optimized.
The nets iterate to find a pattern of output signals that represents a solution to
the problem. The Boltzmann machine (without learning), the continuous Hopfield
net, and several variations (Gaussian and Cauchy nets) are described in Section
7.1,

In Section 7.2, we explore several nets that learn by means of extensions
of the learning algorithms introduced in previous chapters. First, we consider two
self-organizing nets that do not use competition. Oja has developed single-layer
feedforward nets with linear neurons to extract information about the principal
and minor components of data. These nets are trained with modified forms of
Hebb learning. Then we describe the learning algorithm that Ackley, Hinton, and
Sejnowski included in their presentation of the Boltzmann machine. This can be
used for problems such as the encoder problem, in which the activations of some
units in the net (input and output units) are known, but the correct activations of
other (hidden) units are unknown. The section concludes with a discussion of

334

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 335

three ways in which backpropagation (generalized delta rule learning) has been
applied to recurrent nets.

Two examples of nets that adapt their architectures during training are pre-
sented in Section 7.3. The probabilistic neural net uses results from probability
theory to classify input data in a Bayes-optimal manner. The cascade correlation
algorithm constructs a net with a hierarchical arrangement of the hidden units.
One hidden unit is added to the net at each stage of training, and the process is
terminated as soon as the specified error tolerance is achieved. At each stage of
training, only one layer of weights is adjusted (using the delta rule or a variation
known as quickprop).

The final net in our sampler is the neocognitron. This net has been developed
specifically for the task of recognizing handwritten digits. It has several layers of
units, with very limited connections between units in successive layers. Weights
between certain pairs of layers are fixed; the adaptive weights are trained one
layer at a time.

There are many interesting and important neural nets that could not be in-
cluded for lack of space. It is hoped that the nets we have chosen will serve to

suggest the wide variety of directions in which neural network development is
proceeding.

7.1 FIXED-WEIGHT NETS FOR CONSTRAINED
OPTIMIZATION

In addition to solving mapping problems (including pattern classification and as-
sociation) and clustering problems, neural nets can be used for constrained op-
timization problems. In this section, we discuss several nets designed for appli-
cations such as the traveling salesman problem, Jjob shop scheduling, space
allocation, prediction of RNA secondary structure, and map coloring, to name
just a few. We will use the traveling salesman problem as our example application
for these nets. (See Takefuji, 1992, for a discussion of many other applications.)

Description of the Traveling Salesman Problem. In the classic constrained
optimization problem known as the traveling salesman problem, the salesman is
required to visit each of a given set of cities once and only once, returning to the
starting city at the end of his trip (or tour). The tour of minimum distance is
desired. The difficulty of finding a solution increases rapidly as the number of
cities increases. (There is an extensive literature on solution techniques for this
problem; see Lawler, Lenstra, Rinooy Kan, and Shmoys, 1985, for a discussion
of approaches other than using neural networks.

We illustrate the operation of several nets in terms of their ability to find
solutions for the 10-city problem, which has been used for comparison by several

336 A Sampler of Other Neural Nets Chap. 7

authors [Wilson & Pawley, 1988; Szu, 1988]. The positions of the cities are il-
lustrated in Figure 7.1. The coordinates of the cities are as follows:

X1 A2

A 0.4000 0.4439
B 0.2439 0.1463
c 0.1707 0.2293
D 0.2293 0.7610
E 0.5171 0.9414
F 0.8732 0.6536
G 0.6878 0.5219
H 0.8488 0.3609
1 0.6683 0.2536
J 0.6195 0.2634

x2

10 -

£

09 -

08 |~ D

0.7 |- I."

0.6

G
L]
0S5 -
A
.
04— H
03 |- J
¢ t
02—
B
*
01—
| | I] 1 | | | |]

01 02 03 04 05 06 07 08 09 10 x

Figure 7.1 Cities for the traveling salesman problem.

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 337

The distances between the cities are given in the following symmetric dis-
tance matrix:

A B c D E F G H] J

0000 .3361 .3141 .3601 .5111 .5176 .2982 .4564 .3289 .2842
.3361 .0000 .1107 .6149 .8407 .8083 .5815 .6418 .4378 .3934
3141 1107 .0000 .5349 .7919 .8207 .5941 .6908 .4982 .4501
3601 .6149 .5349 .0000 .3397 .6528 .5171 .7375 .6710 .6323
SH1 8407 7919 3397 .0000 .4579 .4529 .6686 .7042 .6857
5176 8083 .8207 .6528 .4579 .0000 .2274 .2937 .4494 .4654
2982 5815 .5941 5171 .4529 .2274 .0000 .2277 .2690 .2674
4564 .6418 .6908 .7375 .6686 .2937 .2277 .0000 .2100 .2492
3289 4378 4982 .6710 .7042 .4494 2690 .2100 .0000 .0498
2842 3934 4501 .6323 .6857 .4654 .2674 .2492 .0498 .0000

ST TTIOoOMMmMUoOoOw>

Neural Net Approach to Constrained Optimization. The neural nets described
in this section have several characteristics in common. Each unit represents a
hypothesis, with the unit ‘“‘on’’ if the hypothesis is true, ‘‘off’’ if the hypothesis
is false. The weights are fixed to represent both the constraints of the problem
and the function to be optimized. The solution of the problem corresponds to the
minimum of an energy function or the maximum of a consensus function for the
net. The activity level of each unit is adjusted so that the net will find the desired
maximum or minimum value.

Our discussion of the solution to the traveling salesman problem using the
Boltzmann machine follows the formulation in Aarts and Korst (1989). This is
mathematically equivalent to the original presentation of the Boltzmann machine
[Ackley, Hinton, & Sejnowski, 1985], based on minimizing an energy function.
Solutions using the Hopfield net use an energy function approach.

Neural nets have several potential advantagds over traditional techniques
for certain types of optimization problems. They can find near optimal solutions
quickly for large problems. They can also handle situations in which some con-
straints are weak (desirable, but not absolutely required). For example, in the
traveling salesman problem, it is physically impossible to visit two cities simul-
taneously, but it may be desirable to visit each city only once. The difference in
these types of constraints could be reflected by making the penalty for having
two units in the same column ‘‘on”’ simultaneously larger than the penaity for
having two units in the same row “‘on’’ simultaneously. If it is more important
to visit some cities than others, these cities can be given larger self-connection
weights.

338 k A Sampler of Other Neural Nets Chap. 7

Position

City 1 2 3 4 5 6 7 8 9 10

Uaa Uaz Uas Uas Uas Ups Ups Upg Upse Uage
Us,1 Up,2 Up, Upy Ups Uspe Us,;; Upgs Uss Usyo
Uc, Uca Ucs Uca Ucs Ucs Uca Ucs Ucs Ucao
Up, Up, Ups Up,e Ups Ups Upy Upgs Ups Upuoe
Ug, Ug2 Ugs Ug4 Ugs Ugs Ugs Uggs Ugo Ugo
Ug, Urz Ug;s Ura Ugs Ups Ug; Urg Urs Upio
Ug,1 Ug2 Ugs Ucas Ugs Ugs Ugs Ugs Uss Uguo
U, Usz U3 Uss Uns Uss Uy Uug Uns Uy
Uy U, Ui . Uy Uys Ui Uiz Ups Ups U0
Uny U2 U3 Uja Ujs U Uy Ujs Ujg Unio

-~ HQMmMmOmUOw>»

Figure 7.2 Architecture for the 10-city traveling salesman problem.

Neural Net Architecture for the Traveling Salesman Problem. For n cities,
we use n? units, arranged in a square array, as illustrated in Figure 7.2. A valid
tour is represented by exactly one unit being ‘‘on’’ in each row and in each column.
Two units being ‘‘on’’ in a row indicates that the corresponding city was visited
twice; two units being ‘‘on’’ in a column shows that the salesman was in two
cities at the same time.

The units in each row are fully interconnected; similarly, the units in each
column are fully interconnected. The weights are set so that units within the same
row (or the same column) will tend not to be “‘on’’ at the same time. In addition,
there are connections between units in adjacent columns and between units in
the first and last columns, corresponding to the distances between cities. This
will be discussed in more detail for the Boltzmann machine in Section 7.1.1 and
for the Hopfield net in Section 7.1.2.

7.1.1 Boltzmann machine

Boltzmann machine neural nets were introduced by Hinton and Sejnowski (1983).
The states of the units are binary valued, with probabilistic state transitions. The
configuration of the network is the vector of the states of the units. The Boltzmann
machine described in this section has fixed weights w;;, which express the degree
of desirability that units X; and X; both be ‘‘on.”’

In applying Boltzmann machines to constrained optimization problemsj the
weights represent the constraints of the problem and the quantity to be optimiZed.
The description presented here is based on the maximization of a consensus func-
tion [Aarts & Korst, 1989].

The architecture of a Boltzmann machine is quite general, consisting of a
set of units (X; and X; are two representative units) and a set of bidirectional
connections between pairs of units. If units X; and X; are connected, w;; # 0.

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 339

The bidirectional nature of the connection is often represented as w;; = wj;. A
unit may also have a self-connection w;. (Or equivalently, there may be a bias
unit, which is always ““on’’ and connected to every other unit; in this interpre-
tation, the self-connection weight would be replaced by the bias weight).

The state x; of unit X; is either 1 (*‘on’’) or 0 (*‘off’*). The objective of the
neural net is to maximize the consensus function

C = 2 [2 Wi x,-xj].
i J=i
The sum runs over all units of the net.

The net finds this maximum (or at least a local maximum) by letting each
unit attempt to change its state (from “‘on”’ to “‘off”’ or vice versa). The attempts
may be made either sequentially (one unit at a time) or in parallel (several units
simultaneously). Only the sequential Boltzmann machine will be discussed here.

The change in consensus if unit X; were to change its state (from 1 to 0 or from
0Otol)is

ACH) = [1 = 2x;)[wy + > wiix;l,
J=i
where x; is the current state of unit X;. The coefficient [T — 2x;] will be +1 if
unit X; is currently ‘“‘off>> and — 1 if unit X; is currently “‘on.”

Note that if unit X; were to change its activation the resulting change in
consensus can be computed from information that is local to unit X i» 1.e., from
weights on connections and activations of units to which unit X; is connected
(with w;; = 0 if unit X, is not connected to unit X i).

However, unit X; does not necessarily change its state, even if doing so
would increase the consensus of the net. The probability of the net accepting a
change in state for unit X; is

1

1 + exp (— ——AC]:(I.)>

The control parameter T (callewthe temperature) is gradually reduced as the net
searches for a maximal consensus. Lower values of T make it more likely that
the net will accept a change of state that increases its consensus and less likely
that it will accept a change that reduces its consensus. The use of a probabilistic
update procedure for the activations, with the control parameter decreasing as
the net searches for the optimal solution to the problem represented by its weights,
reduces the chances of the net getting stuck in a local maximum.

This process of gradually reducing the temperature is called simulated an-
nealing [Aarts & Korst, 1989]. It is analogous to the physical annealing process
used to produce a strong metal (with a regular crystalline structure). During an-
nealing, a molten metal is cooled gradually in order to avoid imperfections in the
crystalline structure of the metal due to freezing.

AG, T) =

340 A Sampler of Other Neural Nets Chap. 7

Architecture

We illustrate the architecture of a Boltzmann machine for units arranged in a two-
dimensional array. The units within each row are fully interconnected, as shown
in Figure 7.3. Similarly, the units within each column are also fully interconnected.
The weights on each of the connections is —p (where p > 0). In addition, each
unit has a self-connection, with weight b > 0. The connections shown in the figure,
with the proper choice of values for b and p as discussed in the next section, will
form a portion of the Boltzmann machine to solve the traveling salesman problem.
In keeping with the most common notation for neural network solutions of this
problem, we label a typical unit U, ;.

Figure 7.3 Architecture for Boltzmann machine.

Algorithm

Setting the Weights. The weights for a Boltzmann machine are fixed so that
the net will tend to make state transitions toward a maximum of the consensus
function defined on page 339. If we wish the net illustrated in Figure 7.3 to have
exactly one unit ‘““on’’ in each row and in each column, we must choose the values
of the weights p and b so that improving the configuration corresponds to in-
creasing the consensus.

T

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 341

Each unit is connected to every other unit in the same row with weight —p
(p > 0); similarly, each unit is connected to every other unit in the same column
with weight —p. These weights are penalties for violating the condition that at
most one unit be “‘on’’ in each row and each column. In addition, each unit has
a self-connection, of weight b > 0. The self-connection weight is an incentive
(bonus) to encourage a unit to turn ““on”’ if it can do so without causing more
than one unit to be on in a row or column. '

If p > b, the net will function as desired. The correct choice of weights to
ensure that the net functions as desired can be deduced by considering the effect
on the consensus of the net in the following two situations.

If unit U, ; is “off”’ (u;; = 0) and none of the units connected to U, is
on,”” changing the status of U; j t0 “‘on”’ will increase the consensus of the net
by the amount b. This is a desirable change; since it corresponds to an increase
in consensus, the net will be more likely to accept it than to reject it.

On the other hand, if one of the units in row i or in column j (say, U, ;. is
already “‘on’’), attempting to turn unit U:; ‘‘on” would result in a change of
consensus by the amount b — p. Thus, for b — P <0 (i.e., p > b), the effect
would be to decrease the consensus. The net will tend to reject this unfavorable
change.

Bonus and penalty connections, with p > b, will be used in the net for the
traveling salesman problem to represent the constraints for a valid tour.

(X3

Application Procedure. The application algorithm given here is expressed
in\terms of units arranged in a two-dimensional array, as is needed for the traveling
salesman problem with n cities. There are n2 units. The weight between unit U, ;
and unit U, , is denoted w(i, j; I, J). For the architecture shown in Figure 7.3,

w(i,j; I,J) = —p ifi = Iorj = J (but not both);
w(i, 5 i,j) = b.
The application procedure is as follows:
Step 0. Initialize weights to represent the constraints of the problem.
Initialize the control parameter (temperature) 7.
Initialize activations of units (random binary values).

Step 1, While stopping condition is false, do Steps 2-8.
Step 2. Do Steps 3—-6 n? times. (This constitutes an epoch.)

Step 3. Choose integers I and J at random between 1 and n.
(Unit U, is the current candidate to change its state.)
Step 4. Compute the change in consensus that would result:

AC = [1 = 2u,)wd, J; 1, J)
+ 2 3w, j; I, Dui).
ij#=1,.J

342 ' A Sampler of Other Neural Nets Chap. 7

Step 5. Compute the probability of acceptance of the change:
1

1+exp(—£€>'
‘ T

Step 6. Determine whether or not to accept the change.
Let R be a random number between 0 and 1.
If R < A, accept the change:

CA(T) =

ury=1-— ic,, 7. (This changes the state of unit U, ,.)

If R = A, reject the proposed change.
Step 7. Reduce the control parameter:

T(new) = 0.95T(old).

Step 8. Test stopping condition:
If there has been no change of state for a specified number of epochs, or if the
temperature has reached a specified value, stop; otherwise continue.

Initial Temperature. The initial temperature should be taken large enough
so that the probability of accepting a change of state is approximately 0.5, re-
gardless of whether the change is beneficial or detrimental. However, since a high
starting temperature increases the reguired computation time significantly, a lower
initial temperature may be more practical in some applications.

Cooling Schedule. Theoretical results [Geman & Geman, 1984] indicate
that the temperature should be cooled slowly according to the logarithmic formula

To
log(l + k)’

where k is an epoch. An epoch is n? attempted unit updates, where n is the number
of cities and n? is the number of units in the net. However, published results are
often based on experimentation with both the starting temperature and the cooling
schedule.

We have used the exponential cooling schedule T(new) = aT(old), reduced
after each epoch [Kirkpatrick, Gelatt, & Vecchi, 1983]. A larger a (such as a =
0.98) allows for fewer epochs at each temperature; a smaller «a (such as a = 0.9)
may require more epochs at each temperature.

Tp(k) =

Application: traveling salesman problem

Summary of Nomenclature

n number of cities in the tour (there are n? units in the net)
i index designating a city; 1 < i < n.

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 343

J index designating position in tour, mod #; i.e., Jj=n+1->j=1,
J=0—>j=n

U j unit representing the hypothesis that the ith city is visited at the Jth step
of the tour.

Ui activation of unit U, ;; u;; = 1 if the hypothesis is true, 0 if it is false.

dix distance between city i and city &, k # i.

d maximum distance between any two cities.

Architecture. For this application, it is convenient to arrange the units of
the neural net in a grid, as illustrated in Figure 7.2. The rows of the grid represent
cities to be visited, the columns the position of a city in the tour.

The connection pattern for the neural net is as follows:

® U;; has a self-connection of weight b; this represents the desirability of
visiting city, i at stage j.

® U, is connected to all other units in row i with penalty weights —p; this
represents the constraint that the same city is not to be visited twice.

® U, is connected to all other units in column j with penalty weights — p; this
represents the constraint that two cities cannot be visited simultaneously.

® U, is connected to Ui, for 1 < k < n, k # i, with weight —d; ,; this
represents the distance traveled in making the transition from city / at stage
J tp city k at stage j + 1.

® Uj; is connected to Ux,;_; for | < k < n, k # i, with weight —d; ,; this
represents the distance traveled in making the transition from city & at stage
J — 1tocity i at stage j.

Setting the Weights. The desired neural net will be constructed in two steps.
First, a neural net will be formed for which the maximum consensus occurs when-
ever the constraints of the problem are satisfied, i.e., when exactly one unit is
‘‘on’” in each row and in each column. Second, we will add weighted connections
to represent the distances between the cities. In order to treat the problem as a
maximum consensus problem, the weights representing distances will be negative.

A Boltzmann machine with weights representing the constraints (but not the
distances) for the traveling salesman problem is illustrated in Figure 7.3. If
p > b, the net will function as desired (as explained earlier).

To complete the formulation of a Boltzmann neural net for the traveling
salesman problem, weighted connections representing distances must be included.
In addition to the weights described before and shown in Figure 7.3 (which rep-
resent the constraints), a typical unit U, is connected to the units Ukj—1 and
Uk,+1 (for all k # i) by weights that represent the distances between city i and
city k. The distance weights are shown in Figure 7.4 for the typical unit U, ;. Note
that units in the last column are connected to units in the first column by con-
nections representing the appropriate distances also. However, units in a partic-
ular column are not connected to units in columns other than those immediately
adjacent to the said column. '

344 | A Sampler of Other Neural Nets Chap. 7

Figure 7.4 Boltzmann neural net for the ‘‘traveling salesman problem’;
weights representing distances for unit U, ;.

We now consider the relation between the constraint weight b and the dis-
tance weights. Let d denote the maximum dfstance between any two cities on the
tour. Assume that no city is visited in the jth position of the tour and that no city
is visited twice. In this case, some city, say, i, is not visited at all; i.e., no unit
is “‘on”” in column j or in row i. Since allowing U, ; to turn on should be en-
couraged, the weights should be set so that the consensus will be increased if it
turns on. The change in consensus will be b — d;x; — dix2, where k1 indicates
the city visited at stage j — 1 of the tour and k2 denotes the ¢ity visited at stage
J + 1 (and city i is visited at stage j). This change is greater than or equal to
b — 2d; however, equality will occur only if the cities visited in positions j — 1
andj + 1are both the maximum distance, d, away from city i. In general, requiring
the change in consensus to be positive will suffice, so we take b > 2d.

Thus, we see that if p > b, the consensus function has a higher value for a
feasible solution (one that satisfies the constraints) than for a nonfeasible solution,
and if b > 2d the consensus will be higher for a short feasible solution than for
a longer tour.

Sample Resulls.

Example 7.1 A Boltzmann machine for the traveling salesman problem: large bonus and
penalty weights

The Boltzmann machine described in the previous sections was used to solve the
traveling salesman problem; 100 different starting configurations were employed,

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 345

each with approximately half the units ““on.”” With T, = 20.0, b5 = 60, and p = 70,
valid tours were produced in 20 or fewer epochs for all 100 initial configurations. In
these experiments, it was rare for the net to change its configuration once a valid
tour was found. Typically, a valid tour was found in 10 or fewer epochs). An epoch
consisted of each unit attempting to change its state. The cooling schedule was
T(new) = 0.9T(old) after each epoch. Five tours of length less than 4 were found:

TOUR LENGTH

G F D E A C B J I H 3.036575
D A 1 J G F H E C B 3.713347
B J H A F G 1 E D C 3.802492
H I E J A B C D F G 3.973623
J A F H D E C B G 1 3.975433

The best tour found is illustrated in Figure 7.5.

1.0

09

05 |-
04—
03}

02—

0.1 |~

]] | il] | | 1] 1
01 02 03 04 05 06 07 08 09 1.0 x

Figure 7.5 Best tour for traveling salesman problem from Boltzmann machine
(100 initial configurations).

346 A Sampler of Other Neural Nets Chap. 7

Example 7.2 A Boltzmann machine for the traveling salesman problem: smaller bonus

and penalty weights
With somewhat smaller values of b and p (b = 30, p = 35), 100 valid tours were
again found for each of the 100 initial configurations. The net changed from a valid
tour to a second valid (and shorter) tour in approximately 25% of these trials. How-
ever, none of the tours was shorter than that found in Example 7.1. Using even
smaller values (b = 6, p = 7), the net was unable to find valid tours (in 20 epochs)
for any of the 100 initial configurations. More epochs would not be likely to help,
as the temperature after 20 epochs is quite low.

Analysis

The traveling salesman problem is a nice model for a variety of constrained op-
timization problems. It is, however, a difficult problem for the Boltzmann ma-
chine, because in order to go from one valid tour to another, several invalid tours
must be accepted. By contrast, the transition from valid solution to valid solution
may not be as diffitult in other constrained optimization problems.

Equilibrium. The net is in thermal equilibrium (at a particular temperature
T) when the probabilities, P, and Pg, of two configurations of the net, a and B,
obey the Boltzmann distribution

- oo |2
P, |71 |

where E, is the energy of configuration « and Ej is the energy of configuration
B. At higher temperatures, the probabilities of different configurations are more
nearly equal. Atlower temperatures, there is a stronger bias toward configurations
with lower energy.

Starting at a sufficiently high temperature ensures that the net will have
approximately equal probability of accepting or rejecting any proposed state tran-
sition. If the temperature is reduced slowly, the net will remain in equilibrium at
lower temperatures. It is not practical to verify directly the equilibrium condition
at each temperature, as there are too many possible configurations.

Energy Function. As mentioned earlier, the constraint satisfaction prob-
lems to which the Boltzmann machine without learning is applied can be for-
mulated as either maximization or minimization problems. Also, as described in
Section 2.1.2 with regard to pattern classification, the use of a bias (self-connec-
tion, or connection to a unit that is always ‘‘on’’) and the use of a threshold are
equivalent. Ackley, Hinton, and Sejnowski (1985) define the energy of a con-
figuration as

E = —22 WX X + 2 O,x,-,

ig<i i

where 6, is a threshold and self-connections (or biases) are not used. The difference

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 347

in energy between a configuration with unit X, “‘off”’ and one with X « ‘“‘on”’ (and
the state of all other units remaining unchanged) is

AE(k) = —0; + 2 WikX;.

If the units change their activations randomly and asynchronously, and the net
always moves to a lower energy (rather than moving to a lower energy with a

probability that is less than 1, as described in the preceding sections), the discrete
Hopfield net results.

To simplify notation, one may include a unit in the net that is connected to
every other unit and is always ‘‘on.”” This allows the threshold to be treated as
any other weight, so that

E = —22 WiiXiXj.

i j<i
The energy gap between the configuration with unit X, *“‘off”’ and that with unit
X, t'on” is

AE(k) = 2 WirX;.

Variations. The acceptance condition in the algorithm on page 342 is closely
related (but not identical) to the Metropolis condition, which is:

Set output of unit to 1 with probability
1

(-%)
1 + exp —T

regardless of the current activity of the unit [Metropolis, Rosenbluth, Rosenbluth,
Teller, & Teller, 1953].

A(T) =

The Boltzmann machine, as well as the Cauchy machine presented in Section
7.1.4, can be described in terms of a Markov chain process. For this purpose,
the following notation is useful:

x(k) Configuration of the net at stage k of the process (binary vector of
activations of the units).

n Dimension of x (number of units in the net).

A x| Number of units whose activations change in going from current con-
figuration to new configuration.

T(k) Temperature at stage & of the process.

At stage k of the process, the probability of transition from the current
configuration of the net, x(k), to any other configuration is a function of the
distance |Ax|| between the two configurations and the change in consensus that

348 A Sampler of Other Neural Nets Chap. 7

would result if the transition occurs. The change in consensus depends on the
current temperature. Each stage of the Markov process can be considered to
consist of three steps: Generate a potential new configuration of the net, accept
or reject the new configuration, and reduce the temperature according to the
annealing schedule.

For the Boltzmann machine, the generating probability is given by the Gaus-
sian distribution: ’

_ ~5n —lAx?
G(k) = T(k) exp (0) .

Thus, all configurations that are at the same distance from the current configu-
ration (i.e., all that involve the same number of units changing their state simul-
taneously) are equally likely to be generated as the candidate configuration. In
the preceding discussion of the Boltzmann machine, all configurations in which
exactly one unit changes its state are equally likely to be chosen as the candidate
state at any time. Configurations in which more than one unit changes its state
(Ax > 1) are generated with probability zero.

The probability of accepting the new configuration depends on the current
temperature and the change in consensus AC that would result and is

1

AC\ '
1 + exp (— ?(_k_)>

This form of analysis is useful for deriving the theoretical lower bounds on
the cooling schedules for the Boltzmann and Cauchy machines; see Jeong and
Park (1989) for a discussion of cooling schedules using these generating and ac-
ceptance probabilities.

We shall limit our considerations to formulations of the Boltzmann, Hop-
field, and other related nets in which only one unit updates its output signal at
any time. In this context, the motivation for the acceptance probability as the
(approximate) integral of the Gaussian probability density function [Takefuji,
1992} will provide a useful framework for relating the Boltzmann machine to the
Gaussian and Cauchy machines in Section 7.1.3 and 7.1.4, respectively.

Ak, T(k)) =

7.1.2 Continuous Hopfield Net

A modification of the discrete Hopfield net (Section 3.4.4), with continuous-valued
output functions, can be used either for associative memory problems (as with
the discrete form) or constrained optimization problems such as the traveling
salesman problem. As with the discrete Hopfield net, the connections between
units are bidirectional, so that the weight matrix is symmetric; i.e., the connection
from unit U; to unit U, (with weight w;;) is the same as the connection from U;
to U; (with weight w;;). For the continuous Hopfield net, we denote the internal
activity of a neuron as u;; its output signal is v; = g(u,).

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 349

If we define an energy function
E =05 2 E Wiiviv; + 2 0:v;,
i=1j=1 i=1

then the net will converge to a stable configuration that is a minimum of the energy
function as long as

d
'J;ESO.

For this form of the energy function, the net will converge if the activity of each
neuron changes with time according to the differential equation

d oE -
TUi = = = 2wy, — 6,
dt a‘Ui jgl v

as is shown later in this section.
In the original presentation of the continuous Hopfield net [Hopfield, 1984],
the energy function is

n n n 1 n vi
E = -0.5 2 2 Wivu; — 2 6,-v,- + - E J; g,-_'(v) d’U,
i=1j=1 i=1 Ti=1
where 7 is, of course, the time constant. If the activity of each neuron changes
with time according to the differential equation
d

n
U;
—_— U = —— 4 W;iU; + 9.’
dt i T jgl ijYj i

the net will converge. The argument is essentially the same as that given in the
proof of convergence of the Hopfield net later. Because the time scale is arbitrary,
in applications, the time constant 7 in the decay term is usually taken to be 1.
In the Hopfield-Tank solution of the traveling salesman problem [Hopfield
& Tank, 1985], each unit has two indices. The first index—x, y, etc.—denotes
the city, the second—i, j, etc.—the position in the tour.
The Hopfield-Tank energy function for the traveling salesman problem is

A
E = > 23S veive

x i joi

B
+ ‘2' 2 2 2 v,,,,-vy,,-

i x ysx

+

[N - 2 2 vx,i]2

+

N NIO

2 2 2 dx,yUX.i(vy.i+l + 'Uy,i—l)-
X y¥x

350 A Sampler of Other Neural Nets Chap. 7
The differential equation for the activity of unit Uy is

d Ux. 1

—Uxg = ——=—AJuvx;~BY v, + CIN - > vl
dt T JEI yEX x i

-D 3 dx y(Vy 141 + vy 1-1).

y#=X

The output signal is given by applying the sigmoid function (with range
between 0 and 1), which Hopfield and Tank expressed as

v; = g(u;) = 0.5[1 + tanh(au,)].

Architecture for traveling salesman problem

The units used to solve the 10-city traveling salesman problem are arranged as
shown in Figure 7.2. The connection weights are fixed and are usually not shown
or even explicitly stated. The weights for interrow connections correspond to the
parameter A in the energy equation; there is a contribution to the energy if two
units in the same row are ‘‘on.”’ Similarly, the intercolumnar connections have
weights B; the distance connections appear in the fourth term of the energy equa-
tion. More explicitly, the weights between units U,; and U,; are

w(x,i; y,j) = —Ad,(1 — §;) — Bd;;(1 - 3,,) + C
—Dd.y(8; j+1 + 8;j-1),

where §;; is the so-called Dirac delta, which is 1 if i = j and 0 otherwise. In
addition, each unit receives an external input signal

Ix,' = +CN

The parameter N is usually taken to be somewhat larger than the number of cities,
n.

Algorithm

The basic procedure for solving the traveling salesman problem using a continuous
Hopfield net is described in the algorithm that follows. For convenience, we may
think of the computations in Step 2 as constituting an epoch, i.e., each unit has
had, on average, one opportunity to update its activity level. It may be desirable
to ensure that each unit does update its activity. The method of initializing the
activations is discussed following the algorithm.

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 351

Step 0. Initialize activations of all units.
Initialize At to a small value.
Step 1. While the stopping condition is false, do Steps 2-6.

