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Preface

When something can be read without effort, 
great effort has gone into its writing.

Enrique Jardiel Poncela

This edition of Digital Image Processing is a major revision of the book. As in
the 1977 and 1987 editions by Gonzalez and Wintz, and the 1992 and 2002 edi-
tions by Gonzalez and Woods, this fifth-generation edition was prepared with
students and instructors in mind.The principal objectives of the book continue
to be to provide an introduction to basic concepts and methodologies for digi-
tal image processing, and to develop a foundation that can be used as the basis
for further study and research in this field. To achieve these objectives, we
focused again on material that we believe is fundamental and whose scope of
application is not limited to the solution of specialized problems. The mathe-
matical complexity of the book remains at a level well within the grasp of
college seniors and first-year graduate students who have introductory prepa-
ration in mathematical analysis, vectors, matrices, probability, statistics, linear
systems, and computer programming. The book Web site provides tutorials to
support readers needing a review of this background material.

One of the principal reasons this book has been the world leader in its field
for more than 30 years is the level of attention we pay to the changing educa-
tional needs of our readers. The present edition is based on the most extensive
survey we have ever conducted. The survey involved faculty, students, and in-
dependent readers of the book in 134 institutions from 32 countries.The major
findings of the survey indicated a need for:

● A more comprehensive introduction early in the book to the mathemati-
cal tools used in image processing.

● An expanded explanation of histogram processing techniques.
● Stating complex algorithms in step-by-step summaries.
● An expanded explanation of spatial correlation and convolution.
● An introduction to fuzzy set theory and its application to image processing.
● A revision of the material dealing with the frequency domain, starting

with basic principles and showing how the discrete Fourier transform fol-
lows from data sampling.

● Coverage of computed tomography (CT).
● Clarification of basic concepts in the wavelets chapter.
● A revision of the data compression chapter to include more video com-

pression techniques, updated standards, and watermarking.
● Expansion of the chapter on morphology to include morphological recon-

struction and a revision of gray-scale morphology.

xv
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● Expansion of the coverage on image segmentation to include more ad-
vanced edge detection techniques such as Canny’s algorithm, and a more
comprehensive treatment of image thresholding.

● An update of the chapter dealing with image representation and description.
● Streamlining the material dealing with structural object recognition.

The new and reorganized material that resulted in the present edition is our
attempt at providing a reasonable degree of balance between rigor, clarity of
presentation, and the findings of the market survey, while at the same time
keeping the length of the book at a manageable level. The major changes in
this edition of the book are as follows.

Chapter 1: A few figures were updated and part of the text was rewritten to
correspond to changes in later chapters.

Chapter 2: Approximately 50% of this chapter was revised to include new
images and clearer explanations. Major revisions include a new section on
image interpolation and a comprehensive new section summarizing the
principal mathematical tools used in the book. Instead of presenting “dry”
mathematical concepts one after the other, however, we took this opportu-
nity to bring into Chapter 2 a number of image processing applications that
were scattered throughout the book. For example, image averaging and
image subtraction were moved to this chapter to illustrate arithmetic opera-
tions.This follows a trend we began in the second edition of the book to move
as many applications as possible early in the discussion not only as illustra-
tions, but also as motivation for students. After finishing the newly organized
Chapter 2, a reader will have a basic understanding of how digital images are
manipulated and processed.This is a solid platform upon which the rest of the
book is built.

Chapter 3: Major revisions of this chapter include a detailed discussion of
spatial correlation and convolution, and their application to image filtering
using spatial masks. We also found a consistent theme in the market survey
asking for numerical examples to illustrate histogram equalization and specifi-
cation, so we added several such examples to illustrate the mechanics of these
processing tools. Coverage of fuzzy sets and their application to image pro-
cessing was also requested frequently in the survey. We included in this chap-
ter a new section on the foundation of fuzzy set theory, and its application to
intensity transformations and spatial filtering, two of the principal uses of this
theory in image processing.

Chapter 4: The topic we heard most about in comments and suggestions
during the past four years dealt with the changes we made in Chapter 4 from
the first to the second edition. Our objective in making those changes was to
simplify the presentation of the Fourier transform and the frequency domain.
Evidently, we went too far, and numerous users of the book complained that
the new material was too superficial.We corrected that problem in the present
edition.The material now begins with the Fourier transform of one continuous
variable and proceeds to derive the discrete Fourier transform starting with
basic concepts of sampling and convolution. A byproduct of the flow of this
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material is an intuitive derivation of the sampling theorem and its implica-
tions.The 1-D material is then extended to 2-D, where we give a number of ex-
amples to illustrate the effects of sampling on digital images, including aliasing
and moiré patterns. The 2-D discrete Fourier transform is then illustrated and
a number of important properties are derived and summarized. These con-
cepts are then used as the basis for filtering in the frequency domain. Finally,
we discuss implementation issues such as transform decomposition and the
derivation of a fast Fourier transform algorithm.At the end of this chapter, the
reader will have progressed from sampling of 1-D functions through a clear
derivation of the foundation of the discrete Fourier transform and some of its
most important uses in digital image processing.

Chapter 5: The major revision in this chapter was the addition of a section
dealing with image reconstruction from projections, with a focus on computed
tomography (CT). Coverage of CT starts with an intuitive example of the un-
derlying principles of image reconstruction from projections and the various
imaging modalities used in practice. We then derive the Radon transform and
the Fourier slice theorem and use them as the basis for formulating the con-
cept of filtered backprojections. Both parallel- and fan-beam reconstruction
are discussed and illustrated using several examples. Inclusion of this material
was long overdue and represents an important addition to the book.

Chapter 6: Revisions to this chapter were limited to clarifications and a few
corrections in notation. No new concepts were added.

Chapter 7: We received numerous comments regarding the fact that the
transition from previous chapters into wavelets was proving difficult for be-
ginners. Several of the foundation sections were rewritten in an effort to make
the material clearer.

Chapter 8: This chapter was rewritten completely to bring it up to date. New
coding techniques, expanded coverage of video, a revision of the section on
standards, and an introduction to image watermarking are among the major
changes. The new organization will make it easier for beginning students to
follow the material.

Chapter 9: The major changes in this chapter are the inclusion of a new sec-
tion on morphological reconstruction and a complete revision of the section
on gray-scale morphology. The inclusion of morphological reconstruction for
both binary and gray-scale images made it possible to develop more complex
and useful morphological algorithms than before.

Chapter 10: This chapter also underwent a major revision. The organization
is as before, but the new material includes greater emphasis on basic principles
as well as discussion of more advanced segmentation techniques. Edge models
are discussed and illustrated in more detail, as are properties of the gradient.
The Marr-Hildreth and Canny edge detectors are included to illustrate more
advanced edge detection techniques.The section on thresholding was rewritten
also to include Otsu’s method, an optimum thresholding technique whose pop-
ularity has increased significantly over the past few years. We introduced this
approach in favor of optimum thresholding based on the Bayes classifica-
tion rule, not only because it is easier to understand and implement, but also
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because it is used considerably more in practice. The Bayes approach was
moved to Chapter 12, where the Bayes decision rule is discussed in more detail.
We also added a discussion on how to use edge information to improve thresh-
olding and several new adaptive thresholding examples. Except for minor clar-
ifications, the sections on morphological watersheds and the use of motion for
segmentation are as in the previous edition.

Chapter 11: The principal changes in this chapter are the inclusion of a
boundary-following algorithm, a detailed derivation of an algorithm to fit a
minimum-perimeter polygon to a digital boundary, and a new section on co-
occurrence matrices for texture description. Numerous examples in Sections
11.2 and 11.3 are new, as are all the examples in Section 11.4.

Chapter 12: Changes in this chapter include a new section on matching by
correlation and a new example on using the Bayes classifier to recognize re-
gions of interest in multispectral images. The section on structural classifica-
tion now limits discussion only to string matching.

All the revisions just mentioned resulted in over 400 new images, over 200
new line drawings and tables, and more than 80 new homework problems.
Where appropriate, complex processing procedures were summarized in the
form of step-by-step algorithm formats. The references at the end of all chap-
ters were updated also.

The book Web site, established during the launch of the second edition, has
been a success, attracting more than 20,000 visitors each month. The site was
redesigned and upgraded to correspond to the launch of this edition. For more
details on features and content, see The Book Web Site, following the
Acknowledgments.

This edition of Digital Image Processing is a reflection of how the educa-
tional needs of our readers have changed since 2002. As is usual in a project
such as this, progress in the field continues after work on the manuscript stops.
One of the reasons why this book has been so well accepted since it first ap-
peared in 1977 is its continued emphasis on fundamental concepts—an ap-
proach that, among other things, attempts to provide a measure of stability in
a rapidly-evolving body of knowledge. We have tried to follow the same prin-
ciple in preparing this edition of the book.

R. C. G.
R. E. W.
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The Book Web Site

www.prenhall.com/gonzalezwoods
or its mirror site,

www.imageprocessingplace.com

Digital Image Processing is a completely self-contained book. However, the
companion Web site offers additional support in a number of important areas.

For the Student or Independent Reader the site contains

● Reviews in areas such as probability, statistics, vectors, and matrices.
● Complete solutions to selected problems.
● Computer projects.
● A Tutorials section containing dozens of tutorials on most of the topics

discussed in the book.
● A database containing all the images in the book.

For the Instructor the site contains

● An Instructor’s Manual with complete solutions to all the problems in the
book, as well as course and laboratory teaching guidelines. The manual is
available free of charge to instructors who have adopted the book for
classroom use.

● Classroom presentation materials in PowerPoint format.
● Material removed from previous editions, downloadable in convenient

PDF format.
● Numerous links to other educational resources.

For the Practitioner the site contains additional specialized topics such as

● Links to commercial sites.
● Selected new references.
● Links to commercial image databases.

The Web site is an ideal tool for keeping the book current between editions by
including new topics, digital images, and other relevant material that has ap-
peared after the book was published.Although considerable care was taken in
the production of the book, the Web site is also a convenient repository for any
errors that may be discovered between printings. References to the book Web
site are designated in the book by the following icon:
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Introduction

Preview
Interest in digital image processing methods stems from two principal applica-
tion areas: improvement of pictorial information for human interpretation; and
processing of image data for storage, transmission, and representation for au-
tonomous machine perception.This chapter has several objectives: (1) to define
the scope of the field that we call image processing; (2) to give a historical per-
spective of the origins of this field; (3) to give you an idea of the state of the art
in image processing by examining some of the principal areas in which it is ap-
plied; (4) to discuss briefly the principal approaches used in digital image pro-
cessing; (5) to give an overview of the components contained in a typical,
general-purpose image processing system; and (6) to provide direction to the
books and other literature where image processing work normally is reported.

1.1 What Is Digital Image Processing?

An image may be defined as a two-dimensional function, , where x and
y are spatial (plane) coordinates, and the amplitude of f at any pair of coordi-
nates (x, y) is called the intensity or gray level of the image at that point. When
x, y, and the intensity values of f are all finite, discrete quantities, we call the
image a digital image. The field of digital image processing refers to processing
digital images by means of a digital computer. Note that a digital image is com-
posed of a finite number of elements, each of which has a particular location

f(x, y)

1

One picture is worth more than ten thousand words.
Anonymous

1
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and value.These elements are called picture elements, image elements, pels, and
pixels. Pixel is the term used most widely to denote the elements of a digital
image. We consider these definitions in more formal terms in Chapter 2.

Vision is the most advanced of our senses, so it is not surprising that images
play the single most important role in human perception. However, unlike hu-
mans, who are limited to the visual band of the electromagnetic (EM) spec-
trum, imaging machines cover almost the entire EM spectrum, ranging from
gamma to radio waves. They can operate on images generated by sources that
humans are not accustomed to associating with images. These include ultra-
sound, electron microscopy, and computer-generated images. Thus, digital
image processing encompasses a wide and varied field of applications.

There is no general agreement among authors regarding where image
processing stops and other related areas, such as image analysis and comput-
er vision, start. Sometimes a distinction is made by defining image processing
as a discipline in which both the input and output of a process are images. We
believe this to be a limiting and somewhat artificial boundary. For example,
under this definition, even the trivial task of computing the average intensity
of an image (which yields a single number) would not be considered an
image processing operation. On the other hand, there are fields such as com-
puter vision whose ultimate goal is to use computers to emulate human vi-
sion, including learning and being able to make inferences and take actions
based on visual inputs. This area itself is a branch of artificial intelligence
(AI) whose objective is to emulate human intelligence. The field of AI is in
its earliest stages of infancy in terms of development, with progress having
been much slower than originally anticipated. The area of image analysis
(also called image understanding) is in between image processing and com-
puter vision.

There are no clear-cut boundaries in the continuum from image processing
at one end to computer vision at the other. However, one useful paradigm is
to consider three types of computerized processes in this continuum: low-,
mid-, and high-level processes. Low-level processes involve primitive opera-
tions such as image preprocessing to reduce noise, contrast enhancement, and
image sharpening. A low-level process is characterized by the fact that both
its inputs and outputs are images. Mid-level processing on images involves
tasks such as segmentation (partitioning an image into regions or objects), de-
scription of those objects to reduce them to a form suitable for computer pro-
cessing, and classification (recognition) of individual objects. A mid-level
process is characterized by the fact that its inputs generally are images, but its
outputs are attributes extracted from those images (e.g., edges, contours, and
the identity of individual objects). Finally, higher-level processing involves
“making sense” of an ensemble of recognized objects, as in image analysis, and,
at the far end of the continuum, performing the cognitive functions normally
associated with vision.

Based on the preceding comments, we see that a logical place of overlap be-
tween image processing and image analysis is the area of recognition of indi-
vidual regions or objects in an image. Thus, what we call in this book digital
image processing encompasses processes whose inputs and outputs are images
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FIGURE 1.1 A
digital picture
produced in 1921
from a coded tape
by a telegraph
printer with
special type faces.
(McFarlane.†)

and, in addition, encompasses processes that extract attributes from images, up
to and including the recognition of individual objects.As an illustration to clar-
ify these concepts, consider the area of automated analysis of text. The
processes of acquiring an image of the area containing the text, preprocessing
that image, extracting (segmenting) the individual characters, describing the
characters in a form suitable for computer processing, and recognizing those
individual characters are in the scope of what we call digital image processing
in this book. Making sense of the content of the page may be viewed as being in
the domain of image analysis and even computer vision, depending on the level
of complexity implied by the statement “making sense.”As will become evident
shortly, digital image processing, as we have defined it, is used successfully in a
broad range of areas of exceptional social and economic value. The concepts
developed in the following chapters are the foundation for the methods used in
those application areas.

1.2 The Origins of Digital Image Processing

One of the first applications of digital images was in the newspaper indus-
try, when pictures were first sent by submarine cable between London and
New York. Introduction of the Bartlane cable picture transmission system
in the early 1920s reduced the time required to transport a picture across
the Atlantic from more than a week to less than three hours. Specialized
printing equipment coded pictures for cable transmission and then recon-
structed them at the receiving end. Figure 1.1 was transmitted in this way
and reproduced on a telegraph printer fitted with typefaces simulating a
halftone pattern.

Some of the initial problems in improving the visual quality of these early
digital pictures were related to the selection of printing procedures and the
distribution of intensity levels. The printing method used to obtain Fig. 1.1 was
abandoned toward the end of 1921 in favor of a technique based on photo-
graphic reproduction made from tapes perforated at the telegraph receiving
terminal. Figure 1.2 shows an image obtained using this method. The improve-
ments over Fig. 1.1 are evident, both in tonal quality and in resolution.

†References in the Bibliography at the end of the book are listed in alphabetical order by authors’ last
names.



4 Chapter 1 ■ Introduction

FIGURE 1.2 A
digital picture
made in 1922
from a tape
punched after the
signals had
crossed the
Atlantic twice.
(McFarlane.)

FIGURE 1.3
Unretouched
cable picture of
Generals Pershing
and Foch,
transmitted in
1929 from
London to New
York by 15-tone
equipment.
(McFarlane.)

The early Bartlane systems were capable of coding images in five distinct
levels of gray. This capability was increased to 15 levels in 1929. Figure 1.3 is
typical of the type of images that could be obtained using the 15-tone equip-
ment. During this period, introduction of a system for developing a film plate
via light beams that were modulated by the coded picture tape improved the
reproduction process considerably.

Although the examples just cited involve digital images, they are not con-
sidered digital image processing results in the context of our definition be-
cause computers were not involved in their creation. Thus, the history of
digital image processing is intimately tied to the development of the digital
computer. In fact, digital images require so much storage and computational
power that progress in the field of digital image processing has been depen-
dent on the development of digital computers and of supporting technologies
that include data storage, display, and transmission.

The idea of a computer goes back to the invention of the abacus in Asia
Minor, more than 5000 years ago. More recently, there were developments in
the past two centuries that are the foundation of what we call a computer today.
However, the basis for what we call a modern digital computer dates back to
only the 1940s with the introduction by John von Neumann of two key con-
cepts: (1) a memory to hold a stored program and data, and (2) conditional
branching. These two ideas are the foundation of a central processing unit
(CPU), which is at the heart of computers today. Starting with von Neumann,
there were a series of key advances that led to computers powerful enough to
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be used for digital image processing. Briefly, these advances may be summa-
rized as follows: (1) the invention of the transistor at Bell Laboratories in 1948;
(2) the development in the 1950s and 1960s of the high-level programming lan-
guages COBOL (Common Business-Oriented Language) and FORTRAN
(Formula Translator); (3) the invention of the integrated circuit (IC) at Texas
Instruments in 1958; (4) the development of operating systems in the early
1960s; (5) the development of the microprocessor (a single chip consisting of
the central processing unit, memory, and input and output controls) by Intel in
the early 1970s; (6) introduction by IBM of the personal computer in 1981; and
(7) progressive miniaturization of components, starting with large scale integra-
tion (LI) in the late 1970s, then very large scale integration (VLSI) in the 1980s,
to the present use of ultra large scale integration (ULSI). Concurrent with
these advances were developments in the areas of mass storage and display sys-
tems, both of which are fundamental requirements for digital image processing.

The first computers powerful enough to carry out meaningful image pro-
cessing tasks appeared in the early 1960s. The birth of what we call digital
image processing today can be traced to the availability of those machines and
to the onset of the space program during that period. It took the combination
of those two developments to bring into focus the potential of digital image
processing concepts. Work on using computer techniques for improving im-
ages from a space probe began at the Jet Propulsion Laboratory (Pasadena,
California) in 1964 when pictures of the moon transmitted by Ranger 7 were
processed by a computer to correct various types of image distortion inherent
in the on-board television camera. Figure 1.4 shows the first image of the
moon taken by Ranger 7 on July 31, 1964 at 9:09 A.M. Eastern Daylight Time
(EDT), about 17 minutes before impacting the lunar surface (the markers,
called reseau marks, are used for geometric corrections, as discussed in
Chapter 2). This also is the first image of the moon taken by a U.S. spacecraft.
The imaging lessons learned with Ranger 7 served as the basis for improved
methods used to enhance and restore images from the Surveyor missions to
the moon, the Mariner series of flyby missions to Mars, the Apollo manned
flights to the moon, and others.

FIGURE 1.4 The
first picture of the
moon by a U.S.
spacecraft. Ranger
7 took this image
on July 31, 1964 at
9:09 A.M. EDT,
about 17 minutes
before impacting
the lunar surface.
(Courtesy of
NASA.)
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In parallel with space applications, digital image processing techniques
began in the late 1960s and early 1970s to be used in medical imaging, remote
Earth resources observations, and astronomy. The invention in the early 1970s
of computerized axial tomography (CAT), also called computerized tomogra-
phy (CT) for short, is one of the most important events in the application of
image processing in medical diagnosis. Computerized axial tomography is a
process in which a ring of detectors encircles an object (or patient) and an
X-ray source, concentric with the detector ring, rotates about the object. The
X-rays pass through the object and are collected at the opposite end by the
corresponding detectors in the ring. As the source rotates, this procedure is re-
peated. Tomography consists of algorithms that use the sensed data to con-
struct an image that represents a “slice” through the object. Motion of the
object in a direction perpendicular to the ring of detectors produces a set of
such slices, which constitute a three-dimensional (3-D) rendition of the inside
of the object. Tomography was invented independently by Sir Godfrey 
N. Hounsfield and Professor Allan M. Cormack, who shared the 1979 Nobel
Prize in Medicine for their invention. It is interesting to note that X-rays were
discovered in 1895 by Wilhelm Conrad Roentgen, for which he received the
1901 Nobel Prize for Physics. These two inventions, nearly 100 years apart, led
to some of the most important applications of image processing today.

From the 1960s until the present, the field of image processing has grown
vigorously. In addition to applications in medicine and the space program, dig-
ital image processing techniques now are used in a broad range of applica-
tions. Computer procedures are used to enhance the contrast or code the
intensity levels into color for easier interpretation of X-rays and other images
used in industry, medicine, and the biological sciences. Geographers use the
same or similar techniques to study pollution patterns from aerial and satellite
imagery. Image enhancement and restoration procedures are used to process
degraded images of unrecoverable objects or experimental results too expen-
sive to duplicate. In archeology, image processing methods have successfully
restored blurred pictures that were the only available records of rare artifacts
lost or damaged after being photographed. In physics and related fields, com-
puter techniques routinely enhance images of experiments in areas such as
high-energy plasmas and electron microscopy. Similarly successful applica-
tions of image processing concepts can be found in astronomy, biology, nuclear
medicine, law enforcement, defense, and industry.

These examples illustrate processing results intended for human interpreta-
tion. The second major area of application of digital image processing tech-
niques mentioned at the beginning of this chapter is in solving problems dealing
with machine perception. In this case, interest is on procedures for extracting
from an image information in a form suitable for computer processing. Often,
this information bears little resemblance to visual features that humans use in
interpreting the content of an image. Examples of the type of information used
in machine perception are statistical moments, Fourier transform coefficients,
and multidimensional distance measures.Typical problems in machine percep-
tion that routinely utilize image processing techniques are automatic character
recognition, industrial machine vision for product assembly and inspection,
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military recognizance, automatic processing of fingerprints, screening of X-rays
and blood samples, and machine processing of aerial and satellite imagery for
weather prediction and environmental assessment.The continuing decline in the
ratio of computer price to performance and the expansion of networking and
communication bandwidth via the World Wide Web and the Internet have cre-
ated unprecedented opportunities for continued growth of digital image pro-
cessing. Some of these application areas are illustrated in the following section.

1.3 Examples of Fields that Use Digital Image Processing

Today, there is almost no area of technical endeavor that is not impacted in
some way by digital image processing. We can cover only a few of these appli-
cations in the context and space of the current discussion. However, limited as
it is, the material presented in this section will leave no doubt in your mind re-
garding the breadth and importance of digital image processing. We show in
this section numerous areas of application, each of which routinely utilizes the
digital image processing techniques developed in the following chapters. Many
of the images shown in this section are used later in one or more of the exam-
ples given in the book. All images shown are digital.

The areas of application of digital image processing are so varied that some
form of organization is desirable in attempting to capture the breadth of this
field. One of the simplest ways to develop a basic understanding of the extent of
image processing applications is to categorize images according to their source
(e.g., visual, X-ray, and so on).The principal energy source for images in use today
is the electromagnetic energy spectrum. Other important sources of energy in-
clude acoustic, ultrasonic, and electronic (in the form of electron beams used in
electron microscopy). Synthetic images, used for modeling and visualization, are
generated by computer. In this section we discuss briefly how images are gener-
ated in these various categories and the areas in which they are applied. Methods
for converting images into digital form are discussed in the next chapter.

Images based on radiation from the EM spectrum are the most familiar,
especially images in the X-ray and visual bands of the spectrum. Electromag-
netic waves can be conceptualized as propagating sinusoidal waves of varying
wavelengths, or they can be thought of as a stream of massless particles, each
traveling in a wavelike pattern and moving at the speed of light. Each mass-
less particle contains a certain amount (or bundle) of energy. Each bundle of
energy is called a photon. If spectral bands are grouped according to energy
per photon, we obtain the spectrum shown in Fig. 1.5, ranging from gamma
rays (highest energy) at one end to radio waves (lowest energy) at the other.

10�910�810�710�610�510�410�310�2100 10�1101102103104105106

Energy of one photon (electron volts)

Gamma rays X-rays Ultraviolet Visible Infrared Microwaves Radio waves

FIGURE 1.5 The electromagnetic spectrum arranged according to energy per photon.
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The bands are shown shaded to convey the fact that bands of the EM spec-
trum are not distinct but rather transition smoothly from one to the other.

1.3.1 Gamma-Ray Imaging
Major uses of imaging based on gamma rays include nuclear medicine and as-
tronomical observations. In nuclear medicine, the approach is to inject a pa-
tient with a radioactive isotope that emits gamma rays as it decays. Images are
produced from the emissions collected by gamma ray detectors. Figure 1.6(a)
shows an image of a complete bone scan obtained by using gamma-ray imaging.
Images of this sort are used to locate sites of bone pathology, such as infections

FIGURE 1.6
Examples of
gamma-ray
imaging. (a) Bone
scan. (b) PET
image. (c) Cygnus
Loop. (d) Gamma
radiation (bright
spot) from a
reactor valve.
(Images courtesy
of (a) G.E.
Medical Systems,
(b) Dr. Michael
E. Casey, CTI
PET Systems,
(c) NASA,
(d) Professors
Zhong He and
David K. Wehe,
University of
Michigan.)

a b
c d
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or tumors. Figure 1.6(b) shows another major modality of nuclear imaging
called positron emission tomography (PET). The principle is the same as with
X-ray tomography, mentioned briefly in Section 1.2. However, instead of using
an external source of X-ray energy, the patient is given a radioactive isotope
that emits positrons as it decays. When a positron meets an electron, both are
annihilated and two gamma rays are given off. These are detected and a tomo-
graphic image is created using the basic principles of tomography. The image
shown in Fig. 1.6(b) is one sample of a sequence that constitutes a 3-D rendition
of the patient.This image shows a tumor in the brain and one in the lung, easily
visible as small white masses.

A star in the constellation of Cygnus exploded about 15,000 years ago, gener-
ating a superheated stationary gas cloud (known as the Cygnus Loop) that glows
in a spectacular array of colors. Figure 1.6(c) shows an image of the Cygnus Loop
in the gamma-ray band. Unlike the two examples in Figs. 1.6(a) and (b), this
image was obtained using the natural radiation of the object being imaged. Finally,
Fig. 1.6(d) shows an image of gamma radiation from a valve in a nuclear reactor.
An area of strong radiation is seen in the lower left side of the image.

1.3.2 X-Ray Imaging
X-rays are among the oldest sources of EM radiation used for imaging. The
best known use of X-rays is medical diagnostics, but they also are used exten-
sively in industry and other areas, like astronomy. X-rays for medical and in-
dustrial imaging are generated using an X-ray tube, which is a vacuum tube
with a cathode and anode. The cathode is heated, causing free electrons to be
released. These electrons flow at high speed to the positively charged anode.
When the electrons strike a nucleus, energy is released in the form of X-ray
radiation.The energy (penetrating power) of X-rays is controlled by a voltage
applied across the anode, and by a current applied to the filament in the
cathode. Figure 1.7(a) shows a familiar chest X-ray generated simply by plac-
ing the patient between an X-ray source and a film sensitive to X-ray energy.
The intensity of the X-rays is modified by absorption as they pass through the
patient, and the resulting energy falling on the film develops it, much in the
same way that light develops photographic film. In digital radiography, digital
images are obtained by one of two methods: (1) by digitizing X-ray films; or
(2) by having the X-rays that pass through the patient fall directly onto devices
(such as a phosphor screen) that convert X-rays to light. The light signal in
turn is captured by a light-sensitive digitizing system. We discuss digitization
in more detail in Chapters 2 and 4.

Angiography is another major application in an area called contrast-
enhancement radiography. This procedure is used to obtain images (called
angiograms) of blood vessels. A catheter (a small, flexible, hollow tube) is in-
serted, for example, into an artery or vein in the groin. The catheter is threaded
into the blood vessel and guided to the area to be studied. When the catheter
reaches the site under investigation, an X-ray contrast medium is injected
through the tube. This enhances contrast of the blood vessels and enables the
radiologist to see any irregularities or blockages. Figure 1.7(b) shows an exam-
ple of an aortic angiogram. The catheter can be seen being inserted into the
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FIGURE 1.7 Examples of X-ray imaging. (a) Chest X-ray. (b) Aortic angiogram. (c) Head
CT. (d) Circuit boards. (e) Cygnus Loop. (Images courtesy of (a) and (c) Dr. David 
R. Pickens, Dept. of Radiology & Radiological Sciences, Vanderbilt University Medical
Center; (b) Dr.Thomas R. Gest, Division of Anatomical Sciences, University of Michigan
Medical School; (d) Mr. Joseph E. Pascente, Lixi, Inc.; and (e) NASA.)

a
b
c

d

e
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large blood vessel on the lower left of the picture. Note the high contrast of the
large vessel as the contrast medium flows up in the direction of the kidneys,
which are also visible in the image. As discussed in Chapter 2, angiography is a
major area of digital image processing, where image subtraction is used to en-
hance further the blood vessels being studied.

Another important use of X-rays in medical imaging is computerized axial to-
mography (CAT). Due to their resolution and 3-D capabilities, CAT scans revo-
lutionized medicine from the moment they first became available in the early
1970s.As noted in Section 1.2, each CAT image is a “slice” taken perpendicularly
through the patient. Numerous slices are generated as the patient is moved in a
longitudinal direction.The ensemble of such images constitutes a 3-D rendition of
the inside of the body, with the longitudinal resolution being proportional to the
number of slice images taken. Figure 1.7(c) shows a typical head CAT slice image.

Techniques similar to the ones just discussed, but generally involving higher-
energy X-rays, are applicable in industrial processes. Figure 1.7(d) shows an X-ray
image of an electronic circuit board. Such images, representative of literally hun-
dreds of industrial applications of X-rays, are used to examine circuit boards for
flaws in manufacturing, such as missing components or broken traces. Industrial
CAT scans are useful when the parts can be penetrated by X-rays, such as in
plastic assemblies, and even large bodies, like solid-propellant rocket motors.
Figure 1.7(e) shows an example of X-ray imaging in astronomy.This image is the
Cygnus Loop of Fig. 1.6(c), but imaged this time in the X-ray band.

1.3.3 Imaging in the Ultraviolet Band
Applications of ultraviolet “light” are varied. They include lithography, industrial
inspection, microscopy, lasers, biological imaging, and astronomical observations.
We illustrate imaging in this band with examples from microscopy and astronomy.

Ultraviolet light is used in fluorescence microscopy, one of the fastest grow-
ing areas of microscopy. Fluorescence is a phenomenon discovered in the mid-
dle of the nineteenth century, when it was first observed that the mineral
fluorspar fluoresces when ultraviolet light is directed upon it. The ultraviolet
light itself is not visible, but when a photon of ultraviolet radiation collides with
an electron in an atom of a fluorescent material, it elevates the electron to a higher
energy level. Subsequently, the excited electron relaxes to a lower level and emits
light in the form of a lower-energy photon in the visible (red) light region. The
basic task of the fluorescence microscope is to use an excitation light to irradiate
a prepared specimen and then to separate the much weaker radiating fluores-
cent light from the brighter excitation light.Thus, only the emission light reaches
the eye or other detector. The resulting fluorescing areas shine against a dark
background with sufficient contrast to permit detection. The darker the back-
ground of the nonfluorescing material, the more efficient the instrument.

Fluorescence microscopy is an excellent method for studying materials that
can be made to fluoresce, either in their natural form (primary fluorescence) or
when treated with chemicals capable of fluorescing (secondary fluorescence).
Figures 1.8(a) and (b) show results typical of the capability of fluorescence
microscopy. Figure 1.8(a) shows a fluorescence microscope image of normal
corn, and Fig. 1.8(b) shows corn infected by “smut,” a disease of cereals, corn,
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grasses, onions, and sorghum that can be caused by any of more than 700 species
of parasitic fungi. Corn smut is particularly harmful because corn is one of the
principal food sources in the world.As another illustration, Fig. 1.8(c) shows the
Cygnus Loop imaged in the high-energy region of the ultraviolet band.

1.3.4 Imaging in the Visible and Infrared Bands
Considering that the visual band of the electromagnetic spectrum is the most
familiar in all our activities, it is not surprising that imaging in this band out-
weighs by far all the others in terms of breadth of application. The infrared
band often is used in conjunction with visual imaging, so we have grouped the

FIGURE 1.8
Examples of
ultraviolet
imaging.
(a) Normal corn.
(b) Smut corn.
(c) Cygnus Loop.
(Images courtesy
of (a) and 
(b) Dr. Michael
W. Davidson,
Florida State
University,
(c) NASA.)

a
c
b
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visible and infrared bands in this section for the purpose of illustration. We
consider in the following discussion applications in light microscopy, astrono-
my, remote sensing, industry, and law enforcement.

Figure 1.9 shows several examples of images obtained with a light microscope.
The examples range from pharmaceuticals and microinspection to materials
characterization. Even in microscopy alone, the application areas are too numer-
ous to detail here. It is not difficult to conceptualize the types of processes one
might apply to these images, ranging from enhancement to measurements.

FIGURE 1.9 Examples of light microscopy images. (a) Taxol (anticancer agent),
magnified (b) Cholesterol— (c) Microprocessor— (d) Nickel oxide
thin film— (e) Surface of audio CD— (f) Organic superconductor—

(Images courtesy of Dr. Michael W. Davidson, Florida State University.)450* .
1750* .600* .

60* .40* .250* .
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Another major area of visual processing is remote sensing, which usually in-
cludes several bands in the visual and infrared regions of the spectrum. Table 1.1
shows the so-called thematic bands in NASA’s LANDSAT satellite.The primary
function of LANDSAT is to obtain and transmit images of the Earth from space
for purposes of monitoring environmental conditions on the planet. The bands
are expressed in terms of wavelength, with �m being equal to (we dis-
cuss the wavelength regions of the electromagnetic spectrum in more detail in
Chapter 2). Note the characteristics and uses of each band in Table 1.1.

In order to develop a basic appreciation for the power of this type of
multispectral imaging, consider Fig. 1.10, which shows one image for each of

10-6 m1

1 2 3

4 5 6 7

FIGURE 1.10 LANDSAT satellite images of the Washington, D.C. area. The numbers refer to the thematic
bands in Table 1.1. (Images courtesy of NASA.)

Band No. Name Wavelength (�m) Characteristics and Uses

1 Visible blue 0.45–0.52 Maximum water 
penetration

2 Visible green 0.52–0.60 Good for measuring plant
vigor

3 Visible red 0.63–0.69 Vegetation discrimination
4 Near infrared 0.76–0.90 Biomass and shoreline 

mapping
5 Middle infrared 1.55–1.75 Moisture content of soil 

and vegetation
6 Thermal infrared 10.4–12.5 Soil moisture; thermal 

mapping
7 Middle infrared 2.08–2.35 Mineral mapping

TABLE 1.1
Thematic bands 
in NASA’s
LANDSAT
satellite.
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the spectral bands in Table 1.1. The area imaged is Washington D.C., which in-
cludes features such as buildings, roads, vegetation, and a major river (the Po-
tomac) going though the city. Images of population centers are used routinely
(over time) to assess population growth and shift patterns, pollution, and other
factors harmful to the environment. The differences between visual and in-
frared image features are quite noticeable in these images. Observe, for exam-
ple, how well defined the river is from its surroundings in Bands 4 and 5.

Weather observation and prediction also are major applications of multi-
spectral imaging from satellites. For example, Fig. 1.11 is an image of Hurricane
Katrina one of the most devastating storms in recent memory in the Western
Hemisphere. This image was taken by a National Oceanographic and Atmos-
pheric Administration (NOAA) satellite using sensors in the visible and in-
frared bands. The eye of the hurricane is clearly visible in this image.

Figures 1.12 and 1.13 show an application of infrared imaging.These images
are part of the Nighttime Lights of the World data set, which provides a global
inventory of human settlements. The images were generated by the infrared
imaging system mounted on a NOAA DMSP (Defense Meteorological Satel-
lite Program) satellite. The infrared imaging system operates in the band 10.0
to �m, and has the unique capability to observe faint sources of visible-
near infrared emissions present on the Earth’s surface, including cities, towns,
villages, gas flares, and fires. Even without formal training in image processing, it
is not difficult to imagine writing a computer program that would use these im-
ages to estimate the percent of total electrical energy used by various regions of
the world.

A major area of imaging in the visual spectrum is in automated visual in-
spection of manufactured goods. Figure 1.14 shows some examples. Figure 1.14(a)
is a controller board for a CD-ROM drive. A typical image processing task
with products like this is to inspect them for missing parts (the black square on
the top, right quadrant of the image is an example of a missing component).

13.4

FIGURE 1.11
Satellite image 
of Hurricane
Katrina taken on
August 29, 2005.
(Courtesy of
NOAA.)
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Figure 1.14(b) is an imaged pill container. The objective here is to have a ma-
chine look for missing pills. Figure 1.14(c) shows an application in which image
processing is used to look for bottles that are not filled up to an acceptable
level. Figure 1.14(d) shows a clear-plastic part with an unacceptable number of
air pockets in it. Detecting anomalies like these is a major theme of industrial
inspection that includes other products such as wood and cloth. Figure 1.14(e)

FIGURE 1.12
Infrared satellite
images of the
Americas. The
small gray map is
provided for
reference.
(Courtesy of
NOAA.)
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shows a batch of cereal during inspection for color and the presence of anom-
alies such as burned flakes. Finally, Fig. 1.14(f) shows an image of an intraocular
implant (replacement lens for the human eye). A “structured light” illumina-
tion technique was used to highlight for easier detection flat lens deformations
toward the center of the lens. The markings at 1 o’clock and 5 o’clock are
tweezer damage. Most of the other small speckle detail is debris. The objective
in this type of inspection is to find damaged or incorrectly manufactured im-
plants automatically, prior to packaging.

As a final illustration of image processing in the visual spectrum, consider
Fig. 1.15. Figure 1.15(a) shows a thumb print. Images of fingerprints are rou-
tinely processed by computer, either to enhance them or to find features that
aid in the automated search of a database for potential matches. Figure 1.15(b)
shows an image of paper currency. Applications of digital image processing in
this area include automated counting and, in law enforcement, the reading of
the serial number for the purpose of tracking and identifying bills. The two ve-
hicle images shown in Figs. 1.15 (c) and (d) are examples of automated license
plate reading.The light rectangles indicate the area in which the imaging system

FIGURE 1.13
Infrared satellite
images of the
remaining
populated part of
the world. The
small gray map is
provided for
reference.
(Courtesy of
NOAA.)
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detected the plate. The black rectangles show the results of automated reading
of the plate content by the system. License plate and other applications of char-
acter recognition are used extensively for traffic monitoring and surveillance.