Step 2. Perform Steps 3-5 n? times (n is the number of cities).
Step 3. Choose a unit at random.
Step 4. Change activity on selected unit:

ux,i(new) = ux,i(OId)

+ At[—llx_,'(()ld) - AE Uxj

Nigll

—B> vyi+ C{N — EvaJ}

yFEX

—DE dx.y(vy.i+l + vy,i—l)]-

yFEx
Step 5. Apply output function:
Ux,i = 05[1 + tanh(aux,i)].

Step 6. Check stopping condition.

Hopfield and Tank used the following parameter values in their solution of
the problem:

A=B=500C=200,D=500,N =15 a = 50.

The large value of a gives a very steep sigmoid function, which approximates a
step function. Furthermore, the large coefficients and a correspondingly small At
result in very little contribution from the decay term (u, ;(old) At). The initial
activity levels (u,.;) were chosen so that E 2 vx.s = 10 (the desired total acti-

vation for a valid tour). However, some nonse was included so that not all units
started with the same activity (or output signal).

Application

Hopfield and Tank [1985] claimed a high rate of success in finding valid tours;
they found 16 from 20 starting configurations. Approximately half of the trials
produced one of the two shortest paths. The best tour found was

A D E F G H I J B C(C,

with length 2.71 (see Figure 7.6).

352 A Sampler of Other Neural Nets Chap. 7

10 |-
09 |-
08 |-
07}
06 |-
0s |-
04 |-

03

] | N] |]]]]]
01 02 03 04 05 06 07 08 09 10 =

Figure 7.6 Best tour for traveling salesman problem found by Hopfield and Tank
[1985].

Analysis

Variations. Many other researchers have had difficulty achieving success
comparable to that reported by Hopfield and Tank (1985). In this section, we
describe two variations on the Hopfield-Tank model [Wilson & Pawley, 1988;
Szu, 1988].

Wilson and Pawley. Wilson and Pawley (1988) provide a somewhat more
detailed statement of the Hopfield-Tank algorithm than do those authors them-
selves, together with an analysis of their attempts to duplicate the results published
previously. They used the time step Az = 107> and stopped their simulations
when they found that they had a valid tour, a frozen net, or a total of 1,000 epochs
performed. In testing for a valid tour, a unit was considered to be “‘on’’ if its
activation was greater than 0.9 and “‘off*’ if its activation was less than 0.1. A
net was frozen if no activations changed by more than 1035,

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 353
In 100 attempts, allowing 1,000 epochs on each, Wilson and Pawley found

15 valid tours (45 froze and 40 failed to converge). Some of the better tours
produced the following results:

A D E F G H J 1 B C (length2.71)
A D E G F H J I C B (see Figure 7.7)
A C B D E G F H J 1

Since the starting city and direction of each tour are not indicated in the authors’

paper, the tours are represented here with the same starting city and direction of
travel.

0.7
0.6 |-
05

04 -

03

02

01|

1 I]] 1]]] |]
01 02 03 04 05 06 07 08 09 10 x

Figure 7.7 One of the better tours produced by Wilson and Pawley (1988).
(They also found the best tour, illustrated in Figure 7.6.)

In attempting to obtain a success rate for valid tours that would approach
the rate achieved by Hopfield and Tank, Wilson and Pawley tried a number of
variations of the Hopfield and Tank algorithm. They experimented with different
parameter values, different initial activity configurations (including starting with

354 A Sampler of Other Neural Nets Chap. 7

a larger total activity level and decreasing it over the first 1,000 iterations), and
imposing a large distance penalty for visiting same city twice, none of which helped
much. Fixing the starting city helped on the Hopfield-Tank cities, but not on other
randomly generated sets of cities.

One variation that did improve the ability of the net to generate valid tours
was a modification of the initialization procedure. The Willshaw initialization is
based on the rationale that cities on opposite sides of the square probably should
be on opposite sides of the tour [Durbin & Willshaw, 1987]. The starting activity
of each unit is biased to reflect this fact. Cities far from the center of the square
received a stronger bias than those near the middle. The formula, in terms of the
ith city and jth position, is

yi — 0.5
Xi — 0.5

bias(i, j) = cos [atan () + Zﬂ(jn_ 1)] Vi(x; = 0.57 + (y; — 0.57

where the coordinates of the ith city are x;, y;. Using this initialization, Wilson
and Pawley produced the following tour, illustrated in Figure 7.8, in 166 epochs:

A B C D E F G H I J (length?2.83)

Szu. Harold Szu (1988) has developed a modified Hopfield net for solving
the traveling salesman problem. He uses the energy function

A B
5 2 Z 2 Ux,iVxj + E 2 2 2 Ux,iVy,i

x i Jj#Fi X y#FEX

E=
C 2 2
S0 -SSP +30 -3 v

+ g 2 D X deyvai(vyier + Uy,i=1)s
x y¥x i
where the third term now expresses the requirement that exactly one unit should
be ‘‘on’’ in each row and each column. The coefficients in the energy function
are takentobe A =B =C =D = 1.

In addition to improving the energy function, Szu uses continuous activities,
but binary output signals. That is, the output function is the ‘‘hard limiter,”” or
unit step function, rather than the differentiable sigmoid function used by Hopfield
and Tank. This step function is also called the McCulloch-Pitts input/output func-
tion {Takefuji, 1992].

The architecture Szu uses is the same as that for the Boltzmann or Hopfield-
Tank models. However, Szu updates the activities of the units simultaneously,
rather than sequentially. He performs n? such updates and then tests for a valid
tour. The specific values in the following algorithm are based on a computer code
to solve the traveling salesman problem using the first five of the cities in the
Hopfield-Tank sample problem [Szu, 1989].

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 355

1.0 |-
09 |-
08 |-
0.7}
061
05 -
04 -
0.3

02 |-

]] |]]] |] |]
01 02 03 04 05 06 07 08 09 10 x

Figure 7.8 Tour for traveling salesman problem found using Willshaw initiali-
zation.

Fast Optimization Algorithm for TSP
Step 0. Initialize distances between cities.
Set time step Az = 1075,
Step 1. Perform Steps 2—-8 the specified number of times.
(Generate the specified number of tours.)
Step 2. Initialize activities of all units. .
Use random values between —0.0005 and + 0.0005.
Increase activity of unit U,; by 0.005.
Step 3. Do Steps 4-7 n? times
Step 4. Do Steps 5-6 for each unit.
Step 5. Calculate all terms for change in activity.
Step 6. Update activity.
Step 7. Apply binary output function to each unit.
Step 8. Test for valid tour.

356 A Sampler of Other Neural Nets Chap. 7
Example 7.3 Sample results for traveling salesman problem using Szu’s fast optimization
algorithm

Published results for the fast optimization algorithm show 91 valid tours obtained
from 1,000 trials (tours generated) [Szu, 1988]. The best tour found was

D E F G H I 7 C B A (length 2.7693),

illustrated in Figure 7.9. The other tours found that were of length less than 3.5 are:

TOUR LENGTH
J H G F E D B A C 1 3.3148
A C B G J I H F D E 3.3306
J I G H F A B ¢ D E 3.3647
A E G F H J I ¢ B D 3.3679
C B E D F H G I J A 3.3822
A F D E G H J I ¢ B 3.4345
C B E G F H I J D a 3.4917
x2
10
09 |-
08 |-
07}
0.6 |-
05 |-
04}
03|
c
02} v
01} B
| | L | | | | I | |

0r 02 03 04 05 06 07 08 09 10 =x

Figure 7.9 Best tour for traveling salesman problem from fast optimization al-
gorithm [Szu, 1988].

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 357

Proof of Convergence of Hapfield Net. For an energy function of the form

n

n n
E = 2 > Wiy + > 8,
i=1j=1

i=1
the Hopfield net will converge if the activations change according to the differ-
ential equation
du; dE
dt ey
as the simple calculations that follow show [Takefuji, 1992].
¥ v; = g(u;) is monotonic and nondecreasing, then dv;/du; = 0. Since

dE _ dU,' oF

71; i dt av,-

du; du,
7 dt dt

d'l),' du,- du,-
T du; dt dt’
the energy is nonincreasing, as required.

In the original presentation of the continuous Hopfield net [Hopfield, 1984],
the energy function includes an integral term:

n n n 1 n vi
E=—053% 5 wywy — 3 0+ 3 [g0 av.

i=1j=1 i=1 i=1

If the weight matrix is symmetric and the activity of each neuron changes with
time according to the differential equation
d Uuj; "

— U = - — + wiv; + 6;,
dt T E, 7
the net will converge. The argument is essentially the same as for the energy
function without the integral term. ‘

Takefuji (1992) has shown that convergence is not guaranteed for the energy
function without the integral term if the neuron activations are updated using the

differential equation with the decay term, — 4 .
T
7.1.3 Gaussian Machine

A general framework that includes the Boltzmann machine, Hopfield net, and
other neural networks is known as the Gaussian machine [Akiyama, Yamashita,
Kajiura, & Aiso, 1989]. An obvious minor extension of the description of the
Gaussian machine allows it to include the Cauchy machine also (see Section 7.1.4).

358 A Sampler of Other Neural Nets Chap. 7

A Gaussian machine is described by the following three parameters:

a slope parameter of the sigmoid function,
T temperature,
At time step.

The operation of the net consists of the following steps:

1. Calculating the net input to unit U;:

N
net; = 2 WU + (-),- + €,
i=1

where € is random noise, which depends on the temperature 7.

2. Changing the activity level of unit U;:

Ar T T
3. Applying the output function
v; = f(u;) = 0.5[1 + tanh(au;)],

where the binary step function corresponds to a = .

The Hopfield machine corresponds to a Gaussian machine with 7 = 0 (no
noise). The Boltzmann machine is obtained by setting Az = + = 1, to obtain Au;
= —u; + net;, or

N
unew) = net; = > wyu; + 0; + €.
Jj=1
If the noise obeys a Gaussian distribution with mean of zero and standard deviation
o = T V8/m, then the distribution of outputs has the same behavior as a Boltz-
mann machine with probabilistic acceptance of state transitions.

Integrating the Gaussian noise distribution (approximately), we find the ap-

proximate Boltzmann acceptance function:

1 (x — w)? . 1
~AG,T) = .
s Vi P g7 HTAGD I + exp <“ 5)
T

Note that u; = AC(i). Noise obeying a logistic rather than a Gaussian distribution
will give a Gaussian machine that is identical to the Boltzmann machine with the
Metropolis acceptance function, i.e., setting the output to 1 with probability

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 359

1

U; ’
1 + exp <— 7)

regardless of the unit’s original state.

The equivalence of adding noise to the net input of a unit and using a prob-
abilistic state transition provides a simple framework for extending the Gaussian
machine (especially the Boltzmann machine form) to include the Cauchy machine,
as described in the next section. (See also Takefuji, 1992, for further discussion
of these ideas.)

AG T =

7.1.4 Cauchy Machine

A modification of the Boltzmann machine, known as the Cauchy machine, or fast
simulated annealing, is based on adding more noise to the net input to increase
the likelihood of escaping from a neighborhood of a local minimum [Szu & Hartley,
1987]. The unbounded variance of the Cauchy distribution allows for occasional
larger changes in the configuration of the system than does the bounded variance
of the Gaussian distribution. Noise based on the Cauchy distribution is called
“‘colored noise,”” in contrast to the ‘‘white noise’’ of the Gaussian distribution.
The addition of Cauchy noise is equivalent to using an acceptance probability that
makes it more likely for the net to accept a bad move.

The Cauchy machine can be included in the Gaussian machine framework
by setting

At =+ =1,
to obtain
Au,- = —u; + net;
or
N
u(new) = net; = > wyu; + 6; + e,
Jj=1

and taking the noise to obey a Cauchy distribution with mean zero and standard
deviation ¢ = T \/8/w, rather than a Gaussian or logistic distribution. Integrating
the Cauchy noise distribution, we find the Cauchy acceptance function:

=1 T dx 1 1 Uiy _ . .
j(; ;m = '2' + ;arctan <?> = A, T) \
Note that u; = AC(J).
One of the potential advantages of the Cauchy machine is the possibility of
using a faster cooling schedule. The Cauchy cooling schedule is T = T,/k, where

k is the number of iterations (epochs) that have been performed. (See Jeong &
Park, 1989, for a proof of this.) As has been observed [Szu, 1990], and as the

360 A Sampler of Other Neural Nets Chap. 7

examples in the next section illustrate, the faster cooling schedule is needed to
help the net stabilize.

Application

Example 7.4 A hybrid Boltzmann-Cauchy machine for the traveling salesman problem

The traveling salesman problem was solved using the same architecture, algorithm,
and parameters as for the Boltzmann machine in the previous section (including the
cooling schedule mentioned there); only the acceptance probability was changed.

Tours of length less than 4 were found for nine starting configurations, but no
tours were as short as the best found with the Boltzmann acceptance probability.
However, five of the tours found were of length less than 3.5, whereas only one of
the tours generated by the Boltzmann machine was that good.

TOUR LENGTH
J G E D A B C 1 H F 3.3341
1 J H E D A C B F G 3.3968
I J D A B C E G F H 3.4649
1 E D F G H A C B J 3.4761
J F E A o B I H G D 3.8840
F c B A D G E I J H 3.8944
H J A I B C F D E G 3.9045
C J H 1 G D E F B A 3.9513
F H D J I A C B G E 3.9592

Example 7.5 A Cauchy machine for the traveling salesman problem

The Cauchy machine solution to the traveling salesman problem was repeated using
the faster Cauchy cooling schedule. In this case, the Cauchy net found tours of length
less than 4 for 11 of the 100 random starting configurations. The shortest was

G I C B D A E F H J (length 3.63).
Analysis

Extremely good results have been reported [Szu, 1990] for the Cauchy machine
solution of the traveling salesman problem by using a clever mapping of the prob-
lem onto a one-dimensional space. Taking as fixed the first city to be visited, we
find that there are (n — 1)! permutations of the remaining cities, i.e., there are
(n — 1! distinct tours. The relation between a tour and an integer between 0 and
(n — D! — 1 is found by representing the integer in terms of the numbers
(n - DY, ...,21 1!, 0\ For example, with n = 5, the integer

1I5=0x44+2x31+1x2'+1x11+0x0!,

which gives a representation index of (0, 2, 1, 1, 0). This corresponds to the tour
that visits the cities A, D, C, E, and B, in that order [Szu & Maren, 1990].

Sec. 7.1 Fixed-Weight Nets for Constrained Optimization 361

For convenience in describing the process of obtaining the new tour from
the base tour A, B, C, D, E, and the index, we denote the index as (b4, b, by,
by, bo). We then have the following:

1. Starting with the most significant bit (the coefficient of 41), we take the city
in position 1 + b4 and move it to the left b, places to get the new tour.
Since b, = 0, the first city (4) does not move.

2. Next, we take the city in position 2 + b3 and move it to the left b5 places.
Since b3 = 2, the city currently in position 2 + 2 (i.e., city D) is moved 2
places to the left, giving the new tour A D B C E.

3. The city in position 3 + b, is moved b, places to the left; i.e., the city in
position 3 + 1 = 4 (city C) is moved left 1 place to give A D C B E.

4. The city in position 4 + b, is moved b, places to the left; i.¢., the city in
position 4 + 1 = 5 (city E) is moved 1 place to the left, giving A D C E B.

5. Finally, the city in position 5 + by moves b, spaces.

Note that by and b, are always 0. Thus, at the first step, the city in position
1 does not move. The value of b3 can be 0, 1, 2, or 3; hence, at the second step,
the city in position 2, 3, 4, or 5 may move. However, if the city in position 2
moves, it moves 0 steps; if the city in position 3 moves, it moves 1 step, etc.
Thus, whichever city moves, it will move to the second position. Similarly, b,
can take on values of 0, 1, or 2. So the city that is currently in position 3, 4, or
5 will move (depending on the value of b,); it will move left to the third position.
At the fourth step, b, has the value of either 0 or 1; thus, the city in position 4
or 5 will move (to the fourth position). Since by is always 0, at the last step the
city in the fifth position moves 0 steps to the left [Szu, 1990].

With this one-dimensional representation of the traveling salesman problem,
new states can be generated by adding noise according to the Cauchy distribution.
The new state is then accepted, based on the Cauchy acceptance function pre-
sented earlier. Szu does not discuss implementing this form of the Cauchy machine
in the framework of a strictly local neural network.

The Cauchy machine can be viewed as a Gaussian machine with Cauchy
distribution noise, as discussed earlier in this section. This is equivalent to treating
the Cauchy machine as a Boltzmann machine, with uniform probability of gen-
erating each state, but with the Cauchy acceptance function rather than the Boltz-
mann acceptance function. It is also possible to view the differences between the
Cauchy machine and the Boltzmann machine as a result of using a different dis-
tribution for the generation of states (i.e., the Cauchy distribution rather than the
Gaussian distribution), but the same acceptance function. For example, analysis
of the cooling schedule for the Cauchy machine can be based on such an approach
[Jeong & Park, 1989]). The probability distribution for generating a new configu-
ration of the net is the Cauchy distribution

362 A Sampler of Other Neural Nets Chap. 7

T(k)
[T + IaxP15D

rather than the Gaussian distribution used for the Boltzmann machine. The prob-
ability of accepting a new configuration of the net is given by the same function
for the Cauchy machine as for the Boltzmann machine; i.e., the probability of
accepting a change of state is

G(k) =

1

AC\
1+exp<— }(—,()>

However, a faster annealing schedule can be used; that is, the temperature pa-

rameter can be reduced more quickly than in the Boltzmann machine. The an-
nealing schedule for the Cauchy machine is
T

Tetk) = 2.

Further analysis [Jeong & Park, 1989] has shown that the annealing schedule for
the Cauchy machine can be taken to be

Ak, T(k)) =

Ty
Te(k) = o’

where 1 = a < 2.

7.2 A FEW MORE NETS THAT LEARN

There are numerous extensions to the learning algorithms and network architec-
tures we have discussed. In this section, we consider two feedforward self-or-
ganizing nets that use modified Hebbian learning rather than competition and four
types of learning for recurrent nets. The learning procedure for the Boltzmann
machine (Section 7.2.2) is one way of incorporating the advantages of probabilistic
changes in activations in a net that learns specified input-output relations. We
then discuss several methods of training recurrent nets using backpropagation.

7.2.1 Modified Hebbian Learning

The self-organizing nets in Chapters 4 and 5 use a competitive layer as part of
the process of clustering similar input patterns. Other types of information can
also be obtained from self-organizing nets. In this section we consider two types
of nets that extract information about the training patterns using unsupervised

Sec. 7.2 A Few More Nets That Learn 363

training without competition [Oja, 1992]. The first type learns the principal com-
ponents (eigenvectors corresponding to the largest eigenvalues) of the correlation
matrix of the training vectors. The second type finds the parameters for an optimal
curve or surface fit to the training patterns. These nets use a single layer of linear
units. (The output function is the identity function.)

Principal components

One Output Unit. The simplest net uses a single output unit with a modified
Hebbian learning rule that causes the weight vector to approach the eigenvector
of unit length corresponding to the largest eigenvalue of the correlation matrix of
the input vectors [Oja, 1982]. The correlation matrix is the average of the weight
matrices to store the training vectors, as described in Chapter 2:

P
Ciy = 3 2 xix;.
p=1

If the input vectors have a mean of zero, this is the covariance matrix, which, in
general, is written

=

Cij =

»
> (xi — m)(x; — my),
p=1

where m; is the average of the ith components of the input vectors.

If patterns are presented repeatedly, the weights found by the **plain Hebb”’
rule will continue to grow. Although the weights can be renormalized to prevent
this, the modified Hebb rule suggested by Oja causes the weight vector to ap-
proach unit length automatically. The Oja learning rule is

Aw; = ay(x; — yw),
where y = 3 x;w; is the output of the net. Hertz, Krogh, and Palmer (1991) prove

that the weights have the desired properties and point out that the weight updates
depend on the difference between the input x; and the backpropagated output
y wi. This modification is the standard Hebb rule, Aw; = a y x;, with a decay
term that is proportional to the output squared. Oja’s rule maximizes the average
squared output (y?).

Example 7.6 Using a modified Hebb rule to find principal components

The graph in Figure 7.10 is a simplified illustration of an example presented by Hertz,
Krogh and Palmer (1991). They used input from a two-dimensional Gaussian dis-
tribution and found that the average weight vector pointed toward the center of the
distribution. The average weight vector was of approximately unit length.

364) A Sampler of Other Neural Nets Chap. 7

]
1

Figure 7.10 Weight vector for modified Hebbian learning; adapted from Hertz,
Krogh, and Palmer (1991). A

M Output Units The preceding ideas have been extended to several output
units [Sanger, 1989; Oja, 1989]. The learning rules developed by Sanger and Oja
are similar, and each reduces to the Oja learning rule for one output unit when
M = 1. The Sanger learning rule causes the net to find the first M principal
components, in order, as the weight vectors for the M output units. This rule can
be extended to nonlinear output functions also. For the linear units we have been
considering in this section, the Sanger rule is

J
Aw;; = ay; (xi -> ykwik> ,

k=1

where y; = > x,w;; is the output of the jth output unit.

The Oja rule finds weight vectors that span the same subspace, but are not
necessarily the individual eigenvectors. The Oja M-unit rule is

M
Awy = ay; (xi - ykwik) .
k=1

(See Hertz, Krogh, and Palmer, 1991, and Oja, 1992, for further discussion of
these rules.)

Sec. 7.2 A Few More Nets That Learn 365

The use of backpropagation for data compression is often described as self-
supervised backpropagation. The. hidden units project onto the subspace of the
first M principal components, with results and dynamics that are similar to those

produced by the nets discussed in this section [Sanger, 1989; Hertz, Krogh &
Palmer, 1991].

Minor components

A modified anti-Hebbian learning rule can be used to find the parameters for
optimal curve or surface fitting [Xu, Oja, & Suen, 1992]. The standard least
squares (LS) approach to the common problem of fitting a line to a set of data
consists of minimizing the vertical distance from the data points to the line. In
many applications, the optimal line is the line found by minimizing the sum of
the squares of the distances from the points to the line, where the distances are
measured in a direction perpendicular to the estimated line. This is the TLS (total
least squares) method. (See Golub & Van Loan, 1989.) Unfortunately, the com-
putations for TLS are more involved than for LS. However, the desired solution
can b€ obtained from the minimum eigenvalue, and its corresponding normalized
eigenvector, for the covariance matrix of the data; i.e., the problem reduces to
finding the minor component of the data set.

As in the case of principal components discussed before, we consider a single
linear output unit with response

n
y = 2 XiW;.
i=1

The learning rule is now an anti-Hebbian rule in which
Aw = —ay(x — y w).

The normalized form of the learning rule scales the weight vector to unit length
before multiplying by the output of the net, to give

w
Aw = ~ay<x—ym>.

The straight line that best fits the P data points, (di(p), dx(p)),p =1, . . .,
P, is given by

wl(xl + ml) + Wz(Xz + n‘lz) =0

where (m;, m5) is the vector mean of the data. The coefficients w, and w, are the
weights found by the following algorithm [Xu, Oja, & Suen 1992].

Step 0. Compute vector mean for the data:

1 P
m = ;pgl d(p).

366 A Sampler of Other Neural Nets Chap. 7

Form training input points (forp = 1, ..., P):
x(p) = d(p) — m.

Initialize weight vector w:
Use uniform random distribution on [0, 1] for each component.

Step 1. For each input vector (presented in random order), do Steps 2-5:
Step 2. Compute output:

Yy = xXh1wy + xws.
Step 3. Update weights:
w(new) = w(old) — a y(x — y w).

Step 4. Reduce learning rate.

Step 5. If weights have stopped changing, or if maximum number
of vector presentations have been made, then stop; other-
wise continue.

The performance of this approach has been found for 500 data points (d;,
d>), generated by adding Gaussian noise to points on a straight line [Xu, Oja, &
Suen, 1992]. In the simplest case these authors report, the initial value of a =
0.01 was reduced linearly over the first 500 time steps (vector presentations) to
o = 0.0025 and held constant for the remainder of the 3,000 learning steps. There
was very little variation in the solution values over the last 500 time steps.

Figure 7.11 shows a result similar to that found by Xu, Oja, and Suen (1992),
illustrated, however, for only a few data points.

N

Figure 7.11 Line of best fit.

Sec. 7.2 A Few More Nets That Learn 367
7.2.2 Boltzmann Machine with Learning

Following the development in Ackley, Hinton, and Sejnowski (1985), we now
consider a learning rule for the Boltzmann machine. The simple relationship be-
tween the energy of a state in a Boltzmann machine and the weights of the network
leads to the following expression relating the weights to the probability of a par-
ticular state a of the net:

dln P, 1
Tij = T[x,-xj PF;].

Here, x;x; is 1 if units X; and X ; are both “‘on”’ in state « (and is 0 otherwise),
and PF; is the probability of finding units X; and X; both *“‘on’’ when the system
is in equilibrium (with no units clamped, i.e., held fixed at the desired values).

The most interesting situations for which a learning algorithm is needed are
the cases in which only partial information about the global states of the system
is available. Thus, we assume that the net consists of visible units (input and
output units) and hidden units. During training, the activations of the visible units
are clamped. After training, some of the visible units (the input units) are clamped,
and the net is allowed to find the correct values for the other visible units (the
output units). Hidden units are never clamped. For a net with v visible units,
there are 2" possible states for which probability distributions might be known.
In general, unless the number of hidden units is extremely large, a perfect model
of all possible states is not possible.

Based on information-theoretic arguments, the agreement between the de-
sired probabilities for the visible units and the probabilities of the visible units
when the net is at equilibrium can be increased by changing the weights. Fur-
thermore, the weight changes can be made on the basis of local information. The
weight change rule is

Awij = M[Pcij - PFij],

where PC;; is the probability that units X; and X j are both ““on’’ when the visible
units are clamped and the net is in equilibrium and PF;; is the probability that
units X; and X; are both “‘on’’ when the system is ‘‘running free,”’ i.e., no units
are clamped, and the net is in equilibrium.

As originally presented, the algorithm uses a fixed weight-step increment if
PC;; > PF;; and the same-sized decrement for the weights if PC;; < PF;;. Dif-
ficulties can occur when only a few of the 2* possible states for the visible units
are specified. Rather than trying to demand that other (nonspecified) states never
occur (which would require infinitely large energy for those states, which in turn
would require infinitely large weights), it is recommended that one use noisy inputs
with low, but nonzero, probabilities.

In the next several sections, we consider the performance of the Boltzmann
machine in learning a simple ‘‘encoder problem,” as described by Ackley, Hinton,

368 A Sampler of Other Neural Nets Chap. 7

and Sejnowski (1985). The problem is to train the net to reproduce the input pattern
on the output units after passing the signals through a hidden layer that has fewer
units than the input and output layers. This is a simple form of the data compres-
sion application of backpropagation discussed in Chapter 6.

Architecture

We consider a Boltzmann machine consisting of four input units, two hidden units,
and four output units, often called a 4-2—4 net. The difference between this ar-
chitecture and the typical architecture for a backpropagation net (with four input
units, two hidden units, and four output units) is the presence of intérconnections
among the input units, among the hidden units, and among the output units in the
Boltzmann machine. To simplify the diagram, the weights are not shown on the
connections in Figure 7.12. A bias is also used for each unit, but is not shown.

Figure7.12 Architecture for Boltzmann machine solution of 4-2-4 encoder prob-
lem.

Sec. 7.2 A Few More Nets That Learn 369

Algorithm

The learning process for the Boltzmann machine is influenced by choices of the
learning rate (or the use of a fixed-size weight adjustment) and the length of time
over which the estimates of PC and PF are gathered. The algorithm presented
here follows a published description of the process [Ackley, Hinton, & Sejnowski,
1985].

An epoch is the same number of attempted activation updates as there are
unclamped units. This allows each unit, on average, one chance to update its
activation on each epoch.

The training process is as follows:

Step 0. Initialize all weights to zero.
Do Steps 1-38 until weights stabilize or differences between PC and
PF are small.
Step 1. For each training vector, do Steps 2—17 the specified number of
times.
Step 2. Clamp values for visible units.
\ (Fix the values of the input and output units.)
Step 3. Allow net to reach equilibrium: Do Steps 4-10.
Step 4. Initialize activations of hidden units:
Set to “‘on’’ or “‘off”’ at random.
Initialize temperature.

Step 5. For specified annealing schedule, do Steps 6-10.
Step 6. For specified number of epochs, do Steps
7-9.
Step 7. Choose unit at random.
Step 8. Unit determines AE = net input.
Step 9. Set unit to ‘‘on,” with probability
P = !

l+exp<—-A—E>’
T

‘regardless of previous activation.
Step 10. Reduce temperature.
Step 11. Gather statistics for PC;;; Do Steps 12-17.
Step 12, For specified number of epochs, do Steps 13-16.
Step 13. Choose unit at random.
Step 14. Unit determines AE = net input.
Step 15. Set unit to ‘“‘on,” with probability

1

(-%)
I + exp -

regardless of previous activation.

P =

370 A Sampler of Other Neural Nets Chap. 7

Step 16. Record activation data for unit.
Step 17. For each pair of units, determine fraction of the time
that the units are both “‘on.”’
(This gives probabilities for PC;; for current training

run.)
Step 18. Find average value of PC;; for each pair of units i, j, over all training
runs.
Step 19. Find average value of PC;; over all training patterns.
Step 20. Gather statistics for free-running net:

Do Steps 21-35 for specified number of cycles.
Step 21. . Allow net to reach equilibrium: Do Steps 22-28.
Step 22. Initialize activations of all units:
Set to “‘on’’ or ‘‘off”’ at random.
Initialize temperature.
Step 23. For specified annealing schedule, do Steps 24-28.
Step 24. For specified number of epochs, do Steps
25-27.
Step 25. Choose unit at random.
Step 26. Unit determines AE = net input.
Step 27. Set unit to ‘‘on,”” with probability

regardless of previous activation.
Step 28. Reduce temperature.
Step 29. Gather statistics for PF;;; Do Steps 30-35.

Step 30. For specified number of epochs, do Steps 31-34.
Step 31. Choose unit at random.
Step 32. Unit determines AE = net input.
Step 33. Set unit to ‘“‘on,”” with probability

1

(-F)
1 + exp —7

regardless of previous activation.
Step 34. Record activation data for unit.
Step 35. For each pair of hidden units, determine fraction of
the time that they are both ‘‘on.”’
(This gives probabilities for PF;; for current cycle.)
Step 36. Find average value of PF;; over all cycles.
Step 37. Update weights:
Increment w;; by 2 if PC;; > PF;;.
Decrement w;; by 2 if PC;; < PF;;.
Step 38. Test whether training is complete.

P =

Sec. 7.2 A Few More Nets That Learn 371

Application. Ackley, Hinton, and Sejnowski (1985) have illustrated the use
of a Boltzmann machine to learn a variety of encoder problems. We have used
the architecture geared for the simplest problem, the 4-2—4 encoder in Figure
7.12. This net consists of four input units, two hidden units, and four output units.
The units are fully interconnected, with the exception of connections directly
between input units and output units. In general, for an encoder problem, there
are two groups of visible units with V units in each group and H hidden units with

In2=H<vy.

A bias is also used for each unit.
The training vectors (environmental vectors) are the following vectors:

INPUT OUTPUT
a o 0o 0 a o o 0
© 1 0 o © 1 0o 9
© o 1 9 © o 1 9
© o o0 1 © o 0o 1

That is, each set of visible units can have only one unit *‘on’’ at any time, and
we desire the pattern of activations in the two sets of visible units to match, even
though there is no direct communication between the two groups.

Because weights can become very large if the net does not receive training
information for many possible configurations, noisy versions of these training
vectors were used. On each presentation of a training pattern, the component that
is 1 in the true training vector is set to 0, with probability 0.15. The components
that are 0 are set to 1, with probability 0.05.

The annealing schedule was

® Two epochs at T = 20
® Two epochs at T = 15
® Two epochs at T = 12, and
® Four epochs at T = 10.

In other words, following the previous algorithm, the initial temperature was 20,
Now, there are two unclamped units during the first phase of the training cycle
(when the statistics to find PC;; are determined). Thus, Steps 7-9 are performed
four times (two epochs, each of which consists of two attempts to update units)
at T = 20; the temperature is reduced to T = 15, and Steps 7-9 are performed

four more times. Then they are performed four times with T = 12 and eight times
with T = 10.

372 A Sampler of Other Neural Nets Chap. 7

Statistics were gathered for 10 epochs at T = 10; that is, Steps 13-16 were
performed 20 times. The average fraction of the time that units i and j are both
“‘on’’ is determined.

This process is repeated for each of the four training vectors, and the results
for all of the training vectors are averaged.

The process of determining PF;; uses the same annealing schedule and gath-
ers statistics for the same number of epochs at the final temperature (T = 10).
However, since no units are clamped during this second phase, each epoch con-
sists of 10 attempts to update units.

Once the values of PC;; and PF;; have been found, the weights are updated
and the entire weight update cycle (Steps 1-38) is repeated, until the weights have
stabilized or the differences between PC;; and P;; are sufficiently small.

In 250 tests of the 4-2—4 encoder problem, the net always found one of the
global minima and remained at that solution. As many as 1,810 weight update
cycles were required, but the median number was 110 [Ackley, Hinton, &
Sejnowski, 1985].

After training, the net can be applied by clamping the input units and allowing
the net to reach equilibrium (for example, following the same annealing schedule

as given for the training algorithm). The activations of the output units then give
the response of the net.

7.2.3 Simple Recurrent Net

Several neural networks have been developed to learn sequential or time-varying
patterns. Unlike the recurrent nets with symmetric weights or the feedforward
nets, these nets do not necessarily produce a steady-state output. In this section,
we consider a simple recurrent net [Eiman, 1990; Hertz, Krogh, & Palmer, 1991]
that can be used to learn strings of characters [Servan-Schreiber, Cleeremans, &
McClelland, 1989]. This net can be considered a ‘‘partially recurrent’ net, in that
most of the connections are feedforward only. A specific group of units receives
feedback signals from the previous time step. These units are known as context
units. The weights on the feedback connections to the context units are fixed,
and information processing is sequential in time, so training is essentially no more
difficult than for a standard backpropagation net.

Architecture

The architecture for a simple recurrent net is as shown in Figure 7.13.

Sec. 7.2 A Few More Nets That Learn 373

Figure 7.13 Architecture for simple recurrent net.

Algorithm

At time ¢, the activations of the context units are the activations (output signals)
of the hidden units at the previous time step. The weights from the context units
to the hidden units are trained in exactly the same manner as the weights from
the input units to the hidden units. Thus, at any time step, the training algorithm
is the same as for standard backpropagation.

Application

One example of the use of a simple recurrent net demonstrates the net’s ability
to learn an unlimited number of sequences of varying length [Servan-Schreiber,
Cleeremans, & McClelland, 1989]. The net was trained to predict the next letter
in a string of characters. The strings were generated by a small finite-state gram-
mar in which each letter appears twice, followed by a different character. A
diagram of the grammar is given in F igure 7.14. The string begins with the symbol
B and ends with the symbol E.

374 A Sampler of Other Neural Nets Chap. 7

At each decision point, either path can be taken with equal probability. Two
examples of the shortest possible strings generated by this grammar are

B PV V E
and
B T X S E

Figure 7.14 One grammar for simple recurrent net (Reber, 1967; Servan-Schrei-
ber et al., 1989).

The training patterns for the neural net consisted of 60,000 randomly gen-
erated strings ranging in length from 3 to 30 letters (not including the Begin and
End symbols). .

The neural net architecture for this example had six input units (one for each
of the five characters, plus one for the Begin symbol) and six output units (one
for each of the five characters, plus one for the End symbol). There were three
hidden units (and therefore, three context units). In a specific case, the net might
be displayed as in Figure 7.15. With the architecture as illustrated, the input
pattern for the letter B (the Begin symbol) would correspond to the vector
(1,0,0,0,0, 0).

Training the net for a particular string involves several steps, the number
depending on the length of the string. At the beginning of training, the activations
of the context units are set to 0.5. The first symbol (the Begin symbol) is presented
to the input units, and the net predicts the successor. The error (the difference
between the predicted and the actual successor specified by the string) is deter-
mined and backpropagated, and the weights are adjusted. The context units re-
ceive a copy of the hidden units’ activations, and the next symbol in the string

Sec. 7.2 A Few More Nets That Learn 375

Figure 7.15 Simple recurrent net to learn context-sensitive grammar. (Elman,
1990; Servan-Schreiber et al., 1989).

(which was the target value for the output units on the first step of training) is

presented to the input units. Training continues in this manner until the End
symbol is reached.

The training algorithm for a context-sensitive grammar in the example given
is as follows:

For each training string, do Steps 1-7.

Step 1. Set activations of context units to 0.5,
Step 2. Do Steps 3-7 until end of string.
Step 3. Present input symbol.
Step 4. Present successor to output units as target response.
Step 5. Calculate predicted successor.
Step 6. Determine error, backpropagate, update weights.

376

. A Sampler of Other Neural Nets Chap. 7

Step 7. Test for stopping condition:
If target = E, then
stop;
otherwise,
Copy activations of hidden units to context units;
continue.

As a specific example of the training process, suppose the string

BT X S E

is used for training. Then we have:

Step 2.

Step 2.

Step 2.

Step 2.

Begin training for this string.

Step 3. Input symbol B, i.e., (1,0, 0, 0, 0, 0).

Step 4. Target response is T, i.e., (0,0, 0, 1, 0, Q).

Step 5. Compute predicted response, a real-valued vector with
components between 0 and 1.

Step 6. Determine error, backpropagate, update weights.

Step 7. Copy activations of hidden units to context units.

Training for second character of the string.

Step 3. Input symbol T, i.e., (0, 0, 0, 1, 0, 0).

Step 4. Target response is X, i.e., (0,0, 0,0, 0, 1).

Step 5. Compute predicted response,

Step 6. Determine error, backpropagate, update weights.

Step 7. Copy activations of hidden units to context units.

Training for third character of the string.

Step 3. Input symbol X, i.e., (0, 0, 0, 0, 0, 1).

Step 4. Target response is S, i.e., (0, 1, 0, 0, 0, 0).

Step 5-7. Train net and update activations of context units.

Training for fourth character of the string.

Step 3. Input symbol §, i.e., (0, 1, 0, 0, 0, 0).

Step 4. Target response is E, i.e., (1,0, 0, 0, 0, 0).

Steps 5—-6. Train net.

Step 7. Target response is the End symbol;

training for this string is complete.

After training, the net can be used to determine whether a string is a valid
string, according to the grammar. As each symbol is presented, the net predicts
the possible valid successors of that symbol. Any output unit with an activation
of 0.3 or greater indicates that the letter it represents is a valid successor to the
current input. To determine whether a string is valid, the letters are presented to
the net sequentially, as long as the net predicts valid successors in the string. If
the net fails to predict a successor, the string is rejected. If all successors are
predicted, the string is accepted as valid.

Sec. 7.2 A Few More Nets That Learn 377

The reported results for 70,000 random strings, 0.3% of which were valid
according to the grammar, are that the net correctly rejected all of the 99.7% of
the strings that were invalid and accepted all of the valid strings. The net also
performed perfectly on 20,000 strings from the grammar and on a set of extremely
long strings (100 or more characters in length).

7.2.4 Backpropagation in Time

We now consider a network in which the outputs from the net at one time step
become the inputs at the next time step. These nets can be trained for several
time steps by making copies of the net (with the same weights), training each
copy, and then averaging the weight updates. This process, originally introduced
by Rumelhart, Hinton, and Williams (1986), is called ‘‘backpropagation in time’’
[Hertz, Krogh, & Palmer, 1991] or sometimes ‘‘recurrent backpropagation’
[Hecht-Nielson, 1990].

Architecture

A simple example of a backpropagation in time net is shown in Figure 7.16. An
expanded form of a backpropagation in time net is illustrated in Figure 7.17. A
generalization of this allows for both external inputs and recurrent signals from
the previous time step, as shown in Figure 7.18. As in the simple recurrent net
discussed in the previous section, the recurrent connections have weights fixed
at 1; the adjustable weights are shown.

Figure 7.16 A recurrent multilayer net in which the outputs at one time step
become inputs at the next step.

378 A Sampler of Other Neural Nets Chap. 7

wi W21 W31 Wiz Wy
11 V21 Vi

v 2 V22 Vi3

N

w21 W3 w2

?

i1 v vi2

w11 w21 w3 wp

v va V12 V22 Vi3 Va3

Figure 7.17 The recurrent multilayer net of Figure 7.16 expanded for three time
steps.

Sec. 7.2 A Few More Nets That Learn 379

Figure 7.18 A recurrent multilayer net with external and recurrent inputs at each
step.

Algorithm

The training algorithm using backpropagation in time for a recurrent net of the
form illustrated in Figure 7.16 or 7.18 is based on the observation that the per-
formance of such a net for a fixed number of time steps N is identical to the results
obtained from a feedforward net with 2N layers of adjustable weights. For ex-
ample, the results produced by the net in Figure 7.16 after three time steps could
also be obtained from the net shown in Figure 7.17.

The training process consists of a feedforward pass through the entire ex-
panded network (for the desired number of time steps). The error is then computed
for each output layer (i.e., for each time step). The weight adjustments for each
copy of the net are determined individually (i.e., computed) and totaled (or av-
eraged) over the number of time steps used in the training. Finally, all copies of
each weight are updated. Training continues in this way for each training pattern,
to complete an epoch. As with standard backpropagation, typically, many epochs
are required.

Note that it is not necessary actually to simulate the expanded form of the
net for training. The net can run for several time steps, determining the information
on errors and the weight updates at each step and then totaling the weight cor-
rections and applying them after the specified number of steps.

In addition, information on errors does not need to be available for all output
units at all time steps. Weight corrections are computed using whatever infor-
mation is available and then are averaged over the appropriate number of time
steps. In the example in the next section, information on errors is supplied only
at the second time step; no responses are specified after the first time step.

380 A Sampler of Other Neural Nets Chap. 7

Application

Example 7.7 Using backpropagation in time to form a simple shift register

A neural network with no hidden units has been trained to act as a simple shift
register using backpropagation in time [Rumelhart, Hinton, & Williams, 1986a). For
example, consider the network shown in Figure 7.19, with three input units and three
output units. (In practice, these units can be the same, but we will treat them as
distinct to emphasize the similarities with Figures 7.16 and 7.18. For simplicity, the
weights are not shown in the figure or in the diagrams that follow. In addition to the
units shown, each unit receives a bias signal.

Figure 7.19 Recurrent net used as shift register.

The training patterns consist of all binary vectors with three components; the
target associated with each vector is the pattern shifted two positions to the left (with
wraparound). This is the desired response of the net after two time steps of pro-
cessing. The expanded form of the net is shown in Figure 7.20.

This example illustrates the fact that it is not required to have information on
errors at the intermediate time steps. If the net were told the desired response after
one time step, the solution would be very simple. Instead, the weights in both copies
of the net are adjusted on the basis of errors after two time steps. In general, a
combination of information on errors at the final level and at any or all intermediate
levels may be used.

Rumelhart, Hinton, and Williams (1986a, 1986b) found that the net consistently
learned the weights required for a shift register in 200 or fewer epochs of training,
with a learning rate of 0.25, as long as the bias weights were constrained negative.
The same conclusions apply to the net with five input (and output) units. In either
of these cases, if the biases are not restricted to be negative, other solutions to the
training can also result. These give the desired results after an even number of time
steps, but not after an odd number of time steps.

Sec. 7.2 A Few More Nets That Learn 381

Figure 7.20 Expanded diagram of recurrent net used as shift register.

Example 7.8 Using backpropagation in time to produce a damped sinusoid function

Backpropagation in time can also be used to train a neural net to produce a damped
sinusoid function, as illustrated in Figure 7.21. The input units represent function
values at several time steps, and the output unit gives the function value at the next
time step. In a simple example, shown in Figure 7.22, there are four input units and
five hidden units. The number of input units required depends on the frequency o
of the sinusoidal oscillation in the target function

sin(wt)

f@ =

For w = , seven input units are sufficient. The results shown in Figure 7.21 are
based on w = 0.5; the network has 10 input units and 10 hidden units.

At time step ¢, X, receives the net’s computed function value, f(r — 1),
from Y. X, receives the previous function value, f(¢ — 2), from X,, X 3 receives
f(t — 3) from X,, and X, receives f(t — 4) from X.

382

A Sampler of Other Neural Nets

System Response with initial weights

~——e— desired value
——#-— system response

-1.5] | 1] I
0 10 20 30
Time

System Response after 200 epochs training

——e— desired value
—a— system response

=05 -
-1.0 [~
-1.5 i I | 1] L
0 10 20 30
Time
System Response after 400 epochs training
1.5
1o B —eo—— desired value

——— SyStem response

-1.0 -

-1.5 1 | 1 1 1
0 10 20 30
Time

Figure 7.21 Target function and computed response during training.

Chap. 7

Sec. 7.2 A Few More Nets That Learn 383

Figure 7.22 Recurrent neural net.

Here again, we can think of the training process for the net as consisting of
many copies of the net, but it is not necessary actually to program each copy
separately. The training process is as follows:

Step 0. Initialize weights (small random values).
Step 1. Until stopping condition for training, do Steps 2-9.
Step 2. Initialize activations. (Set to small random values.)

Step 3. Present initial function value, f(0), to input unit X,.
Step 4. Until stopping condition for epochs, do Steps 5-8.
Step 5. Calculate the response of the net:

y = f().

Step 6. Calculate error for current time step.
Find weight updates by backpropagation.
(Do not change the weights.)

Step 7. Update the activations:

X4 = X3,
X3 = X2,
X2 = X,

X1 =Y.

384 A Sampler of Other Neural Nets Chap. 7

Step 8. Test for stopping condition for epoch:
If y > max, or if number of time steps > 30,
then
apply weight updates and
continue with Step 9;
else continue with Step 4.
Step 9. Test stopping condition for training:
If error < tolerance or total number of epochs > limit,
stop;
¢lse continue with Step 1.

If the net is trained with data representing several damped sine functions,
with the same periods but different initial amplitudes (at ¢ = 0), then after training,
the net will produce the correct response for any initial amplitude that is within
the range of values used in training. This shows that the net has learned something
more general than just the specific function used in the training.

7.2.5 Backpropagation Training for Fully Recurrent Nets

Backpropagation can be applied to a recurrent net with an arbitrary pattern of
connections between the units. The process described here is the recurrent back-
propagation presented by Hertz, Krogh, and Palmer (1991), based on work by
Pineda [1987, 1988, 1989] and Almeida [1987, 1988].

The activations of our general recurrent net are assumed to obey the evo-
lution equations of Cohen and Grossberg (1983) and Hopfield (1984), namely,

T'dli = —v + gl + X uwyy),
dt : <

where x; is the external input to unit V; and 7 is a time constant. We assume that
at least one stable attractor exists, i.e.,

V; = g(x,- + 2 'UjW,"j).
J
To train a recurrent net using backpropagation, we assume that target values

are specified for some units, which we call output units. The error is defined in
the usual manner for these units, i.e.,

1
E = EZ (te — va)?,
k

where the summation ranges over all the output units.
Gradient descent applied to this net gives a weight update rule that requires
a matrix inversion at each step. However, if we write the weight updates as

Awpg = ad,u,

Sec. 7.3 Adaptive Architectures 388

o
where

8, = g'(xq + 2 ULENZ
J

(in which the matrix inversion is included in the term y,), we find [Hertz, Krogh,
& Palmer, 1991] that the y, terms obey a differential equation of exactly the same
form as the evolution equations for the original network. Thus, the training of the
network can be described by the following algorithm:

Step 1. Allow the net to relax to find the activations v;; i.e., solve the equation
d'U,‘
T E = —U; + g(x,- + 2 'UjW,'j).

J

Define the equilibrium net input value for unit g:

hq = (Xq + 2 ‘Uquj).
J

Step 2. Determine the errors for the output units, E,.
Step 3. Allow the net to relax to find the y,; i.e., solve the equation
dy, ,
T‘gtg = —yq + Eq + 2 &' (hways.
k

The weight connections of the original net have been replaced by
g'(hi)wa, and the activation function is now the identity function.
The error term, E,, plays the role of the external input.

Step 4. Update the weights:

Aw,, = avpg' (hg)yg,

where v, is the equilibrium value of unit p,
¥4 is the equilibrium value of the ‘‘matrix inverse unit,”’ and
h, is the equilibrium net input to unit q.

Applications of recurrent backpropagation have included pattern completion
[Almeida, 1987], vision {Qian & Sejnowski, 1988], and control of robot manip-
ulators [Barhen, Gulati, & Zak, 1989]. (See Hertz, Krogh, & Palmer, 1991, for
more details of the derivation of the algorithm.)

7.3 ADAPTIVE ARCHITECTURES
7.3.1 Probabilistic Neural Net
The probabilistic neural net [Specht, 1988, 1990] is constructed using ideas from

classical probability theory, such as Bayesian classification and classical esti-
mators for probability density functions, to form a neural network for pattern

386 A Sampler of Other Neural Nets Chap. 7

classification. The description here gives only the simplest form of the net. (See
the Gaussian potential-function network [Lee, 1992] for a more extensive dis-
cussion.) Note that the term ‘‘probabilistic’’ in Specht’s net does not mean that
the operation of the net is stochastic, as is the case for the Boltzmann machine.

The problem we consider is to classify input vectors into one of two classes
in a Bayesian-optimal manner. Bayesian decision theory allows for a cost function
to represent the fact that it may be worse to misclassify a vector that is actually
a member of Class A (by mistakenly assigning it to Class B) than it is to misclassify
a vector that truly belongs to Class B. (Or, of course, the worse situation may be
misclassification in the other direction.) The Bayes decision rule states that an
input vector should be classified as belonging to Class A if

hacafa(x) > hgcpfp(x),

where h,4 is the a priori probability of occurrence of patterns in Class A, c, is
the cost associated with classifying a vector as belonging to Class B when it
actually belongs to Class A, and f.(x) is the probability density function for Class
A; corresponding definitions apply to quantities with the subscript B.

The boundary between the region where the input vector is assigned to Class
A and the region where it is classified as belonging to Class B is given by

hBCB

fa® = fa(x).

hACA

Usually, the a priori probabilities 44 and hp are known or can be estimated
accurately; for example, they can be taken to be the proportion of input patterns
that belong to each of these classes.

The costs associated with misclassification, ¢, and cg, are application de-
pendent; if no other information is available, they can be taken to be equal to
each other.

Thus, the main question in applying the Bayes decision rule is how to es-
timate the probability density functions f4(x) and fs(x) from the training patterns.
In general, a probability density function must be nonnegative everywhere, must
be integrable, and the integral over all x must equal 1.

The probabilistic neural net uses the following estimator for the probability
density function:

ma _ NT _ .
falx) = ;L z exp [— x — x4)'(x XA:)] .

Qm)"?e" my 2 202
In this equation, x,; is the ith training pattern from Class A, n is the dimension
of the input vectors, m, is the number of training patterns in Class A, and o is
a smoothing parameter corresponding to the standard deviation of the Gaussian
distribution. (The role of o will be discussed shortly.)

The operation of the net for Bayes-optimal classification is based on the fact
that fa(x) serves as an estimator as long as the parent density is smooth and
continuous. This means that f,(x) aymptotically approaches the parent density

Sec. 7.3 Adaptive Architectures 387

function as the number of data points used for the estimation increases. The
function f4(x) is a sum of Gaussian distributions, but the result is not limited to
being a Gaussian distribution.

The use of this parent density function estimator, together with the Bayes
decision rule

hacafa(x) > hgcpfp(x),

gives good results, but suffers from the disadvantages that the entire training set
must be stored and the computation needed to classify an unknown vector is
proportional to the size of the training set.

Nonetheless, a neural network can be constructed using these ideas. Training
is instantaneous, and the net can perform classifications with as few as one training
vector from each class. Of course, the net’s ability to generalize improves as more
training patterns are presented.

After training, application of the net is very rapid, since the net can compute
each term in the estimate for f,(x) in parallel.

Architecture

The probabilistic neural net for classifying input vectors into one of two classes
(say, Class A and Class B) consists of four types of units: input units, pattern
units, summation units, and an output unit. Pattern units are of two types, those
for Class A and those for Class B. The architecture of this net is shown in Figure
7.23. The weights from the summation units to the output unit are v, = 1,
hBCB ma
haca mg’

Up —

Figure 7.23 Probabilistic neural net.

388 A Sampler of Other Neural Nets Chap. 7

Algorithm

The probabilistic neural net is constructed as training progresses. Each pattern
unit represents one of the two classes to which training patterns belong; there is
one pattern unit (of the appropriate type) that corresponds to each training pattern.
Training patterns are first normalized to unit length. The weight vector for the
pattern unit ZA; is simply the jth training vector that belongs to Class A. As each
training pattern is presented, a new pattern unit corresponding to the correct class

is added to the net, its weights are set, and the unit is also connected to the correct
summation unit.

The algorithm for constructing the net is as follows:

Step 1. For each training input pattern x(p), p = 1, . . ., P, do Steps 2-3.
Step 2. Create pattern unit Z,,:
Weight vector for unit Z,:

W, = X(p).

(Unit Z,, is either a ZA unit or a ZB unit.)

Step 3. Connect pattern unit to summation unit:
If x(p) belongs to Class A, then connect pattern unit zZ,
(a ZA unit) to summation unit S 4.
Otherwise, connect pattern unit Z, (a ZB unit) to sum-
mation unit Sp.

Application

Input patterns for classification must be normalized to unit length. For vectors
of unit length, the term needed for the summation in the definition of the prob-
ability density function estimator f, namely,

exp [_ x - w)T(x — wj)] ,

202

[Linj - 1]
exp | —5—| .
g

The procedure for classifying input patterns (of unit length) is as follows:

is, by simple algebra,

Step 0. Initialize weights.
Step 1. For each input pattern to be classified, do Steps 2-4.
Step 2. Pattern units:
) Compute net input:

zin; = x'w; = xTw,.

Sec. 7.3 Adaptive Architectures 389

Compute output as

[z_inj - 1]

z=exp|—|.
g

Step 3. Summation units:

Sum the inputs from the pattern units to which they are
connected. The summation unit for Class B multiples its
total input by

hpcp ma
haca mgp '

Up =

Step 4. Output (decision) unit:
The output unit sums the signals from f4 and f5.
The input vector is classified as Class A if the total input
to the decision unit is positive.

The net can be used for classification as soon as an example of a pattern
from each of the two classes has been presented to it. However, the ability of
the net to generalize improves as it is trained on more examples.

Typically, the a priori probabilities of Class A and Class B will be the ratio
of the number of training patterns in Class A to the number of training patterns
in Class B. If that is the case, then '

hB ma
ha mg

s

and the expression for vz simplifies to

CB
Up = — — .,
Ca
This ratio depends on the significance of a decision, not on the statistics of the
situation. If there is no reason to bias the decision, we take K = —1.

Analysis

Varying o gives control over the degree of nonlinearity of the decision boundaries
for the net. A decision boundary approaches a hyperplane for large values of o
and approximates the highly nonlinear decision surface of the nearest neighbor
classifier for values of ¢ that are close to zero.

Reported results [Specht, 1988, 1990] indicate that the net is relatively in-
sensitive to the choice of ¢. This type of net has been used to classify electro-
cardiograms as normal or abnormal. One application used input patterns with 46
components (before normalization). With 249 training patterns and 63 testing pat-
terns, peak performance was obtained for o between 4 and 6, with results almost
as good for o ranging from 3 to 10 [Specht, 1967].

390 A Sampler of Other Neural Nets Chap. 7

7.3.2 Cascade Correlation

In addition to the probabilistic neural net, cascade correlation [Fahlman & Le-
biere, 1990] is another network that builds its own architecture as training pro-
gresses. It is based on the premise that the most significant difficulty with current
learning algorithms (such as backpropagation) for neural networks is their slow
rate of convergence. This is due, at least in part, to the fact that all of the weights
are being adjusted at each stage of training. A further complication is the fixity
of the network architecture throughout training.

Cascade correlation addresses both of these issues by dynamically adding
hidden units to the architecture—but only the minimum number necessary to
achieve the specified error tolerance for the training set. Furthermore, a two-step
weight-training process ensures that only one layer of weights is being trained at
any time. This allows the use of simpler training rules (the delta rule, perceptron,
etc.) than for multilayer training. In practice, a modification of backpropagation
known as QuickProp [Fahlman, 1988] is usually used. QuickProp is described
later in this section.

A cascade correlation net consists of input units, hidden units, and output
units. Input units are connected directly to output units with adjustable weighted
connections. Connections from inputs to a hidden unit are trained when the hidden
unit is added to the net and are then frozen. Connections from the hidden units
to the output units are adjustable.

Cascade correlation starts with a minimal network, consisting only of the
required input and output units (and a bias input that is always equal to 1). This
net is trained until no further improvement is obtained; the error for each output
unit is then computed (summed over all training patterns).

Next, one hidden unit is added to the net in a two-step process. During the
first step, a candidate unit is connected to each of the input units, but is not
connected to the output units. The weights on the connections from the input
units to the candidate unit are adjusted to maximize the correlation between the
candidate’s output and the residual error at the output units. The residual error
is the difference between the target and the computed output, multiplied by the
derivative of the output unit’s activation function, i.e., the quantity that would
be propagated back from the output units in the backpropagation algorithm. When
this training is completed, the weights are frozen and the candidate unit becomes
a hidden unit in the net.

The second step in which the new unit is added to the net nOow commences.
The new hidden unit is connected to the output units, the weights on the con-
nections being adjustable. Now all connections to the output units are trained.
(The connections from the input units are trained again, and the new connections
from the hidden unit are trained for the first time.)

Sec. 7.3 Adaptive Architectures 391

A second hidden unit is then added using the same process. However, this
unit receives an input signal both from the input units and from the previous hidden
unit. All weights on these connections are adjusted and then frozen. The con-
nections to the output units are then trained. The process of adding a new unit,
training its weights from the input units and previously added hidden units, and
then freezing the weights, followed by training all connections to the output units,
is continued until the error reaches an acceptable level or the maximum number
of epochs (or hidden units) is reached.

In Figures 7.24 through 7.29, the weights to the hidden units (either from
the input units or from the previously added hidden units), which are frozen before
the hidden unit being added is connected to the output units, are denoted u (from
input units to hidden units) or ¢ (from the previous hidden unit to the new hidden
unit). The weights from the input units directly to the output units are denoted
w, and the weights from the hidden units to the output units are denoted v. The
weights w and v are trained during the second step of each stage of the algorithm.
Figure 7.29 shows the diagram as originally given [Fahlman & Lebiere, 1990].

Architecture

A cascade correlation net with three input units and two output units is shown
in Figures 7.24 through 7.29 during the first stages of construction and learning.
The bias input unit is shown by the symbol 1, its signal.

Wo1 wii w21 w31 woz Wi W22 W3

Figure 7.24 Cascade correlation net, Stage 0: No hidden units.

392 A Sampler of Other Neural Nets Chap. 7

Figure 7.25 shows the net at the first step of Stage 1. There is one candidate
unit, Z,, which is not connected to the output units. The weights shown are trained
and then frozen. Figure 7.26 shows the second step of Stage 1. The hidden unit,
Z,, has been connécted to output units. The weights shown in Figure 7.25 are
now frozen. Weights to the output units are trained, and the error is computed
for each output unit.

® O,

S b o

Figure 7.28 Cascade correlation net, Stage 1: One candidate unit, Z,.

Figure 7.26 Cascade correlation net, Stage 1: Oné¢ hidden unit, Z,.