1.3.5 Imaging in the Microwave Band
The dominant application of imaging in the microwave band is radar. The
unique feature of imaging radar is its ability to collect data over virtually any
region at any time, regardless of weather or ambient lighting conditions. Some

FIGURE 1.14
Some examples 
of manufactured
goods often
checked using
digital image
processing.
(a) A circuit
board controller.
(b) Packaged pills.
(c) Bottles.
(d) Air bubbles 
in a clear-plastic
product.
(e) Cereal.
(f) Image of
intraocular
implant.
(Fig. (f) courtesy
of Mr. Pete Sites,
Perceptics
Corporation.)
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radar waves can penetrate clouds, and under certain conditions can also see
through vegetation, ice, and dry sand. In many cases, radar is the only way to
explore inaccessible regions of the Earth’s surface. An imaging radar works
like a flash camera in that it provides its own illumination (microwave pulses)
to illuminate an area on the ground and take a snapshot image. Instead of a
camera lens, a radar uses an antenna and digital computer processing to record
its images. In a radar image, one can see only the microwave energy that was
reflected back toward the radar antenna.

Figure 1.16 shows a spaceborne radar image covering a rugged mountain-
ous area of southeast Tibet, about 90 km east of the city of Lhasa. In the lower
right corner is a wide valley of the Lhasa River, which is populated by Tibetan
farmers and yak herders and includes the village of Menba. Mountains in this
area reach about 5800 m (19,000 ft) above sea level, while the valley floors lie
about 4300 m (14,000 ft) above sea level. Note the clarity and detail of the
image, unencumbered by clouds or other atmospheric conditions that normally
interfere with images in the visual band.

FIGURE 1.15
Some additional
examples of
imaging in the
visual spectrum.
(a) Thumb print.
(b) Paper
currency. (c) and
(d) Automated
license plate
reading.
(Figure (a)
courtesy of the
National Institute
of Standards and
Technology.
Figures (c) and
(d) courtesy of
Dr. Juan Herrera,
Perceptics
Corporation.)
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FIGURE 1.16
Spaceborne radar
image of
mountains in
southeast Tibet.
(Courtesy of
NASA.)

1.3.6 Imaging in the Radio Band
As in the case of imaging at the other end of the spectrum (gamma rays), the
major applications of imaging in the radio band are in medicine and astronomy.
In medicine, radio waves are used in magnetic resonance imaging (MRI). This
technique places a patient in a powerful magnet and passes radio waves through
his or her body in short pulses. Each pulse causes a responding pulse of radio
waves to be emitted by the patient’s tissues. The location from which these sig-
nals originate and their strength are determined by a computer, which produces
a two-dimensional picture of a section of the patient. MRI can produce pictures
in any plane. Figure 1.17 shows MRI images of a human knee and spine.

The last image to the right in Fig. 1.18 shows an image of the Crab Pulsar in
the radio band. Also shown for an interesting comparison are images of the
same region but taken in most of the bands discussed earlier. Note that each
image gives a totally different “view” of the Pulsar.

1.3.7 Examples in which Other Imaging Modalities Are Used
Although imaging in the electromagnetic spectrum is dominant by far, there
are a number of other imaging modalities that also are important. Specifically,
we discuss in this section acoustic imaging, electron microscopy, and synthetic
(computer-generated) imaging.

Imaging using “sound” finds application in geological exploration, industry,
and medicine. Geological applications use sound in the low end of the sound
spectrum (hundreds of Hz) while imaging in other areas use ultrasound (mil-
lions of Hz). The most important commercial applications of image processing
in geology are in mineral and oil exploration. For image acquisition over land,
one of the main approaches is to use a large truck and a large flat steel plate.
The plate is pressed on the ground by the truck, and the truck is vibrated
through a frequency spectrum up to 100 Hz. The strength and speed of the



1.3 ■ Examples of Fields that Use Digital Image Processing 21

FIGURE 1.17 MRI images of a human (a) knee, and (b) spine. (Image (a) courtesy of
Dr. Thomas R. Gest, Division of Anatomical Sciences, University of Michigan
Medical School, and (b) courtesy of Dr. David R. Pickens, Department of Radiology
and Radiological Sciences, Vanderbilt University Medical Center.)

Gamma X-ray Optical Infrared Radio

FIGURE 1.18 Images of the Crab Pulsar (in the center of each image) covering the electromagnetic spectrum.
(Courtesy of NASA.)

returning sound waves are determined by the composition of the Earth below
the surface. These are analyzed by computer, and images are generated from
the resulting analysis.

For marine acquisition, the energy source consists usually of two air guns
towed behind a ship. Returning sound waves are detected by hydrophones
placed in cables that are either towed behind the ship, laid on the bottom of
the ocean, or hung from buoys (vertical cables). The two air guns are alter-
nately pressurized to and then set off. The constant motion of the
ship provides a transversal direction of motion that, together with the return-
ing sound waves, is used to generate a 3-D map of the composition of the
Earth below the bottom of the ocean.

Figure 1.19 shows a cross-sectional image of a well-known 3-D model
against which the performance of seismic imaging algorithms is tested. The
arrow points to a hydrocarbon (oil and/or gas) trap.This target is brighter than
the surrounding layers because the change in density in the target region is

'2000 psi
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larger. Seismic interpreters look for these “bright spots” to find oil and gas.The
layers above also are bright, but their brightness does not vary as strongly
across the layers. Many seismic reconstruction algorithms have difficulty imag-
ing this target because of the faults above it.

Although ultrasound imaging is used routinely in manufacturing, the best
known applications of this technique are in medicine, especially in obstetrics,
where unborn babies are imaged to determine the health of their develop-
ment. A byproduct of this examination is determining the sex of the baby. Ul-
trasound images are generated using the following basic procedure:

1. The ultrasound system (a computer, ultrasound probe consisting of a
source and receiver, and a display) transmits high-frequency (1 to 5 MHz)
sound pulses into the body.

2. The sound waves travel into the body and hit a boundary between tissues
(e.g., between fluid and soft tissue, soft tissue and bone). Some of the
sound waves are reflected back to the probe, while some travel on further
until they reach another boundary and get reflected.

3. The reflected waves are picked up by the probe and relayed to the com-
puter.

4. The machine calculates the distance from the probe to the tissue or organ
boundaries using the speed of sound in tissue (1540 m/s) and the time of
each echo’s return.

5. The system displays the distances and intensities of the echoes on the
screen, forming a two-dimensional image.

In a typical ultrasound image, millions of pulses and echoes are sent and re-
ceived each second.The probe can be moved along the surface of the body and
angled to obtain various views. Figure 1.20 shows several examples.

We continue the discussion on imaging modalities with some examples of
electron microscopy. Electron microscopes function as their optical counter-
parts, except that they use a focused beam of electrons instead of light to
image a specimen. The operation of electron microscopes involves the follow-
ing basic steps:A stream of electrons is produced by an electron source and ac-
celerated toward the specimen using a positive electrical potential.This stream

FIGURE 1.19
Cross-sectional
image of a seismic
model. The arrow
points to a
hydrocarbon (oil
and/or gas) trap.
(Courtesy of 
Dr. Curtis Ober,
Sandia National
Laboratories.)
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is confined and focused using metal apertures and magnetic lenses into a thin,
monochromatic beam. This beam is focused onto the sample using a magnetic
lens. Interactions occur inside the irradiated sample, affecting the electron
beam. These interactions and effects are detected and transformed into an
image, much in the same way that light is reflected from, or absorbed by, ob-
jects in a scene. These basic steps are carried out in all electron microscopes.

A transmission electron microscope (TEM) works much like a slide projec-
tor. A projector shines (transmits) a beam of light through a slide; as the light
passes through the slide, it is modulated by the contents of the slide.This trans-
mitted beam is then projected onto the viewing screen, forming an enlarged
image of the slide. TEMs work the same way, except that they shine a beam of
electrons through a specimen (analogous to the slide). The fraction of the
beam transmitted through the specimen is projected onto a phosphor screen.
The interaction of the electrons with the phosphor produces light and, there-
fore, a viewable image. A scanning electron microscope (SEM), on the other
hand, actually scans the electron beam and records the interaction of beam
and sample at each location. This produces one dot on a phosphor screen. A
complete image is formed by a raster scan of the beam through the sample,
much like a TV camera. The electrons interact with a phosphor screen and
produce light. SEMs are suitable for “bulky” samples, while TEMs require
very thin samples.

Electron microscopes are capable of very high magnification. While light
microscopy is limited to magnifications on the order electron microscopes1000* ,

FIGURE 1.20
Examples of
ultrasound
imaging. (a) Baby.
(b) Another 
view of baby.
(c) Thyroids.
(d) Muscle layers
showing lesion.
(Courtesy of
Siemens Medical
Systems, Inc.,
Ultrasound
Group.)
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can achieve magnification of or more. Figure 1.21 shows two SEM im-
ages of specimen failures due to thermal overload.

We conclude the discussion of imaging modalities by looking briefly at im-
ages that are not obtained from physical objects. Instead, they are generated
by computer. Fractals are striking examples of computer-generated images
(Lu [1997]). Basically, a fractal is nothing more than an iterative reproduction
of a basic pattern according to some mathematical rules. For instance, tiling is
one of the simplest ways to generate a fractal image. A square can be subdi-
vided into four square subregions, each of which can be further subdivided
into four smaller square regions, and so on. Depending on the complexity of
the rules for filling each subsquare, some beautiful tile images can be generated
using this method. Of course, the geometry can be arbitrary. For instance, the
fractal image could be grown radially out of a center point. Figure 1.22(a)
shows a fractal grown in this way. Figure 1.22(b) shows another fractal (a
“moonscape”) that provides an interesting analogy to the images of space
used as illustrations in some of the preceding sections.

Fractal images tend toward artistic, mathematical formulations of “growth”
of subimage elements according to a set of rules. They are useful sometimes as
random textures.A more structured approach to image generation by computer
lies in 3-D modeling. This is an area that provides an important intersection
between image processing and computer graphics and is the basis for many 
3-D visualization systems (e.g., flight simulators). Figures 1.22(c) and (d) show
examples of computer-generated images. Since the original object is created in
3-D, images can be generated in any perspective from plane projections of the
3-D volume. Images of this type can be used for medical training and for a host
of other applications, such as criminal forensics and special effects.

10,000*

FIGURE 1.21 (a) SEM image of a tungsten filament following thermal failure
(note the shattered pieces on the lower left). (b) SEM image of damaged
integrated circuit. The white fibers are oxides resulting from thermal destruction.
(Figure (a) courtesy of Mr. Michael Shaffer, Department of Geological Sciences,
University of Oregon, Eugene; (b) courtesy of Dr. J. M. Hudak, McMaster University,
Hamilton, Ontario, Canada.)

2500*
250*
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1.4 Fundamental Steps in Digital Image Processing

It is helpful to divide the material covered in the following chapters into the
two broad categories defined in Section 1.1: methods whose input and output
are images, and methods whose inputs may be images but whose outputs are
attributes extracted from those images. This organization is summarized in
Fig. 1.23.The diagram does not imply that every process is applied to an image.
Rather, the intention is to convey an idea of all the methodologies that can be
applied to images for different purposes and possibly with different objectives.
The discussion in this section may be viewed as a brief overview of the material
in the remainder of the book.

Image acquisition is the first process in Fig. 1.23.The discussion in Section 1.3
gave some hints regarding the origin of digital images. This topic is considered
in much more detail in Chapter 2, where we also introduce a number of basic
digital image concepts that are used throughout the book. Note that acquisi-
tion could be as simple as being given an image that is already in digital form.
Generally, the image acquisition stage involves preprocessing, such as scaling.

Image enhancement is the process of manipulating an image so that the re-
sult is more suitable than the original for a specific application. The word
specific is important here, because it establishes at the outset that enhancement
techniques are problem oriented.Thus, for example, a method that is quite use-
ful for enhancing X-ray images may not be the best approach for enhancing
satellite images taken in the infrared band of the electromagnetic spectrum.

FIGURE 1.22
(a) and (b) Fractal
images. (c) and
(d) Images
generated from 
3-D computer
models of the
objects shown.
(Figures (a) and
(b) courtesy of
Ms. Melissa 
D. Binde,
Swarthmore
College; (c) and
(d) courtesy of
NASA.)
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FIGURE 1.23
Fundamental
steps in digital
image processing.
The chapter(s)
indicated in the
boxes is where the
material
described in the
box is discussed.

There is no general “theory” of image enhancement. When an image is
processed for visual interpretation, the viewer is the ultimate judge of how
well a particular method works. Enhancement techniques are so varied, and
use so many different image processing approaches, that it is difficult to as-
semble a meaningful body of techniques suitable for enhancement in one
chapter without extensive background development. For this reason, and also
because beginners in the field of image processing generally find enhance-
ment applications visually appealing, interesting, and relatively simple to un-
derstand, we use image enhancement as examples when introducing new
concepts in parts of Chapter 2 and in Chapters 3 and 4. The material in the
latter two chapters span many of the methods used traditionally for image en-
hancement. Therefore, using examples from image enhancement to introduce
new image processing methods developed in these early chapters not only
saves having an extra chapter in the book dealing with image enhancement
but, more importantly, is an effective approach for introducing newcomers to
the details of processing techniques early in the book. However, as you will
see in progressing through the rest of the book, the material developed in
these chapters is applicable to a much broader class of problems than just
image enhancement.

Image restoration is an area that also deals with improving the appearance
of an image. However, unlike enhancement, which is subjective, image restora-
tion is objective, in the sense that restoration techniques tend to be based on
mathematical or probabilistic models of image degradation. Enhancement, on
the other hand, is based on human subjective preferences regarding what con-
stitutes a “good” enhancement result.
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Color image processing is an area that has been gaining in importance be-
cause of the significant increase in the use of digital images over the Internet.
Chapter 6 covers a number of fundamental concepts in color models and basic
color processing in a digital domain. Color is used also in later chapters as the
basis for extracting features of interest in an image.

Wavelets are the foundation for representing images in various degrees of
resolution. In particular, this material is used in this book for image data com-
pression and for pyramidal representation, in which images are subdivided
successively into smaller regions.

Compression, as the name implies, deals with techniques for reducing the
storage required to save an image, or the bandwidth required to transmit it.Al-
though storage technology has improved significantly over the past decade, the
same cannot be said for transmission capacity.This is true particularly in uses of
the Internet, which are characterized by significant pictorial content. Image
compression is familiar (perhaps inadvertently) to most users of computers in
the form of image file extensions, such as the jpg file extension used in the
JPEG (Joint Photographic Experts Group) image compression standard.

Morphological processing deals with tools for extracting image components
that are useful in the representation and description of shape. The material in
this chapter begins a transition from processes that output images to processes
that output image attributes, as indicated in Section 1.1.

Segmentation procedures partition an image into its constituent parts or
objects. In general, autonomous segmentation is one of the most difficult
tasks in digital image processing. A rugged segmentation procedure brings
the process a long way toward successful solution of imaging problems that
require objects to be identified individually. On the other hand, weak or er-
ratic segmentation algorithms almost always guarantee eventual failure. In
general, the more accurate the segmentation, the more likely recognition is
to succeed.

Representation and description almost always follow the output of a segmen-
tation stage, which usually is raw pixel data, constituting either the boundary of
a region (i.e., the set of pixels separating one image region from another) or all
the points in the region itself. In either case, converting the data to a form suit-
able for computer processing is necessary. The first decision that must be made
is whether the data should be represented as a boundary or as a complete region.
Boundary representation is appropriate when the focus is on external shape
characteristics, such as corners and inflections. Regional representation is ap-
propriate when the focus is on internal properties, such as texture or skeletal
shape. In some applications, these representations complement each other.
Choosing a representation is only part of the solution for transforming raw
data into a form suitable for subsequent computer processing. A method must
also be specified for describing the data so that features of interest are high-
lighted. Description, also called feature selection, deals with extracting attributes
that result in some quantitative information of interest or are basic for differ-
entiating one class of objects from another.

Recognition is the process that assigns a label (e.g., “vehicle”) to an object
based on its descriptors.As detailed in Section 1.1, we conclude our coverage of
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digital image processing with the development of methods for recognition of
individual objects.

So far we have said nothing about the need for prior knowledge or about the
interaction between the knowledge base and the processing modules in Fig. 1.23.
Knowledge about a problem domain is coded into an image processing system
in the form of a knowledge database. This knowledge may be as simple as de-
tailing regions of an image where the information of interest is known to be
located, thus limiting the search that has to be conducted in seeking that infor-
mation. The knowledge base also can be quite complex, such as an interrelated
list of all major possible defects in a materials inspection problem or an image
database containing high-resolution satellite images of a region in connection
with change-detection applications. In addition to guiding the operation of each
processing module, the knowledge base also controls the interaction between
modules.This distinction is made in Fig. 1.23 by the use of double-headed arrows
between the processing modules and the knowledge base, as opposed to single-
headed arrows linking the processing modules.

Although we do not discuss image display explicitly at this point, it is impor-
tant to keep in mind that viewing the results of image processing can take place
at the output of any stage in Fig. 1.23. We also note that not all image process-
ing applications require the complexity of interactions implied by Fig. 1.23. In
fact, not even all those modules are needed in many cases. For example, image
enhancement for human visual interpretation seldom requires use of any of the
other stages in Fig. 1.23. In general, however, as the complexity of an image pro-
cessing task increases, so does the number of processes required to solve the
problem.

1.5 Components of an Image Processing System

As recently as the mid-1980s, numerous models of image processing systems
being sold throughout the world were rather substantial peripheral devices
that attached to equally substantial host computers. Late in the 1980s and
early in the 1990s, the market shifted to image processing hardware in the
form of single boards designed to be compatible with industry standard buses
and to fit into engineering workstation cabinets and personal computers. In
addition to lowering costs, this market shift also served as a catalyst for a sig-
nificant number of new companies specializing in the development of software
written specifically for image processing.

Although large-scale image processing systems still are being sold for mas-
sive imaging applications, such as processing of satellite images, the trend con-
tinues toward miniaturizing and blending of general-purpose small computers
with specialized image processing hardware. Figure 1.24 shows the basic com-
ponents comprising a typical general-purpose system used for digital image
processing.The function of each component is discussed in the following para-
graphs, starting with image sensing.

With reference to sensing, two elements are required to acquire digital im-
ages.The first is a physical device that is sensitive to the energy radiated by the
object we wish to image.The second, called a digitizer, is a device for converting
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the output of the physical sensing device into digital form. For instance, in a
digital video camera, the sensors produce an electrical output proportional to
light intensity. The digitizer converts these outputs to digital data. These topics
are covered in Chapter 2.

Specialized image processing hardware usually consists of the digitizer just
mentioned, plus hardware that performs other primitive operations, such as an
arithmetic logic unit (ALU), that performs arithmetic and logical operations
in parallel on entire images. One example of how an ALU is used is in averag-
ing images as quickly as they are digitized, for the purpose of noise reduction.
This type of hardware sometimes is called a front-end subsystem, and its most
distinguishing characteristic is speed. In other words, this unit performs func-
tions that require fast data throughputs (e.g., digitizing and averaging video
images at 30 frames/s) that the typical main computer cannot handle.