Sec. 7.3 Adaptive Architectures 393

Figure 7.27 shows Stage 2, in which a new candidate unit, Z,, receives
signals from the input units and the previous hidden unit Z,. Z, is not connected
to output units during the first step of training. The weights shown are trained
and then frozen. Weights on connections from X’s to Z, are also frozen. In Figure
7.28, the new hidden unit, Z;, has been connected to output units. The weights
shown in Figure 7.27 are now frozen. Weights to output units are trained, and
the error is computed.

Figure 7.27 Cascade correlation net, Stage 2: New candidate unit, Z,.
(Only the weights being adjusted are shown.)

Figure 7.28 Cascade correlation net, Stage 2: Hidden unit Z, connected to output
units.

394 A Sampler of Other Neural Nets Chap. 7

Figure 7.29 shows the same net as in Figures 7.24 through 7.28, but in the
style of the original paper [Fahlman & Lebiere, 1990] and with all weights (to this
stage of network development) shown. Weights u and ¢ are frozen, and weights
w and v are retrained at each stage.

Figure 7.29 Cascade correlation network.

Algorithm

The training process for cascade correlation involves both adjusting the weights
and modifying the architecture of the net. We use the same notation as for nets
in previous chapters:

n dimension of input vector (number of input units)

m dimension of output vector (number of output units)
P total number of training patterns

X; input units, i = 1, ..., n

Y; output units, j =1, ..., m

x(p) training input vector,p = 1,...,P

t(p) target vector for input vector x(p)

y(p) computed output for input vector x(p)

Sec. 7.3 Adaptive Architectures 395

Ei(p) residual error for output unit ¥; for pattern p:
Efp) = (yip) — t:4(P))yi(p)
E_av; average residual error for output unit ¥;:
1 P
E_av;i = < 3 Eip)
P =
z(p) computed activation of candidate unit for input vector x(p)
zav average activation, over all patternsp = 1, . . . , P, of candidate unit:

1 P
Zav = F,E: z(p)

In the algorithm that follows, the weights on all new connections are ini-
tialized to small random values. Biases are included on all hidden units and on
all output units. This is usually indicated by including an additional input unit
whose activation is always 1.

The *‘correlation’’ is defined as

3

J

P
C = 2 (@(p) — zav)NElp) ~ E_av)) | .
1 p=1

This is actually the covariance between the output of the candidate, z, and the
“‘residual output error’’ [Fahlman & Lebiere, 1990]. The residual output error is
the product of the true error and the derivative of the activation function for the
output unit.

In a manner similar to that for the derivation of backpropagation we find
that

aC

6u,~ J

P
a; 2 2p) xdpNE(p) — E_av)),

p=1

M3z

]
-

where o is the sign of
P
2 (@(p) ~ zav)E(p) ~ E_av)),
r=1

z' is the derivative of the activation function for the candidate unit, and x; is the
input signal received by the candidate unit from input unit X;.

. Training can use any standard method, such as the delta rule (Section 3.1.2),
for training a single-layer net. QuickProp (see shortly) is often used. The weights
are adjusted to minimize the errorin Steps 1 and 3 of the algorithm and to maximize
C in Steps 2 and 4. The activation functions may be linear, sigmoid, Gaussian,
or any other differentiable functions, depending on the application.

396 A Sampler of Other Neural Nets Chap. 7

The algorithm for cascade correlation is as follows:

Step 1. Start with required input and output units.
Train the net until the error reaches a minimum:
If the error is acceptably small, stop;
if not, compute E;(p) for each training pattern p, E_av;, and pro-
ceed to Step 2.
Step 2. Add first hidden unit.
: Step 3. A candidate unit Z is connected to each input unit.
Initialize weights from input units to Z
(small random values).
Train these weights to maximize C.
When the weights stop changing, they are frozen.
Step 4. Train all weights v to the output units
(from the input units and the hidden unit or units).
If acceptable error or maximum number of units has been
reached, stop.
Else proceed to Step 5.
Step 5. While stopping condition is false, do Steps 6 and 7.
(Add another hidden unit.)
Step 6. A candidate unit Z is connected to each input unit
and each previously added hidden unit.
Train these weights to maximize C.
(Weights from the input units to the previously added hid-
den units have already been frozen.)
When these weights stop changing, they are frozen.
Step 7. Train all weights v to the output units
(from the input units and the hidden unit or units).
If acceptable error or maximum number of units has been
reached, stop.
Else continue.

Step 5 is only a slight modification of Step 2. Simply note that after Step 2,
each time a new unit is added to the net, it receives input from all input units and
from all previously added hidden units. However, only one layer of weights is
being trained during the unit’s candidate phase. The weights from the input units
to the previously added hidden units have already been frozen; only the weights
to the candidate from the input units and the other hidden units are being trained.
When this phase of learning stops, those weights are frozen permanently.

Variations of this technique include using several candidate units (a pool of
candidates) at Step 3 or Step 6 and then choosing the best candidate to add to
the net after training. This is especially beneficial in a parallel computing envi-
ronment, where the training can be done simultaneously. Starting with different
initial random weights for each candidate reduces the risk of the candidates getting

stuck during training and being added to the net with its weights frozen at un-
desired values.

Sec. 7.3 Adaptive Architectures 397

Cascade correlation is especially suitable for classification problems. A mod-
ified version has been developed for problems involving approximations to func-
tions.

QuickProp. QuickProp [Fahlman, 1988] is a heuristic modification to the
backpropagation algorithm based on the assumptions that the curve of error versus
weight can be approximated by a parabola which is concave up and that the change
in the slope of the error curve which a particular weight *‘sees” is not affected
by other weights that are also changing. Although these assumptions are described
as risky [Fahlman, 1988], very significant speedups (compared with training with
backpropagation) are reported for many problems. The slope referred to is the
sum of the partial derivatives of the error with respect to the given weight, summed
over all training patterns.

QuickProp uses information about the previous weight change and the value
of the slope, defined as

P
E
s = 3 L

p=1
where the partial derivatives are summed over all patterns in the epoch.
In terms of the notation we used for standard backpropagation, the slope
for a weight from a hidden unit to an output unit is

s

P
Si(t) = — > 3up)zi(p),
r=1
and similarly, the slope for the weight from an input unit to a hidden unit is
P
Si(1) = = 3 3;(p)xip).
p=1

The new weight change is defined to be

S(1)
S¢t-1)—-50m

Aw(t) = Aw(t — 1).

The initial weight change can be taken to be
Aw(0) = —aS(0),

where o is the learning rate. Thus, the first step in QuickProp is simply batch
updating for backpropagation.

There are three cases that we must consider in analyzing the behavior of
this algorithm. If the current slope is in the same direction as the previous slope,
but is smaller in magnitude than the previous slope, then the weight change will
be in the same direction as that carried out in the previous step. If the current
slope is in the opposite direction from the previous slope, then the weight change
will be in the opposite direction to the weight change carried out in the previous
step. If the current slope is in the same direction as the previous slope, but is the

398 A Sampler of Other Neural Nets Chap. 7

same size or larger in magnitude than the previous slope, then the weight change
would be infinite, or the weights would be moved away from the minimum and
toward a maximum of the error.

To prevent the difficulties that occur in the third case, weight changes are
limited so that if they would be too large, or if they would be uphill, a factor times
the previous step is used instead of the change given by the formula for Aw(z).

A further refinement is used whenever the current slope is of the same sign
as the previous slope. In that case, a small multiple of the current slope is added
to the weight change computed in the preceding formula. This prevents weight
changes from being frozen (which would occur when a nonzero slope was en-
countered after a previous zero slope if no provision was made to correct the
weight update rule).

The QuickProp weight update rule achieves impressive speedups in a number
of instances, although it may also fail to converge in situations where backprop-
agation would eventually reach an acceptable answer. QuickProp’s convergence
difficulties can be avoided by letting the algorithm run for a fairly small number
of epochs and then restarting it if it has not converged [Fahlman, 1988].

7.4 NEOCOGNITRON

The neocognitron [Fukushima, Miyake, & Ito, 1983; Fukushima, 1988] is an ex-
ample of a hierarchical net in which there are many layers, with a very sparse
and localized pattern of connectivity between the layers. It is an extension of an
earlier net known as the cognitron [Fukushima, 1975]. The cognitron is a self-
organizing net; the neocognitron is trained using supervised learning. The training
will be described following a discussion of the motivation for the net and its

architecture.
The neocognitron was designed to recognize handwritten characters—spe-
cifically, the Arabic numerals 0, 1, . . ., 9. The purpose of the network is to make

its response insensitive to variations in the position and style in which the digit
is written. The structure of the net is based on a physiological model of the visual
system [Hubel & Wiesel, 1962]. The details of the description of the neocognitron
given here are based on Fukushima, Miyake, and Ito (1983), which has been
included in two compilations of important articles on neural networks [Anderson
& Rosenfeld, 1988; Venturi, 1988]. Later variations differ only in a few details of
the architecture and training patterns.

The architecture of the neocognitron consists of several layers of units. The
units within each layer are arranged in a number of square arrays. A unit in one
layer receives signals from a very limited number of units in the previous layer;
similarly, it sends signals to only a few units in the next layer. The input units
are arranged in a single 19 X 19 square array. The first layer above the input
layer has 12 arrays, each consisting of 19 X 19 units. In general, the size of the

Sec. 7.4 Neocognitron 399

arrays decreases as we progress from the input layer to the output layer of the
net. The details of the architecture are described in Section 7.4.1.

The layers are arranged in pairs, an S-layer followed by a C-layer. The S
arrays are trained to respond to a particular pattern or group of patterns. The C
arrays then combine the results from related S arrays and simultaneously thin out
the number of units in each array.

The motivation for the multiple copies of the arrays in each layer will become
clearer when we consider the training of the net. For now, we simply note that
each array (within a layer) is trained to respond to a different pattern of signals
(or feature of the original input). Each unit in a particular array ‘‘looks for’’ that
feature in a small portion of the previous layer.

Training progresses layer by layer. The weights from the input units to the
first layer are trained and then frozen. Then the next trainable weights are ad-
justed, and so forth. The weights between some layers are fixed, as are the con-
nection patterns, when the net is designed. Examples of training patterns for the
neocognitron are given in Section 7.4.2, along with a more detailed description
of the training process.

7.4.1 Architecture

The architecture of the neocognitron consists of nine layers. After the input layer,
there are four pairs of layers. The first layer in each pair consists of § cells, the
second of C cells. We shall denote the layers as Input, S1, C1, $2, C2, $3, C3,
54, and C4. The C4 layer is the output layer.

The units in each layer are arranged in several square arrays (or cells),
according to the following table:

LAYER NUMBER OF ARRAYS SIZE OF EACH ARRAY
Input 1 19 x 19
S1 12 19 x 19
C1 8 11 x 11
S2 38 11 x 11
2 22 7 %17
S3 32 7 %7
C3 30 7 %7
5S4 16 3 x3
C4 10 1 x1

Figure 7.30 shows the architecture of the neocognitron. We denote the array (or
cell) within a layer by a superscript; i.e., the first array in the first S-layeris S1',
the second array in the first S-layer is S12, etc.

400 A Sampler of Other Neural Nets Chap. 7

Tx7x22 Tx7x30

MxIIX8) 11x38 7x7x32 3x3x16

%
Cc2 S3
Input C4
- Pe
1
N\ /! :
| ' | i
1 1 ! 1
[}] ! |
1 i [} [l
| N7\ !
19%19 ! ! !
De
L~
1x10

19x19x12

Figure7.30 Architecture of neocognitron. Superscripts denote the cells, or arrays
of units, within each layer. Adapted from [Fukushima, et al., 1983]. © 1983 IEEE

Each unit in one of the arrays receives signals from a small group of units
in the previous layer. The units within a specific array (in a particular layer) are
designated by subscripts; a typical unit in the first array (in the first S-layer) is
S1} ;. Depending on whether the unit is in a C-layer or an S-layer, it will receive
signals from the designated units in one or more of the arrays in the previous
layer.

To make this idea more concrete, consider the units in the input layer, which
are arranged in a 19 X 19 array, and the units of the first S-layer, S1. The S1
layer consists of 12 19 X 19 arrays of units, S1', . . ., S1'2. A unit in one of the
S1 arrays receives signals from a 3 x 3 array of units in the input layer. For
example, unit S1/} ; receives signals from input units Ui-1j-1, Uiz Uiz1541,
Ui,j—l, U,',j, Ui,j+1, Ui+1,j_|, Ui+1,j, and U,'.+.1,j+1. Furthermore, unit Sl,g,j re-
ceives signals from exactly the same input units, and so on for all of the 12 arrays
in the first S-layer. (If i or j is equal to 1 or 19, that S1 unit receives signals from
only four input units, rather than nine.) A unit in an S-layer array receives signals
from the designated units in all of the arrays in the previous C-layer.

The second of each pair of layers is called a C-layer. The C-layers serve to
“‘thin out’’ the number of units in each array (by receiving input from a somewhat
larger field of view). An array in a C-layer will receive input from one, two, or
three of the arrays in the preceding S-layer. When the array receives signals from
more than one S array, the C array combines similar patterns from the S-layer.
The first C-layer, C1, consists of eight 11 x 11 square arrays of units. The C1!
array receives signals from the S1' array. More specifically, each unit in the C1'
array receives signals from a 5 x S field of units in the S1! array. The C12 array

Sec. 7.4 Neocognitron 401

not only serves to condense the signals from a region of .S units, but also combines
the signals corresponding to similar patterns for which the S1? array or the S13
array was trained. Thus, a C1? unit receives signals from a region in the S12 array
and from the same region in the $1° array. In what follows, we first consider the
pattern of connections between arrays at different levels and then describe the
“‘field of view”’ for units within each array.

Each S2 array receives signals from all of the C1 arrays; that is, each unit
in an $2 array receives signals from the same portion of each of the C1 arrays in
the preceding layer. Similarly, each $3 array receives signals from all C2 arrays,
and each S4 array receives signals from all C3 arrays. However, as has been
mentioned, the arrays in a Cl-layer receive signals from only one, or at most a
few, of the S1 arrays in that same level. Specifically, the connection pattern is
as follows:

CONNECTIONS FROM S1 TO Ct

st - C1!
S1%, 811 > cC1?
A\ - CI?
S1°, §1° — C1*
S17 - CI°
S18, S1° - C1°
St1o - C1’
Si, s12— C1®

The motivation for these connection patterns becomes clearer if we look
ahead to the patterns used for training the weights from the input layer to the S1-
layer. The S1' array is trained to respond to a small horizontal line segment as
shown in Figure 7.31. The S1? and S1° arrays both respond to line segments at

. # # . # . . . #
4% 8 - - #F - % - - # S
. . . . o . # . . # . . # . . . # .
s1! S12 s13 S14 s13 $16
. # # - . . # . # # . .
. # . . # . . # . . # . # # . . # #
. # - . # . . . # . # . . # . . .
s17 S18 s19 $110 s1l1 s112

Figure 7.31 Training patterns for S!-layer of neocognitron. Adapted from [Fu-
kushima et al., 1983} © 1983 IEEE

402 A Sampler of Other Neural Nets Chap. 7

approximately a 22-degree angle from the horizontal. The C1? array serves to
combine the signals from these two arrays. In a similar manner, S1° and §1°¢
respond to different forms of segments between diagonal and vertical; their signals
are then combined into a single C1 array.

The connection patterns from the S2 arrays to the C2 arrays are based on
the same ideas and are as follows:

CONNECTIONS FROM S§2 TO C2

s2', 8§22, §23 - c?!
8§22, 8§23, §2¢ - Cc2?
§2° - 2
$2¢, §27, 528 - c2?
8§27, §28, §2° - c?’
$210 - Cc25
211, 5212 - c?’
8§213, 5214 - Cc2®
§215, §216 - c2°
S217, S218 - 7 C210
s219 - C211
S220, 5221 - C212
5222, S223, §224 N o
S225 - C214
S226 - C215
s227, S228, S229 - C216
S230, S231 - C217
S232 - C218
S233 — C219
5234 - C220
S235, S236 - C221
S237, S238 — C222

Very little combination occurs in going from the S3-layer to the C3-layer.
Signals from arrays $3* and $3?* are combined in array C3%3, and $3°° and §3*'
are combined in array C3%°. Each of the other C3 arrays receives signals from
only one S3 array.

The C4 arrays consist of a single unit each, one for each of the 10 digits the
net is designed to recognize. Signals from the S4 arrays are combined to form
the net’s final response. The connection patterns from the $4 arrays to the C4
arrays are as follows:

Sec. 7.4 Neocognitron 403

CONNECTIONS FROM S4 TO C4

S41, 542 — Cc4!
S43, S44 - Cc4?
S4° - 4
545, S47 > 4
S48, §4° > c#
s410 - s
sS4, 542
S$413 - C43
414 - o
545, 545 S c4®

We now consider the receptive field for a unit in one of the arrays (at each
of the different levels of the net). The unit in question will receive signals from
the designated region in whichever of the arrays its array is connected to, as has
been described. A unit in any of the S1 arrays ‘‘sees” a3 x 3 portion of the input’
pattern; i.e., unit S1}; receives signals from input units Uij, Uij-1, Uijsr,
Ui-1j-15+ .., Uis1j+1, and Unit 17, receives signals from the same nine input
units.

A unit in a C1 array ‘“‘sees’” a 5 X 5 portion of one or two S1 arrays. Units
in the corner of an array ‘‘see’’ only a part of the region they would ‘‘see”” if they
were situated in the center of the array, because part of their *“field of view’’ falls
outside of the array(s) from which they receive their signals. ‘“Thinning’’ occurs
because the size of each C1 array is smaller than the S1 array. The ‘‘field of view”’
of a C1 unit is shown in Figure 7.32; the x’s simply indicate the position of the
units. It is convenient to view the C1 array as being positioned on top of the

§1 array C1 array

X X X X X X X X X X X
XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX X X X X X X X X X X X
XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX X X X X X X X X X X X
XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXX X X X X X X X X X X Xx
XXXXXX . X
XXXXXXXIX X| X X X X X X X
XXXXXXXIX X
XXXXXXXX X X X X X X x
XXXXXXXIXX X]
XXXXXXXXX X X X X X X X Xx
XXXXXXX X
XXXXXXXXXX X X X X X X X X X X X
XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX X X X X X X X X X X Xx
XXXXXXXXXXXXXXXXXXX
XXXXXXXXXXXXXXXXXXX X X X X X X X X X X X
XXXXXXXXXXXXXXXXXXX

X X X X X X X X X X X

Figure 7.32 Connections from one Sl-layer array to one Cl-layer unit.

404 A Sampler of Other Neural Nets Chap. 7

corresponding S1 array. The C1 array then extends beyond the S1 array, so the
corner units of the C1 array receive signals from four units in the S1 array.

It is convenient to abbreviate the information in Figure 7.32 by looking at
a one-dimensional slice of the two-dimensional pattern; this is shown in Figure

. XYM

X X X X X X
X X X X X X X X X X

Figure 7.33 Cross section of connections from S1 array to C1 array.

At the second level, each S2 unit ‘‘sees’ a3 X 3 region of each of the eight
C1 arrays. Since each of the S2 arrays is the same size (11 x 11) as each of the
C1 arrays, no ‘‘thinning’’ occurs at this level. The only S2 units that do not receive
signals from nine C1 units (in each of the eight C1 arrays) are the corner units in
the S2 arrays; they receive signals from four C1 units (in each of the eight C1
arrays). The ‘‘one-dimensional slice’’ diagram is shown in Figure 7.34.

Cl x X X X x X x X X X X
Figure 7.34 Cross section of connections from C1 array to S2 array.

The C2 units see a 5 X 5 region of the S2 array (or arrays) from which they
receive signals. The ‘‘field of view’’ of a C2 array is indicated in Figure 7.35, to
show the ‘“‘thinning’’ process, which is similar to that of the first layer. Again,
the one-dimensional diagram, in Figure 7.36, summarizes the information.

§2 array C2 array
X X X X X X
XXXXXXXXXXX
XXXXX X X X X X X X
XX X %HXXX
XX XXX XXX X X X
XX XX X X X X
X X x}x x@x x| X X X x
X X x}x x X x xi
XX XXX XXX ."’& X X X
XXX X X
XXXXXX X X X X X X X
XXXXXXXXXXX
: X X X X X

Figure 7.35 Connections from $2 array to C2 array.

Sec. 7.4 Neocognitron 405

N

Figure 7.36 Cross section of connections from S2 array to C2 array.

Each $3 unit **sees’ a3 X 3 region of each of the 22 C2 arrays; no ‘‘thinning”’
occurs. Each of the C3 arrays ‘‘sees’” a 3 X 3 region of the $3 array(s) to which
it is connected. No ‘‘thinning’’ occurs in the third level either, because the C3
arrays are the same size as the $3 arrays, namely, 7 X 7. Since the C3 unit with
coordinates i,j ‘‘sees’’ the region of the S3 array centered at i,j, no diagram is
necessary.

Each of the S4 arrays ‘‘sees’” a 5 X 5 region of each of the 30 C3 arrays.
The ‘‘field of view” of the $4 arrays is shown in Figure 7.37. Note that the
reduction of the number of units takes place between Levels 3 and 4, rather than
within a level, as has been the case previously. Also, observe that, instead of

skipping units, the units at the corners are now treated differently (neglected, if
you will).

C3 array 54 array

Figure 7.37 Connections from C3 array to 54 array.

Each C4 array is actually a single unit that ‘‘sees’ the entire 3 x 3 $4 array
(or arrays).
We can summarize all of the information concerning the connection patterns

between units in the various layers in a single cross-sectional diagram, as shown
in Figure 7.38.

c4

406 A Sampler of Other Neural Nets Chap. 7

an

»
»
»”
b

52 X x X X X X X X X X X
Ci x x x x X X X X X X x
MO
S1 X X X X X X X X X X X X X X X X X X X

Input X X X X X X X X X X X X X X X X X X x

Figure 7.38 Cross section of connection patterns for neocognitron. Adapted from
[Fukushima et al., 1983] © 1983 IEEE

Sec. 7.4 Neocognitron 407
7.4.2 Algorithm

The output signal of a unit in an S-type cell (a cell in any of the S-layers) is a
function of the excitatory signals it receives from units in the previous layer and
the inhibitory signals it receives from those same units. The mechanism is de-
scribed in terms of an intermediate, or auxiliary, unit (denoted here as a V unit)
whose signal to the S unit is proportional to the (weighted) Euclidean norm of
the signal sent by the input units. We adopt the following notation:

C; output from C unit

S output from S unit

v output from V unit

w; adjustable weight from C unit to S unit
wo adjustable weight from V unit to S unit
t; fixed weight from C unit to V unit

u; fixed weight from S unit to C unit

The signal sent by the inhibitory unit V is

v= X2 tct,

where the summations are over all units that are connected to V in any array and
over all arrays. The input layer is treated as the CO level.
Thus, a typical S unit forms its scaled input,

_ 1 +e
1+'UWO

where

e = > cw;
i

is the net excitatory input from C units, and v wy is the net input from the V unit.
The output signal is

g =1 ifx=0
10 ifx<o.

The inhibitory signal serves to normalize the response of the S unit in a manner
somewhat similar to that used in ART2.

The output of a C layer unit is a function of the net input it receives from
all of the units, in all of the S arrays, that feed into it. As was shown in the
description of the architecture, that input is typically from 9 or 25 units in each
of one, two, or three S arrays. The net input is

c_in = su;.
i

408 A Sampler of Other Neural Nets Chap. 7

The output is

c.in
¢c=4a+ c_in
0 otherwise

if c.in>0

The parameter a depends on the level and is 0.25 for Levels 1, 2, and 3 and 1.0
for Level 4.

Training Process

The neocognitron is trained layer by layer. The weights from the C units to the
S unit are adaptable, as is the weight from the V unit to the § unit. The weights
from the C units to the V unit are fixed.

The weights from an S-layer array to the corresponding C-layer array are
fixed. They are stronger for units that are closer, but no particular metric is
specified. As an example of the type of weight pattern that might be used, consider
the ‘‘taxicab metric,”” in which the distance from the S-layer unit S;_; ;_, to the
C-layer unit C; ;is | k| + | h |. A possible array of weights could be based on the
formula for the weight from S;_, ;_» to C; , i.e.,

1
Si—kj-n Cij) = ————— .
USi—ks=r3 €0 = TR Th]
For a 5 X 5 connection region, which is what we have for the connections from
the S2-layer to the C2-layer, the weights would be:

/5 1/4 173 1/4 15
1/4 1/3 12 173 1/4
173 172 1 1/2 173
1/4 173 172 173 1/4
/5 1/4 173 1/4 /5

The pattern of weights is the same for every C2 unit.

The fixed weights from the C units to the inhibitory V units are also set to
decrease monotonically as a function of distance.

The weights to the S-layer units (from the input units or from the C-layer
units in the previous level) are trained sequentially. The weights from the input
units to the S1 units are trained and then frozen. Next, the weights from the C1
units to the S2 units are trained and fixed. The process continues, level by level,
until the output layer is reached. We describe the process in detail next.

Sec. 7.4 Neocognitron ' 409

Training the Weights from the Input Units to the SI1 Units. Each of the 12
arrays in the S1-layer is trained to respond to a different 3 x 3 input pattern. The
training feature patterns for each of the arrays of the S1 layer are shown in Figure
7.31.

Each unit in array S1' responds to the pattern (a horizontal segment) when
it appears in the portion of the input array from which that particular unit receives
signals. The pattern of weights to all units in S1' is the same. In order to train all
of the units in the S1' array, we only have to train one unit (namely, the center
unit). The training pattern for the S1! array is presented to the center of the input
array (and a target signal is sent to the S1 arrays designating that the center unit
of the S1' array is the unit to be trained). The weight from input unit i + %,
J + hto S1' unit i, j is adjusted as follows:

Aw(liskjvn; S1})) = oty i jvn; Sl}.j)ci+k,j+h-

For the first S-layer, the signal c;. x ;. » is simply the input signal. The weight
1ivkj+ns S11) is the fixed weight to the inhibitory unit. Thus, the weight ad-
justment is proportional to the signal received by the inhibitory unit. The weight
from the inhibitory unit to the S unit is adjusted by an amount

Awo = ac; ;.

The initial values for the adjustable weights are 0, and the learning rate « is usually
taken to be relatively large, so the S unit being trained learns its desired response
after only a few presentations of the pattern. When the weights for the center unit
are determined, each of the other units in the S1' array is given exactly the same
set of weights. In this manner, the center unit is trained to respond when the input
pattern is presented in the center of the input field, but the other units in the S11
array respond to the same input pattern (in this case, a small horizontal line
segment) when it appears in other parts of the input field.

In a similar manner, the center unit of the S$12 array is trained to respond
to the input pattern given for it in Figure 7.31. Once the weights are determined,
all other units in this array are assigned the same weights. Training continues in
the same way for each of the 12 arrays in the S1 layer.

A diagram of the cross section of the receptive field for an S1 unit (see
Figure 7.39) illustrates the reason that the training patterns for this level are only
3 x 3: That is all an S1 unit can “‘see.”

S1 X

/IN

Input x X x

Figure 7.39 Cross section of receptive field for S1 unit.

410 A Sampler of Other Neural Nets Chap. 7

Training the Weights from the C1 Units to the S2 Units. The center unit in
each array in the S2-layer receives signals from nine units in each of the C1 arrays.
Each S§2 array is trained to respond to a small number of patterns. For example,
the training patterns for the $2* array might be several variations of the pattern
shown in Figure 7.40.

Figure 7.40 Sample training pattern for §2* array.

As described before, the training pattern is presented to the center of the
input field, and the center unit in the $2* array is designated to learn the pattern.
The weights for the nine connections from each of the C1 arrays are adjusted
using the same learning rule as for the first layer. Note that in general, very few
of the C1 arrays will respond to the input signal, so the actual connection pattern
(with nonzero weights) from the C1 level to the S2 level is not as extensive as
the general description would indicate. Although this training pattern is a pure
diagonal line segment, training patterns for other $2 arrays involve combinations
of the simpler patterns to which the S1 and C1 arrays have already been trained
to respond.

As for the first layer, once the center unit has learned its training patterns
(typically, four variations of essentially the same pattern), the other units in that
array have their weights fixed at the same values as the center unit. Training of
each array in the S2-layer proceeds in the same manner. When all the arrays are
trained, the weights are fixed and we proceed to the next level of adjustable
weights.

The cross-sectional diagram for the receptive fields, shown in Figure 7.41,
illustrates the reason that the training patterns for this level are 11 x 11. If we
trace back the connections from the center unit at the S2 level to the input level,
we see that an 11 X 11 region in the input plane influences the $2-level array.

Training the Weights from the C2 Units to the S3 Units. The training of the
S3-level arrays follows exactly the same procedure as that for the lower levels
(whose weights are now fixed). The receptive field of the center unit is now the
entire input array, so the training patterns are 19 x 19.

Sec. 7.4 Neocognitron 411

] I
PN
_ /DXXDDIXIXIXIXIN,

Figure 7.41 Receptive field for center unit in an $2-level array.

Training the Weights from the C3 Units to the S4 Units. The final training
of the weights, for the 16 S4 units, is based on various sample patterns discussed
in the next section.

Sample Training Patterns

Sample training patterns for the S2 arrays are shown in Figure 7.43. Figure 7.44
illustrates one sample training pattern for each of the arrays at the S3 level and
$4 level; typically, two or three variations of the given pattern would be used for
training each array.

¢ o . ..# « o e ..# .#. ..#
- - - # - # - - # -
« s « e #.. #.. #.. #
s1l S12 S13 S14 S13 S16
#.# .#. #.. ...#..
#. # ..#..#..#...