The computer in an image processing system is a general-purpose computer
and can range from a PC to a supercomputer. In dedicated applications, some-
times custom computers are used to achieve a required level of performance,
but our interest here is on general-purpose image processing systems. In these
systems, almost any well-equipped PC-type machine is suitable for off-line
image processing tasks.

Software for image processing consists of specialized modules that perform
specific tasks.A well-designed package also includes the capability for the user

Image displays Computer Mass storage

Hardcopy
Specialized
image processing
hardware

Image sensors

Problem
domain

Image processing
software

Network FIGURE 1.24
Components of a
general-purpose
image processing
system.
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to write code that, as a minimum, utilizes the specialized modules. More so-
phisticated software packages allow the integration of those modules and 
general-purpose software commands from at least one computer language.

Mass storage capability is a must in image processing applications. An
image of size pixels, in which the intensity of each pixel is an 8-bit
quantity, requires one megabyte of storage space if the image is not com-
pressed. When dealing with thousands, or even millions, of images, providing
adequate storage in an image processing system can be a challenge. Digital
storage for image processing applications falls into three principal categories:
(1) short-term storage for use during processing, (2) on-line storage for rela-
tively fast recall, and (3) archival storage, characterized by infrequent access.
Storage is measured in bytes (eight bits), Kbytes (one thousand bytes), Mbytes
(one million bytes), Gbytes (meaning giga, or one billion, bytes), and Tbytes
(meaning tera, or one trillion, bytes).

One method of providing short-term storage is computer memory. An-
other is by specialized boards, called frame buffers, that store one or more
images and can be accessed rapidly, usually at video rates (e.g., at 30 com-
plete images per second). The latter method allows virtually instantaneous
image zoom, as well as scroll (vertical shifts) and pan (horizontal shifts).
Frame buffers usually are housed in the specialized image processing hard-
ware unit in Fig. 1.24. On-line storage generally takes the form of magnetic
disks or optical-media storage. The key factor characterizing on-line storage
is frequent access to the stored data. Finally, archival storage is characterized
by massive storage requirements but infrequent need for access. Magnetic
tapes and optical disks housed in “jukeboxes” are the usual media for archival
applications.

Image displays in use today are mainly color (preferably flat screen) TV
monitors. Monitors are driven by the outputs of image and graphics display
cards that are an integral part of the computer system. Seldom are there re-
quirements for image display applications that cannot be met by display cards
available commercially as part of the computer system. In some cases, it is nec-
essary to have stereo displays, and these are implemented in the form of head-
gear containing two small displays embedded in goggles worn by the user.

Hardcopy devices for recording images include laser printers, film cameras,
heat-sensitive devices, inkjet units, and digital units, such as optical and CD-
ROM disks. Film provides the highest possible resolution, but paper is the ob-
vious medium of choice for written material. For presentations, images are
displayed on film transparencies or in a digital medium if image projection
equipment is used. The latter approach is gaining acceptance as the standard
for image presentations.

Networking is almost a default function in any computer system in use today.
Because of the large amount of data inherent in image processing applications,
the key consideration in image transmission is bandwidth. In dedicated net-
works, this typically is not a problem, but communications with remote sites via
the Internet are not always as efficient. Fortunately, this situation is improving
quickly as a result of optical fiber and other broadband technologies.

1024 * 1024
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Summary
The main purpose of the material presented in this chapter is to provide a sense of per-
spective about the origins of digital image processing and, more important, about cur-
rent and future areas of application of this technology. Although the coverage of these
topics in this chapter was necessarily incomplete due to space limitations, it should
have left you with a clear impression of the breadth and practical scope of digital image
processing. As we proceed in the following chapters with the development of image
processing theory and applications, numerous examples are provided to keep a clear
focus on the utility and promise of these techniques. Upon concluding the study of the
final chapter, a reader of this book will have arrived at a level of understanding that is
the foundation for most of the work currently underway in this field.

References and Further Reading
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Those who wish to succeed must ask the right
preliminary questions.

Aristotle

2
Preview
The purpose of this chapter is to introduce you to a number of basic concepts
in digital image processing that are used throughout the book. Section 2.1
summarizes the mechanics of the human visual system, including image for-
mation in the eye and its capabilities for brightness adaptation and discrimi-
nation. Section 2.2 discusses light, other components of the electromagnetic
spectrum, and their imaging characteristics. Section 2.3 discusses imaging
sensors and how they are used to generate digital images. Section 2.4 intro-
duces the concepts of uniform image sampling and intensity quantization.
Additional topics discussed in that section include digital image representa-
tion, the effects of varying the number of samples and intensity levels in an
image, the concepts of spatial and intensity resolution, and the principles of
image interpolation. Section 2.5 deals with a variety of basic relationships
between pixels. Finally, Section 2.6 is an introduction to the principal math-
ematical tools we use throughout the book. A second objective of that sec-
tion is to help you begin developing a “feel” for how these tools are used in
a variety of basic image processing tasks. The scope of these tools and their
application are expanded as needed in the remainder of the book.
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2.1 Elements of Visual Perception

Although the field of digital image processing is built on a foundation of math-
ematical and probabilistic formulations, human intuition and analysis play a
central role in the choice of one technique versus another, and this choice
often is made based on subjective, visual judgments. Hence, developing a basic
understanding of human visual perception as a first step in our journey
through this book is appropriate. Given the complexity and breadth of this
topic, we can only aspire to cover the most rudimentary aspects of human vi-
sion. In particular, our interest is in the mechanics and parameters related to
how images are formed and perceived by humans. We are interested in learn-
ing the physical limitations of human vision in terms of factors that also are
used in our work with digital images. Thus, factors such as how human and
electronic imaging devices compare in terms of resolution and ability to adapt
to changes in illumination are not only interesting, they also are important
from a practical point of view.

2.1.1 Structure of the Human Eye
Figure 2.1 shows a simplified horizontal cross section of the human eye. The
eye is nearly a sphere, with an average diameter of approximately 20 mm.
Three membranes enclose the eye: the cornea and sclera outer cover; the
choroid; and the retina. The cornea is a tough, transparent tissue that covers
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the anterior surface of the eye. Continuous with the cornea, the sclera is an
opaque membrane that encloses the remainder of the optic globe.

The choroid lies directly below the sclera. This membrane contains a net-
work of blood vessels that serve as the major source of nutrition to the eye.
Even superficial injury to the choroid, often not deemed serious, can lead to
severe eye damage as a result of inflammation that restricts blood flow. The
choroid coat is heavily pigmented and hence helps to reduce the amount of ex-
traneous light entering the eye and the backscatter within the optic globe. At
its anterior extreme, the choroid is divided into the ciliary body and the iris.
The latter contracts or expands to control the amount of light that enters the
eye.The central opening of the iris (the pupil) varies in diameter from approx-
imately 2 to 8 mm. The front of the iris contains the visible pigment of the eye,
whereas the back contains a black pigment.

The lens is made up of concentric layers of fibrous cells and is suspended by
fibers that attach to the ciliary body. It contains 60 to 70% water, about 6% fat,
and more protein than any other tissue in the eye. The lens is colored by a
slightly yellow pigmentation that increases with age. In extreme cases, exces-
sive clouding of the lens, caused by the affliction commonly referred to as
cataracts, can lead to poor color discrimination and loss of clear vision. The
lens absorbs approximately 8% of the visible light spectrum, with relatively
higher absorption at shorter wavelengths. Both infrared and ultraviolet light
are absorbed appreciably by proteins within the lens structure and, in exces-
sive amounts, can damage the eye.

The innermost membrane of the eye is the retina, which lines the inside of
the wall’s entire posterior portion. When the eye is properly focused, light
from an object outside the eye is imaged on the retina. Pattern vision is afford-
ed by the distribution of discrete light receptors over the surface of the retina.
There are two classes of receptors: cones and rods.The cones in each eye num-
ber between 6 and 7 million. They are located primarily in the central portion
of the retina, called the fovea, and are highly sensitive to color. Humans can re-
solve fine details with these cones largely because each one is connected to its
own nerve end. Muscles controlling the eye rotate the eyeball until the image
of an object of interest falls on the fovea. Cone vision is called photopic or
bright-light vision.

The number of rods is much larger: Some 75 to 150 million are distributed
over the retinal surface. The larger area of distribution and the fact that sever-
al rods are connected to a single nerve end reduce the amount of detail dis-
cernible by these receptors. Rods serve to give a general, overall picture of the
field of view. They are not involved in color vision and are sensitive to low lev-
els of illumination. For example, objects that appear brightly colored in day-
light when seen by moonlight appear as colorless forms because only the rods
are stimulated. This phenomenon is known as scotopic or dim-light vision.

Figure 2.2 shows the density of rods and cones for a cross section of the
right eye passing through the region of emergence of the optic nerve from the
eye.The absence of receptors in this area results in the so-called blind spot (see
Fig. 2.1). Except for this region, the distribution of receptors is radially sym-
metric about the fovea. Receptor density is measured in degrees from the
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fovea (that is, in degrees off axis, as measured by the angle formed by the visu-
al axis and a line passing through the center of the lens and intersecting the
retina). Note in Fig. 2.2 that cones are most dense in the center of the retina (in
the center area of the fovea). Note also that rods increase in density from the
center out to approximately 20° off axis and then decrease in density out to the
extreme periphery of the retina.

The fovea itself is a circular indentation in the retina of about 1.5 mm in di-
ameter. However, in terms of future discussions, talking about square or rec-
tangular arrays of sensing elements is more useful. Thus, by taking some
liberty in interpretation, we can view the fovea as a square sensor array of size

The density of cones in that area of the retina is approxi-
mately 150,000 elements per Based on these approximations, the number
of cones in the region of highest acuity in the eye is about 337,000 elements.
Just in terms of raw resolving power, a charge-coupled device (CCD) imaging
chip of medium resolution can have this number of elements in a receptor
array no larger than While the ability of humans to integrate
intelligence and experience with vision makes these types of number compar-
isons somewhat superficial, keep in mind for future discussions that the basic
ability of the eye to resolve detail certainly is comparable to current electronic
imaging sensors.

2.1.2 Image Formation in the Eye
In an ordinary photographic camera, the lens has a fixed focal length, and fo-
cusing at various distances is achieved by varying the distance between the
lens and the imaging plane, where the film (or imaging chip in the case of a
digital camera) is located. In the human eye, the converse is true; the distance
between the lens and the imaging region (the retina) is fixed, and the focal
length needed to achieve proper focus is obtained by varying the shape of the
lens. The fibers in the ciliary body accomplish this, flattening or thickening the

5 mm * 5 mm.

mm2.
1.5 mm * 1.5 mm.
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lens for distant or near objects, respectively. The distance between the center
of the lens and the retina along the visual axis is approximately 17 mm. The
range of focal lengths is approximately 14 mm to 17 mm, the latter taking
place when the eye is relaxed and focused at distances greater than about 3 m.

The geometry in Fig. 2.3 illustrates how to obtain the dimensions of an
image formed on the retina. For example, suppose that a person is looking at a
tree 15 m high at a distance of 100 m. Letting h denote the height of that object
in the retinal image, the geometry of Fig. 2.3 yields or

As indicated in Section 2.1.1, the retinal image is focused pri-
marily on the region of the fovea. Perception then takes place by the relative
excitation of light receptors, which transform radiant energy into electrical im-
pulses that ultimately are decoded by the brain.

2.1.3 Brightness Adaptation and Discrimination
Because digital images are displayed as a discrete set of intensities, the eye’s
ability to discriminate between different intensity levels is an important consid-
eration in presenting image processing results. The range of light intensity levels
to which the human visual system can adapt is enormous—on the order of —
from the scotopic threshold to the glare limit. Experimental evidence indicates
that subjective brightness (intensity as perceived by the human visual system) is a
logarithmic function of the light intensity incident on the eye. Figure 2.4, a plot
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of light intensity versus subjective brightness, illustrates this characteristic.The
long solid curve represents the range of intensities to which the visual system
can adapt. In photopic vision alone, the range is about The transition from
scotopic to photopic vision is gradual over the approximate range from 0.001
to 0.1 millilambert ( to in the log scale), as the double branches of
the adaptation curve in this range show.

The essential point in interpreting the impressive dynamic range depicted in
Fig. 2.4 is that the visual system cannot operate over such a range simultaneously.
Rather, it accomplishes this large variation by changing its overall sensitivity, a
phenomenon known as brightness adaptation. The total range of distinct inten-
sity levels the eye can discriminate simultaneously is rather small when com-
pared with the total adaptation range. For any given set of conditions, the
current sensitivity level of the visual system is called the brightness adaptation
level, which may correspond, for example, to brightness in Fig. 2.4. The
short intersecting curve represents the range of subjective brightness that the
eye can perceive when adapted to this level. This range is rather restricted,
having a level at and below which all stimuli are perceived as indistinguish-
able blacks. The upper portion of the curve is not actually restricted but, if ex-
tended too far, loses its meaning because much higher intensities would simply
raise the adaptation level higher than 

The ability of the eye to discriminate between changes in light intensity at
any specific adaptation level is also of considerable interest. A classic experi-
ment used to determine the capability of the human visual system for bright-
ness discrimination consists of having a subject look at a flat, uniformly
illuminated area large enough to occupy the entire field of view. This area typ-
ically is a diffuser, such as opaque glass, that is illuminated from behind by a
light source whose intensity, I, can be varied. To this field is added an incre-
ment of illumination, in the form of a short-duration flash that appears as
a circle in the center of the uniformly illuminated field, as Fig. 2.5 shows.

If is not bright enough, the subject says “no,” indicating no perceivable
change.As gets stronger, the subject may give a positive response of “yes,” in-
dicating a perceived change. Finally, when is strong enough, the subject will
give a response of “yes” all the time. The quantity where is the incre-
ment of illumination discriminable 50% of the time with background illumination
I, is called the Weber ratio.A small value of means that a small percentage
change in intensity is discriminable. This represents “good” brightness discrimi-
nation. Conversely, a large value of means that a large percentage change
in intensity is required.This represents “poor” brightness discrimination.
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A plot of as a function of log I has the general shape shown in
Fig. 2.6. This curve shows that brightness discrimination is poor (the Weber
ratio is large) at low levels of illumination, and it improves significantly (the
Weber ratio decreases) as background illumination increases. The two branch-
es in the curve reflect the fact that at low levels of illumination vision is carried
out by the rods, whereas at high levels (showing better discrimination) vision is
the function of cones.

If the background illumination is held constant and the intensity of the
other source, instead of flashing, is now allowed to vary incrementally from
never being perceived to always being perceived, the typical observer can dis-
cern a total of one to two dozen different intensity changes. Roughly, this re-
sult is related to the number of different intensities a person can see at any one
point in a monochrome image. This result does not mean that an image can be
represented by such a small number of intensity values because, as the eye
roams about the image, the average background changes, thus allowing a
different set of incremental changes to be detected at each new adaptation
level. The net consequence is that the eye is capable of a much broader range
of overall intensity discrimination. In fact, we show in Section 2.4.3 that the eye
is capable of detecting objectionable contouring effects in monochrome im-
ages whose overall intensity is represented by fewer than approximately two
dozen levels.

Two phenomena clearly demonstrate that perceived brightness is not a
simple function of intensity. The first is based on the fact that the visual sys-
tem tends to undershoot or overshoot around the boundary of regions of dif-
ferent intensities. Figure 2.7(a) shows a striking example of this phenomenon.
Although the intensity of the stripes is constant, we actually perceive a bright-
ness pattern that is strongly scalloped near the boundaries [Fig. 2.7(c)]. These
seemingly scalloped bands are called Mach bands after Ernst Mach, who first
described the phenomenon in 1865.

The second phenomenon, called simultaneous contrast, is related to the fact
that a region’s perceived brightness does not depend simply on its intensity, as
Fig. 2.8 demonstrates. All the center squares have exactly the same intensity.
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However, they appear to the eye to become darker as the background gets
lighter. A more familiar example is a piece of paper that seems white when
lying on a desk, but can appear totally black when used to shield the eyes while
looking directly at a bright sky.

Other examples of human perception phenomena are optical illusions, in
which the eye fills in nonexisting information or wrongly perceives geometri-
cal properties of objects. Figure 2.9 shows some examples. In Fig. 2.9(a), the
outline of a square is seen clearly, despite the fact that no lines defining such a
figure are part of the image.The same effect, this time with a circle, can be seen
in Fig. 2.9(b); note how just a few lines are sufficient to give the illusion of a

FIGURE 2.8 Examples of simultaneous contrast. All the inner squares have the same
intensity, but they appear progressively darker as the background becomes lighter.
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FIGURE 2.9 Some
well-known
optical illusions.

complete circle. The two horizontal line segments in Fig. 2.9(c) are of the same
length, but one appears shorter than the other. Finally, all lines in Fig. 2.9(d) that
are oriented at 45° are equidistant and parallel.Yet the crosshatching creates the
illusion that those lines are far from being parallel. Optical illusions are a char-
acteristic of the human visual system that is not fully understood.

2.2 Light and the Electromagnetic Spectrum

The electromagnetic spectrum was introduced in Section 1.3. We now consider
this topic in more detail. In 1666, Sir Isaac Newton discovered that when a beam
of sunlight is passed through a glass prism, the emerging beam of light is not
white but consists instead of a continuous spectrum of colors ranging from violet
at one end to red at the other.As Fig. 2.10 shows, the range of colors we perceive
in visible light represents a very small portion of the electromagnetic spectrum.
On one end of the spectrum are radio waves with wavelengths billions of times
longer than those of visible light. On the other end of the spectrum are gamma
rays with wavelengths millions of times smaller than those of visible light. The
electromagnetic spectrum can be expressed in terms of wavelength, frequency,
or energy. Wavelength and frequency are related by the expression

(2.2-1)l =
c
n

(n)(l)

a b
c d
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FIGURE 2.10 The electromagnetic spectrum. The visible spectrum is shown zoomed to facilitate explanation,
but note that the visible spectrum is a rather narrow portion of the EM spectrum.

where c is the speed of light The energy of the various com-
ponents of the electromagnetic spectrum is given by the expression

(2.2-2)

where h is Planck’s constant.The units of wavelength are meters, with the terms
microns (denoted and equal to ) and nanometers

being used just as frequently. Frequency is measured in Hertz
(Hz), with one Hertz being equal to one cycle of a sinusoidal wave per second.
A commonly used unit of energy is the electron-volt.

Electromagnetic waves can be visualized as propagating sinusoidal waves
with wavelength (Fig. 2.11), or they can be thought of as a stream of massless
particles, each traveling in a wavelike pattern and moving at the speed of light.
Each massless particle contains a certain amount (or bundle) of energy. Each

l

equal to 10-9 m)
(denoted nm and10-6 m�m

E = hn

(2.998 * 108 m>s).

lFIGURE 2.11
Graphical
representation of
one wavelength.
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bundle of energy is called a photon. We see from Eq. (2.2-2) that energy is
proportional to frequency, so the higher-frequency (shorter wavelength) elec-
tromagnetic phenomena carry more energy per photon. Thus, radio waves
have photons with low energies, microwaves have more energy than radio
waves, infrared still more, then visible, ultraviolet, X-rays, and finally gamma
rays, the most energetic of all. This is the reason why gamma rays are so dan-
gerous to living organisms.

Light is a particular type of electromagnetic radiation that can be sensed by
the human eye. The visible (color) spectrum is shown expanded in Fig. 2.10 for
the purpose of discussion (we consider color in much more detail in Chapter 6).
The visible band of the electromagnetic spectrum spans the range from approxi-
mately (violet) to about (red). For convenience, the color spec-
trum is divided into six broad regions: violet, blue, green, yellow, orange, and red.
No color (or other component of the electromagnetic spectrum) ends abruptly,
but rather each range blends smoothly into the next, as shown in Fig. 2.10.

The colors that humans perceive in an object are determined by the nature
of the light reflected from the object. A body that reflects light relatively bal-
anced in all visible wavelengths appears white to the observer. However, a
body that favors reflectance in a limited range of the visible spectrum exhibits
some shades of color. For example, green objects reflect light with wavelengths
primarily in the 500 to 570 nm range while absorbing most of the energy at
other wavelengths.

Light that is void of color is called monochromatic (or achromatic) light.
The only attribute of monochromatic light is its intensity or amount. Because
the intensity of monochromatic light is perceived to vary from black to grays
and finally to white, the term gray level is used commonly to denote mono-
chromatic intensity. We use the terms intensity and gray level interchangeably
in subsequent discussions. The range of measured values of monochromatic
light from black to white is usually called the gray scale, and monochromatic
images are frequently referred to as gray-scale images.

Chromatic (color) light spans the electromagnetic energy spectrum from
approximately 0.43 to as noted previously. In addition to frequency,
three basic quantities are used to describe the quality of a chromatic light
source: radiance, luminance, and brightness. Radiance is the total amount of
energy that flows from the light source, and it is usually measured in watts
(W). Luminance, measured in lumens (lm), gives a measure of the amount of
energy an observer perceives from a light source. For example, light emitted
from a source operating in the far infrared region of the spectrum could have
significant energy (radiance), but an observer would hardly perceive it; its lu-
minance would be almost zero. Finally, as discussed in Section 2.1, brightness is
a subjective descriptor of light perception that is practically impossible to
measure. It embodies the achromatic notion of intensity and is one of the key
factors in describing color sensation.

Continuing with the discussion of Fig. 2.10, we note that at the short-
wavelength end of the electromagnetic spectrum, we have gamma rays and
X-rays.As discussed in Section 1.3.1, gamma radiation is important for medical
and astronomical imaging, and for imaging radiation in nuclear environments.

0.79 �m,

0.79 �m0.43 �m
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Hard (high-energy) X-rays are used in industrial applications. Chest and
dental X-rays are in the lower energy (soft) end of the X-ray band. The soft
X-ray band transitions into the far ultraviolet light region, which in turn
blends with the visible spectrum at longer wavelengths. Moving still higher in
wavelength, we encounter the infrared band, which radiates heat, a fact that
makes it useful in imaging applications that rely on “heat signatures.” The part
of the infrared band close to the visible spectrum is called the near-infrared re-
gion. The opposite end of this band is called the far-infrared region. This latter
region blends with the microwave band. This band is well known as the source
of energy in microwave ovens, but it has many other uses, including communi-
cation and radar. Finally, the radio wave band encompasses television as well
as AM and FM radio. In the higher energies, radio signals emanating from cer-
tain stellar bodies are useful in astronomical observations. Examples of images
in most of the bands just discussed are given in Section 1.3.

In principle, if a sensor can be developed that is capable of detecting energy
radiated by a band of the electromagnetic spectrum, we can image events of
interest in that band. It is important to note, however, that the wavelength of
an electromagnetic wave required to “see” an object must be of the same size
as or smaller than the object. For example, a water molecule has a diameter on
the order of Thus, to study molecules, we would need a source capable
of emitting in the far ultraviolet or soft X-ray region. This limitation, along
with the physical properties of the sensor material, establishes the fundamen-
tal limits on the capability of imaging sensors, such as visible, infrared, and
other sensors in use today.

Although imaging is based predominantly on energy radiated by electro-
magnetic waves, this is not the only method for image generation. For ex-
ample, as discussed in Section 1.3.7, sound reflected from objects can be
used to form ultrasonic images. Other major sources of digital images are
electron beams for electron microscopy and synthetic images used in graphics
and visualization.

2.3 Image Sensing and Acquisition

Most of the images in which we are interested are generated by the combina-
tion of an “illumination” source and the reflection or absorption of energy
from that source by the elements of the “scene” being imaged. We enclose
illumination and scene in quotes to emphasize the fact that they are consider-
ably more general than the familiar situation in which a visible light source il-
luminates a common everyday 3-D (three-dimensional) scene. For example,
the illumination may originate from a source of electromagnetic energy such
as radar, infrared, or X-ray system. But, as noted earlier, it could originate
from less traditional sources, such as ultrasound or even a computer-generated
illumination pattern. Similarly, the scene elements could be familiar objects,
but they can just as easily be molecules, buried rock formations, or a human
brain. Depending on the nature of the source, illumination energy is reflected
from, or transmitted through, objects. An example in the first category is light

10-10 m.
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FIGURE 2.12
(a) Single imaging
sensor.
(b) Line sensor.
(c) Array sensor.

reflected from a planar surface. An example in the second category is when 
X-rays pass through a patient’s body for the purpose of generating a diagnos-
tic X-ray film. In some applications, the reflected or transmitted energy is fo-
cused onto a photoconverter (e.g., a phosphor screen), which converts the
energy into visible light. Electron microscopy and some applications of gamma
imaging use this approach.

Figure 2.12 shows the three principal sensor arrangements used to trans-
form illumination energy into digital images. The idea is simple: Incoming en-
ergy is transformed into a voltage by the combination of input electrical power
and sensor material that is responsive to the particular type of energy being
detected. The output voltage waveform is the response of the sensor(s), and a
digital quantity is obtained from each sensor by digitizing its response. In this
section, we look at the principal modalities for image sensing and generation.
Image digitizing is discussed in Section 2.4.

a
b
c



48 Chapter 2 ■ Digital Image Fundamentals

2.3.1 Image Acquisition Using a Single Sensor
Figure 2.12(a) shows the components of a single sensor. Perhaps the most fa-
miliar sensor of this type is the photodiode, which is constructed of silicon ma-
terials and whose output voltage waveform is proportional to light. The use of
a filter in front of a sensor improves selectivity. For example, a green (pass) fil-
ter in front of a light sensor favors light in the green band of the color spec-
trum.As a consequence, the sensor output will be stronger for green light than
for other components in the visible spectrum.

In order to generate a 2-D image using a single sensor, there has to be rela-
tive displacements in both the x- and y-directions between the sensor and the
area to be imaged. Figure 2.13 shows an arrangement used in high-precision
scanning, where a film negative is mounted onto a drum whose mechanical ro-
tation provides displacement in one dimension. The single sensor is mounted
on a lead screw that provides motion in the perpendicular direction. Because
mechanical motion can be controlled with high precision, this method is an in-
expensive (but slow) way to obtain high-resolution images. Other similar me-
chanical arrangements use a flat bed, with the sensor moving in two linear
directions. These types of mechanical digitizers sometimes are referred to as
microdensitometers.

Another example of imaging with a single sensor places a laser source coin-
cident with the sensor. Moving mirrors are used to control the outgoing beam
in a scanning pattern and to direct the reflected laser signal onto the sensor.
This arrangement can be used also to acquire images using strip and array sen-
sors, which are discussed in the following two sections.

2.3.2 Image Acquisition Using Sensor Strips
A geometry that is used much more frequently than single sensors consists of an
in-line arrangement of sensors in the form of a sensor strip, as Fig. 2.12(b) shows.
The strip provides imaging elements in one direction.Motion perpendicular to the
strip provides imaging in the other direction, as shown in Fig. 2.14(a). This is the
type of arrangement used in most flat bed scanners. Sensing devices with 4000 or
more in-line sensors are possible. In-line sensors are used routinely in airborne
imaging applications, in which the imaging system is mounted on an aircraft that

Sensor

Linear motion

One image line out
per increment of rotation
and full linear displacement
of sensor from left to right

Film

Rotation

FIGURE 2.13
Combining a
single sensor with
motion to
generate a 2-D
image.
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FIGURE 2.14 (a) Image acquisition using a linear sensor strip. (b) Image acquisition using a circular sensor strip.

flies at a constant altitude and speed over the geographical area to be imaged.
One-dimensional imaging sensor strips that respond to various bands of the
electromagnetic spectrum are mounted perpendicular to the direction of
flight.The imaging strip gives one line of an image at a time, and the motion of
the strip completes the other dimension of a two-dimensional image. Lenses
or other focusing schemes are used to project the area to be scanned onto the
sensors.

Sensor strips mounted in a ring configuration are used in medical and in-
dustrial imaging to obtain cross-sectional (“slice”) images of 3-D objects, as
Fig. 2.14(b) shows. A rotating X-ray source provides illumination and the sen-
sors opposite the source collect the X-ray energy that passes through the ob-
ject (the sensors obviously have to be sensitive to X-ray energy). This is the
basis for medical and industrial computerized axial tomography (CAT) imag-
ing as indicated in Sections 1.2 and 1.3.2. It is important to note that the output
of the sensors must be processed by reconstruction algorithms whose objective
is to transform the sensed data into meaningful cross-sectional images (see
Section 5.11). In other words, images are not obtained directly from the sen-
sors by motion alone; they require extensive processing. A 3-D digital volume
consisting of stacked images is generated as the object is moved in a direction

a b
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perpendicular to the sensor ring. Other modalities of imaging based on the
CAT principle include magnetic resonance imaging (MRI) and positron emis-
sion tomography (PET).The illumination sources, sensors, and types of images
are different, but conceptually they are very similar to the basic imaging ap-
proach shown in Fig. 2.14(b).

2.3.3 Image Acquisition Using Sensor Arrays
Figure 2.12(c) shows individual sensors arranged in the form of a 2-D array.
Numerous electromagnetic and some ultrasonic sensing devices frequently
are arranged in an array format. This is also the predominant arrangement
found in digital cameras. A typical sensor for these cameras is a CCD array,
which can be manufactured with a broad range of sensing properties and can
be packaged in rugged arrays of elements or more. CCD sen-
sors are used widely in digital cameras and other light sensing instruments.
The response of each sensor is proportional to the integral of the light ener-
gy projected onto the surface of the sensor, a property that is used in astro-
nomical and other applications requiring low noise images. Noise reduction
is achieved by letting the sensor integrate the input light signal over minutes
or even hours. Because the sensor array in Fig. 2.12(c) is two-dimensional, its
key advantage is that a complete image can be obtained by focusing the en-
ergy pattern onto the surface of the array. Motion obviously is not necessary,
as is the case with the sensor arrangements discussed in the preceding two
sections.

The principal manner in which array sensors are used is shown in Fig. 2.15.
This figure shows the energy from an illumination source being reflected
from a scene element (as mentioned at the beginning of this section, the en-
ergy also could be transmitted through the scene elements). The first function
performed by the imaging system in Fig. 2.15(c) is to collect the incoming
energy and focus it onto an image plane. If the illumination is light, the front
end of the imaging system is an optical lens that projects the viewed scene
onto the lens focal plane, as Fig. 2.15(d) shows. The sensor array, which is 
coincident with the focal plane, produces outputs proportional to the integral
of the light received at each sensor. Digital and analog circuitry sweep these
outputs and convert them to an analog signal, which is then digitized by an-
other section of the imaging system. The output is a digital image, as shown
diagrammatically in Fig. 2.15(e). Conversion of an image into digital form is
the topic of Section 2.4.

2.3.4 A Simple Image Formation Model
As introduced in Section 1.1, we denote images by two-dimensional func-
tions of the form . The value or amplitude of f at spatial coordinates

is a positive scalar quantity whose physical meaning is determined by
the source of the image. When an image is generated from a physical process,
its intensity values are proportional to energy radiated by a physical source
(e.g., electromagnetic waves). As a consequence, must be nonzerof(x, y)

(x, y)
f(x, y)

4000 * 4000

Image intensities can
become negative during
processing or as a result
of interpretation. For
example, in radar images
objects moving toward a
radar system often are
interpreted as having
negative velocities while
objects moving away are
interpreted as having
positive velocities. Thus, a
velocity image might be
coded as having both
positive and negative
values. When storing and
displaying images, we
normally scale the inten-
sities so that the smallest
negative value becomes 0
(see Section 2.6.3 regard-
ing intensity scaling).

In some cases, we image
the source directly, as in
obtaining images of the
sun.
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Illumination (energy)
source

Imaging system

(Internal) image plane

Output (digitized) image

Scene element

FIGURE 2.15 An example of the digital image acquisition process. (a) Energy (“illumination”) source. (b) An
element of a scene. (c) Imaging system. (d) Projection of the scene onto the image plane. (e) Digitized image.

and finite; that is,

(2.3-1)

The function may be characterized by two components: (1) the amount
of source illumination incident on the scene being viewed, and (2) the amount of il-
lumination reflected by the objects in the scene.Appropriately, these are called the
illumination and reflectance components and are denoted by and ,
respectively.The two functions combine as a product to form :

(2.3-2)

where

(2.3-3)

and

(2.3-4)

Equation (2.3-4) indicates that reflectance is bounded by 0 (total absorption)
and 1 (total reflectance). The nature of is determined by the illumina-
tion source, and is determined by the characteristics of the imaged ob-
jects. It is noted that these expressions also are applicable to images formed
via transmission of the illumination through a medium, such as a chest X-ray.

r (x, y)
i (x, y)

0 6 r (x, y) 6 1

0 6 i (x, y) 6 q

f(x, y) = i (x, y)r (x, y)

f(x, y)
r(x, y)i(x, y)

f(x, y)

0 6 f(x, y) 6 q

a
b
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The discussion of 
sampling in this section is
of an intuitive nature. We
consider this topic in
depth in Chapter 4.

In this case, we would deal with a transmissivity instead of a reflectivity func-
tion, but the limits would be the same as in Eq. (2.3-4), and the image function
formed would be modeled as the product in Eq. (2.3-2).

EXAMPLE 2.1:
Some typical
values of
illumination and
reflectance.

■ The values given in Eqs. (2.3-3) and (2.3-4) are theoretical bounds.The fol-
lowing average numerical figures illustrate some typical ranges of for
visible light. On a clear day, the sun may produce in excess of 
of illumination on the surface of the Earth. This figure decreases to less than

on a cloudy day. On a clear evening, a full moon yields about
of illumination.The typical illumination level in a commercial office

is about Similarly, the following are typical values of : 0.01
for black velvet, 0.65 for stainless steel, 0.80 for flat-white wall paint, 0.90 for
silver-plated metal, and 0.93 for snow. ■

Let the intensity (gray level) of a monochrome image at any coordinates
be denoted by

(2.3-5)

From Eqs. (2.3-2) through (2.3-4), it is evident that lies in the range

(2.3-6)

In theory, the only requirement on is that it be positive, and on that
it be finite. In practice, and Using the pre-
ceding average office illumination and range of reflectance values as guide-
lines, we may expect and to be typical limits for indoor
values in the absence of additional illumination.

The interval is called the gray (or intensity) scale. Common
practice is to shift this interval numerically to the interval where

is considered black and is considered white on the gray scale.
All intermediate values are shades of gray varying from black to white.

2.4 Image Sampling and Quantization

From the discussion in the preceding section, we see that there are numerous
ways to acquire images, but our objective in all is the same: to generate digital
images from sensed data. The output of most sensors is a continuous voltage
waveform whose amplitude and spatial behavior are related to the physical
phenomenon being sensed. To create a digital image, we need to convert the
continuous sensed data into digital form.This involves two processes: sampling
and quantization.

2.4.1 Basic Concepts in Sampling and Quantization
The basic idea behind sampling and quantization is illustrated in Fig. 2.16.
Figure 2.16(a) shows a continuous image f that we want to convert to digital
form. An image may be continuous with respect to the x- and y-coordinates,
and also in amplitude. To convert it to digital form, we have to sample the

/ = L - 1/ = 0
[0, L - 1],

[Lmin, Lmax]

Lmax L 1000Lmin L 10

Lmax = i max rmax.Lmin = i min rmin

LmaxLmin

Lmin … / … Lmax

/

/ = f(x0, y0)

(x0, y0)

r (x, y)1000 lm>m2.
0.1 lm>m2
10,000 lm>m2

90,000 lm>m2
i (x, y)
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FIGURE 2.16
Generating a
digital image.
(a) Continuous
image. (b) A scan
line from A to B
in the continuous
image, used to
illustrate the
concepts of
sampling and
quantization.
(c) Sampling and
quantization.
(d) Digital 
scan line.

function in both coordinates and in amplitude. Digitizing the coordinate values
is called sampling. Digitizing the amplitude values is called quantization.

The one-dimensional function in Fig. 2.16(b) is a plot of amplitude (intensity
level) values of the continuous image along the line segment AB in Fig. 2.16(a).
The random variations are due to image noise. To sample this function, we take
equally spaced samples along line AB, as shown in Fig. 2.16(c). The spatial loca-
tion of each sample is indicated by a vertical tick mark in the bottom part of the
figure.The samples are shown as small white squares superimposed on the func-
tion.The set of these discrete locations gives the sampled function. However, the
values of the samples still span (vertically) a continuous range of intensity val-
ues. In order to form a digital function, the intensity values also must be con-
verted (quantized) into discrete quantities. The right side of Fig. 2.16(c) shows
the intensity scale divided into eight discrete intervals, ranging from black to
white. The vertical tick marks indicate the specific value assigned to each of the
eight intensity intervals.The continuous intensity levels are quantized by assign-
ing one of the eight values to each sample.The assignment is made depending on
the vertical proximity of a sample to a vertical tick mark. The digital samples
resulting from both sampling and quantization are shown in Fig. 2.16(d). Start-
ing at the top of the image and carrying out this procedure line by line produces
a two-dimensional digital image. It is implied in Fig. 2.16 that, in addition to the
number of discrete levels used, the accuracy achieved in quantization is highly
dependent on the noise content of the sampled signal.

Sampling in the manner just described assumes that we have a continuous
image in both coordinate directions as well as in amplitude. In practice, the

a b
c d
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method of sampling is determined by the sensor arrangement used to generate
the image. When an image is generated by a single sensing element combined
with mechanical motion, as in Fig. 2.13, the output of the sensor is quantized in
the manner described above. However, spatial sampling is accomplished by se-
lecting the number of individual mechanical increments at which we activate
the sensor to collect data. Mechanical motion can be made very exact so, in
principle, there is almost no limit as to how fine we can sample an image using
this approach. In practice, limits on sampling accuracy are determined by
other factors, such as the quality of the optical components of the system.

When a sensing strip is used for image acquisition, the number of sensors in
the strip establishes the sampling limitations in one image direction. Mechani-
cal motion in the other direction can be controlled more accurately, but it
makes little sense to try to achieve sampling density in one direction that ex-
ceeds the sampling limits established by the number of sensors in the other.
Quantization of the sensor outputs completes the process of generating a dig-
ital image.

When a sensing array is used for image acquisition, there is no motion and
the number of sensors in the array establishes the limits of sampling in both di-
rections. Quantization of the sensor outputs is as before. Figure 2.17 illustrates
this concept. Figure 2.17(a) shows a continuous image projected onto the
plane of an array sensor. Figure 2.17(b) shows the image after sampling and
quantization. Clearly, the quality of a digital image is determined to a large de-
gree by the number of samples and discrete intensity levels used in sampling
and quantization. However, as we show in Section 2.4.3, image content is also
an important consideration in choosing these parameters.