S17 S18 s19 s110 s111 s112

Figure 7.42 Training patterns for S1-layer of neocognitron,

412

® o0 00000000
® ¢ e 009000000
® o0 000000
® 60000000
® e e 000 00000
® o 0o 0o e e o 00
e o 0o 00
® s 000
® oo o0

LR I Y
® e s 00
oo o0
s o000 s o0 00

s21

i3 L SEEES

§25

il

L4

L} - X

s e e
LRI
o0 00

® @ e 000 000000

® 00000000
® ¢ s 00000000
® ® 0000 0000
® o0 00000000

§29

LS TIEEEES

o0 000 L)
o 0000 e o o0
LIE I N) o s 00

o0 000 ® s 0

§213

LU Y) e 000
e oo ® o e 000
e o 00 ® o e 000
L) o o e o

® 0o e 90 e
® o0 000
® e e 0000

...OQ.Q&&&#

S217

A Sampler of Other Neural Nets

® e 06 s 0000000
®® 0000000000
® ® 00600000000
® e 0 00000000
® ¢ o e 0000 000
® e 0 00 e o 000
noooo#oooo'
e o o o e 000
LAY I LI

. o0 ® o0 000
* e o ® o e 00 00

§22

® o o o0 ® o 000
® 0o 00 e o e 00
e o 0 00 ® o e a0
e e 0 e ® o 0 0
e 000 ® o s 00

§26

DIIIIebERE

§210

® % 0o 00000000
® e 0 600000 e
® o e e 0000000
® e 0 00000000

oo o
oo o
**
*
.
.
.

o.oo.oo#
® e 0o 005000

oo 00
ofEe 0 s 0
oo s 0 0

® e 000000090
® o0 e 00000 e
® o0 0000000
® &6 0000550000
® ® 0000900000

S218

® o000 000000
® o 000000000
® e 0000000000
® e 000000000
® o0 000006000
oo.oo#o-oo'
. 000
e o 00
c o0

e o0 000
® o0 000
® o 00000
o o0 ® s 00000

co#.ooo.o.o

§23

® o000 e o 0

® o0 000 .o 00
ooooo.#oo.o
® 00 00 ® o0 00
LR) ® e e s 0
® o0 00000000
® e 000000000
® o0 00 e o000
® o 00000000
® e 0o 00000000

s27

SEEEEH L 1L
.....#.....

o0 *® o0 000
LI I 3 ® o000
e e o0 ® o0 000

e 00 ® o0 e 00

§211

o o0 000 o 00

* ® 0 o o0 ® o o @
e & & o s 0 * o o @
e ® o 9 00 * o @ o
e & o 0 o ® o o & @
e o 0 0 . ® & & o 0
####-coooOQ
® ® ¢ & & 0 o 0 v e
e ® & © 0 0 0 0 000
® © & 5 & & 0 O 0 00

® 0000000000

§215

o0 00000000
® e 000000000
®© o 000060000
® s 000000000 e
® e e 00000000
i 322
* o0 00
L)
® o0 e

0o 000
® e 000
¢ o0 s
e o0 00
LR AR I I) LI I 3

e 000 e o o0 0 o

s219

Chap. 7

® o 000000000
® o 000000000
® e 0 0090 00000
® e 000000000
® @ s 00000000

FULISSIEE

S24

LR) e o000
LI) e o000
LI) ® 0o 0060 00

® 6000080000
® o 000000000
® o 000000000
® o 000000000
® o 000000000

§28

® 0 006000000
® o 000000000
® 0000000000
® o 000000000

® o e 00000000
® o e 0000000
® e 000000000
® e 000000000

s216

® % ® 00000000
® o o 00000800
® @ e 00000000
® o o0 0000
e 000
* e 000

LAY 1)
o 0 00 o
[T TR XY
o ofistEe o
. ot
o oot
.
.
.

Figure 7.43 Sample training patterns for S2-level arrays. Adapted from [Fuku-
shima et al., 1983] © 1983 IEEE

® e 000 LI N R E R R R R Y ® ® 0060000000 s s e e e 0 s . e
ooo L]
o e o s oo o000 oo esoeceeoecse eecsseoe 60006 e e 000 s e
® e e oo e o000 oo oo oo oo e s 590660080000 eseGeLSEIOES

TIIIWILIIIL niiiigtiiir niuRliiiiy o il
§225 §226 §227 §228

® o0 00000000 s0c e ® 00000 G0 s e e e ® 88 e e e 00000

* o o 00 o000 e 0 e s e e o
oo oo o3o o o0 ® o0 0000 o o0
e s o0 ® o000 e essece . o a
e 0 00 ® e 000 ® 0o 0000 e o o
....# ® e s o0 oo 0000 e e o0

FATL B DOBBORIIFFIA &5 Sl

ooooo s o 0o ® o 00 o 0o a0
® o 0o e s3o s 00 CICEE R X BN Y
oooooooooo LI ® o0 00 00
oooooooooo o..#...o.oo

Figure 7.43 (Continued)

4114 A Sampler of Other Neural Nets Chap. 7

0svssesseecscvvrnce

o ofite o 0 s oiike
o oo o o ¢ orfie

@0escscsssssssccense

§310

Figure 7.44 Sample training patterns for S3-level and S4-level arrays. Adapted
from [Fukushima et al., 1983] © 1983 IEEE

Sec. 7.4 Neocognitron 415

SRR 23
easeevsccsce #"
s HEHREENE ses
-#----- o‘ eaw
"\ O - i
Y . '-.

@seseccscsscsnsoss eeesccssscsssssscee

Figure 7.44 (Continued)

A Sampler of Other Neural Nets

Figure 7.44 (Continued)

Chap. 7

Sec. 7.4

Neocognitron

######i i

Figure 7.44

(Continued)

418 A Sampler of Other Neural Nets ~ Chap. 7

7.5 SUGGESTIONS FOR FURTHER STUDY
7.5.1 Readings

For further information on the neural networks surveyed in this chapter, the reader
is encouraged to consult the specific references included in the text for each
network. Also journals and conference proceedings are excellent sources for re-
cent developments in this rapidly evolving field.

Neural Networks, the journal of the INNS (International Neural Network
Society), IEEE Transactions on Neural Networks, and Neural Computation are
among the more established journals devoted to the theory and application of
neural networks. Proceedings from conferences sponsored by INNS and IEEE
(often jointly) and the Advances in Neural Information Processing Systems series
are invaluable for staying abreast of new results. The conference proceedings
include papers on the latest findings in learning theory (associative memory, self
organization, supervised learning, reinforcement learning), applications (including
image analysis, vision, robotics and control, speech, signal processing, and pattern
recognition) and neural network implementations (electronic and optical neuro-
computers). Other journals and conferences devoted in whole or in part to neural
networks also provide excellent articles. It is hoped that the reader will find
continued exploration of neural networks to be interesting and rewarding.

7.5.2 Exercises

7.1 Consider the following Boltzmann machine (without learning):

The connections shown each have a weight of —2. In addition, each unit has a self-
connection of weight 1.
Assume that unit U, is “‘on’’ and all the other units are ‘‘off.’” Describe what
happens in each of the following cases:
a. T = 10, U, attempts to turn ‘‘on.”’
b. T = 1, U, attempts to turn ‘“‘on.”
c. T = 10, Ug attempts to turn “‘on.”’
d. T = 1, Ug attempts to turn ‘“‘on.”

7.2 The Boltzmann machine is being used to solve the traveling salesman problem. The
distances between the four cities making up the tour are as follows:

Chap. 7 Exercises

OOW D™
N W AR S D

aAawm o s~ W

—_o thw 0

S = AN O

419

Use the penalty p = 20 and the bonus b = 15 for the constraints. Use the temperature
T = 100. For the tour CDBAC:

a. What are the activations of the units, i.e., which are ‘““on’’ and which are “‘off’* ?
b. Draw the network diagram for the tour, with connections shown only between
active units. (Indicate all constraint and distance connections between active

units.)

c. Compute the change in consensus AC for each active unit (if it attempts to turn

“Off").

d. For each active unit, compute the probability of changing its state.

7.3 The Boltzmann machine is being used to solve the traveling salesman problem for

the following cities in the following positions:

CITY
1
A Ua
B Up
c Ua
D Up:

The distances between the four cities are as follows:

DoOoOwW>
“w» oo NS b

Use the penalty p = 20 and the bonus » = 10 for the constraints.
a. Show all weighted connections for unit Uc;.

2

UAZ
UB’2
Uc:
UDZ

POSITION

3

UA3
UB3
UC3
Ups

D

S W b

4

Uaa
Uga
Ucs
Upa

b. Determine the value of the consensus for the network if the units have the fol-

lowing activations:

cITYy

-k

OO D>
oo o~

2
0
1
0
0

POSITION

3
0
0
1
1

(=R — I — I

420 A Sampler of Other Neural Nets Chap. 7

¢. Determine the value of the consensus for the network if the units have the fol-
lowing activations:

POSITION
ciTy 1 2 3 4
A 1 0 0 0
B 0 1 0 0
c 0 0 1 0
D 0 0 0 1

d. Which of configurations (in parts b and c) satisfies all of the constraints of the
traveling salesman problem?

e. What is the effect on the consensus (i.e., find AC) if the activation of unit U,
is reversed, with the net as shown in part b? With the net as shown in part c?

f. For each of the cases considered in part e, find the probability of accepting the
change if T = 10 and if T = 1.

7.4 In the traveling salesman problem, the distances between the cities are given in the
following matrix:

A B Cc D

10 20

8 0 2 20
0 26 0 10
20 20 20 0
5 9 5 5

MOoOOL DD
S wLuweoew M

Usep = 70, b = 60, and T = 100.

a. Draw the network with the connections and weights to represent the constraint
(but not the distances) for this problem.

b. Draw the network with the connections and weights to represent the distances
(but not the constraints) for this problem.

¢. For the tour BACEDB, what are the activations of the units? That is, which units
are “‘on’’ and which units are ““off*’ in each column?

d. What is the value of the consensus function C for this configuration?

e. Compute AC for each unit that is currently turned ‘“‘on.”

f. For each unit that is currently turned ‘“‘on,” compute the probability of changing
its state from ‘‘on’’ to “‘off.”

g. Discuss the sequence of events that must occur in order for the activations to
change to an improved configuration.

7.5.3 Project

7.1 This project generated the sample results in Example 7.1; however, your results will

not necessarily be identical, because of the random nature of certain aspects of the
process.

Chap. 7 Exercises 421

Write a computer program to implement the Boltzmann machine without learn-
ing to solve the five-city traveling salesman problem with distances given as follows:

A B c D E

0 8 10 20

8 0 26 20
0 26 0 10
20 20 10

5 9 5 5

mooOom>
S L L O

Besides the distances, the weights that are needed are b > 2d and p > b, where d
is. Try b = 60 and p = 70.

Using a random number generator that returns a value between 0 and 1, you
can choose the random unit that will attempt to change its consensus by taking
i = 5ry and j = 5rp, where r; and r; are two different random numbers and i and j
are truncated to integers. The wraparound aspect of the distances can be implemented
by defining jplus = j + 1, followed by if jplus = 6, then jplus = | (and similarly
for jminus). ‘ ‘

After the probability of acceptance A is computed, generate a random number
(again between 0 and 1, with a uniform distribution). If the number generated is less
than A, the activation of unit (i, j) is changed. Reversal of the activation can be
accomplished by

x(i,) = x(i, j) + 1 mod 2.

Start with T = 10 and reduce T linearly to 0. Run your program several times, starting
with different initial units “‘on’” each time. Try different starting temperatures, etc.,
also.

Glossary

Accretion: Approximation formed by combining information from several training
patterns (as in counterpropagation), as opposed to interpolating between
training patterns.

Activation: A node’s level of activity; the result of applying the activation function
to the net input to the node. Typically this is also the value the node trans-
mits.

Activation function: A function that transforms the net input to a neuron into its
activation. Also known as a transfer, or output, function.

ADALINE (Apaptive Linear NEuron): Developed by Bernard Widrow, an ADALINE’S
output is +1 if the weighted sum of its inputs is greater than a threshold,
—1 otherwise. The weights are calculated by the delta rule, which is also
known as the Widrow Hoff rule [Widrow & Hoff, 1960].

Adaptive resonance theory (ART): Adaptive resonance theory is a quantitative
explanation of learning and memory developed by Gail Carpenter, Stephen
Grossberg and others. ART1 and ART?2 are neural net architectures based
on adaptive resonance theory. Each of these neural nets self-organizes the
input data into categories with the variation allowed within a category de-
pending on a user selected vigilance parameter. ART1 is used for binary
input, ART? for continuous input [Carpenter & Grossberg, 1987a, 1987b].

422

Glossary 423

Algorithm: A computational procedure; a neural net training algorithm is a step
by step procedure for setting the weights of the net. Training algorithms are
also known as learning rules.

Annealing schedule: Plan for systematic reduction of temperature parameter in a
neural network that uses simulated annealing.

Architecture: Arrangement of nodes and pattern of connection links between them
in a neural network.

Associative memory: A neural net in which stored information (patterns, or pattern
pairs) can be accessed by presenting an input pattern that is similar to a

stored pattern. The input pattern may be an inexact or incomplete version
of a stored pattern.

Asynchronous: Process in which weights or activations are updated one at a time,
rather than all being updated simultaneously. The discrete Hopfield net uses
asynchronous updates of the activations. BAM may use either synchronous
or asynchronous updates.

Autoassociator: A neural net used to store patterns for future retrieval [Mc-
Clelland & Rumelhart, 1988]. The net consists of a single slab of completely
interconnected units, trained using the Hebb rule. The activations in this
net may become very large, very quickly because a unit’s connection to
itself acts as a self-reinforcing feedback. See also Associative Memory,
Brain-State-in-a-Box, and Hopfield net.

Autoassociative memory: An associative memory in which the desired response
is the stored pattern.

Axon: Long fiber over which a biological neuron transmits its output signal to
other neurons.

Backpropagation: A learning algorithm for multilayer neural nets based on min-
imizing the mean, or total, squared error.

Bias(j): the weight on the connection between node Jj and a mythical unit whose
output is always 1; i.e. a term which is included in the net input for node j
along with the weighted inputs from all nodes connected to node j-

Bidirectional associative memory (BAM): A recurrent heteroassociative neural net
developed by Bart Kosko [Kosko, 1988, 1992a].

Binary: 0 or 1.

Binary sigmoid: Continuous, differentiable S-shaped activation function whose
values range between 0 and 1. See sigmoid.

Bipolar: —1 or 1.

424 Glossary

Bipolar sigmoid: Continuous, differentiable S-shaped activation function whose
values range between —1 and 1. See sigmoid.

Bivalent: Either binary, bipolar, or any other pair of values.

Boltzmann machine (without learning): A class of neural networks used for solving
constrained optimization problems. In a typical Boltzmann machine, the
weights are fixed to represent the constraints of the problem and the function
to be optimized. The net seeks the solution by changing the activations
(either 1 or 0) of the units based on a probability distribution and the effect
that the change would have on the energy function or consensus function
for the net [Aarts & Korst, 1989]. See also simulated annealing.

Boltzmann machine (with learning): A net that adjusts its weights so that the
equilibrium configuration of the net will solve a given problem, such as an
encoder problem [Ackley, Hinton, & Sejnowski, 1985].

Bottom-up weights: Weights from the F1 layer to the F2 layer in an adaptive
resonance theory neural net.

Boundary contour system (BCS): Neural network developed by Stephen Gross-
berg and Ennio Mingolla for image segmentation problems [Grossberg &
Mingolla, 1985a, 1985b]. See also discussion by Maren (1990).

Brain-state-in-a-box (BSB): Neural net developed by James Anderson to over-
come the difficulty encountered when an auto-associator neural net iterates,
namely the activations of the units may grow without bound. In the BSB
neural net the activations are constrained to stay between fixed upper and

lower bounds (usually —1 and +1) [Anderson, 1972]. See also autoasso-
ciator.

Capacity: The capacity of a neural net is the number of patterns that can be stored
in the net.

Cascade correlation: Neural net designed by Scott Fahlman that adds only as

many hidden units as are required to achieve a stated error tolerance [Fahl-
man & Lebiere, 1990].

Cauchy machine: A modification, developed by Harold Szu, to the Boltzmann
machine; the Cauchy machine uses a faster annealing schedule than the
Boltzmann machine [Szu & Hartley, 1987].

Clamped: Held equal to, as in ‘input pattern clamped on input units’.

Classification: Problem in which patterns are to be assigned to one of several
classes. In this text the term ‘‘classification” is used only for supervised

learning problems in which examples of the desired group assignments are
known.

Glossary 425

Cluster unit: A unit in a competitive layer of a neural net; an output unit in a self-
organizing net such as ART or SOM or a hidden unit in a counterpropagation
net.

Clustering: Grouping of similar patterns together. In this text the term ‘‘cluster-
ing’’ is used only for unsupervised learning problems in which the desired
groupings are not known in advance.

Competitive learning: Unsupervised learning in which a competitive neural net
(or subnet) adjusts its weights after the winning node has been chosen. See
competitive neural net.

Competitive neural net: A neural net (or subnet) in which a group of neurons
compete for the right to become active (have a non-zero activation). In the
most extreme (and most common) example, the activation of the node with
the largest net input is set equal to 1 and the activations of all other nodes

- are set equal to 0; this is often called ‘‘winner-take-all’’. MAXNET is an ex-
ample of a competitive neural net which can be used as a subnet in the
Hamming and other neural nets [Lippmann, 1987].

Conscience: Mechanism to prevent any one cluster formed in a counterpropa-
gation neural net from claiming an unfair proportion of the input vectors;
the first clusters are most likely to have an advantage.

Consensus function: Function to be maximized by a net (such as the Boltzmann
machine without learning) for solving a constrained optimization problem.

Constrained optimization problem: A problem in which the desired solution gives
the maximum or minimum value of a quantity, subject to satisfying certain
constraints. See the traveling salesman problem for a classic example.

Content addressable memory: A method of storing information in which the in-
formation can be addressed by a partial pattern (the content) rather than by
the location of the information (as is the case in traditional computing); see
also associative memory.

Context unit: An input layer unit in a simple recurrent net that receives infor-
mation from the hidden units at the previous time step [Elman, 1990].

Convergence: Recurrent nets converge if the configuration (pattern of activations
of the units) eventually stops changing; iterative training processes converge
if the weight updates reach equilibrium (stop changing).

Correlation encoding: Storage of information based on the correlation between
input and output patterns, as in the Hebb rule.

Coulomb energy nets: Neural nets based on a Coulomb energy function with min-
ima at specified points, allowing construction of nets with arbitrarily large

426 Glossary

storage capacity [Bachmann, Cooper, Dembo, & Zeitouni, 1987). Coulomb
energy nets can also learn [Scofield, 1988].

Counterpropagation: A neural network developed by Robert Hecht-Nielson
based on a two-stage training process. During the first phase, clusters are
formed from the input patterns; during the second phase weights from the
clusters to the output units are adjusted to produce the desired response
[Hecht-Nielsen, 1987a, 1987b].

Crosstalk: Interference that occurs when the patterns stored in an associative
memory are not mutually orthogonal. If the net is given one of the stored
patterns as input, the response will be a combination of the desired output
and the target pattern(s) for the other stored pattern(s) that are not orthogonal
to the input pattern.

Decision boundary: Boundary between regions where the input vector will pro-
duce a positive response and regions where the response will be negative.

Delta-bar-delta: Modification to the backpropagation learning rule. Each unit has
its own learning rate; these learning rates are increased when several weight
changes are made in the same direction, decreased when weight changes on
successive steps are in opposite directions [Jacobs, 1988].

Delta rule: Learning rule based on minimization of squared error for each training
pattern; used for single layer perceptron. Also called Least Mean Square
(LMS) or Widrow-Hoff learning.

Dendrites: The portion of a biological neuron that receives incoming signals from
other neurons.

Dot product: A vector-vector product that produces a scalar result. The net input
to a neuron is the dot product of the input pattern and the weight vector.
The dot product also can be used to measure similarity of vectors (that are
of the same length); the more similar the vectors, the larger their dot product.

Echo cancellation: An early application of ADALINES to the area of telephone com-
munication {Widrow & Stearns, 1985].

Encoder problem: A problem in which the target output is the same as the input
pattern, but the input signal is required to pass through a constriction before
the output signal is produced, i.e. there are fewer hidden units than there
are input or output units in the neural net.

Energy function: Function (of the weights and activations of a neural network)
that is monotone non-increasing and bounded below. If such a function can
be found for an iterative process, such as a Hopfield net or BAM, the con-
vergence of the process in guaranteed.

Epoch: One presentation of each training pattern.

Glossary 427

Euclidean distance: The Euclidean distance, D, between vectors (X1, X2, . .., %Xp)
and (y1, y2, . . ., ¥n) is defined by:

X

D* = (x; — }’i)z-
i=1

Excitatory connection: Connection link between two neurons with a positive
weight; it serves to increase the response of the unit that receives the signal.
In contrast, see inhibitory connection.

Exemplar: A vector that represents the patterns placed on a cluster; this may be
formed by the neural net during training, as in SOM, or specified in advance,
as in the Hamming net.

Extended delta rule: Learning rule based on minimizing the error of a single layer
net in which the output units may have any differentiable function for their
activation function. (The standard delta rule assumes that the output units
have the identity function for their activation function during the training
process.)

Fast learning: Learning mode for ART in which it is assumed that all weight
updates reach equilibrium on each learning trial.

Fault tolerance: A neural net is fault tolerant if removing some nodes from the
net makes little difference in the computed output. Also, neural nets are in
general tolerant of noise in the input patterns.

Feedforward: A neural net in which the signals pass from the input units to the
output units (possibly through intermediate layers of hidden units) without

any connections back to previous layers. In contrast, recurrent nets have
feedback connections.

Fixed weight nets: Neural nets in which the weights do not change. Examples
include Hopfield nets (discrete and continuous), Boltzmann machine without
learning, and MAXNET.

Gain: See weight; also called strength or synapse.

Gaussian machine: A three parameter description of a class of neural nets that
includes Boltzmann machines, Hopfield nets, and others [Akiyama, Ya-
mashita, Kajiura, & Aiso, 1989]. '

Gaussian potential function: An example of a radial basis function.

g(x) = exp(—x?).

Generalization: The ability of a neural net to produce reasonable responses to
input patterns that are similar, but not identical, to training patterns. A bal-
ance between memorization and generalization is usually desired.

428 Glossary

Generalized delta rule: The delta rule (with arbitrary differentiable activation func-
tions) for multilayer neural nets. See backpropagation.

Grandmother cells: Processing elements which store a single pattern, for example
a single neuron that fires only when the input pattern is an image of your
grandmother.

Grossberg learning: Learning rule for the output units in counterpropagation nets.
This is a special case of (Grossberg) outstar learning.

Hamming distance: The number of differing bits in two binary or bipolar vectors.

Hamming network: A fixed-weight neural network which places an input pattern
into the appropriate category or group based on the Hamming distance be-
tween the input pattern and the (prespecified) exemplar vector for each
category [Lippmann, 1987].

Handwritten character recognition: One example of pattern recognition problems
to which many types of neural networks are being applied.

Hebb net: A simple net trained using the Hebb rule. When used for pattern as-
sociation problems (the most typical use of the Hebb rule) the nets are usually
known as autoassociative or heterassociative nets.

Hebb rule: A learning algorithm based on the premise that the strength of the
connection between two neurons should be increased if both neurons are
behaving in the same manner (both have positive activations or both have
negative activations). Also known as correlation encoding.

Heteroassociative net: A neural net designed to associate input pattern—output
pattern pairs, where the input pattern and the output pattern are not identical.
The weights for such nets are usually found by the Hebb rule.

Hidden units: Units that are neither input units nor output units.

Hopfield net: Fully interconnected (except no self-connections of a unit to itself)
single layer net used as an autoassociative net or for constraint satisfaction
problems [Hopfield, 1984].

Inhibitory connection: Connection link between two neurons such that a signal
sent over this link will reduce the activation of the neuron that receives the
signal. This may result from the connection having a negative weight, or
from the signal received being used to reduce the activation of a neuron by
scaling the net input the neuron receives from other neurons.

Input units: Units that receive signals from outside the neural net; typically they
transmit the input signal to all neurons to which they are connected, without
modification. Their activation function is the identity function.

Iteration: One performance of a calculation (or group of calculations) that must,

Glossary 429

in general, be repeated several times. In the neural network literature this
term may be used to mean an ‘‘epoch’’ or a “‘learning trial’. In this text,
the term “‘iteration’” is usually reserved for processes that occur within a
single learning trial, as in weight update iterations in ART (fast learning
mode).

Kohonen learning rule: Weight update rule in which the new weight is a convex
combination of the old weight and the current input pattern. The coefficient
that multiplies the input pattern, the learning rate, is gradually reduced dur-
ing the learning process.

Kohonen self-organizing map: A clustering neural net, with topological structure
among cluster units.

Layer: Pattern of weighted connections between two slabs of neurons; in neural
net literature the term layer is also used frequently for a group of neurons
that function in the same way (a slab).

Learning algorithms: Procedures for modifying the weights on the connection
links in a neural net (also known as training algorithms, learning rules).

Learning rate: A parameter that controls the amount by which weights are
changed during training. In some nets the learning rate may be constant (as
in standard backpropagation); in others it is reduced as training progresses
to achieve stability (for example, in Kohonen learning).

Learning trial: One presentation of one training pattern (especially in ART nets).

Learning vector quantization (LVQ): A neural net for pattern classification;
trained using one of several variations on Kohonen learning. The input space
is divided into regions that are represented by one or more output units (each
of which represents an output class). The weight vector for an output unit
is also known as a codebook vector [Kohonen, 1989a].

Linear autoassociator: A simple recurrent autoassociative neural net.

Linear separability: Training patterns belonging to one output class can be sep-
arated from training patterns belonging to another class by a straight line,
plane, or hyperplane. Linearly separable patterns can be learned by a single
layer neural net.

Linear threshold units: Neurons that form a linear combination of their weighted
input signals (their net input) and send an output signal (equal to 1) if the
net input is greater than the threshold (otherwise the output is 0); see Per-
ceptron.

Logic functions: Functions with bivalent inputs (true or false, 1 or 0,1or 1)
and a single bivalent output. There are 16 different logic functions with two
inputs.

430 Glossary

Long term memory: The weights in a neural network represent the long term
memory of the information the net has learned.

Lyapunov function: See energy function.

McCulloch-Pitts neuron: Generally regarded as the first artificial neuron; a
McCulloch-Pitts neuron has fixed weights, a threshold activation function,
and a fixed discrete (non-zero) time step for the transmission of a signal
from one neuron to the next. Neurons, and networks of neurons, can be
constructed to represent any problem that can be modeled by logic functions
with unit time steps [McCulloch & Pitts, 1943]. A neuron that uses a thresh-
old activation function (but does not satisfy the other requirements of the

original model) is sometimes also called a McCulloch-Pitts neuron [Takefuji,
1992].

MADALINE: Multi-ADALINE; a neural net composed of many ADALINE units [Wid-
row & Lehr, 1990].

Mean squared error: Sometimes used in place of ‘squared error’ or ‘total squared
error’ in the derivation of delta rule and backpropagation training algorithms
or in stopping conditions. Mean squared error may be the squared error
divided by the number of output components, or the total squared error
divided by the number of training patterns.

Mexican hat: A contrast enhancing competitive neural network (or pattern of
connections within a layer of a neural network) [Kohonen, 1989a].

Memorization: The ability to recall perfectly a pattern that has been learned. In
general, the objective for a neural net is a balance between memorization
and generalization.

Missing data: Noise in a bivalent testing input pattern in which one or more
components have been changed from the correct value to a value midway
between the correct and the incorrect value, i.e. a +1, or a —1, has been
changed to a 0.

Mistakes in the data: Noise in a bivalent testing input pattern in which one or
more component has been changed from the correct value to the incorrect
value, i.e. a +1 has been changed to a — 1, or vice versa.

Momentum: A common modification to standard backpropagation training; at
each step, weight adjustments are based on a combination of the current
weight adjustment (as found in standard backpropagation) and the weight
change from the previous step.

Multilayer perceptron: A neural net composed of three or more slabs (and there-
fore two or more layers of weighted connection paths); such nets are capable
of solving more difficult problems than are single layer nets. They are often
trained by backpropagation.

Glossary 431

Neocognitron: Multi-stage pattern recognizer and feature extractor developed by
Kunihiko Fukushima to recognize patterns (the alphabet or digits) even when
the input image is distorted or shifted [Fukushima, Miyaka, & Ito, 1983].

Net input: The sum of the input signals that a neuron receives, each multiplied
by the weight on the connection link, possibly along with a bias term.

Neural networks: Information processing systems, inspired by biological neural
systems but not limited to modeling such systems. Neural networks consist
of many simple processing elements Joined by weighted connection paths.
A neural net produces an output signal in response to an input pattern; the
output is determined by the values of the weights,

Neural nets: Neural networks, also known as artificial neural nets (ANNs), con-
nectionist models, parallel distributed processing models, massively parallel
models, artificial information processing models.

Neurocomputing: The use of neural networks empbhasizing their computational
power, rather than their ability to model biological neural systems.

Neuron: See processing element; also called node or unit.
Node: See processing element; also called neuron or unit.

Noise: Small changes to the components of a training or testing input vector. Noise
may be introduced into training patterns to create additional patterns or to
improve the ability of the net to generalize. Noise may also be present as
a result of inaccuracies in measurements, etc. Neural nets are relatively
robust to noisy testing patterns; this is often called generalization.

Orthogonal vectors: Two vectors are orthogonal if their dot product is 0; an as-

sociative memory can store more orthogonal patterns than non-orthogonal
patterns.

Outer product: Matrix product of a column vector with a row vector, result is a
matrix.

Output: The value a node transmits.

Output unit: A unit whose activation can be observed and interpreted as giving
the response of the net.

Outstar: A neural network structure developed by Stephen Grossberg in which
an output unit receives both signals from other units and a training input.
Differential equations control both the change in the activation of the unit,
and the change in the weights [Grossberg, 1969]. See also discussion in
[Caudill, 1989].

Pattern: Information processed by a neural network; a pattern is represented by
a vector with discrete or continuous valued components.

432 Glossary

Pattern associator: Neural net consisting of a set of input units connected to a set
of output units by a single layer of adjustable weights, trained by the Hebb
or delta learning rules. [McClelland & Rumelhart, 1988].

Pattern association: Problems in which the desired mapping is from an input pat-
tern to an output pattern (which may be the same, or similar to the input
pattern).