FIGURE 2.17 (a) Continuous image projected onto a sensor array. (b) Result of image
sampling and quantization.

a b
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2.4.2 Representing Digital Images
Let represent a continuous image function of two continuous variables,
s and t. We convert this function into a digital image by sampling and quanti-
zation, as explained in the previous section. Suppose that we sample the
continuous image into a 2-D array, , containing M rows and N
columns, where are discrete coordinates. For notational clarity and 
convenience, we use integer values for these discrete coordinates:

and Thus, for example, the
value of the digital image at the origin is , and the next coordinate
value along the first row is . Here, the notation (0, 1) is used to signify
the second sample along the first row. It does not mean that these are the val-
ues of the physical coordinates when the image was sampled. In general, the
value of the image at any coordinates is denoted , where x and y
are integers. The section of the real plane spanned by the coordinates of an
image is called the spatial domain, with x and y being referred to as spatial
variables or spatial coordinates.

As Fig. 2.18 shows, there are three basic ways to represent .
Figure 2.18(a) is a plot of the function, with two axes determining spatial location
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FIGURE 2.18
(a) Image plotted
as a surface.
(b) Image
displayed as a
visual intensity
array.
(c) Image shown
as a 2-D
numerical array
(0, .5, and 1
represent black,
gray, and white,
respectively).
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and the third axis being the values of f (intensities) as a function of the two spa-
tial variables x and y. Although we can infer the structure of the image in this
example by looking at the plot, complex images generally are too detailed and
difficult to interpret from such plots. This representation is useful when work-
ing with gray-scale sets whose elements are expressed as triplets of the form

, where x and y are spatial coordinates and z is the value of f at coordi-
nates . We work with this representation in Section 2.6.4.

The representation in Fig. 2.18(b) is much more common. It shows 
as it would appear on a monitor or photograph. Here, the intensity of each
point is proportional to the value of f at that point. In this figure, there are only
three equally spaced intensity values. If the intensity is normalized to the in-
terval [0, 1], then each point in the image has the value 0, 0.5, or 1. A monitor
or printer simply converts these three values to black, gray, or white, respec-
tively, as Fig. 2.18(b) shows. The third representation is simply to display the
numerical values of as an array (matrix). In this example, f is of size

elements, or 360,000 numbers. Clearly, printing the complete array
would be cumbersome and convey little information. When developing algo-
rithms, however, this representation is quite useful when only parts of the
image are printed and analyzed as numerical values. Figure 2.18(c) conveys
this concept graphically.

We conclude from the previous paragraph that the representations in
Figs. 2.18(b) and (c) are the most useful. Image displays allow us to view re-
sults at a glance. Numerical arrays are used for processing and algorithm devel-
opment. In equation form, we write the representation of an numerical
array as

(2.4-1)

Both sides of this equation are equivalent ways of expressing a digital image
quantitatively. The right side is a matrix of real numbers. Each element of this
matrix is called an image element, picture element, pixel, or pel. The terms
image and pixel are used throughout the book to denote a digital image and
its elements.

In some discussions it is advantageous to use a more traditional matrix no-
tation to denote a digital image and its elements:

(2.4-2)A = D a0, 0 a0, 1 Á a0, N - 1

a1, 0 a1, 1 Á a1, N - 1

o o o
aM - 1, 0 aM - 1, 1 Á aM - 1, N - 1

T

f(x, y) = D f(0, 0) f(0, 1) Á f(0, N - 1)
f(1, 0) f(1, 1) Á f(1, N - 1)

o o o
f(M - 1, 0) f(M - 1, 1) Á f(M - 1, N - 1)

T
M * N

600 * 600
f(x, y)

f(x, y)
(x, y)

(x, y, z)
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Clearly, so Eqs. (2.4-1) and (2.4-2) are identical
matrices.We can even represent an image as a vector, v. For example, a column
vector of size is formed by letting the first M elements of v be the first
column of A, the next M elements be the second column, and so on. Alterna-
tively, we can use the rows instead of the columns of A to form such a vector.
Either representation is valid, as long as we are consistent.

Returning briefly to Fig. 2.18, note that the origin of a digital image is at the
top left, with the positive x-axis extending downward and the positive y-axis
extending to the right. This is a conventional representation based on the fact
that many image displays (e.g., TV monitors) sweep an image starting at the
top left and moving to the right one row at a time. More important is the fact
that the first element of a matrix is by convention at the top left of the array, so
choosing the origin of at that point makes sense mathematically. Keep
in mind that this representation is the standard right-handed Cartesian coordi-
nate system with which you are familiar.† We simply show the axes pointing
downward and to the right, instead of to the right and up.

Expressing sampling and quantization in more formal mathematical terms
can be useful at times. Let Z and R denote the set of integers and the set of
real numbers, respectively. The sampling process may be viewed as partition-
ing the xy-plane into a grid, with the coordinates of the center of each cell in
the grid being a pair of elements from the Cartesian product which is the
set of all ordered pairs of elements with and being integers from
Z. Hence, is a digital image if are integers from and f is a
function that assigns an intensity value (that is, a real number from the set
of real numbers, R) to each distinct pair of coordinates . This functional
assignment is the quantization process described earlier. If the intensity lev-
els also are integers (as usually is the case in this and subsequent chapters),
Z replaces R, and a digital image then becomes a 2-D function whose coor-
dinates and amplitude values are integers.

This digitization process requires that decisions be made regarding the val-
ues for M, N, and for the number, L, of discrete intensity levels. There are no
restrictions placed on M and N, other than they have to be positive integers.
However, due to storage and quantizing hardware considerations, the number
of intensity levels typically is an integer power of 2:

(2.4-3)

We assume that the discrete levels are equally spaced and that they are inte-
gers in the interval Sometimes, the range of values spanned by the
gray scale is referred to informally as the dynamic range. This is a term used in
different ways in different fields. Here, we define the dynamic range of an imag-
ing system to be the ratio of the maximum measurable intensity to the minimum

[0, L - 1].

L = 2k

(x, y)

Z2(x, y)f(x, y)
zjzi(zi, zj),

Z2,

f(x, y)

MN * 1

aij = f(x = i, y = j) = f(i, j),

†Recall that a right-handed coordinate system is such that, when the index of the right hand points in the di-
rection of the positive x-axis and the middle finger points in the (perpendicular) direction of the positive
y-axis, the thumb points up. As Fig. 2.18(a) shows, this indeed is the case in our image coordinate system.

Often, it is useful for
computation or for
algorithm development
purposes to scale the L
intensity values to the
range [0, 1], in which case
they cease to be integers.
However, in most cases
these values are scaled
back to the integer range

for image
storage and display.
[0, L - 1]
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detectable intensity level in the system. As a rule, the upper limit is determined
by saturation and the lower limit by noise (see Fig. 2.19). Basically, dynamic
range establishes the lowest and highest intensity levels that a system can repre-
sent and, consequently, that an image can have. Closely associated with this con-
cept is image contrast, which we define as the difference in intensity between
the highest and lowest intensity levels in an image. When an appreciable num-
ber of pixels in an image have a high dynamic range, we can expect the image
to have high contrast. Conversely, an image with low dynamic range typically
has a dull, washed-out gray look. We discuss these concepts in more detail in
Chapter 3.

The number, b, of bits required to store a digitized image is

(2.4-4)

When this equation becomes

(2.4-5)

Table 2.1 shows the number of bits required to store square images with vari-
ous values of N and k. The number of intensity levels corresponding to each
value of k is shown in parentheses.When an image can have intensity levels,
it is common practice to refer to the image as a “k-bit image.” For example, an
image with 256 possible discrete intensity values is called an 8-bit image. Note
that storage requirements for 8-bit images of size and higher are
not insignificant.

1024 * 1024

2k

b = N2k

M = N,

b = M * N * k

Saturation

Noise

FIGURE 2.19 An
image exhibiting
saturation and
noise. Saturation is
the highest value
beyond which all
intensity levels are
clipped (note how
the entire
saturated area has
a high, constant
intensity level).
Noise in this case
appears as a grainy
texture pattern.
Noise, especially in
the darker regions
of an image (e.g.,
the stem of the
rose) masks the
lowest detectable
true intensity level.
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TABLE 2.1
Number of storage bits for various values of N and k. L is the number of intensity levels.

N/k 1 (L = 2) 2 (L = 4) 3 (L = 8) 4 (L = 16) 5 (L = 32) 6 (L = 64) 7 (L = 128) 8 (L = 256)

32 1,024 2,048 3,072 4,096 5,120 6,144 7,168 8,192

64 4,096 8,192 12,288 16,384 20,480 24,576 28,672 32,768

128 16,384 32,768 49,152 65,536 81,920 98,304 114,688 131,072

256 65,536 131,072 196,608 262,144 327,680 393,216 458,752 524,288

512 262,144 524,288 786,432 1,048,576 1,310,720 1,572,864 1,835,008 2,097,152

1024 1,048,576 2,097,152 3,145,728 4,194,304 5,242,880 6,291,456 7,340,032 8,388,608

2048 4,194,304 8,388,608 12,582,912 16,777,216 20,971,520 25,165,824 29,369,128 33,554,432

4096 16,777,216 33,554,432 50,331,648 67,108,864 83,886,080 100,663,296 117,440,512 134,217,728

8192 67,108,864 134,217,728 201,326,592 268,435,456 335,544,320 402,653,184 469,762,048 536,870,912

2.4.3 Spatial and Intensity Resolution
Intuitively, spatial resolution is a measure of the smallest discernible detail in
an image. Quantitatively, spatial resolution can be stated in a number of ways,
with line pairs per unit distance, and dots (pixels) per unit distance being
among the most common measures. Suppose that we construct a chart with
alternating black and white vertical lines, each of width W units (W can be
less than 1). The width of a line pair is thus 2W, and there are W line pairs
per unit distance. For example, if the width of a line is 0.1 mm, there are 5 line
pairs per unit distance (mm). A widely used definition of image resolution is
the largest number of discernible line pairs per unit distance (e.g., 100 line
pairs per mm). Dots per unit distance is a measure of image resolution used
commonly in the printing and publishing industry. In the U.S., this measure
usually is expressed as dots per inch (dpi). To give you an idea of quality,
newspapers are printed with a resolution of 75 dpi, magazines at 133 dpi,
glossy brochures at 175 dpi, and the book page at which you are presently
looking is printed at 2400 dpi.

The key point in the preceding paragraph is that, to be meaningful, mea-
sures of spatial resolution must be stated with respect to spatial units. Image
size by itself does not tell the complete story. To say that an image has, say, a
resolution pixels is not a meaningful statement without stating
the spatial dimensions encompassed by the image. Size by itself is helpful only
in making comparisons between imaging capabilities. For example, a digital
camera with a 20-megapixel CCD imaging chip can be expected to have a
higher capability to resolve detail than an 8-megapixel camera, assuming that
both cameras are equipped with comparable lenses and the comparison im-
ages are taken at the same distance.

Intensity resolution similarly refers to the smallest discernible change in in-
tensity level. We have considerable discretion regarding the number of sam-
ples used to generate a digital image, but this is not true regarding the number

1024 * 1024

1>2
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of intensity levels. Based on hardware considerations, the number of intensity
levels usually is an integer power of two, as mentioned in the previous section.
The most common number is 8 bits, with 16 bits being used in some applica-
tions in which enhancement of specific intensity ranges is necessary. Intensity
quantization using 32 bits is rare. Sometimes one finds systems that can digi-
tize the intensity levels of an image using 10 or 12 bits, but these are the excep-
tion, rather than the rule. Unlike spatial resolution, which must be based on a
per unit of distance basis to be meaningful, it is common practice to refer to
the number of bits used to quantize intensity as the intensity resolution. For ex-
ample, it is common to say that an image whose intensity is quantized into 256
levels has 8 bits of intensity resolution. Because true discernible changes in in-
tensity are influenced not only by noise and saturation values but also by the
capabilities of human perception (see Section 2.1), saying than an image has 8
bits of intensity resolution is nothing more than a statement regarding the
ability of an 8-bit system to quantize intensity in fixed increments of 
units of intensity amplitude.

The following two examples illustrate individually the comparative effects
of image size and intensity resolution on discernable detail. Later in this sec-
tion, we discuss how these two parameters interact in determining perceived
image quality.

1>256

EXAMPLE 2.2:
Illustration of the
effects of reducing
image spatial
resolution.

■ Figure 2.20 shows the effects of reducing spatial resolution in an image.
The images in Figs. 2.20(a) through (d) are shown in 1250, 300, 150, and 72
dpi, respectively. Naturally, the lower resolution images are smaller than the
original. For example, the original image is of size pixels, but the
72 dpi image is an array of size In order to facilitate comparisons,
all the smaller images were zoomed back to the original size (the method
used for zooming is discussed in Section 2.4.4).This is somewhat equivalent to
“getting closer” to the smaller images so that we can make comparable state-
ments about visible details.

There are some small visual differences between Figs. 2.20(a) and (b), the
most notable being a slight distortion in the large black needle. For the most
part, however, Fig. 2.20(b) is quite acceptable. In fact, 300 dpi is the typical
minimum image spatial resolution used for book publishing, so one would
not expect to see much difference here. Figure 2.20(c) begins to show visible
degradation (see, for example, the round edges of the chronometer and the
small needle pointing to 60 on the right side). Figure 2.20(d) shows degrada-
tion that is visible in most features of the image. As we discuss in Section
4.5.4, when printing at such low resolutions, the printing and publishing in-
dustry uses a number of “tricks” (such as locally varying the pixel size) to
produce much better results than those in Fig. 2.20(d). Also, as we show in
Section 2.4.4, it is possible to improve on the results of Fig. 2.20 by the choice
of interpolation method used. ■

213 * 162.
3692 * 2812
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FIGURE 2.20 Typical effects of reducing spatial resolution. Images shown at: (a) 1250
dpi, (b) 300 dpi, (c) 150 dpi, and (d) 72 dpi. The thin black borders were added for
clarity. They are not part of the data.

a b
c d
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EXAMPLE 2.3:
Typical effects of
varying the
number of
intensity levels in
a digital image.

■ In this example, we keep the number of samples constant and reduce the
number of intensity levels from 256 to 2, in integer powers of 2. Figure 2.21(a)
is a CT projection image, displayed with (256 intensity levels).
Images such as this are obtained by fixing the X-ray source in one position,
thus producing a 2-D image in any desired direction. Projection images are
used as guides to set up the parameters for a CT scanner, including tilt, number
of slices, and range.

Figures 2.21(b) through (h) were obtained by reducing the number of bits
from to while keeping the image size constant at pixels.
The 256-, 128-, and 64-level images are visually identical for all practical pur-
poses. The 32-level image in Fig. 2.21(d), however, has an imperceptible set of

452 * 374k = 1k = 7

k = 8452 * 374

FIGURE 2.21
(a)
256-level image.
(b)–(d) Image
displayed in 128,
64, and 32
intensity levels,
while keeping the
image size
constant.

452 * 374,
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FIGURE 2.21
(Continued)
(e)–(h) Image
displayed in 16, 8,
4, and 2 intensity
levels. (Original
courtesy of 
Dr. David R.
Pickens,
Department of
Radiology &
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

very fine ridge-like structures in areas of constant or nearly constant intensity
(particularly in the skull).This effect, caused by the use of an insufficient num-
ber of intensity levels in smooth areas of a digital image, is called false con-
touring, so called because the ridges resemble topographic contours in a map.
False contouring generally is quite visible in images displayed using 16 or less
uniformly spaced intensity levels, as the images in Figs. 2.21(e) through (h) show.

As a very rough rule of thumb, and assuming integer powers of 2 for conve-
nience, images of size pixels with 64 intensity levels and printed on a
size format on the order of are about the lowest spatial and intensity
resolution images that can be expected to be reasonably free of objectionable
sampling checkerboards and false contouring. ■

5 * 5 cm
256 * 256
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The results in Examples 2.2 and 2.3 illustrate the effects produced on image
quality by varying N and k independently. However, these results only partially
answer the question of how varying N and k affects images because we have not
considered yet any relationships that might exist between these two parame-
ters. An early study by Huang [1965] attempted to quantify experimentally the
effects on image quality produced by varying N and k simultaneously. The ex-
periment consisted of a set of subjective tests. Images similar to those shown in
Fig. 2.22 were used. The woman’s face is representative of an image with rela-
tively little detail; the picture of the cameraman contains an intermediate
amount of detail; and the crowd picture contains, by comparison, a large amount
of detail.

Sets of these three types of images were generated by varying N and k, and
observers were then asked to rank them according to their subjective quality.
Results were summarized in the form of so-called isopreference curves in the
Nk-plane. (Figure 2.23 shows average isopreference curves representative of
curves corresponding to the images in Fig. 2.22.) Each point in the Nk-plane
represents an image having values of N and k equal to the coordinates of that
point. Points lying on an isopreference curve correspond to images of equal
subjective quality. It was found in the course of the experiments that the iso-
preference curves tended to shift right and upward, but their shapes in each of
the three image categories were similar to those in Fig. 2.23. This is not unex-
pected, because a shift up and right in the curves simply means larger values
for N and k, which implies better picture quality.

The key point of interest in the context of the present discussion is that iso-
preference curves tend to become more vertical as the detail in the image in-
creases. This result suggests that for images with a large amount of detail
only a few intensity levels may be needed. For example, the isopreference
curve in Fig. 2.23 corresponding to the crowd is nearly vertical. This indicates
that, for a fixed value of N, the perceived quality for this type of image is

FIGURE 2.22 (a) Image with a low level of detail. (b) Image with a medium level of detail. (c) Image with a
relatively large amount of detail. (Image (b) courtesy of the Massachusetts Institute of Technology.)

a b c
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Face

2561286432

4

5

k

N

Crowd

Cameraman

FIGURE 2.23
Typical
isopreference
curves for the
three types of
images in 
Fig. 2.22.

nearly independent of the number of intensity levels used (for the range of in-
tensity levels shown in Fig. 2.23). It is of interest also to note that perceived
quality in the other two image categories remained the same in some intervals
in which the number of samples was increased, but the number of intensity
levels actually decreased. The most likely reason for this result is that a de-
crease in k tends to increase the apparent contrast, a visual effect that humans
often perceive as improved quality in an image.

2.4.4 Image Interpolation
Interpolation is a basic tool used extensively in tasks such as zooming, shrink-
ing, rotating, and geometric corrections. Our principal objective in this section
is to introduce interpolation and apply it to image resizing (shrinking and
zooming), which are basically image resampling methods. Uses of interpola-
tion in applications such as rotation and geometric corrections are discussed in
Section 2.6.5.We also return to this topic in Chapter 4, where we discuss image
resampling in more detail.

Fundamentally, interpolation is the process of using known data to estimate
values at unknown locations. We begin the discussion of this topic with a sim-
ple example. Suppose that an image of size pixels has to be en-
larged 1.5 times to pixels. A simple way to visualize zooming is to
create an imaginary grid with the same pixel spacing as the original,
and then shrink it so that it fits exactly over the original image. Obviously, the
pixel spacing in the shrunken grid will be less than the pixel spacing
in the original image. To perform intensity-level assignment for any point in
the overlay, we look for its closest pixel in the original image and assign the in-
tensity of that pixel to the new pixel in the grid. When we are fin-
ished assigning intensities to all the points in the overlay grid, we expand it to
the original specified size to obtain the zoomed image.

750 * 750

750 * 750

750 * 750
750 * 750

500 * 500
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EXAMPLE 2.4:
Comparison of
interpolation
approaches for
image shrinking
and zooming.

■ Figure 2.24(a) is the same image as Fig. 2.20(d), which was obtained by re-
ducing the resolution of the 1250 dpi image in Fig. 2.20(a) to 72 dpi (the size
shrank from the original size of to pixels) and then
zooming the reduced image back to its original size. To generate Fig. 2.20(d)
we used nearest neighbor interpolation both to shrink and zoom the image.As
we commented before, the result in Fig. 2.24(a) is rather poor. Figures 2.24(b)
and (c) are the results of repeating the same procedure but using, respectively,
bilinear and bicubic interpolation for both shrinking and zooming. The result
obtained by using bilinear interpolation is a significant improvement over near-
est neighbor interpolation. The bicubic result is slightly sharper than the bilin-
ear image. Figure 2.24(d) is the same as Fig. 2.20(c), which was obtained using
nearest neighbor interpolation for both shrinking and zooming. We comment-
ed in discussing that figure that reducing the resolution to 150 dpi began show-
ing degradation in the image. Figures 2.24(e) and (f) show the results of using

213 * 1623692 * 2812

The method just discussed is called nearest neighbor interpolation because it
assigns to each new location the intensity of its nearest neighbor in the original
image (pixel neighborhoods are discussed formally in Section 2.5). This ap-
proach is simple but, as we show later in this section, it has the tendency to
produce undesirable artifacts, such as severe distortion of straight edges. For
this reason, it is used infrequently in practice. A more suitable approach is
bilinear interpolation, in which we use the four nearest neighbors to estimate
the intensity at a given location. Let denote the coordinates of the loca-
tion to which we want to assign an intensity value (think of it as a point of the
grid described previously), and let denote that intensity value. For bi-
linear interpolation, the assigned value is obtained using the equation

(2.4-6)

where the four coefficients are determined from the four equations in four un-
knowns that can be written using the four nearest neighbors of point .As
you will see shortly, bilinear interpolation gives much better results than near-
est neighbor interpolation, with a modest increase in computational burden.

The next level of complexity is bicubic interpolation, which involves the six-
teen nearest neighbors of a point.The intensity value assigned to point is
obtained using the equation

(2.4-7)

where the sixteen coefficients are determined from the sixteen equations in
sixteen unknowns that can be written using the sixteen nearest neighbors of
point . Observe that Eq. (2.4-7) reduces in form to Eq. (2.4-6) if the lim-
its of both summations in the former equation are 0 to 1. Generally, bicubic in-
terpolation does a better job of preserving fine detail than its bilinear
counterpart. Bicubic interpolation is the standard used in commercial image
editing programs, such as Adobe Photoshop and Corel Photopaint.

(x, y)

v(x, y) = a
3

i = 0
a
3

j = 0
aijx

iyj

(x, y)

(x, y)

v(x, y) = ax + by + cxy + d

(x, y)v

(x, y)

Contrary to what the
name suggests, note that
bilinear interpolation is
not linear because of the
xy term.
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FIGURE 2.24 (a) Image reduced to 72 dpi and zoomed back to its original size ( pixels) using
nearest neighbor interpolation. This figure is the same as Fig. 2.20(d). (b) Image shrunk and zoomed using
bilinear interpolation. (c) Same as (b) but using bicubic interpolation. (d)–(f) Same sequence, but shrinking
down to 150 dpi instead of 72 dpi [Fig. 2.24(d) is the same as Fig. 2.20(c)]. Compare Figs. 2.24(e) and (f),
especially the latter, with the original image in Fig. 2.20(a).

3692 * 2812

bilinear and bicubic interpolation, respectively, to shrink and zoom the image.
In spite of a reduction in resolution from 1250 to 150, these last two images
compare reasonably favorably with the original, showing once again the
power of these two interpolation methods. As before, bicubic interpolation
yielded slightly sharper results. ■

a b c
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It is possible to use more neighbors in interpolation, and there are more
complex techniques, such as using splines and wavelets, that in some instances
can yield better results than the methods just discussed. While preserving fine
detail is an exceptionally important consideration in image generation for 3-D
graphics (Watt [1993], Shirley [2002]) and in medical image processing
(Lehmann et al. [1999]), the extra computational burden seldom is justifiable
for general-purpose digital image processing, where bilinear or bicubic inter-
polation typically are the methods of choice.

2.5 Some Basic Relationships between Pixels

In this section, we consider several important relationships between pixels in a
digital image.As mentioned before, an image is denoted by .When refer-
ring in this section to a particular pixel, we use lowercase letters, such as p and q.

2.5.1 Neighbors of a Pixel
A pixel p at coordinates has four horizontal and vertical neighbors whose
coordinates are given by

This set of pixels, called the 4-neighbors of p, is denoted by Each pixel is
a unit distance from , and some of the neighbor locations of p lie outside
the digital image if is on the border of the image.We deal with this issue
in Chapter 3.

The four diagonal neighbors of p have coordinates

and are denoted by These points, together with the 4-neighbors, are called
the 8-neighbors of p, denoted by As before, some of the neighbor locations
in and fall outside the image if is on the border of the image.

2.5.2 Adjacency, Connectivity, Regions, and Boundaries
Let V be the set of intensity values used to define adjacency. In a binary image,

if we are referring to adjacency of pixels with value 1. In a gray-scale
image, the idea is the same, but set V typically contains more elements. For exam-
ple, in the adjacency of pixels with a range of possible intensity values 0 to 255, set
V could be any subset of these 256 values. We consider three types of adjacency:

(a) 4-adjacency. Two pixels p and q with values from V are 4-adjacent if q is in
the set 

(b) 8-adjacency. Two pixels p and q with values from V are 8-adjacent if q is in
the set 

(c) m-adjacency (mixed adjacency).Two pixels p and q with values from V are
m-adjacent if

(i) q is in or
(ii) q is in and the set has no pixels whose values

are from V.
N4(p) ¨ N4(q)ND(p)

N4(p),

N8(p).

N4(p).

V = 516

(x, y)N8(p)ND(p)
N8(p).

ND(p).

(x + 1, y + 1), (x + 1, y - 1), (x - 1, y + 1), (x - 1, y - 1)

(x, y)
(x, y)

N4(p).

(x + 1, y), (x - 1, y), (x, y + 1), (x, y - 1)

(x, y)

(x, y)f

We use the symbols 
and to denote set
intersection and union,
respectively. Given sets
A and B, recall that their
intersection is the set of
elements that are mem-
bers of both A and B.
The union of these two
sets is the set of elements
that are members of A,
of B, or of both. We
discuss sets in more
detail in Section 2.6.4.

´
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Mixed adjacency is a modification of 8-adjacency. It is introduced to eliminate the
ambiguities that often arise when 8-adjacency is used. For example, consider the
pixel arrangement shown in Fig. 2.25(a) for The three pixels at the top
of Fig. 2.25(b) show multiple (ambiguous) 8-adjacency, as indicated by the dashed
lines. This ambiguity is removed by using m-adjacency, as shown in Fig. 2.25(c).

A (digital) path (or curve) from pixel p with coordinates to pixel q
with coordinates is a sequence of distinct pixels with coordinates

where and pixels and are
adjacent for In this case, n is the length of the path. If

the path is a closed path. We can define 4-, 8-, or m-paths
depending on the type of adjacency specified. For example, the paths shown in
Fig. 2.25(b) between the top right and bottom right points are 8-paths, and the
path in Fig. 2.25(c) is an m-path.

Let S represent a subset of pixels in an image.Two pixels p and q are said to
be connected in S if there exists a path between them consisting entirely of pix-
els in S. For any pixel p in S, the set of pixels that are connected to it in S is
called a connected component of S. If it only has one connected component,
then set S is called a connected set.

Let R be a subset of pixels in an image. We call R a region of the image if R
is a connected set. Two regions, and are said to be adjacent if their union
forms a connected set. Regions that are not adjacent are said to be disjoint.We
consider 4- and 8-adjacency when referring to regions. For our definition to
make sense, the type of adjacency used must be specified. For example, the two
regions (of 1s) in Fig. 2.25(d) are adjacent only if 8-adjacency is used (according
to the definition in the previous paragraph, a 4-path between the two regions
does not exist, so their union is not a connected set).

RjRi

(x0, y0) = (xn, yn),
1 … i … n.

(xi - 1, yi - 1)(xi, yi)(x0, y0) = (x, y), (xn, yn) = (s, t),

(x0, y0), (x1, y1), Á , (xn, yn)

(s, t)
(x, y)

V = 516.

0 1 1
0 1 0
0 0 1

0
0
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1 1 1
1 0 1
0 1 0
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1
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0
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1 1
1 0
0 1

FIGURE 2.25 (a) An arrangement of pixels. (b) Pixels that are 8-adjacent (adjacency is
shown by dashed lines; note the ambiguity). (c) m-adjacency. (d) Two regions (of 1s) that
are adjacent if 8-adjecency is used. (e) The circled point is part of the boundary of the 
1-valued pixels only if 8-adjacency between the region and background is used. (f) The
inner boundary of the 1-valued region does not form a closed path, but its outer
boundary does.
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Suppose that an image contains K disjoint regions,
none of which touches the image border.† Let denote the union of all the K
regions, and let denote its complement (recall that the complement of a
set S is the set of points that are not in S). We call all the points in the
foreground, and all the points in the background of the image.

The boundary (also called the border or contour) of a region R is the set of
points that are adjacent to points in the complement of R. Said another way,
the border of a region is the set of pixels in the region that have at least one
background neighbor. Here again, we must specify the connectivity being
used to define adjacency. For example, the point circled in Fig. 2.25(e) is not a
member of the border of the 1-valued region if 4-connectivity is used between
the region and its background.As a rule, adjacency between points in a region
and its background is defined in terms of 8-connectivity to handle situations
like this.

The preceding definition sometimes is referred to as the inner border of
the region to distinguish it from its outer border, which is the corresponding
border in the background. This distinction is important in the development of
border-following algorithms. Such algorithms usually are formulated to fol-
low the outer boundary in order to guarantee that the result will form a
closed path. For instance, the inner border of the 1-valued region in Fig.
2.25(f) is the region itself. This border does not satisfy the definition of a
closed path given earlier. On the other hand, the outer border of the region
does form a closed path around the region.

If R happens to be an entire image (which we recall is a rectangular set of
pixels), then its boundary is defined as the set of pixels in the first and last rows
and columns of the image. This extra definition is required because an image
has no neighbors beyond its border. Normally, when we refer to a region, we
are referring to a subset of an image, and any pixels in the boundary of the
region that happen to coincide with the border of the image are included im-
plicitly as part of the region boundary.

The concept of an edge is found frequently in discussions dealing with re-
gions and boundaries. There is a key difference between these concepts, how-
ever. The boundary of a finite region forms a closed path and is thus a
“global” concept. As discussed in detail in Chapter 10, edges are formed from
pixels with derivative values that exceed a preset threshold. Thus, the idea of
an edge is a “local” concept that is based on a measure of intensity-level dis-
continuity at a point. It is possible to link edge points into edge segments, and
sometimes these segments are linked in such a way that they correspond to
boundaries, but this is not always the case. The one exception in which edges
and boundaries correspond is in binary images. Depending on the type of
connectivity and edge operators used (we discuss these in Chapter 10), the
edge extracted from a binary region will be the same as the region boundary.

(Ru)c
Ru

(Ru)c
Ru

Rk, k = 1, 2, Á , K,

†We make this assumption to avoid having to deal with special cases. This is done without loss of gener-
ality because if one or more regions touch the border of an image, we can simply pad the image with a
1-pixel-wide border of background values.
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This is intuitive. Conceptually, until we arrive at Chapter 10, it is helpful to
think of edges as intensity discontinuities and boundaries as closed paths.

2.5.3 Distance Measures
For pixels p, q, and z, with coordinates (x, y), (s, t), and (v, w), respectively, D
is a distance function or metric if

(a)
(b) and
(c)

The Euclidean distance between p and q is defined as

(2.5-1)

For this distance measure, the pixels having a distance less than or equal to
some value r from (x, y) are the points contained in a disk of radius r centered
at (x, y).

The distance (called the city-block distance) between p and q is defined as

(2.5-2)

In this case, the pixels having a distance from (x, y) less than or equal to
some value r form a diamond centered at (x, y). For example, the pixels with

distance from (x, y) (the center point) form the following contours of
constant distance:

The pixels with are the 4-neighbors of (x, y).
The distance (called the chessboard distance) between p and q is defined as

(2.5-3)

In this case, the pixels with distance from (x, y) less than or equal to some
value r form a square centered at . For example, the pixels with

from (x, y) (the center point) form the following contours of
constant distance:

The pixels with are the 8-neighbors of (x, y).D8 = 1

2 2 2 2 2
2 1 1 1 2
2 1 0 1 2
2 1 1 1 2
2 2 2 2 2

D8 distance …  2
(x, y)

D8

D8(p, q) = max( ƒ x - s ƒ , ƒ y - t ƒ )

D8

D4 = 1

2
2
1
2

2
1
0
1
2

2
1
2

2

… 2D4

D4

D4(p, q) = ƒ x - s ƒ + ƒ y - t ƒ

D4

De(p, q) = C(x - s)2 + (y - t)2 D 12
D(p, z) … D(p, q) + D(q, z).
D(p, q) = D(q, p),
D(p, q) Ú 0 (D(p, q) = 0 iff p = q),
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Note that the and distances between p and q are independent of any
paths that might exist between the points because these distances involve only
the coordinates of the points. If we elect to consider m-adjacency, however, the

distance between two points is defined as the shortest m-path between the
points. In this case, the distance between two pixels will depend on the values
of the pixels along the path, as well as the values of their neighbors. For in-
stance, consider the following arrangement of pixels and assume that p, and

have value 1 and that and can have a value of 0 or 1:

Suppose that we consider adjacency of pixels valued 1 (i.e., ). If 
and are 0, the length of the shortest m-path (the distance) between p
and is 2. If is 1, then and p will no longer be m-adjacent (see the defi-
nition of m-adjacency) and the length of the shortest m-path becomes 3 (the
path goes through the points ). Similar comments apply if is 1 (and

is 0); in this case, the length of the shortest m-path also is 3. Finally, if both
and are 1, the length of the shortest m-path between p and is 4. In this

case, the path goes through the sequence of points 

2.6 An Introduction to the Mathematical Tools Used 
in Digital Image Processing

This section has two principal objectives: (1) to introduce you to the various
mathematical tools we use throughout the book; and (2) to help you begin de-
veloping a “feel” for how these tools are used by applying them to a variety of
basic image-processing tasks, some of which will be used numerous times in
subsequent discussions.We expand the scope of the tools and their application
as necessary in the following chapters.

2.6.1 Array versus Matrix Operations
An array operation involving one or more images is carried out on a pixel-by-
pixel basis. We mentioned earlier in this chapter that images can be viewed
equivalently as matrices. In fact, there are many situations in which opera-
tions between images are carried out using matrix theory (see Section 2.6.6).
It is for this reason that a clear distinction must be made between array and
matrix operations. For example, consider the following images:

The array product of these two images isBa11 a12

a21 a22
R Bb11 b12

b21 b22
R = Ba11b11 a12b12

a21b21 a22b22
R

Ba11 a12

a21 a22
R and Bb11 b12

b21 b22
R2 * 2

pp1p2p3p4.
p4p3p1

p1

p3pp1p2p4

p2p1p4

Dmp3

p1V = 516

p1

p

p3

p2

p4

p3p1p4

p2,

Dm

D8D4

Before proceeding, you
may find it helpful to
download and study the
review material available
in the Tutorials section of
the book Web site. The
review covers introduc-
tory material on matrices
and vectors, linear sys-
tems, set theory, and
probability.
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These are array summa-
tions, not the sums of all
the elements of the
images. As such, the sum
of a single image is the
image itself.

On the other hand, the matrix product is given by

We assume array operations throughout the book, unless stated otherwise.
For example, when we refer to raising an image to a power, we mean that
each individual pixel is raised to that power; when we refer to dividing an
image by another, we mean that the division is between corresponding pixel
pairs, and so on.

2.6.2 Linear versus Nonlinear Operations
One of the most important classifications of an image-processing method is
whether it is linear or nonlinear. Consider a general operator, H, that produces
an output image, g(x, y), for a given input image, f (x, y):

(2.6-1)

H is said to be a linear operator if

(2.6-2)

where and are arbitrary constants and images (of the
same size), respectively. Equation (2.6-2) indicates that the output of a linear
operation due to the sum of two inputs is the same as performing the opera-
tion on the inputs individually and then summing the results. In addition, the
output of a linear operation to a constant times an input is the same as the out-
put of the operation due to the original input multiplied by that constant. The
first property is called the property of additivity and the second is called the
property of homogeneity.

As a simple example, suppose that H is the sum operator, that is, the
function of this operator is simply to sum its inputs. To test for linearity, we
start with the left side of Eq. (2.6-2) and attempt to prove that it is equal to the
right side:

where the first step follows from the fact that summation is distributive. So, an
expansion of the left side is equal to the right side of Eq. (2.6-2), and we con-
clude that the sum operator is linear.

= ai gi (x, y) + ajgj (x, y)

= aiafi(x, y) + ajafj(x, y)

a Caifi(x, y) + aj fj(x, y) D = aai fi(x, y) + aaj fj(x, y)

©;

fj(x, y)ai , aj , fi(x, y),

= aigi(x, y) + ajgj(x, y)

H Caifi(x, y) + ajfj(x, y) D = aiH Cfi(x, y) D + ajH Cfj(x, y) D

H C f(x, y) D = g(x, y)

Ba11 a12

a21 a22
R Bb11 b12

b21 b22
R = Ba11b11 + a12b21 a11b12 + a12b22

a21b11 + a22b21 a21b12 + a22b22
R
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On the other hand, consider the max operation, whose function is to find
the maximum value of the pixels in an image. For our purposes here, the sim-
plest way to prove that this operator is nonlinear, is to find an example that
fails the test in Eq. (2.6-2). Consider the following two images

and suppose that we let and To test for linearity, we again
start with the left side of Eq. (2.6-2):

Working next with the right side, we obtain

The left and right sides of Eq. (2.6-2) are not equal in this case, so we have
proved that in general the max operator is nonlinear.

As you will see in the next three chapters, especially in Chapters 4 and 5, lin-
ear operations are exceptionally important because they are based on a large
body of theoretical and practical results that are applicable to image process-
ing. Nonlinear systems are not nearly as well understood, so their scope of ap-
plication is more limited. However, you will encounter in the following
chapters several nonlinear image processing operations whose performance
far exceeds what is achievable by their linear counterparts.

2.6.3 Arithmetic Operations
Arithmetic operations between images are array operations which, as discussed
in Section 2.6.1, means that arithmetic operations are carried out between cor-
responding pixel pairs. The four arithmetic operations are denoted as

(2.6-3)

It is understood that the operations are performed between corresponding
pixel pairs in f and g for and y = 0, 1, 2, Á , N - 1x = 0, 1, 2, Á , M - 1

v(x, y) = f(x, y) , g(x, y)

p(x, y) = f(x, y) * g(x, y)

d(x, y) = f(x, y) - g(x, y)

s(x, y) = f(x, y) + g(x, y)

= -4

 (1)max b B0 2
2 3

R r + (-1)max b B6 5
4 7

R r = 3 + (-1)7

= -2

 max b (1)B0 2
2 3

R + (-1)B6 5
4 7

R r = max b B -6 -3
-2 -4

R r
a2 = -1.a1 = 1

f1 = B0 2
2 3

R and f2 = B6 5
4 7

R
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EXAMPLE 2.5:
Addition
(averaging) of
noisy images for
noise reduction.