Pattern classification: Problems in which the desired mapping is from an input
pattern to one (or more) of several classes to which the pattern does or does
not belong. In this text, the term classification is reserved for problems in
which the correct class memberships are known for the training patterns.
In general pattern classification is also used for problems where similar pat-
terns are grouped together; the groupings are then defined to be the classes.

Pattern classifier: A neural net to determine whether an input pattern is or is not
a member of a particular class. Training data consists of input patterns and
the class to which each belongs, but does not require a description of each
class; the net forms exemplar vectors for each class as it learns the training
patterns.

Perceptrons: Neural nets studied by Rosenblatt, Block, Minsky and Papert, and
others; the term is often used to refer to a single layer pattern classification
network with linear threshold units [Rosenblatt, 1962; Minsky & Papert,
1988].

Perceptron learning rule: Iterative training rule, guaranteed to find weights that
will correctly classify all training patterns, if such weight exist, i.e. if the
patterns are linearly separable.

Phonetic typewriter: An example of the application of neural networks, in this
case SOM and LVQ, to problems in speech recognition [Kohonen, 1988].

Plasticity: The ability of a net to learn a new input pattern whenever it is presented.
ART nets are designed to balance stability with plasticity. (In some other
neural nets stability in learning is achieved by reducing the learning rate
during training, which has the effect of reducing the net’s ability to learn a
new pattern presented late in the training cycle.)

Principal components: Eigenvectors corresponding to the largest eigenvalues of
a matrix.

Probabilistic neural net: A net, developed by Donald Specht, to perform pattern
classification using Gaussian potential functions and Bayes decision theory
[Specht, 1988, 1990].

Processing element (PE): The computational unit in a neural network. Each pro-
cessing element receives input signals from one or more other PEs, typically
multiplied by the weight on the connection between the sending PE and the

Glossary 433

receiving PE. This weighted sum of the inputs is transformed into the PEs
activation by the activation function. The PEs output signal (its activation)
is then sent on to other PEs or used as output from the net. Processing
elements are also called (artificial) neurons, nodes, or units.

QuickProp: A learning algorithm for multilayer neural nets, developed by Scott

Fahlman, based on approximating the error surface by a quadratic surface
[Fahlman & Lebiere, 1990].

Radial basis function: An activation function that responds to a local ‘‘field of
view”’; f(x) is largest for x = ¢ and decreases to 0 as [x ~ ¢|— .

Recurrent net: A neural net with feedback connections, such as a BAM, Hopfield
net, Boltzmann machine, or recurrent backpropagation net. In contrast, the

signal in a feedforward neural net passes from the input units (through any
hidden units) to the output units.

Restricted coulomb energy net: The neural network portion of the Nestor Learning
System; used in many applications by the Nestor Corporation [Collins,
Ghosh, & Scofield, 1988b]. See also Coulomb Energy Net.

Relaxation: A term used in neural networks, especially constraint satisfaction nets

such as the Boltzmann Machine, to refer to the iterative process of gradually
reaching a solution.

Resonance: The learning phase in ART, after an acceptable cluster unit has been

selected; top-down and bottom-up signals “‘resonate’’ as the weight changes
occur.

Saturate: An activation function that approaches a constant value for large mag-
nitudes of the input variable is said to saturate for those values; since the
derivative of the function is approximately zero in the saturation region, it
is important to avoid such regions during early stages of the training process.

Self-organization: The process by which a neural net clusters input patterns into
groups of similar patterns.

Self-organizing map (SOM): See Kohonen’s self-organizing map.

Short term memory: The activations of the neurons in a neural net are sometimes
considered to model the short term memory of a biological system.

Sigmoid function: An S-shaped curve; several common sigmoid functions are:

1

binary (logistic): f(x) = m;

arctan (range from —1to 1); h(x) = % arctan (x);

434 Glossary

2 | = 1 — exp(—x)

bipolar: g(x) = 1+exp(—x) 1+ exp(—x)°

exp(x) — exp(—x) 1 — exp(—2x)

tanh: tanh(x) = exp(x) + exp(—x) 1 + exp(—2x) "

Signals: Information received by the input units of a neural net, transmitted within
the net, or produced by the output units.

Simulated annealing: The process of gradually decreasing the control parameter
(usually called temperature) in the Boltzmann machine; this is used to reduce
the likelihood of the net becoming trapped in a local minimum which is not
the global minimum.

Single-layer perceptron: One of many neural nets developed by Rosenblatt in the
1950’s, used in pattern classification, trained with supervision [Rosenblatt,
1958, 1959, 1962].

Single-layer neural net: A neural net with no hidden units; or equivalently, a neural
net with only one layer of weighted connections.

Slab: A group of neurons with the same activation function and the same pattern
of connections to other neurons; see layer.

Slope parameter: A parameter that controls the steepness of a sigmoid function
by multiplying the net input.

Soma: The main cell body of a biological neuron.

Spanning tree data: A set of training patterns developed by Kohonen. The rela-
tionship between the patterns can be shown on a two-dimensional spanning
tree diagram, in which the patterns that are most similar are closest together
[Kohonen, 1989a].

Squared error: Sum over all output components of the square of the difference
between the target and the computed output, for a particular training pattern.
This quantity (or sometimes, for convenience, one half of this sum) is used
in deriving the delta rule and backpropagation training algorithms. See also
‘mean squared error’ and ‘total squared error’.

Stable state: A distribution of activations on neurons from which an iterative
neural net will not move. A stable state may be a stored pattern; if it is not
a stored pattern, the state is called a ‘’spurious stable state’’.

Stability: The property of a dynamical process reaching equilibrium. In neural
nets, stability may refer to the weight changes reaching equilibrium during
training, or the activations reaching equilibrium for a recurrent net.

Step function: A function that is piecewise constant. Also called a Heaviside func-
tion, or threshold function.

B e S e S e s

Glossary 435

Strength: See weight; also called gain or synapse.

Strictly local backpropagation: An alternative structure for backpropagation in
which (the same) computations are spread over more units. This addresses
questions of biological plausibility and also allows more customizing of the
activation functions which can improve the performance of the net [D. Fau-
sett, 1990].

Supervised training: Process of adjusting the weights in a neural net using a learn-
ing algorithm; the desired output for each of a set of training input vectors
is presented to the net. Many iterations through the training data may be
required.

Synapse: See weight; also called gain or strength. In a biological neural system,
the synapse is the connection between different neurons, where their mem-
branes almost touch and signals are transmitted from one to the other by
chemical neurotransmitters.

Synchronous processing: All activations are changed at the same time. See also
Asynchronous.

Synchronous updates: All weights are adjusted at the same time.
Target: Desired response of a neural net; used during supervised training.

Threshold: A value used in some activation functions to determine the unit’s
output. Mathematically the effect of changing the threshold is to shift the
graph of the activation function to the right or left; the same effect can be
accomplished by including a bias.

Threshold function: See step function.

Tolerance: User supplied parameter used in stopping conditions (as in “‘total
squared error less than specified tolerance™), or in evaluating performance
(as in “‘the response of the net is considered correct if the output signal is
within a specified tolerance of the target values’’).

Top-down weights: Weights from the cluster (F2 layer) units to the input (F1 layer)
units in an ART net.

Topological neighborhood: Used in a Kohonen self-organizing map to determine
which cluster nodes will have their weights modified for the current pre-
sentation of a particular input pattern. The neighborhood is specified as all
cluster nodes within a given radius of the input pattern; the radius may be
decreased as clustering progresses (on subsequent cycles through the input
patterns).

Total squared error: Used in stopping conditions for backpropagation training.
The square of the error is summed over all output components and over all
training patterns. See also, Squared Error and Mean Squared Error.

436 Glossary

Training algorithm: A step by step procedure for adjusting the weights in a neural
net. See also Learning Rule. -

Training epoch: One cycle through the set of training patterns.
Transfer function: See activation function.

Traveling salesman problem: A classic constrained optimization problem in which
a salesman is required to visit each of a group of cities exactly once, before
returning to the starting city. It is desired to find the tour with the shortest
length.

Truck-Backer-Upper: An example of a neural net solution to a problem from
control theory, that of backing a truck and trailer up to a loading dock without
Jjack-knifing the rig [Nguyen & Widrow, 1989].

Underrepresented classes: An output class for which significantly fewer training
patterns are available than are present for other classes. The usual solution
to the difficulties in learning such a class is to duplicate or create noisy
versions of the training patterns for the underrepresented class.

Unit: See processing element; also called neuron or node.

Unsupervised learning: A means of modifying the weights of a neural net without
specifying the desired output for any input patterns. Used in self-organizing
neural nets for clustering data, extracting principal components, or curve
fitting.

Vector: An ordered set of numbers, an n-tuple. An input pattern is an example
of a vector. '

Vector quantization: The task of forming clusters of input vectors in order to
compress the amount of data without losing important information,

Vigilance parameter: A user specified parameter in ART clustering neural net-
works which determines the maximum difference between 2 patterns in the
same cluster; the higher the vigilance, the smaller the difference that is
permitted to occur between patterns on a cluster.

Weight: A value associated with a connection path between two processing ele-
ments in a neural network. It is used to modify the strength of a transmitted
signal in many networks. The weights contain fundamental information con-
cerning the problem being solved by the net. In many nets the weights are
modified during training using a learning algorithm. The terms strength, syn-
apse, and gain are also used for this value.

Widrow-Hoff learning rule: See the delta rule; also called Least Mean Squares
(LMS).

Winner-Take-All: The most extreme form of competition in a neural net, in which
only the winning unit (typically the unit with the largest input signal, or the
unit whose weight vector is closest to the input pattern) remains active.

References

AAarts, E., & J. Korsr. (1989). Simulated Annealing and Boltzmann Machines, New York:
John Wiley & Sons.

ABU-MosTAFa, Y. S., & J.-M. St JacQues. ‘(1985). ““Information Capacity of the Hopfield
Model.”” IEEE Transactions on Information Theory, IT-31:461-464.

AckLEY, D. H., G. E. Hinton, & T. J. Sesnowski. (1985) A Learning Algorithm for
Boltzmann Machines.”” Cognitive Science, 9:147-169. Reprinted in Anderson & Ro-
senfeld [1988], pp. 638-649.

AnMap, S., & G. TesAuro. (1989). “‘Scaling and Generalization in Neural Networks.”’ In

D. S. Touretzky, ed., Advances in Neural Information Processing Systems 1. San Mateo,
CA: Morgan Kaufmann, pp. 160-168.

AK1YAMA, Y., A. YaMasHITA, M. Kanura, & H. Arso. (1989). *‘Combinatorial Optimization
with Gaussian Machines.’” International Joint Conference on Neural Networks, Wash-
ington, DC, 1:533-540.

ArLman, W. F. (1989). Apprentices of Wonder: Inside the Neural Network Revolution,
New York: Bantam Books.

ALMEIDA, L. B. (1987). *‘A Learning Rule for Asynchronous Perceptrons with Feedback
in a Combinatorial Environment.’’ IEEE First International Conference on Neural Net-
works, San Diego, Ca, 11:609-618.

ALMEIDA, L. B. (1988). **Backpropagation in Perceptrons with Feedback.’” In R. Eckmiller,
& Ch. von der Malsburg, eds., Neural Computers. Berlin: Springer-Verlag, pp. 199-
208.

ANDERSON, J. A. (1968). ‘“‘A Memory Storage Model Utilizing Spatial Correlation Func-
tions.” Kybernetics, 5:113-119. Reprinted in Anderson, Pellionisz, & Rosenfeld [1990],
pp. 79-86.

437

438 References

ANDERSON, J. A. (1972). ““A Simple Neural Network Generating an Interactive Memory.”

Mathematical Biosciences, 14:197-220. Reprinted in Anderson & Rosenfeld [1988], pp.
181-192.

ANDERSON, J. A. (1986). “‘Cognitive Capabilities of a Parallel System.’’ In E. Bienenstock,
F. Fogelman-Souli, & G. Weisbuch, eds., Disordered Systems and Biological Organi-
zation. NATO ASI Series, F20, Berlin: Springer-Verlag.

AnDERsoN, J. A., R. M. GoLpeN, & G. L. Mureny. (1986). ““Concepts in Distributed
Systems.”” In H. H. Szu, ed., Optical and Hybrid Computing, 634:260-272, Bellington,
WA: Society of Photo-Optical Instrumentation Engineers.

ANDERSON, J. A., A. PeLLIONISZ, & E. ROSENFELD, eds. (1990). Neurocomputing 2:
Directions for Research. Cambridge, MA: MIT Press.

ANDERSON, J. A., & E. RosenrFeLD, eds. (1988). Neurocomputing: Foundations of Re-
search. Cambridge, MA: MIT Press.

ANDERSON, J. A., J. W. SiLVERsTEIN, S. A. Ritz, & R. S. Jones. (1977). “‘Distinctive
Features, Categorical Perception, and Probability Learning: Some Applications of a
Neural Model.” Psychological Review, 84:413-451. Reprinted in Anderson & Rosenfeld
[1988], pp. 287-326.

ANGENIOL, B., G. Vausors, & J-Y. L Texier. (1988). *‘Self-organizing Feature Maps and
the Travelling Salesman Problem.’’ Neural Networks, 1(4):289-293.

ArBiB, M. A. (1987). Brains, Machines, and Mathematics (2d ed.), New York: Springer-
Verlag.

ArozurrLaH, M., & A. NampHoL. (1990). ““‘A Data Compression System Using Neural
Network Based Architecture.’” International Joint Conference on Neural Networks, San
Diego, CA, 1:531-536.

Bacumann, C. M., L. N. Cooper, A. DEmBO, & O. ZEiTount. (1987). *‘A Relaxation Model
for Memory with High Storage Density.”” Proceedings of the National Academy of Sci-
ences, 84:7529-7531. Reprinted in Anderson, Pellionisz, & Rosenfeld, [1990], pp. 509-
S11.

BaruEN, I., S. Gurati, & M. Zak. (1989). ‘‘Neural Learning of Constrained Nonlinear
Transformation.”” Computer, 22(6):67-76.

Barto, A. G., & R. S. SutToN. (1981). Goal Seeking Components for Adaptive Intelligence:
An Initial Assessment. Air Force Wright Aeronautical Laboratories/Avionics Labora-
tory Tech Rep. AFWAL-TR-81-1070. Dayton, OH: Wright-Patterson AFB.

Baum, E. B., & D. HaussLer. (1989). ‘“What Size Net Gives Valid Generalization?”’
Neural Computation, 1(1):151-160.

Brock, H. D. (1962). *‘The Perceptron: A Model for Brain Functioning, 1.’ Reviews of
Modern Physics, 34:123—135. Reprinted in Anderson & Rosenfeld [1988}, pp. 138-150.

Bryson, A. E., & Y-C. Ho. (1969). Applied Optimal Control. New York: Blaisdell.

CARPENTER, G. A., & S. GrossserG. (1985). ‘‘Category Learning and Adaptive Pattern
Recognition, a Neural Network Model.”” Proceedings of the Third Army Conference on
Applied Mathematics and Computation, ARO Report 86-1, pp. 37-56.

CARPENTER, G. A., & S. GrossBerG. (1987a). ‘A Massively Parallel Architecture for a

Self-Organizing Neural Pattern Recognition Machine.’” Computer Vision, Graphics, and
Image Processing, 37:54—115.

References 439

CARPENTER, G. A., & S. GrossBERG. (1987b). ‘‘ART2: Self-organization of Stable Category
Recognition Codes for Analog Input Patterns.”’ Applied Optics, 26:4919-4930. Reprinted
in Anderson, Pellionisz, & Rosenfeld [1990], pp. 151-162.

CARPENTER, G. A., & S. GrossBERG. (1990). ““ART3: Hierarchical Search Using Chemical
Transmitters in Self-organizing Pattern Recognition Architectures.”” Neural Networks,
3(4):129~152. :

CaTter, J. P. (1987). *“Successfully Using Peak Learning Rates of 10 (and greater) in Back-
propagation Networks with the Heuristic Learning Algorithm.”’ IEEE First International
Conference on Neural Networks, San Diego, CA, 11:645-652.

CaupiLL, M. (1989). Neural Networks Primer. San Francisco, Miller Freeman.

CaupiLL, M., & C. BuTLER. (1990). Narurally Intelligent Systems. Cambridge, MA: MIT
Press.
Cuen, S., C. F. N. CowaN, & P. M. GranT. (1991). *‘Orthogonal Least Squares Learning

Algorithm for Radial Basis Function Networks.”” IEEE Transactions on Neural Net-
works, 2:302-309.

CoHEN, M. A., & S. GrossBERG. (1983). “‘Absolute Stability of Global Pattern Formation
and Parallel Memory Storage by Competitive Neural Networks.”’ IEEE Transactions
on Systems, Man, and Cybernetics, SMC-13:815-826.

CovLins, E., S. GHosH, & C. L. ScorieLp. (1988a). “‘An Application of a Multiple Neural
Network Learning System to Emulation of Mortgage Underwriting Judgements.” IEEE
International Conference on Neural Networks, San Diego, CA, 11:459—466.

CoLuins, E., S. GrosH, & C. L. ScorieLp. (1988b). *‘A Neural Network Decision Learning
System Applied to Risk Analysis: Mortgage Underwriting and Delinquency Risk As-
sessment.” In M. Holtz, ed., DARPA Neural Network Study: Part IV System Appli-
cation, pp. 65-79.

CorrreLL, G. W., P. Munro, & D. Zipser. (1989). “‘Image Compression by Back Prop-
agation: An Example of Extensional Programming.” In N. E. Sharkey, ed., Models of
Cognition: A Review of Cognitive Science. Norwood, NJ: Ablex Publishing Corp, pp.
208-240.

DARPA. (1988). DARPA Neural Network Study, Final Report, Cambridge, MA: Mas-
sachusetts Institute of Technology, Lincoln Laboratory.

DavHoFF, J. E. (1990). Neural Network Architectures. New York: VanNostrand Reinholt.

DeRoum, E., J. Brown, H. Beck, L. FAuseTT, & M. SCHNEIDER. (1991). ““‘Neural Network
Training on Unequally Represented Classes.” In C. H. Dagli, S. R. T. Kumara, & Y.
C. Shin, eds., Intelligent Engineering Systems Through Artificial Neural Networks. New
York: ASME Press, pp. 135-141.

Dureiy, R., & D. J. WiLLsHAw. (1987). “‘An Analog Approach to the Traveling Salesman
Problem Using an Elastic Net Method.”” Nature, 326;689—691.

Erman, J. L. (1990). ““Finding Structure in Time.”” Cognitive Science, 14:179-211.

FanLman, S. E. (1988). ‘‘Faster-Learning Variations on Back-Propagation: An Empirical
Study.” In D. Touretsky, G. Hinton & T. Sejnowski, eds., Proceedings of the 1988
Connectionist Models Summer School. San Mateo, CA: Morgan Kaufmann, pp. 38-51.

FanLman, S. E., & C. LeBiere. (1990). *‘The Cascade-Correlation Learning Architecture.”

In D. S. Touretsky, ed., Advances in Neural Information Processing Systems 2. San
Mateo, CA: Morgan Kaufmann, pp. 524-532.

440 References

Faruat, N. H., D. PsaLtis, A. PraTa, & E. PAEK. (1985). ““‘Optical Implementation of the
Hopfield Model.”” Applied Optics, 24:1469-1475. Reprinted in Anderson & Rosenfeld
[1988], pp. 653-660.

Fauserr, D. W. (1990). *‘Strictly Local Backpropagation.”’ International Joint Conference
on Neural Networks, San Diego, CA, T1;125-130.

FauserT, L. V. (1990). “‘An Analysis of the Capacity of Associative Memory Neural Nets.”’
IEEE Southcon/90 Conference Record, Orlando, FL, pp. 228-233.

FuxkusHmma, K. (1975). “‘Cognitron: A Self-organizing Multi-layered Neural Network.”’
Biological Cybernetics, 20(3/4):121-136.

FukusaiMa, K. (1988). ‘“Neocognitron: A Hierarchical Neural Network Model Capable
of Visual Pattern Recognition.’’ Neural Networks, 1(2):119-130.

FukusamMa, K., S. Mivake, & T. Ito. (1983). ‘‘Neocognitron: A Neural Network Model
for a Mechanism of Visual Pattern Recognition.”” IEEE Transactions on Systems, Man,
and Cybernetics, 13:826-834. Reprinted in Anderson & Rosenfeld [1988], pp. 526-534.

FuNanashi, K. (1989). “‘On the Approximate Realization of Continuous Mappings by
Neural Networks.”’ Neural Networks, 2(3):183-192.

GemMmaN, S., & D. Geman. (1984). “‘Stochastic Relaxation, Gibbs Distributions, and the
Bayesian Restoration of Images,’’ IEEE Transactions on Pattern Analysis and Machine
Intelligence, PAMI-6:721-741. Reprinted in Anderson & Rosenfeld [1988], pp. 614—634.

GEeva, S., & J. SrrTe. (1992). ““A Constructive Method for Multivariate Function Ap-
proximation by Multilayer Perceptrons.”” IEEE Transactions on Neural Networks, 3(4):
621-624,

GLuck, M. A., & D. E. RUMELHART, eds. (1990). Neuroscience and Connectionist Theory.
Hillsdale, NJ: Lawrence Erlbaum Associates.

Gorus, G. H., & C. F. Van Loan. (1989). Matrix Computations (2nd ed.), Baltimore,
MD: Johns Hopkins University Press.

GRossBERG, S. (1969). ‘‘Embedding Fields: A Theory of Learning with Physiological Im-
plications.” Journal of Mathematical Psychology, 6:209-239.

GROSSBERG, S. (1976). ‘‘ Adaptive Pattern Classification and Universal Recoding, I: Parallel
Development and Coding of Neural Feature Detectors.’’ Biological Cybernetics, 23:
121-134. Reprinted in Anderson & Rosenfeld [1988], pp. 245-258.

GRosSBERG, S. (1980). ‘‘How Does a Brain Build a Cognitive Code?”’ Psychological Re-
view, 87:1-51. Reprinted in Anderson & Rosenfeld [1988], pp. 349-400,

GROSSBERG, S. (1982). Studies of Mind and Brain. Boston: Reidel.

GROSSBERG, S., ed. (1987 and 1988). The Adaptive Brain, I; Cognition, Learning, Rein-
forcement, and Rhythm, and II: Vision, Speech, Language, and Motor Control. Am-
sterdam: North-Holland.

GROSSBERG, S., & E. MINGOLLA. (1985a). ‘‘Neural Dynamics of Form Perception: Boundary
Completion, Illusory Figures, and Neon Color Spreading.” Psychological Review, 92:
173-211. Reprinted in Grossberg, [1988].

GROSSBERG, S., & E, MINGOLLA. (1985b). ‘“Neural Dynamics of Perceptual Grouping: Tex-
tures, Boundaries, and Emergent Segmentations.”’ Perception and Psychophysics, 38:
141-171. Reprinted in Grossberg, [1988].

Haines, K., & R. HeEcHT-NIELSEN. (1988)..““‘A BAM with Increased Information Storage

References 441

Capacity.” 1EEE International Conference on Neural Networks, San Diego, CA, 1:181-
190.

Harston, C. T. (1990). ‘‘Business with Neural Networks.’” In A. J. Maren, C. T. Harston,
& R. M. Pap, eds., Handbook of Neural Computing Applications. San Diego: Academic
Press, pp. 391-400.

Hess, D. O. (1949). The Organization of Behavior. New York: John Wiley & Sons. In-
troduction and Chapter 4 reprinted in Anderson & Rosenfeld [1988], pp. 45-56.

HEecHr-NIELSEN, R. (1987a). ‘““Counterpropagation Networks.” Applied Optics, 26(23);
49794984,

HecHT-NIELSEN, R. (1987b). ‘‘Counterpropagation Networks.” IEEE First International
Conference on Neural Networks, San Diego, CA, 11:19-32.

Hecu1-NIELSEN, R. (1987¢). *‘Kolmogorov’s Mapping Neural Network Existence Theo-
rem.”’ JEEE First International Conference on Neural Networks, San Diego, CA, 11I:
11-14,)

HecHT-NIELSEN, R. (1988). ‘‘Applications of Counterpropagation Networks.’’ Neural Net-
works, 1(2):131-139.

HecHT-NieLsen, R. (1989). ““Theory of the Backpropagation Neural Network.” Interna-
tional Joint Conference on Neural Networks, Washington, DC, 1:593-605.

HecHT-NIELSEN, R. (1990). Neurocomputing. Reading, MA; Addison-Wesley.

Hertz, J., A. KrogH, & R. G. PaLmer. (1991). Introduction to the Theory of Neural
Computation. Redwood City, CA: Addison-Wesley.

Hinton, G. E., & T. J. Sesnowski. (1983). ““Optimal Perceptual Inference.” Proceedings

of the IEEE Conference on Computer Vision and Pattern Recognition, Washington DC,
pp., 448-453.

HoprieLp, J. J. (1982). ‘‘Neural Networks and Physical Systems with Emergent Collective
Computational Abilities.”” Proceeding of the National Academy of Scientists, 79:2554—
2558. Reprinted in Anderson & Rosenfeld [1988], pp. 460-464.

HoprieLp, J. J. (1984). ““Neurons with Graded Response Have Collective Computational
Properties like Those of Two-state Neurons.”’ Proceedings of the National Academy of
Sciences, 81:3088-3092. Reprinted in Anderson & Rosenfeld [1988], pp. 579-584,

HorrieLp, J. J., & D. W. Tank. (1985). ‘“Neural Computation of Decisions in Optimization
Problems.”” Biological Cybernetics, 52:141-152.

Horrierp, J. J., & D. W. Tank. (1986). ‘‘Computing with Neural Circuits.’ Science, 233:
625-633.

Hornik, K., M. Stincacomee, & H. WHitE. (1989). ‘““Multilayer Feedforward Networks
Are Universal Approximators.” Neural Networks, 2(5): 359-366.

Hornik, K., M. StincHcomse, & H. WHiTE. (1990). **Universal Approximation of an Un-
known Mapping and Its Derivatives Using Multilayer Feedforward Networks.” Neural
Nerworks. 3(5): 551-560.

HuseL, D. H., & T. N. WieseL. (1962). “Receptive Fields, Binocular Interaction and

Functional Architecture in Cat’s Visual Cortex.”’ Journal of Physiology (London) 160:
106-154.

Jacoss, R. A. (1988). ““Increased Rates of Convergence Through Learning Rate Adap-
tation.”” Neural Networks, 1(4):295-307.

442 References

JaN, A. K., & R. C. Dusss. (1988). Algorithms for Clustering Data. Englewood Cliffs,
NJ: Prentice-Hall.

Jeong, H., & J. H. Park. (1989). “‘Lower Bounds of Annealing Schedule for Boltzmann -
and Cauchy Machines.”” International Joint Conference on Neural Networks, Wash-
ingtin, DC, 1:581-586.

Jonnson, R. C., & C. Brown. (1988). Cognizers: Neural Networks and Machines that
Think. New York: John Wiley & Sons.

JorpAN, M. (1989). ““Generic Constraints on Underspecified Target Trajectories.’’ Inter-
national Joint Conference on Neural Networks, Washington, DC, 1:217-225.

KEsTen, H. (1958). ““Accelerated Stochastic Approximation.” Annals of Mathematical
Statistics, 29:41-59.

KirkraTRICK, S., C. D. GELATT, JR., & M. P. VECCHI. (1983). “‘Optimization by Simulated

Annealing.” Science, 220:671-680. Reprinted in Anderson & Rosenfeld [1988], pp. 554—
568.

KLiMasauskas, C. C., ed. (1989). The 1989 Neuro-computing Bibliography. Cambridge,
MA: MIT Press.

KoHoNeN, T. (1972). “Correlation Matrix Memories.”’ IEEE Transactions on Computers,
C-21:353-359. Reprinted in Anderson & Rosenfeld [1988], pp. 174—180.

KoHonen, T. (1982). ““Self-organized Formation of Topologically Correct Feature Maps.”
Biological Cybernetics, 43:59-69. Reprinted in Anderson & Rosenfeld [1988], pp. 511-
521.

Kononen, T. (1987). Content-Addressable Memories (2nd ed.), Berlin: Springer-Verlag.

KoHoNEN, T. (1988). ““The ‘Neural’ Phonetic Typewriter.”’ Computer, 21(3):11-22.

KonoNen, T. (1989a). Self-organization and Associative Memory (3rd ed.), Berlin:
Springer-Verlag.

KoHONEN, T. (1989b). ‘A Self-learning Musical Grammar, or ‘Associative Memory of the
Second Kind’.”’ International Joint Conference on Neural Networks, Washington, DC,
I:1-5.

KoHoNEN, T. (1990a). “Improved Versions of Learning Vector Quantization.”’ Interna-
tional Joint Conference on Neural Networks, San Diego, CA, 1:545-550.

KoHoNEeN, T. (1990b). ““The Self-Organizing Map.”’ Proceedings of the IEEE, 78(9):1464-
1480.

Kononen, T., K. TorkkoLa, M. SHozakal, J. Kangas, & O. VenTa. (1987). *‘Micropro-
cessor Implementation of a Large Vocabulary Speech Recognizer and Phonetic Type-
writer for Finnish and Japanese.” European Conference on Speech Technology, Edin-
burgh, September 1987. Volume 2, pp. 377-380.

KormocGorov, A, N. (1963). ““On the Representation of Continuous Functions of Many
Variables by Superposition of Continuous Functions of One Variable and Addition."’
Doklady Akademii Nauk SSSR, 144:679-681. (American Mathematical Society Trans-
lation, 28:55-59).

Kosko, B. (1987). “‘Competitive Adaptive Bidirectional Associative Memories.”’ IEEE
First International Conference on Neural Networks, San Diego, CA, 11:759-766.

Kosko, B. (1988). “‘Bidirectional associative memories.’’ [EEE Transactions on Systems,

Man, and Cybernetics, 18:49-60. Reprinted in Anderson, Pellionisz, & Rosenfeld [1990],
pp. 165-176.

References 443

Kosko, B. (1992a). Neural Networks and Fuzzy Systems: A Dynamical Systems Approach
to Machine Intelligence. Englewood Cliffs, NJ: Prentice-Hall.

Kosko, B., ed. (1992b). Neural Networks for Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall.

Kremovich, V. Y. (1991). “ Arbitrary Nonlinearity Is Sufficient to Represent All Functions
by Neural Networks: A Theorem.’’ Neural Networks, 4(3):381-383.
LawLer, E. L., J. K. Lenstra, A. H. G. Rinvooy Kan, & D. B. SHmoys, eds. (1985).

The Traveling Salesman Problem: A Guided Tour of Combinatorial Optimization. New
York: John Wiley & Sons.

LAwreNce, J. (1993). “‘Data Preparation for a Neural Network.”” Neural Network Special
Report, AI Expert, pp. 15-21.

Le Cun, Y. (1986). ‘‘Learning Processes in an Asymmetric Threshold Network.’’ In E.
Bienenstock, F. Fogelman-Souli, & G. Weisbuch, eds. Disordered Systems and Bio-
logical Organization. NATO ASI Series, F20, Berlin: Springer-Verlag.

Le Cun, Y., B. Bosker, J. S. DenkEr, D. Henperson, R. E. Howarp, W. HusBarp, & L.
D. JackeL. (1990). ‘‘Handwritten Digit Recognition with a Backpropagation Network.”’
In D. S. Touretsky, ed., Advances in Neural Information Processing Systems 2. San
Mateo, CA: Morgan Kaufman, pp. 396-404.

LEE, S. (1992). “‘Supervised Learning with Gaussian Potentials.”’ In B. Kosko (ed.), Neural
Networks for Signal Processing. Englewood Cliffs, NJ: Prentice-Hall, pp. 189-228.

LEE, S., & R. M. KuL. (1991). **A Gaussian Potential Function Network with Hierarchically
Self-Organizing Learning.”” Neural Networks, 4(2):207-224.

Leonarp, J. A., M. A. Kramer, & L. H. Ungar. (1992). “‘Using Radial Basis Functions
to Approximate a Function and Its Error Bounds.”” IEEE Transactions on Neural Net-
works, 3(4):624-627.

Leving, D. S. (1991). Introduction to Neural and Cognitive Modeling. Hillsdale, NJ: Lawr-
ence Erlbaum Associates.

Lirpmann, R. P. (1987). “‘An Introduction to Computing with Neural Nets.”’ IEEE ASSP
Magazine, 4:4-22.

LippmaNN, R. P. (1989). ‘‘Review of Neural Networks for Speech Recognition.”” Neural
Computation, 1:1-38.

MAcCGREGOR, R. J. (1987). Neural and Brain Modeling. San Diego: Academic Press.

MaknouL, J., S. Roucos, & H. Gish. (1985). ““Vector Quantization in Speech Coding.”
Proceedings of the IEEE, 73(11):1551-1588.

Mazaika, P. K. (1987). ““‘A Mathematical Model of the Boltzmann Machine.’’ IEEE First
International Conference on Neural Networks, San Diego, CA, 111:157-163.

McCLeLLAND, J. L., & D. E. RUMELHART. (1988). Explorations in Parallel Distributed
Processing. Cambridge, MA: MIT Press.

McCuLLocH, W. S. (1988). Embodiments of Mind. Cambridge, MA: MIT Press.

McCurrocH, W. S., & W. Prrts. (1943). “‘A Logical Calculus of the Ideas Immanent in
Nervous Activity.” Bulletin of Mathematical Biophysics, 5:115-133. Reprinted in An-
derson & Rosenfeld [1988], pp. 18-28.

McELIEcE, R. J., E. C. PosnEr, E. R. RopemicH, & S. S. VENKATESH. (1987). ““The Ca-

pacity of the Hopfield Associative Memory.”’ IEEE Transactions on Information Theory,
IT-33:461-482.

444 References

MEenrotra, K. G., C. K. MoHaN, & S. Ranka. (1991). “‘Bounds on the Number of Samples
Needed for Neural Learning.”” IEEE Transactions on Neural Networks, 2(6):548—558.

MEeTtroPOLIS, N. A., W, RosensLutH, M. N. RosenBLUTH, A. H. TELLER, & E. TELLER.
(1953). “‘Equations of State Calculations by Fast Computing Machines.’’ Journal of
Chemical Physics, 21:1087-1091.

MiLLer, W. T, R. S. Surton, & P. J.WEreos, eds. (1990). Neural Networks Jor Control.
Cambridge, MA: MIT Press.

Minsky, M. L., & S. A. Paperr. (1988). Perceptrons, Expanded Edition. Cambridge, MA:
MIT Press. Original edition, 1969.

Mooby, J., & C. J. DARKEN. (1989). ‘‘Fast Learning in Networks of Locally Tuned Pro-
cessing Units.”” Neural Computation, 1:281-294,

NGuyen, D., & B. Wiprow. (1989). ““The Truck Backer-Upper: An Example of Self-Learn-
ing in Neural Networks.”* International Joint Conference on Neural Networks, Wash-
ington, DC, M:357-363.

NGuyen, D., & B. Wiprow. (1990). “Improving the Learning Speed of Two-Layer Neural
Networks by Choosing Initial Values of the Adaptive Weights.”” International Joint
Conference on Neural Networks, San Diego, CA, 111:21-26.

Osa, E. (1982). “*A Simplified Neuron Model as a Principal Components Analyzer.” Jour-
nal of Mathematical Biology, 15:267-273.

O1a, E. (1989). “Neural Networks, Principal Components, and Subspaces.’ International
Journal of Neural Systems, 1:61-68.

Oia, E. (1992). “Principal Components, Minor Components, and Linear Neural Net-
works.” Neural Networks, 5(6):927-935.

Pao, Y-H. (1989). Adaptive Pattern Recognition and Neural Networks. New York: Ad-
dison Wesley.

Park, J., & 1. W. SANDBERG. (1991). ““*Universal Approximation Using Radial-basis Func-
tion Networks.”” Neural Computation, 3:246-257.

PArkEg, D. (1985). Learning Logic. Technical Report TR-87, Cambridge, MA: Center for
Computational Research in Economics and Management Science, MIT.

PiNeDa, F. J. (1987). “‘Generalization of Back-Propagation to Recurrent Neural Net-
works.”” Physical Review Letters, 59:2229-2232.

PiNEDA, F. J. (1988). ““Dynamics and Architecture for Neural Computation.”” Journal of
Complexity, 4:216-245.

PiNEDA, F. J. (1989). *‘Recurrent Back-Propagation and the Dynamical Approach to Adap-
tive Neural Computation.”” Neural Computation, 1:161-172.

Prrts, W., & W. S. McCuLLocH. (1947). ““How We Know Universals: The Perception of
Auditory and Visual Forms.” Bulletin of Mathematical Biophyscis, 9:127-147. Re-
printed in Anderson & Rosenfeld [1988], pp. 32-42.

Pocaio, T. (1990). ““Networks for Approximation and Learning.” Proceedings of the IEEE,
78:1481-1497.

QiaN, N., & T. J. SEiNOWSKI. (1988). “‘Learning to Solve Random-Dot Stereograms of
Dense Transparent Surfaces with Recurrent Back-Propagation.”” In D. Touretzky, G.

Hinton, & T. Sejnowski, eds., Proceedings of the 1988 Connectionist Models Summer
School. San Mateo, CA: Morgan Kaufmann, pp. 435-443.

References 445

ReBER, A. S. (1967). “‘Implicit Learning of Artificial Grammars.” Journal of Verbal Learn-
ing and Verbal Behavior, 5:855-863.

RoCHESTER, N., J. H. HoLLanD, L. H. Haier, & W. L. Dupa. (1956). ‘‘Tests on a Cell
Assembly Theory of the Action of the Brain, Using a Large Digital Computer.”’ IRE
Transactions on Information Theory, IT-2:80-93. Reprinted in Anderson & Rosenfeld
[1988], pp. 68—80.

RocErs, S. K., & M. Kasrisky. (1989). Introduction to Artificial Neural Networks for
Pattern Recognition. SPIE Short Course, Orlando, FL, Bellington, WA: Society of
Photo-Optical Instrumentation Engineers.

RosenBLATT, F. (1958). *‘The Perceptron: a Probabilistic Model for Information Storage
and Organization in the Brain.”” Psychological Review, 65:386—408. Reprinted in An-
derson & Rosenfeld [1988], pp. 92114,

RosensLATT, F. (1959). “Two Theorems of Statistical Separability in the Perceptron.”
Mechanization of Thought Processes: Proceeding of a Symposium Held at the National
Physical Laboratory, November 1958. London: HM Stationery Office, pp. 421-456.

RosensLartr, F. (1962). Principles of Neurodynamics. New York: Spartan.

RumELHART, D. E., G. E. HINnTON, & R. J. WILLIAMS. (1986a). ‘‘Learning Internal Rep-
resentations by Error Propagation.”” In D. E. Rumelhart & J. L. McClelland, eds.,
Parallel Distributed Processing, vol. 1 chapter 8. reprinted in Anderson & Rosenfeld
[1988], pp. 675-695.

RUMELHART, D. E., G. E. HiIntoN, & R. J. WiLLiaMs. (1986b). “‘Learning Representations
by Back-Propagating Error.”’ Nature, 323:533-536. Reprinted in Anderson & Rosenfeld
[1988], pp. 696—699.

RuUMELHART, D. E., J. L. McCLELLAND, & THE PDP RESEARCH Grour. (1986). Parallel
Distributed Processing, Explorations in the Microstructure of Cognition; Vol. 1: Foun-
dations. Cambridge, MA: MIT Press.

Sancer, T. D. (1989). ‘‘Optimal Unsupervised Learning in a Single-Layer Linear Feed-
forward Neural Network.”” Neural Networks, 2(6):459-473.

Sarmis, G. N. (1970). ‘‘Learning Applied to Successive Approximation Algorithms.’’ IEEE
Transactions on Systems Science and Cybernetics, SCC-6:97-103.

ScorieLp, C. L. (1988). ‘‘Learning Internal Representations in the Coulomb Energy Net-

work.” IEEE International Conference on Neural Networks, San Diego, CA, 1:271-
276.

SeNnowskl, T. I., & C. R. RoseNBERG. (1986). NETtalk: A Parallel Network That Learns
to Read Aloud. The Johns Hopkins University Electrical Engineering and Computer
Science Technical Report JHU/EECS-86/01, 32 pp. Reprinted in Anderson & Rosenfeld
[1988], pp. 663-672.

SERVAN-SCHREIBER, D., A. CLEEREMANS, & J. L. McCLELLAND. (1989). ‘“‘Learning Se-
quential Structure in Simple Recurrent Networks.”” In D. S. Touretzky, ed., Advances
in Neural Information Processing Systems 1. San Mateo, CA: Morgan Kaufmann, pp.
643-652.

SiLva, F. M., & L. B. ALMEIDA. (1990). ¢ Acceleration Techniques for the Backpropagation
Algorithm.”” Lecture Notes in Computer Science, 412:110-119.

Smmmons, G. F. (1972). Differential Equations with Applications and Historical Notes.
New York: McGraw-Hill.

446 References

SwviLatri, M. A., M. A. MauowaLp, & C. A. MEabD. (1987). *‘Real-time Visual Compu-
tations Using Analog CMOS Processing Arrays.” In P. Losleben, ed., Advanced Re-
search in VLSI: Proceedings of the 1987 Stanford Conference. Cambridge, MA: MIT
Press, pp. 295-312. Reprinted in Anderson & Rosenfeld [1988], pp. 703-712.

SonNEHARA, N., M. KawaTo, S. Mivake, & K. NAKANE. (1989). “‘Image Data Compression
Using a Neural Network Model.” International Joint Conference on Neural Networks,
Washington, DC, 11:35-41.

SeecHt, D. F. (1967). “*Vectorcardiographic Diagnosis Using the Polynomial Discriminant
Method of Pattern Recognition.”’ IEEE Transactions on Bio-Medical Engineering, BME-
14:90-95.

SeecHT, D. F. (1988). ‘‘Probabilistic Neural Networks for Classification, Mapping, or As-
sociative Memory.”’ IEEE International Conference on Neural Networks, San Diego,
CA, 1:.525-532.

SpecHT, D. F. (1990). ‘‘Probabilistic Neural Networks.”” Neural Networks, 3(1):109-118.

SPRECHER, D. A. (1965). “‘On the Structure of Continuous Functions of Several Variables.”
Transactions of the American Mathematical Society, 115:340-355.

SuttoN, R. S. (1986). ““Two Problems with Backpropagation and Other Steepest-descent
Learning Procedures for Networks.”’ Proceedings of the Eighth Annual Conference of
the Cognitive Science Society, pp. 823-831.

Szu, H. H. (1986). “‘Fast Simulated Annealing.”’ In J. S. Denker, ed., AIP Conference

Proceedings 151, Neural Networks for Computing, Snowbird, UT. New York: American
Institute of Physics.

Szu, H. H. (1988). “Fast TSP Algorithm Based on Binary Neuron Output and Analog
Neuron Input Using the Zero-Diagonal Interconnect Matrix and Necessary and Suffi-
cient Constraints of the Permutation Matrix.”’ IEEE International Conference on Neural
Networks, San Diego, CA, 11:259-265.

Szu, H. H. (1989). Neural Networks: T, heory, Applications and Computing. Lecture Notes
for UCLA Engineering Short Course, Engineering 819.185, March 20-23, 1989,

Szu, H. H. (1990a). ““Colored Noise Annealing Benchmark by Exhaustive Solutions of
TSP.”” International Joint Conference on Neural Networks, Washington, DC, 1:317-
320. ;

Szu, H. H. (1990b). ‘‘Optical Neuro-Computing.”’ In A. J. Maren, C. T. Harston, & R.
M. Pap, eds., Handbook of Neural Computing Applications. San Diego: Academic
Press.

Szu, H. H., & R. HarTLEY. (1987). “‘Fast Simulated Annealing.”” Physics Letters A,
122(3,4):157-162.

Szu, H. H., & A. J. MAREN. (1990) ‘‘Multilayer Feedforward Neural Networks II: Optim-
izing Learning Methods.” In A. J. Maren, C. T. Harston, & R. M. Pap, eds., Handbook
of Neural Computing Applications. San Diego: Academic Press.

Takerun, Y. (1992). Neural Network Parallel Computer. Boston:; Kluwer Academic Pub-
lishers.

Takerun, Y., & H. H. Szu. (1989). ““Design of Parallel Distributed Cauchy Machines.”’
International Joint Conference on Neural Networks, Washington, DC, 1:529-532.

Tank, D. W., & J. J. HopPFeLD. (1987). ““Collective Computation in Neuronlike Circuits.”
Scientific American, 257:104-114.

References 447

TepEDELENLIOGLU, N., A. REzGul, R. ScaLero, & R. Rosario. (1991). “‘Fast Algorithms
for Training Multilayer Perceptrons.”” In B. Soucek & the IRIS Group, Neural and
Intelligent Systems Integration. New York: John Wiley & Sons.

ToLaT, V. V., & B. Wiprow. (1988). “‘An Adaptive ‘Broom Balancer’ with Visual Inputs.”’
IEEE International Conference on Neural Networks, San Diego, CA, 11:641-647.

VEMURI, V., ed. (1988). Artificial Neural Networks: Theoretical Concepts. Washington,
DC: IEEE Computer Society Press.

VoN NEUMANN, J. (1958). The Computer and the Brain. New Haven: Yale University Press.
Pages 6682 are reprinted in Anderson & Rosenfeld [1988], pp. 83-89.

WEIR, M. (1991). ‘A Method for Self-Determination of Adaptive Learning Rates in Back
Propagation.”’ Neural Networks, 4:371-379.

WEeRBos, P. (1974). Beyond Regression: New Tools For Prediction and Analysis in the

Behavioral Sciences (Ph.D. thesis). Cambridge, MA: Harvard U. Committee on Applied
Mathematics.

Waite, H. (1990). “‘Connectionist Nonparametric Regression: Multilayer Feedforward
Networks Can Learn Arbitrary Mappings.”” Neural Networks, 3(5): 535-549.

Wibrow, B., & M. E. HoFr, Jr. (1960). ‘“Adaptive Switching Circuits.”” JRE WESCON
Convention Record, part 4, pp. 96—-104. Reprinted in Anderson & Rosenfeld [1988], pp.
126-134.

Wibrow, B. (1987). ‘“The Original Adaptive Neural Net Broom-balancer.’’ International
Symposium on Circuits and Systems. New York: IEEE. pp. 351-357.

Wiprow, B., & M. A. LEHR. (1990). ‘*30 Years of Adaptive Neural Networks: Perceptron,
Madaline, and Backpropagation.”” Proceedings of the IEEE, 78(9):1415-1442.

Wiprow, B., P. E. MaNTEY, L. J. Grirritss, & B. B. Goobe. (1967). ‘“Adaptive Antenna
Systems.”’ Proceedings of the IEEE, 55:2143-2159.

Wiprow, B., & S. D. Stearns. (1985). Adaptive Signal Processing. Englewood Cliffs, NJ:
Prentice-Hall.

Wiprow, B., R. G. WINTER, & R. A. Baxter. (1987). “‘Learning Phenomena in Layered
Neural Networks.”’” IEEE First International Conference on Neural Networks, 11:411-
429,

WiLsoN, G. V., & G. S. PawLey. (1988). ‘‘On the Stability of the Travelling Salesman
Problem Algorithm of Hopfield and Tank.”’ Biological Cybernetics, 58:63-70.

Xu, L., E. Osa, & C. Y. Suen. (1992). “‘Modified Hebbian Learning for Curve and Surface
fitting.”” Neural Networks, 5(3):441-457.

Index

A

Aarts, E., 37, 337, 338, 339, 424, 437
Abu-Mostafa, Y. S., 140, 437
Acceptance probability, 339, 342, 347, 348,
358-59, 362 (see also Metropolis
condition)
Accretion, 201, 422
Ackley, D. H., 26, 334, 337, 346, 367, 369,
371, 372, 424, 437
Activation, 3, 4, 20, 422
Activation function, 3, 17-19, 422
ART?2, 250
brain-state-in-a-box, 132
Gaussian, 315, 388, 427
Heaviside function, 17, 434 (see Step
function)
identity, 17, 314
log, 314
sigmoid, 17-19
adaptive slope, 31213
arctangent, 313, 433
binary or logistic, 4, 17-18, 143, 293,
423, 433
bipolar, 18-19, 293-94, 424, 434
customized, 309-12
hyperbolic tangent (tanh), 17, 19, 293,
298, 350, 351, 358, 434

step function, 17-18, 27, 41, 109, 434
threshold, 17, 435 (see Step function)

Activity level, 3, 337, 358

ADALINE, 7, 23-24, 40, 41, 80-88, 97, 422

algorithm, 81-82

derivation, 86-88
applications, 82-86

AND function, 83-84

AND Nor function, 85

Or function, 85-86
architecture, 81
exercises and project, 99, 100

Adaptive antenna systems, 24, 447

Adaptive architectures, 385-98 (see also
Probabilistic neural nets; Cascade
correlation)

Adaptive resonance theory (ART), 16, 25,
157, 218-87, 422 (see also ARTI;
ART2)

algorithm, 220-22
architecture, 219-20

Ahmad, S., 299, 437

Aiso, H., 357, 427, 437

Akiyama, Y., 357, 427, 437

Algorithm, 3, 15-16, 423 (see also Learning
rule; Supervised training;
Unsupervised training)

Adaline (delta rule), 81-82
adaptive resonance theory, 220-21,
225-29, 250-57

449

450

Algorithm (cont.)
anti-Hebbian (modified), 365
autoassociator with threshold, 133
backpropagation, 290-300, 321-23
backpropagation for fully recurrent nets,
305

backpropagation in time, 383-84
bidirectional associative memory (BAM),
143
Boltzmann machine with learning, 369-72
Boltzmann machine without learning,
340-42
brain-state-in-a-box (BSB), 132
cascade correlation, 394-97
counterpropagation:
forward, 208-9
full, 200-201
Hamming net, 166-67
Hebb rule, 49, 103-5, 122
Hopfield, continuous, 350-51
Hopfield, discrete, 136-37
learning vector quantization (LVQ),
18889
Madaline, 89-92
Maxnet, 159
Mexican hat, 161-63
modified Hebb, 365—66
neocognitron, 407-11
perceptron, 61
probabilistic neural net, 388
QuickProp, 397-98
self-organizing map (SOM), 170, 172
simple recurrent net, 375-76
Widrow-Hoff (see Adaline)
Allman, W. F., 36, 437
Almeida, L. B., 307, 384, 385, 437, 445
AND function, 29, 44-45, 5055, 62-69,
83-84
AnD Nor function, 30, 85
Anderson, J. A., 9, 22, 23, 24, 35, 102, 104,

121, 130, 131, 132, 149, 282, 398, 424,

437, 438
Angeniol, B., 24, 172, 184, 211, 438
Annealing (see Simulated annealing)
Annealing schedule, 371, 423, 442 (see also
Cooling schedule)
Anti-Hebbian learning, 365-66
Applications: (see also Business; Character
recognition; Control; Data
compression; Encoder problem;
Logic functions; Medicine, Pattern
recognition; Signal Processing;
Speech Production; Speech
Recognition; Traveling salesman
problem) ’
adaptive antenna systems, 24, 447
broom balancer, 24, 447
character strings (context-sensitive
grammar), 373-77, 445

Index

curve fitting, 365-66
handwritten character recognition, 89,
398-417, 428, 443
heart abnormalities, 39, 389, 446
instant physician, 9
mortgage risk assessment, 11, 439
multiplication tables, 24
musical composition, 24, 442
NETtalk, 10, 289, 445
phonetic typewriter, 10, 432, 442
shift register, 380-81
sinc function (damped sinusoid), 381-84
telephone noise cancellation (echo
cancellation), 7, 426
time varying patterns, 372
truck-backer-upper, 8, 24, 436, 444
Arbib, M. A., 76, 438
Architecture, 3, 4, 12-15, 423
adaptive, 335, 385-98
competitive layer, 14—15
feedforward, 12
multilayer, 12—-14
partially recurrent, 372
recurrent, 12
single layer, 12-14
traveling salesman problem, 338
Arctangent function, 313, 433
Aristotle, 101
Arozullah, M., 304, 438
ART1, 25, 218, 22246, 282, 422
algorithm, 225-29
analysis, 243-46
applications, 22942
character recognition, 236—42
simple examples, 229-36
architecture, 222-25
computational units, 223
supplemental units, 224-25
exercises and projects, 283, 286
ART2, 25, 218, 246-82, 422, 439 (see also
Noise suppression)
activation function, 250
algorithm, 250-57
parameters, 255-56
analysis, 275-82
differential equations, 277-79
initial weights, 281-82
instant ART2, 275-76
reset, 279-81
applications, 257-74
character recognition, 273-74
simple examples, 257—68
spanning tree, 268~72
architecture, 247-50
exercises and projects, 28486
ARTS3, 439
Artificial neural network, 3 (see also Neural ,
network)

Index

Associative memory, 16, 25, 101-55, 211,
423 (see also Autoassociative
memory; Bidirectional associative
memory; Heteroassociative memory;
Hopfield net)

Assumptions:

artificial neural network, 3
McCulloch-Pitts neuron, 26-27

Asynchronous updates, 135, 138, 148, 347,
423

Autoassociative memory, 9, 16, 24, 102,
121-40, 423, 442

exercises and project, 151, 153
feedforward, 16, 121-29
algorithm, 122
application, 122-25
architecture, 121
storage capacity, 125-29
recurrent, 16, 129-40
brain-state-in-a-box, 131-32
discrete Hopfield, 135-40 (see also
Hopfield net)
linear autoassociator, 130-31
with threshold, 132-35
Autoassociator, 423
Axon, §, 6, 423

B

Bachmann, C. M., 426, 438
Backpropagation for fully recurrent nets,
38485, 437
Backpropagation in time, 8, 377-84
algorithm, 379, 383-84
application, 380-84
architecture, 377-79
Backpropagation net, 9, 23, 289-333, 441
activation functions:
adaptive slope, 312-13
arctangent, 313
binary (logistic) sigmoid, 293
bipolar sigmoid, 293-94
customized sigmoid, 309-12
non-saturating, 314
non-sigmoid, 315
algorithm, 290-300, 321-23
adaptive learning rates, 306-9
batch weight updating, 306
momentum, 305
standard, 294-96
two hidden layers, 321-23
weight initialization, 296-98, 444
analysis, 305-28
derivations, 324-28
variations, 305-23
applications, 300-305, 314-15
data compression, 302-4

451

Xor function, 300-302, 306, 314
Nguyen-Widrow initialization, 302
product of sines, 314-15
architecture, 290-91, 320-21
standard, 290-91
two hidden layers, 320-21
exercises and projects, 330-33
Backpropagation training, 25, 289, 294-96,
321--28, 423, 445, 447 (see also
Backpropagation for fully recurrent
nets; Backpropagation in time;
Backpropagation net; Simple
recurrent net)
BAM (see Bidirectional associative memory)
Barhen, J., 385, 438
Barto, A. G., 307, 438
Batch updating, 87, 306, 397
Baum, E. B., 298, 438
Baxter, R. A., 82, 89, 91, 447
Bayes decision theory, 26, 187, 335, 385-87,
432
Beck, H., 306, 439
Bias, 20, 21, 41, 81, 165, 290, 423
adaptation, 20, 21, 49, 61, 90-91, 295-96
relation to threshold, 41-43
Bidirectional associative memory (BAM),
140-49, 423, 440, 442
continuous, 143-44
discrete, 140-43, 144-49
algorithm, 141-43
analysis, 148-49
application, 14448
architecture, 141
exercises and projects, 152, 15455
Bidirectional connections, 338
Binary, 17, 423
Binary data:
AND function, 29, 50-51
ANp Nor function, 30
character recognition, 23642, 273-74
ORr function, 29
pattern association, 110-15
Xor function, 30-31, 300-301
Binary sigmoid, 4, 17-18, 143, 293, 423, 433
Binary/bipolar hybrid data:
AND function, 51-52, 62-68, 83-84
pattern association, 116
Biological neuron, 6-7
Biological neural network, 5-7, 37
Bipolar, 17, 423
Bipolar data:
AND function, 44-45, 52-55, 69, 84
AnD Nor function, 85
character recognition, 55-56, 71-76,
119-20, 144-47
OR function, 46, 85-86
pattern association, 116—19, 123-27,
133-34
Xor function, 47, 92-95, 301-2

452

Bipolar sigmoid, 18-19, 293-94, 424, 434
Bivalent, 15, 424, 429
Block, H. D., 23, 59, 91, 432, 438
Boltzmann machine, 26, 37, 437, 443 (see
also Boltzmann machine with
learning; Boltzmann machine without
learning)
Boltzmann machine with learning, 334,
367-72, 424, 437, 442
algorithm, 369-70
application, 371-72
architecture, 368
Boltzmann machine without learning, 16,
334, 338-48, 424
algorithm, 340-42
analysis, 346-48
application, 34246
architecture, 340
exercises and projects, 41821
Boolean functions (see Logic functions; Anp
function; ANp Not function; Or
function; Xor function)
Boser, B., 443
Bottom-up signals, 221, 246
Bottom-up weights, 219, 222-23, 225, 256,
424
initial values, 246, 282
Boundary (see Decision boundary)
Boundary contour system (BCS), 424
Brain-state-in-a-box (BSB), 9, 24, 131-32,
424
Broom balancing, 24, 447
Brown, C., 6, 23, 26, 36, 442
Brown, J., 306, 439
Bryson, A. E., 25, 438
BSB (see Brain-state-in-a-box)
Business, applications of neural networks,
11, 41
Butler, C., 39, 439

C

Capacity, 125-29, 140, 149, 424, 437, 440,
441, 443
Carpenter, G. A, 25, 218, 222, 224, 229,
243, 247, 248, 251, 252, 275, 277, 282,
422, 438, 439
Cascade correlation, 335, 390-98, 424, 439
algorithm, 394-97
architecture, 391-94
Cater, J. P., 307, 439
Cauchy machine, 334, 359-362, 424, 442,
446
Cauchy (or colored) noise, 359
Caudill, M., 39, 431, 439
Cell (see Unit; Neuron)

Index

Chain rule, 87-88, 107-8, 324-25, 32627
Character recognition, 25 (see also
Handwritten character recognition)
ART, 236-42, 273-74
bidirectional associative memory, 144-48
counterpropagation, 215-16
Hebb net, 55-56
heteroassociative memory, 119-21
perceptron, 71-76
self-organizing map, 176—78
Chen, S., 330, 439
Clamped, 367, 369, 372, 424
Classification, 424 (see Pattern
classification)
Cleeremans, A., 372, 373, 445
Cluster unit, 16, 218, 219, 220, 202, 207,
222,223, 425
Clustering, 425
Clustering neural networks, 157 (see also
Self-organizing map; Adaptive
resonance theory)
Code-book (or code) vector, 157, 187, 218,
429

Cognitron, 25, 440

Cohen, M. A., 144, 384, 439

Collins, E., 11, 433, 439

Combinatorial optimization, 437 (see also
Constrained optimization problems;
Constrained optimization nets)

Competition, 156 (see also Adaptive
resonance theory; Competitive neural
net; Counterpropagation; Learning
vector quantization; Self-organizing
map; Winner-take-all)

Competitive layer, 14-15, 219, 223

Competitive learning, 425 (see also Kohonen
learning)

Competitive neural net, 158-69, 425 (see
also Hamming net; Maxnet; Mexican
hat)

Components:

minor, 365-66, 444

principal, 363-65, 444
Connections, 3

bidirectional, 140-41, 158, 338, 348

excitatory, 27

inhibitory, 27

Conscience, 425

Consensus function, 339, 425

Constrained optimization nets, 16, 135,
335-62

Boltzmann machine, 338-48, 424
Cauchy machine, 359-62, 424
Gaussian machine, 357-59, 427
Hopfield net, 348-57, 428

Constrained optimization problems, 335, 425

Content addressable memory, 102, 135, 425,
442

Context unit, 372-74, 425

Index

Contrast enhancement, 160
Control, applications of neural networks, 8,
36

Controller module, 8 (see Truck-backer-
upper)
Convergence, 425
Cooling schedule:
Boltzmann machine, 342
Cauchy machine, 359-60, 362
Cooper, L. N., 26, 426, 438
Correlation:
among input vectors, 104, 106
encoding, 106, 148, 425
matrix, 22, 82, 363, 442
Cortical units, 316~19
Cottrell, G. W., 302, 304, 439
Coulomb energy net, 425, 445 (see also
Reduced coulomb energy network)
Counterpropagation, 16, 26, 157, 195-211,
426, 441
exercises and projects, 213-14, 215-17
forward only, 206-11
algorithim, 206-9
application, 209-11
architecture, 206-7
full, 196-206
algorithm, 199-201
application, 201-6 -
architecture, 196-98
Counting layers in a net, 12
Covariance matrix, 363, 365, 395
Cowan, C. F. N., 330, 439
Cross talk, 104--5, 110, 426
Curve fitting, 365-66, 447

D

Darken, C. J., 316, 444
DARPA, 26, 36, 164, 439
Data compression, 195, 302—4, 368, 438,
439, 446
Data representation, 48, 102, 115-19,
298-99, 443 (see alsa Binary data;
Bipolar data)
binary vs bipolar, 48, 118-19, 298-99
continuous vs discrete, 298-99
Dayhoff, J. E., 199, 286, 439
Decay term:)
Hopfield net, 349, 357
Oja rule, 363
Decision boundary (or region), 42-46,
51-55, 57-58, 63-66, 68, 84-86,
93-95, 386, 389, 426
Delta rule, 23, 40, 86-88, 106-8, 121, 199,
426

453

extended (arbitrary activation function),
106, 107-8, 427
generalized (backpropagation), 106, 289,
294-96
one output unit, 86—87
several output units, 87-88, 106-7
Delta-bar-delta, 307-9, 426
Dembo, A., 426, 438
Dendrites, §, 426
Denker, J. S., 443
DeRouin, E., 306, 439
Differential equations:
ART]1, 243-46
ART2, 277-79
Cohen-Grossberg, 144, 384
Fully recurrent net, 384
Hopfield, 349, 357, 384
Dot product, 129, 426
metric, 158, 169, 196, 201, 209
net input, 21, 114
Dubes, R. C., 442
Duda, W. L., 22, 445
Durbin, R., 354, 439

E

Echo cancellation, 7, 426
Eigenvalue, 82, 127, 128, 131, 363, 365, 432
Eigenvector, 127, 128, 131, 363, 364, 365,
432
Elman, J. L., 372, 375, 425, 439
Emulator, 8 (see also Truck-backer-upper)
Encoder problem, 334, 367, 368, 371-72, 426
Energy function, 135, 148-49, 337, 426 (see
also Lyapunov function)
BAM, 148-49
Boltzmann machine, 346-47 (see also
Consensus function)
Hopfield net, 135, 138, 139-40, 349, 354,
357
Epoch, 221, 252, 255, 296, 341, 342, 350,
369, 426, 436
Equilibrium:
activations, 245-46, 277-78
thermal, 346
weights, 221, 229, 243-45, 247, 26263,
265-68, 279
Erasing an association, 148
Error propagation (see Backpropagation)
Error (see Total squared error; Squared
error; Mean squared error)
Euclidean distance, 158, 169, 188, 196, 201,
209, 268, 427
Excitatory connection, 27-28, 427
Excitatory signal (or input), 225, 245, 247,
407

454

Exclusive or (see Xor function)

Exemplar, 16, 157, 158, 164-66, 169, 218,
427

Extended delta rule, 106, 107-8, 427

F

Fahlman, S. E., 307, 390, 391, 394, 397, 398,
424, 433, 439

Farhat, N. H., 26, 440

Fast learning, 221, 225, 229, 247, 251, 255,
256, 264-67, 270-72, 427 (see also
ART1; ART?; Slow learning)

Fast optimization, 355--56

Fast simulated annealing 359, 446 (see
Cauchy machine)

Fault tolerance, 6, 427

Fausett, D. W, 7, 316, 435, 440

Fausett, L. V., 306, 439, 440

Feedforward network, 12, 102, 427 (see also
Adaline; Backpropagation net;
Cascade correlation; Hebb net;
Madaline; Perceptron; Probabilistic
neural net)

Feedforward phase, 290-91 (see also
Backpropagation training)

Fixed-point cycle, 135

Fixed weight nets, 16, 157, 158-69, 335-62,
427 (see also Boltzmann machine
without learning; Hamming net;
Hopfield net; MAXNET; Mexican hat;
McCulloch-Pitts neuron)

Fukushima, K., 25, 398, 431, 440

Funahashi, K., 328, 440

Function, activation (see Activation
function)

Function approximation, 5, 195, 202-6,
210-11, 314-15, 381-84, 440-43, 447

G

Gain, 427

Gain control units, 224

Gaussian distribution or function, 315, 316,
348, 358, 362, 386-88, 427, 443

Gaussian machine, 334, 357-59, 427, 437

Gelatt, C. D., 26, 342, 442

Geman, D., 26, 342, 440

Geman, S., 26, 342, 440

Generalization, 48, 96, 121, 290, 298, 427,
437, 438 (see also Memorization)

Generalized delta rule, 428 (see
Backpropagation)

Index

Geva, S., 330, 440

Ghosh, S., 11, 433, 439

Gish, H., 189, 443

Global minimum, 306

Gluck, M. A., 37, 440

Golden, R. M., 9, 438

Golub, G. H., 365, 440

Goode, B. B., 24, 447

Gradient , 86-87, 107, 296

Gradient descent, 289, 296, 384 (see also
Backpropagation; Delta rule)

Grandmother cells, 428

Grant, P. M., 330, 439

Griffiths, L. J., 24, 447

Grossberg learning, 199, 428

Grossberg, S., 24, 25, 144, 218, 222, 224,
229, 243, 247, 248, 251, 252, 275, 277,
282, 384, 422, 424, 431, 438, 439, 440

Gulati, S., 385, 438

Gutschow, T., 26

H

Haibt, L. H., 22, 445
Haines, K., 141, 149, 440
Hamming distance, 147, 164, 166, 428
Hamming net, 164-69, 428
application, 166-69
architecture, 165-66
Handwritten character recognition, 8-9,
398-417, 428, 443
Hard limiter 354 (see Step function)
Hardware, 2, 26
Harston, C. T, 11, 441
Hartley, R., 26, 359, 424, 446
Haussler, D., 298, 438
Heaviside function, 17, 434 (see also Step
function)
Hebb learning rule, 22, 23, 40, 48, 96,
102-6, 149, 428
exercises, 150
modified, 362-66, 447
normalization, 105-6, 365
outer products, 104, 111-13
setting the weights 103—4
Hebb net, 48-58, 428
algorithm, 49
application, 50-58
AND function, 50-55
character recognition, 55-56
limitations, 5658
exercises, 97-98
Hebb, D. 0., 22, 48, 96, 149, 441
Hecht-Nielsen, R., 9, 26, 82, 88, 132, 138,
141, 149, 195, 199, 201, 208, 211, 298,
314, 328, 330, 377, 426, 440, 441

Index

Hecht-Nielsen Theorem, 329
Henderson, D., 443
Hertz, J., 76, 105 316, 363, 364, 365, 372,
377 384, 385, 441
Heteroassocnatlve memory, 16, 102, 108-21,
428 (see also Bidirectional associative
memory)
application, 108-21
character recognition, 119-21
procedure, 108-9
simple examples, 110-19
architecture, 108
exercises and projects, 150-51, 152-53
Hidden layers:
backpropagation with two, 320-23
number of, 96, 290, 299, 320
Hidden units, 4, 14, 428
number needed, 303
Hinton, G. E., 25, 26, 289, 330, 334, 337,
338, 346 367, 369, 371, 372, 377, 380,
424, 437, 439, 441, 445
History of neural networks, 22-26, 37
Ho, Y-C., 25, 438
Hoff, M. E 23, 24, 80, 89, 97, 106, 422, 447
Holland, J. H 22, 445
Hopﬁe]d J. 1., 25,121, 130, 135, 136, 137,
139, 149 349, 350, 351, 352, 353, 357,
384, 428, 441, 446
Hopfield net, 12, 25, 135-40, 149, 348-57,
428, 437
capacity, 140
continuous, 16, 334, 348—57
algorithm, 350-51
analysis, 352-57
application, 351-52
architecture, 350
discrete, 135~-40
algorithm, 136-38
analysis, 139-40
application, 138-39
architecture, 136
Hornik, K., 329, 441
Howard, R. E., 443
Hubbard, W., 443
Hubel, D. H., 398, 441
Hybrld learnmg (see Counterpropagation)
Hyperbolic tangent function (tanh), 17, 19,
293, 298, 350, 351, 358, 434
Hyperplanes 43

I

Image compression, 302-4 (see also Data
compression)

Inhibited cluster unit, 219-20, 224, 251

Inhibitory connection, 27, 428

455

Inhibitory sngnal (or input), 27, 225, 245,
247, 4

Inner product (see Dot product)

Input units, 4, 428

Input vector, 16, 20

Instant physician, 9

Iteration, 428-29

Iterative net, 12, 102 (see also Recurrent
network)

Ito, T., 25, 398, 431, 440

J

Jackel, D., 443

Jacobs, R. A., 306, 307, 308, 426, 441
Jain, A. K., 442

Jeong, H., 348 359, 361, 362, 442
Johnson, R C., 6,23, 26, 36, 442
Jones, R. S., 24 438

Jordan M., 329 442

K

Kabrisky, M., 7, 445

Kajiura, M., 357, 427, 437

Kangas, J., 24, 442

Kawato, M., 304, 446

Kesten, H., 307, 442

Kil, R. M., 316, 330, 443

Kirkpatrick, S., 26, 342, 442

Klimasauskas, C C., 24, 26, 442

Kohonen learning, 157 199, 429 (see also
Self-organizing map)

Kohonen, T., 7, 10, 22, 24, 101, 102, 104,
149, 157 160, 161, 169, 172, 178, 179,
182, 187, 189, 192, 194, 195, 211, 268,
429, 430, 432, 434, 442

Kohonen unit, 206

Kolmogorov, A. N., 328, 442

Kolmogorov theorem 328-29, 441

Korst, J., 37, 337, 338, 339, 424, 437

Kosko, B 36, 140, 141, 143, 144, 148, 149,
423, 442, 443

Kramer, M. A., 316, 443

Kreinovich, V. Y 330, 443

Krogh, A., 76, 105 316, 363, 364, 365, 372,
377, 384, 385 441

L

Lawler, E. L., 335, 443
Lawrence, J., 299, 443

456

Layer, 12, 429
cluster, 196
competitive, 14
hidden, 12
output, 12
Learning algorithm, 429 (see Algorithm)
Learning rate, 21, 429
Adaline, 82
ART2, 256
backpropagation, 292, 305, 306~9
perceptron, 59, 61
self-organizing map, 172
Learning rate adjustment:
backpropagation; 306-9, 439, 441, 447
self-organizing map, 172
Learning rules: (see also Algorithm;
Supervised training; Unsupervised
training)
delta rule, 107
Grossberg, 199, 208
Kohonen, 170, 199, 207
Oja, 363, 364
outstar, 199
Sanger, 364
Learning trial, 220, 221, 250, 255, 429
Learning vector quantization (LVQ), 16,
157, 187-95, 211, 212-13, 215, 429,
442
algorithm, 188-89
application, 189-93
geometric example, 190-93
simple éxample, 189-90
architecture, 187-88
exercises and projects, 212-13, 215
variations, 192-95
LVQ2, 192-94
LVQ2.1, 194-95
LvQ3, 195
Least-mean-square (LMS), 23, 80, 426
Lebiere, C., 390, 391, 394, 424, 433, 439
Le Cun, Y., 9, 25, 443
Lee, S., 316, 330, 386, 443
Lehr, M. A., 24, 88, 91, 97, 430, 447
Lenstra, J. K., 335, 443
Leonard, J. A., 316, 443
Le Texier, J-Y., 24, 172, 185, 211, 438
Levine, D. S., 37, 443
Linear autoassociator, 429
Linear independence, 106
Linear separability, 43-47, 429
AND function, 44-45
OR function, 46-47
Xor function, (non-separability of) 47
Linear threshold units, 429
Linear units, 363
Lippmann, R. P., 10, 15, 158, 164, 211, 229,
425, 428, 443
LMS rule (see Delta rule; Least-mean-
square)

Index

Local minima, 306

Logic functions, 22, 28, 429 (see AND
function; Anp Nor function; Or
function; Xor function)

Logistic sigmoid function (see Sigmoid)

Long term memory, 430

Look-up table, 195, 196, 202

LVQ (see Learning vector quantization)

Lyapunov function, 135, 138, 139, 148-49,
430 (see also Energy function)

Lyapunov, A. M., 135

M

McClelland, J. L., 22, 25, 48, 105, 106, 121,
130, 132, 289, 303, 330, 372, 373, 423,
432, 443, 445
McCulloch, W. S., 22, 23, 26, 31, 37, 430,
443, 444
McCulloch-Pitts input/output function, 354
(see Step function)
McCulloch-Pitts neuron, 2, 22, 26-35, 430
activation function, 27
applications, 29-35
AND function, 29
AND Nor function, 30
Hot and Cold, 31-35
Or function, 29
Xor function, 30
architecture, 27-28
assumptions, 26-27
exercises, 37-38
McEliece, R. J., 140, 443
MacGregor, R. 1., 37, 443
MADALINE, 24, 40, 41, 48, 81, 88-96, 97,
430, 447
algorithm, 89-92
MRI, 89-91
MRII, 91-92
application, 92-96
Xor function, 92-95
architecture, 88-89
exercises and projects, 99-100
Mahowald, M. A., 26, 446
Makhoul, J., 189, 443
Mantley, P. E., 24, 447
Mapping networks (see Backpropagation;
Counterpropagation; Pattérn
association; Pattern classification)
Maren, A. J., 360, 424, 446
Markov chain:
Boltzmann machine, 347-48
Cauchy machine, 361-62
Matrix-multiplication notation, 21
MaxNET, 15, 156, 158-60

Index

application, 159-60
architecture, 159
Mazaika, P. K., 443
Mead, C. A., 26, 446
Mean squared error, 80, 430
Medicine (applications of neural networks):
heart abnormalities, 39, 389, 446
instant physician, 9
Mehrotra, K. G., 320, 444
Memory (see Content addressable memory;
Long term memory; Short term
memory)
Memorization, 289, 298, 430 (see also
Generalization)
Metropolis, N. A., 347, 444
Metropolis condition, 347
Mexican hat, 156, 158, 160-64, 430
algorithm, 161-63
application, 163-64
architecture, 161
Miller, W. T., 8, 36, 444
Mingolla, E., 424, 440
Minsky, M. L., 23, 24, 37, 39, 43, 48, 76,
79, 80, 97, 432, 444
Missing data, 118-19, 124, 133-34, 430
Mistakes in data, 115, 118-20, 123-24, 134,
138-39, 430
Miyake, S., 25, 304, 398, 431, 440, 446
Mohan, C. K., 320, 444
Momentum, 430
Moody, J., 316, 444
Mortgage assessment, 11, 439
Multilayer network 13-14 (see
Backpropagation; Backpropagation in
time; Counterpropagation; Cascade
correlation; MADALINE;
Neocognitron; Probabilistic neural
net; Simple recurrent net)
Multilayer perceptron, 430 (see
Backpropagation net)
Munro, P., 302, 304, 439
Murphy, G. L., 9, 438
Musical composition, 24, 442

N

Nakane, K., 304, 446
Namphol, A., 304, 438
Neighborhood, 10, 169~71 (see also Self-
organizing map)
hexagonal, 171, 178, 18t
linear, 170, 176, 202, 208, 210
rectangular, 171, 178, 180-81
Neocognitron, 9, 25, 335, 398-417, 431, 440
algorithm, 40717
training patterns, 411-17

487

training process, 408—11
architecture, 399-406
Net input, 3, 20, 21, 431
NETtalk, 10, 289, 445
Network (see Applications; Architectures;
Feedforward network; Multilayer
network; Recurrent network; Single-
layer neural net)
Neural nets, 431 (see Neural networks)
Neural networks, 431
artificial, 3-5
characteristics, 3, 6
history, 22-26, 36
biological, 5-7, 37
interest:
interdisciplinary, 2, 7, 22, 23
renewed, 2
optical, 26
Neurocomputing, 2, 35, 431
Neuron, 3, 431
artificial, 4
biological, 6-7
Nguyen, D., 8, 24, 297, 330, 436, 444
Nguyen-Widrow initialization, 297-98
Node, 3, 431 (see also Neuron)
Noise, 431 (see also Missing data; Mistakes
in data)
colored (Cauchy), 359
suppression in ART, 246, 250, 251, 255,
260-61
used to generate training data, 367
white (Gaussian), 359
Norm of vector, 20, 225 (see also Euclidean
distance; Dot product metric)
Normalization:
adaptive resonance theory, 226-27,
246-47, 250
dot product metric, 158, 196
Hebb rule, 105-6, 365
neocognitron, 407
probabilistic neural net, 388
Notation, 20-21

o

Oja, E., 334, 363, 364, 365, 366, 444, 447
Oja learning rule:
1-unit, 363-64
M-units, 364—65 (see also Sanger rule)
Optical neural networks, 26, 440, 446
Optimization (see Combinatorial
optimization; Constrained
optimization)
Or function, 29, 46-47, 85-86
Orthogonal vectors (or patterns), 105, 122,
126, 129, 431

458

Outer product, 104, 431

Output, 431
function (see Activation function)
layer, 12
unit, 4, 431

Outstar, 431

P

Paek, E., 26, 440
Palmer, R. G., 76, 105, 316, 363, 364, 365,
372, 377, 384, 385, 441
Pao, Y-H., 37, 440
Papert, S. A., 23, 24, 37, 39, 43, 59, 76, 79,
97, 432, 444
Parallel distributed processing, 25, 443, 445
Park, J., 316, 444
Park, J. H., 348, 359, 361, 362, 442
Parker, D., 25, 444
Pattern, 431
Pattern association, 14, 15-16, 101-55, 195,
432 (see also Autoassociative
memory; Bidirectional associative
memory; Heteroassociative memory;
Hopfield net)
Pattern associator, 432
Pattern classification, 12, 15, 39-100, 432
(see also ADALINE; Backpropagation;
Cascade correlation; Hebb net;
Learning vector quantization;
Neocognitron; Perceptron;
Probabilistic neural net)
Pattern classifier, 432
Pattern recognition, 8-9, 37 (see also
Character recognition)
Pawley, G. S., 336, 352, 353, 447
Pellionisz, A., 24, 35, 282, 438
Perceptron, 23, 37, 59-80, 96-97, 432, 438,
444, 445, 447
activation function, 59
algorithm, 23, 61
application, 62-76
AnD function, 62-69
character recognition, 71-76
simple example, 69-71-
architecture, 60
convergence theorem, 76-80
exercises and projects, 98-99, 100
learning rule, 23, 40, 59, 432
Phonetic typewriter, 10, 432, 442
Pineda, F. J., 384, 444
Pitts, W., 22, 23, 26, 31, 430, 443, 444
Plasticity, 219, 432
Poggio, T., 316, 444
Posner, E. C., 140, 443

Index

Prata, A., 26, 440
Principal components, 363-65, 432
Probabilistic neural net, 316, 335, 446,
385-89, 432
algorithm, 388
analysis, 389
application, 388-89
architecture, 387
Problems solved by neural nets, 3, 15
clustering, 16 (see Adaptive resonance
theory; Self-organizing map)
constrained optimization, 16, 25 (see
Boltzmann machine without learning;
Hopfield net, continuous)
mapping, 16 (see Backpropagation;
Counterpropagation; Pattern
association; Pattern classification)
Probabilistic state transition (see Acceptance
probability)
Processing element, 432 (see also Neuron;
Unit)
Psaltis, D., 26, 440

Qian, N., 385, 444
QuickProp, 390, 397-98, 433

R

Radial basis function, 330, 427, 433, 443
Radial basis function network, 316, 439, 444
Ranka, S., 320, 444

Reber, A. S., 374, 445

Recurrent network, 12, 102, 433 (see also
Bidirectional associative memory;
Boltzmann machine; Hopfield net;
MAXNET; Recurrent nets trained by
backpropagation)

Recurrent nets trained by backpropagation,
8, 335, 372-85, 444 (see also
Backpropagation for fully recurrent
net; Backpropagation in time; Simple
recurrent net)

Reduced (or restricted) coulomb energy
network, 26, 433

Regularization network, 316

Relaxation, 433

Reset unit (or mechanism), 219, 222, 223,
224-25, 251, 279-81

Resonance, 221, 433

Rezgui, A., 313, 447

Rinnooy Kan, A. H. G., 335, 443

Index

Ritz, S. A., 24, 438

Rochester, N., 22, 445

Rodemich, E. R., 140, 443

Rogers, S. K., 7, 445

Rosario, R., 313, 447

Rosenberg, C. R., 10, 445

Rosenblatt, F., 23, 59, 97, 432, 434, 445

Rosenbluth, A. W., 347, 444

Rosenbluth, M. N., 347, 444

Rosenfeld, E., 22, 23, 24, 35, 149, 282, 398,
438

Roucos, S., 189, 443

Rumelhart, D. E., 22, 25, 37, 48, 105, 106,
121, 130, 132, 289, 303, 330, 377, 380,
423, 432, 440, 443, 445

S

St Jacques, J.-M., 140, 437
Sandberg, 1. W., 316, 444
Sanger, T. D., 364, 365, 445
Sanger learning rule, 364
Saridis, G. N., 307, 445
Saturate, 293, 433
Scalero, R., 313, 447
Schneider, M., 306, 439
Scofield, C. L., 11, 426, 433, 439, 445
Sejnowski, T. J., 10, 26, 334, 337, 338, 346,
367, 368, 369, 371, 372, 385, 424, 437,
439, 441, 444, 445
Self-organization, 149, 433, 442 (see also
ARTI1; ART2; Self-organizing map)
Self-organizing map (SOM), 7, 10, 16, 24,
157, 169-87, 211, 433, 438 (see also
Neighborhood)
algorithm, 170-72
application, 172-87
character recognition, 17678
geometric, 178-85
simple example, 172-75
spanning tree, 17881
traveling salesman problem, 182-87
architecture, 169-71
exercises and projects, 211-12, 214-15
Self-supervised learning, 15, 365
Sequential updates, 135, 140, 339, 348 (see
also Asynchronous updates;
Synchronous updates)
Servan-Schreiber, D., 372, 373, 374, 375,
445
Shmoys, D. B., 335, 443
Short term memory, 433
Shozakai, M., 24, 442
Sigmoid functions, 17-19, 433
arctangent, 313, 433

459

binary range (logistic), 4, 17-18, 143, 293,
423, 433
bipolar range, 18—19, 293-94, 424, 434
customizing, 309-12
hyperbolic tangent (tanh), 17, 19, 293,
298, 350, 351, 358, 434
Signal processing, 7, 36, 37, 97, 443, 447
Signals, 3, 5, 434 (see also Bottom-up
signals; Excitatory signals; Inhibitory
signals; Top-down signals)
Silva, F. M., 307, 445
Silverstein, J. W., 24, 438
Simmons, G. F., 135, 445
Simple recurrent net, 372-77, 445
algorithm, 373
application, 373-77
architecture, 372-73
Simulated annealing, 26, 37, 339, 434, 437,
442 (see also Cooling schedule)
Sinc (damped sine) function, 381-84
Single-layer neural net, 12-14, 434 (see also
Pattern association; Pattern
classification)
Single-layer perceptron, 434
Sitte, J., 330, 440
Sivilatti, M. A., 26, 446
Slab, 434
Slope (or steepness) parameter, 18, 434
Slow learning, 221, 247, 251, 255, 25657,
268, 270-72 (see also ART1; ART2;
Fast learning)
SOM (see Self-organizing map)
Soma, 5, 434
Sonehara, N., 304, 446
Spanning tree:
clustering using ART2, 270-72
clustering using self-organizing maps,
178-81
data, 179, 269, 287, 434
Specht, D. F., 39, 385, 389, 432, 446
Speech production, 9-10
Speech recognition, 10, 24, 443
Squared error, 86, 87, 107, 434 .
Squashing function, 329
Sprecher, D. A., 328, 446
Sprecher theorem, 329
Stable state, 434
spurious, 138, 434
Stability, 218-19, 251, 434
Stearns, S. D., 7, 37, 97, 306, 426, 447
Steepness parameter (see Slope parameter)
Step function, 17-18, 27, 41, 109, 434
Stinchcombe, M., 329, 441
Storage capacity (see Capacity)
Storing vectors, 121, 125-29
Strength, 434 (see Weight)
Strictly local backpropagation, 316-19, 435,
440

460

Suen, C. Y., 365, 366, 447

Supervised training, 15-16, 157, 289, 435
(see also Hebb rule; Delta rule;
Backpropagation)

Sutton, R. S., 8, 36, 307, 438, 444, 446

Synapse, 435

Synaptic units, 316~19

Synchronous processing, 435

Synchronous updates, 131, 148, 435

Szu, H. H., 26, 121, 127, 135, 336, 352, 354,
356, 359, 360, 361, 424, 446

T

Takefuji, Y., 335, 348, 354, 357, 359, 430,
446
Tank, D. W., 25, 135, 149, 349, 350, 351,
352, 353, 441, 446
Target (or target vector), 289, 291, 292, 435
Teller, A. H., 347, 444
Teller, E., 347, 444
Telephone noise suppression, 7, 426
Temperature, 339, 358
Tepedelenlioglu, N., 313, 447
Tesauro, G., 299, 437
Thalamic units, 316-19
Thermal equilibrium, 346
Threshold, 17, 20, 27, 41, 59, 61, 62, 435
Threshold function, 435 (see Step function)
Tolat, V. V., 24, 447
Tolerance, 303, 435
Top-down signals, 221, 225, 246
Top-down weights, 219, 222-23, 225, 247,
256, 435
initial values, 246, 282
Topology preserving map, 169 (see Self-
organizing map)
Topological neighborhood, 169-171, 435 (see
Neighborhood)
Torkkola, K., 24, 442
Total least squares, 365
Total squared error, 83, 84, 85, 91, 289, 298,
435
Training (see also Supervised training;
Unsupervised training)
algorithm, 436 (see also Algorithm)
epoch, 436 (see Epoch)
input vector, 20
set (how many patterns), 298, 444
output vector, 20 (see also Target vector)
Transfer function, 436 (see Activation
function)
Traveling salesman problem, 24, 25, 172,
182, 211, 335-37, 436, 438, 439, 447
architecture, 338, 343-44, 350
results:
Boltzmann machine, 344-46
Boltzmann/Cauchy hybrid, 360
Cauchy machine, 360

Index

fast optimization, 354—56

Hopfield net, 351-52

self-organizing map, 182-187

Wilson and Pawley, 352-54

setting the weights, 340-41, 344, 350

Wilishaw initialization, 354-55
Truck-backer-upper, 8, 24, 436, 444
Two-thirds rule, 225

U

Underrepresented classes, 306, 436

Ungar, L. H., 316, 443

Unit, 3, 436 (see also Cluster unit; Context
unit; Cortical unit; Hidden unit; Input
unit; Kohonen unit; Linear unit;
Output unit; Synaptic unit; Thalamic
unit)

Unlearning, 148

Unsupervised learning, 16, 157, 170-72, 218,
221-22, 225-29, 250-57, 362-366, 436

Updating (see Asynchronous updating;
Batch updating; Synchronous
updating)

V

Van Loan, C. F., 365, 440
Vaubois, G., 24, 172, 185, 211, 438

Vecchi, M. P., 26, 342, 442

Vector, 436

Vector quantization, 436 (see also Learning
vector quantizatiom)

Vemuri, V., 398, 447

Venkatesh, S. S., 140, 443

Venta, O., 24, 442 -

Vigilance parameter, 220, 225-29, 256, 281,
422, 436

effect on cluster formation, 23042,

270-72

VLSI implementations, 26

Von Neumann, J., 23, 447

W

Weight, 3, 20, 436
Weight change, 21 (see also Fixed weight
nets)
backpropagation, 295-96, 325
backpropagation, 295-96, 325
Boltzmann machine, 367
cascade correlation (QuickProp), 397

Index 461

counterpropagation, 199, 207-8 X
delta rule (Adaline), 86, 87, 107
extended delta rule, 107

Hebb rule, 49 .
Kohonen learning, 157 Xor fu;l(;:élo;ll,430—3l, 47, 92-95, 300-302,
modified Hebb, 363, 364, 365)

perceptron, 59 Xu, L., 365, 366, 447

Weight matrix, 20
symmetric, 130, 132, 135, 140, 149, 158,
348, 357
Weight vector, 20 Y
Weir, M., 307, 447
Werbos, P. J., 8, 25, 36, 444, 447
White, H., 329, 330, 441, 447 Yamashita, A., 357, 366, 447
Widrow, B., 7, 8, 23, 24, 37, 39, 40, 80, 82,
88, 89, 91, 97, 106, 297, 306, 330, 422,
426, 430, 436, 444, 447
Widrow-Hoff learning rule, 23, 80, 422, 426,
436 (see also Delta rule) Z
Wiesel, T. N., 398, 441
Williams, R. J., 25, 289, 330, 377, 380, 445

Willshaw, D. J., 354, 439 Zak, M., 385, 438

Wilson, G. V., 336, 352, 353, 447 Zeitouni, O., 426, 438

Winner-take-all, 15, 156, 158-60, 206, 247, Zeroing out the diagonal, 121, 124-25, 135,
251, 425, 436 140, 149

Winter, R. G., 82, 89, 91, 447 Zipser, D., 302, 304, 439