■ Let denote a corrupted image formed by the addition of noise,
to a noiseless image ; that is,

(2.6-4)

where the assumption is that at every pair of coordinates (x, y) the noise is un-
correlated† and has zero average value. The objective of the following proce-
dure is to reduce the noise content by adding a set of noisy images,
This is a technique used frequently for image enhancement.

If the noise satisfies the constraints just stated, it can be shown (Problem 2.20)
that if an image is formed by averaging K different noisy images,

(2.6-5)

then it follows that

(2.6-6)

and

(2.6-7)

where is the expected value of and and are the
variances of and respectively, all at coordinates (x, y). The standard devia-
tion (square root of the variance) at any point in the average image is

(2.6-8)

As K increases, Eqs. (2.6-7) and (2.6-8) indicate that the variability (as measured
by the variance or the standard deviation) of the pixel values at each location

decreases. Because this means that ap-
proaches as the number of noisy images used in the averaging process
increases. In practice, the images must be registered (aligned) in order to
avoid the introduction of blurring and other artifacts in the output image.

gi(x, y)
(x, y)f

g(x, y)E5g(x, y)6 = f(x, y),(x, y)

sgq (x,y) =
1

2K
sh(x,y)

h,g
sh(x,y)

2sgq (x,y)
2g,E5g(x, y)6

sgq (x,y)
2 =

1
K
sh(x,y)

2

E5g(x, y)6 = f(x, y)

g(x, y) =
1
Ka

K

i = 1
gi(x, y)

g(x, y)

5gi(x, y)6.

g(x, y) = f(x, y) + h(x, y)

(x, y)fh(x, y),
(x, y)g

†Recall that the variance of a random variable z with mean m is defined as where is
the expected value of the argument. The covariance of two random variables and is defined as

If the variables are uncorrelated, their covariance is 0.E[(zi - mi)(zj - mj)].
zjzi

E5 # 6E[(z - m)2],

where, as usual, M and N are the row and column sizes of the images. Clearly,
s, d, p, and are images of size also. Note that image arithmetic in the
manner just defined involves images of the same size. The following examples
are indicative of the important role played by arithmetic operations in digital
image processing.

M * Nv



76 Chapter 2 ■ Digital Image Fundamentals

An important application of image averaging is in the field of astronomy,
where imaging under very low light levels frequently causes sensor noise to
render single images virtually useless for analysis. Figure 2.26(a) shows an 8-bit
image in which corruption was simulated by adding to it Gaussian noise with
zero mean and a standard deviation of 64 intensity levels. This image, typical of
noisy images taken under low light conditions, is useless for all practical pur-
poses. Figures 2.26(b) through (f) show the results of averaging 5, 10, 20, 50, and
100 images, respectively. We see that the result in Fig. 2.26(e), obtained with

is reasonably clean. The image Fig. 2.26(f), resulting from averaging
100 noisy images, is only a slight improvement over the image in Fig. 2.26(e).

Addition is a discrete version of continuous integration. In astronomical
observations, a process equivalent to the method just described is to use the in-
tegrating capabilities of CCD (see Section 2.3.3) or similar sensors for noise
reduction by observing the same scene over long periods of time. Cooling also
is used to reduce sensor noise.The net effect, however, is analogous to averaging
a set of noisy digital images. ■

K = 50,

FIGURE 2.26 (a) Image of Galaxy Pair NGC 3314 corrupted by additive Gaussian noise. (b)–(f) Results of
averaging 5, 10, 20, 50, and 100 noisy images, respectively. (Original image courtesy of NASA.)

a b c
d e f

The images shown in this
example are from a
galaxy pair called NGC
3314, taken by NASA’s
Hubble Space Telescope.
NGC 3314 lies about 140
million light-years from
Earth, in the direction of
the southern-hemisphere
constellation Hydra. The
bright stars forming a
pinwheel shape near the
center of the front galaxy
were formed from inter-
stellar gas and dust.
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FIGURE 2.27 (a) Infrared image of the Washington, D.C. area. (b) Image obtained by setting to zero the least
significant bit of every pixel in (a). (c) Difference of the two images, scaled to the range [0, 255] for clarity.

EXAMPLE 2.6:
Image subtraction
for enhancing
differences.

■ A frequent application of image subtraction is in the enhancement of
differences between images. For example, the image in Fig. 2.27(b) was obtained
by setting to zero the least-significant bit of every pixel in Fig. 2.27(a).Visually,
these images are indistinguishable. However, as Fig. 2.27(c) shows, subtracting
one image from the other clearly shows their differences. Black (0) values in
this difference image indicate locations where there is no difference between
the images in Figs. 2.27(a) and (b).

As another illustration, we discuss briefly an area of medical imaging called
mask mode radiography, a commercially successful and highly beneficial use
of image subtraction. Consider image differences of the form

(2.6-9)

In this case , the mask, is an X-ray image of a region of a patient’s body
captured by an intensified TV camera (instead of traditional X-ray film) locat-
ed opposite an X-ray source. The procedure consists of injecting an X-ray con-
trast medium into the patient’s bloodstream, taking a series of images called
live images [samples of which are denoted as ] of the same anatomical
region as , and subtracting the mask from the series of incoming live im-
ages after injection of the contrast medium. The net effect of subtracting the
mask from each sample live image is that the areas that are different between 

and appear in the output image, , as enhanced detail.
Because images can be captured at TV rates, this procedure in essence gives 
a movie showing how the contrast medium propagates through the various 
arteries in the area being observed.

Figure 2.28(a) shows a mask X-ray image of the top of a patient’s head prior
to injection of an iodine medium into the bloodstream, and Fig. 2.28(b) is a
sample of a live image taken after the medium was injected. Figure 2.28(c) is

(x, y)g(x, y)h(x, y)f

(x, y)h
(x, y)f

(x, y)h

g(x, y) = f(x, y) - h(x, y) Change detection via
image subtraction is used
also in image segmenta-
tion, which is the topic of
Chapter 10.

a b c
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the difference between (a) and (b). Some fine blood vessel structures are visi-
ble in this image. The difference is clear in Fig. 2.28(d), which was obtained by
enhancing the contrast in (c) (we discuss contrast enhancement in the next
chapter). Figure 2.28(d) is a clear “map” of how the medium is propagating
through the blood vessels in the subject’s brain. ■

FIGURE 2.28
Digital
subtraction
angiography.
(a) Mask image.
(b) A live image.
(c) Difference
between (a) and
(b). (d) Enhanced
difference image.
(Figures (a) and
(b) courtesy of
The Image
Sciences Institute,
University
Medical Center,
Utrecht, The
Netherlands.)

EXAMPLE 2.7:
Using image
multiplication and
division for
shading
correction.

■ An important application of image multiplication (and division) is shading
correction. Suppose that an imaging sensor produces images that can be mod-
eled as the product of a “perfect image,” denoted by , times a shading
function, ; that is, If is known, we can
obtain by multiplying the sensed image by the inverse of (i.e., di-
viding g by h). If is not known, but access to the imaging system is pos-
sible, we can obtain an approximation to the shading function by imaging a
target of constant intensity. When the sensor is not available, we often can es-
timate the shading pattern directly from the image, as we discuss in Section
9.6. Figure 2.29 shows an example of shading correction.

Another common use of image multiplication is in masking, also called
region of interest (ROI), operations. The process, illustrated in Fig. 2.30, con-
sists simply of multiplying a given image by a mask image that has 1s in the
ROI and 0s elsewhere. There can be more than one ROI in the mask image,
and the shape of the ROI can be arbitrary, although rectangular shapes are
used frequently for ease of implementation. ■

A few comments about implementing image arithmetic operations are in
order before we leave this section. In practice, most images are displayed
using 8 bits (even 24-bit color images consist of three separate 8-bit channels).
Thus, we expect image values to be in the range from 0 to 255. When images

(x, y)h
(x, y)h(x, y)f

(x, y)hg(x, y) = f(x, y)h(x, y).(x, y)h
(x, y)f

a b
c d



2.6 ■ An Introduction to the Mathematical Tools Used in Digital Image Processing 79

are saved in a standard format, such as TIFF or JPEG, conversion to this
range is automatic. However, the approach used for the conversion depends
on the system used. For example, the values in the difference of two 8-bit im-
ages can range from a minimum of to a maximum of 255, and the values
of a sum image can range from 0 to 510. Many software packages simply set
all negative values to 0 and set to 255 all values that exceed this limit when
converting images to 8 bits. Given an image f, an approach that guarantees
that the full range of an arithmetic operation between images is “captured”
into a fixed number of bits is as follows. First, we perform the operation

(2.6-10)fm = f - min(f)

-255

FIGURE 2.30 (a) Digital dental X-ray image. (b) ROI mask for isolating teeth with fillings (white corresponds to
1 and black corresponds to 0). (c) Product of (a) and (b).

FIGURE 2.29 Shading correction. (a) Shaded SEM image of a tungsten filament and support, magnified
approximately 130 times. (b) The shading pattern. (c) Product of (a) by the reciprocal of (b). (Original image
courtesy of Michael Shaffer, Department of Geological Sciences, University of Oregon, Eugene.)

a b c

a b c
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which creates an image whose minimum value is 0. Then, we perform the
operation

(2.6-11)

which creates a scaled image, whose values are in the range [0, K]. When
working with 8-bit images, setting gives us a scaled image whose in-
tensities span the full 8-bit scale from 0 to 255. Similar comments apply to 16-bit
images or higher. This approach can be used for all arithmetic operations.
When performing division, we have the extra requirement that a small number
should be added to the pixels of the divisor image to avoid division by 0.

2.6.4 Set and Logical Operations
In this section, we introduce briefly some important set and logical operations.
We also introduce the concept of a fuzzy set.

Basic set operations

Let A be a set composed of ordered pairs of real numbers. If is an
element of A, then we write

(2.6-12)

Similarly, if a is not an element of A, we write

(2.6-13)

The set with no elements is called the null or empty set and is denoted by the
symbol

A set is specified by the contents of two braces: For example, when we
write an expression of the form , we mean that set C
is the set of elements, , such that is formed by multiplying each of the ele-
ments of set D by One way in which sets are used in image processing is to
let the elements of sets be the coordinates of pixels (ordered pairs of integers)
representing regions (objects) in an image.

If every element of a set A is also an element of a set B, then A is said to be
a subset of B, denoted as

(2.6-14)

The union of two sets A and B, denoted by

(2.6-15)

is the set of elements belonging to either A, B, or both. Similarly, the
intersection of two sets A and B, denoted by

(2.6-16)

is the set of elements belonging to both A and B.Two sets A and B are said to be
disjoint or mutually exclusive if they have no common elements, in which case,

(2.6-17)A ¨ B = �

D = A ¨ B

C = A ´ B

A 8 B

-1.
ww

C = 5w ƒ w = -d, d H D6
5 # 6.

�.

a x A

a H A

a = (a1, a2)

K = 255
fs,

fs = K C fm>max( fm) D
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The set universe, U, is the set of all elements in a given application. By defi-
nition, all set elements in a given application are members of the universe de-
fined for that application. For example, if you are working with the set of real
numbers, then the set universe is the real line, which contains all the real num-
bers. In image processing, we typically define the universe to be the rectangle
containing all the pixels in an image.

The complement of a set A is the set of elements that are not in A:

(2.6-18)

The difference of two sets A and B, denoted is defined as

(2.6-19)

We see that this is the set of elements that belong to A, but not to B.We could,
for example, define in terms of U and the set difference operation:

Figure 2.31 illustrates the preceding concepts, where the universe is the set
of coordinates contained within the rectangle shown, and sets A and B are the
sets of coordinates contained within the boundaries shown. The result of the
set operation indicated in each figure is shown in gray.†

In the preceding discussion, set membership is based on position (coordi-
nates). An implicit assumption when working with images is that the intensity
of all pixels in the sets is the same, as we have not defined set operations in-
volving intensity values (e.g., we have not specified what the intensities in the
intersection of two sets is). The only way that the operations illustrated in Fig.
2.31 can make sense is if the images containing the sets are binary, in which case
we can talk about set membership based on coordinates, the assumption being
that all member of the sets have the same intensity. We discuss this in more de-
tail in the following subsection.

When dealing with gray-scale images, the preceding concepts are not ap-
plicable, because we have to specify the intensities of all the pixels resulting
from a set operation. In fact, as you will see in Sections 3.8 and 9.6, the union
and intersection operations for gray-scale values usually are defined as the
max and min of corresponding pixel pairs, respectively, while the complement
is defined as the pairwise differences between a constant and the intensity of
every pixel in an image. The fact that we deal with corresponding pixel pairs
tells us that gray-scale set operations are array operations, as defined in
Section 2.6.1. The following example is a brief illustration of set operations in-
volving gray-scale images. We discuss these concepts further in the two sec-
tions mentioned above.

Ac = U - A.
Ac

A - B = 5w ƒ w H A, w x B6 = A ¨ B c

A - B,

Ac = 5w ƒ w x A6

†The operations in Eqs. (2.6-12)–(2.6-19) are the basis for the algebra of sets, which starts with properties
such as the commutative laws: and and from these develops a broad
theory based on set operations.A treatment of the algebra of sets is beyond the scope of the present dis-
cussion, but you should be aware of its existence.

A ¨ B = B ¨ A,A ´ B = B ´ A
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■ Let the elements of a gray-scale image be represented by a set A whose
elements are triplets of the form , where x and y are spatial coordi-
nates and z denotes intensity, as mentioned in Section 2.4.2. We can define
the complement of A as the set which
simply denotes the set of pixels of A whose intensities have been subtracted
from a constant K. This constant is equal to where k is the number of
intensity bits used to represent z. Let A denote the 8-bit gray-scale image in
Fig. 2.32(a), and suppose that we want to form the negative of A using set

2k - 1,

Ac = 5(x, y, K - z) ƒ (x, y, z) H A6,
(x, y, z)

FIGURE 2.32 Set
operations
involving gray-
scale images.
(a) Original
image. (b) Image
negative obtained
using set
complementation.
(c) The union of
(a) and a constant
image.
(Original image
courtesy of G.E.
Medical Systems.)

Ac

A � B

A

B

U

A B A B

FIGURE 2.31
(a) Two sets of
coordinates, A and B,
in 2-D space. (b) The
union of A and B.
(c) The intersection
of A and B. (d) The
complement of A.
(e) The difference
between A and B. In
(b)–(e) the shaded
areas represent the
members of the set
operation indicated.

EXAMPLE 2.8:
Set operations
involving image
intensities.

a b c

a b c
d e
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operations.We simply form the set 
Note that the coordinates are carried over, so is an image of the same size
as A. Figure 2.32(b) shows the result.

The union of two gray-scale sets A and B may be defined as the set

That is, the union of two gray-scale sets (images) is an array formed from the
maximum intensity between pairs of spatially corresponding elements. Again,
note that coordinates carry over, so the union of A and B is an image of the
same size as these two images. As an illustration, suppose that A again repre-
sents the image in Fig. 2.32(a), and let B denote a rectangular array of the
same size as A, but in which all values of z are equal to 3 times the mean in-
tensity, m, of the elements of A. Figure 2.32(c) shows the result of performing
the set union, in which all values exceeding appear as values from A and all
other pixels have value  which is a mid-gray value. ■

Logical operations

When dealing with binary images, we can think of foreground (1-valued) and
background (0-valued) sets of pixels. Then, if we define regions (objects) as
being composed of foreground pixels, the set operations illustrated in Fig. 2.31
become operations between the coordinates of objects in a binary image.
When dealing with binary images, it is common practice to refer to union, in-
tersection, and complement as the OR, AND, and NOT logical operations,
where “logical” arises from logic theory in which 1 and 0 denote true and false,
respectively.

Consider two regions (sets) A and B composed of foreground pixels. The
OR of these two sets is the set of elements (coordinates) belonging either to A
or B or to both.The AND operation is the set of elements that are common to
A and B. The NOT operation of a set A is the set of elements not in A. Be-
cause we are dealing with images, if A is a given set of foreground pixels,
NOT(A) is the set of all pixels in the image that are not in A, these pixels
being background pixels and possibly other foreground pixels. We can think
of this operation as turning all elements in A to 0 (black) and all the elements
not in A to 1 (white). Figure 2.33 illustrates these operations. Note in the
fourth row that the result of the operation shown is the set of foreground pix-
els that belong to A but not to B, which is the definition of set difference in 
Eq. (2.6-19). The last row in the figure is the XOR (exclusive OR) operation,
which is the set of foreground pixels belonging to A or B, but not both. Ob-
serve that the preceding operations are between regions, which clearly can be
irregular and of different sizes. This is as opposed to the gray-scale operations
discussed earlier, which are array operations and thus require sets whose spa-
tial dimensions are the same. That is, gray-scale set operations involve com-
plete images, as opposed to regions of images.

We need be concerned in theory only with the cability to implement the AND,
OR, and NOT logic operators because these three operators are functionally

3m,
3m

A ´ B = emax
z

(a, b) ƒ a H A, b H B f

An

An = Ac = 5(x, y, 255 - z) ƒ (x, y, z) H A6.
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complete. In other words, any other logic operator can be implemented by using
only these three basic functions, as in the fourth row of Fig. 2.33, where we im-
plemented the set difference operation using AND and NOT. Logic operations
are used extensively in image morphology, the topic of Chapter 9.

Fuzzy sets

The preceding set and logical results are crisp concepts, in the sense that ele-
ments either are or are not members of a set.This presents a serious limitation
in some applications. Consider a simple example. Suppose that we wish to cat-
egorize all people in the world as being young or not young. Using crisp sets,
let U denote the set of all people and let A be a subset of U, which we call the
set of young people. In order to form set A, we need a membership function
that assigns a value of 1 or 0 to every element (person) in U. If the value as-
signed to an element of U is 1, then that element is a member of A; otherwise
it is not. Because we are dealing with a bi-valued logic, the membership func-
tion simply defines a threshold at or below which a person is considered young,
and above which a person is considered not young. Suppose that we define as
young any person of age 20 or younger. We see an immediate difficulty. A per-
son whose age is 20 years and 1 sec would not be a member of the set of young
people.This limitation arises regardless of the age threshold we use to classify a
person as being young. What we need is more flexibility in what we mean by
“young,” that is, we need a gradual transition from young to not young.The the-
ory of fuzzy sets implements this concept by utilizing membership functions

NOT

NOT(A)

(A) AND (B)

(A) OR (B)

(A) AND [NOT (B)]

(A) XOR (B)

AND

A

A

B

OR

XOR

AND-
NOT

FIGURE 2.33
Illustration of
logical operations
involving
foreground
(white) pixels.
Black represents
binary 0 s and
white binary 1s.
The dashed lines
are shown for
reference only.
They are not part
of the result.
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that are gradual between the limit values of 1 (definitely young) to 0 (definite-
ly not young). Using fuzzy sets, we can make a statement such as a person being
50% young (in the middle of the transition between young and not young). In
other words, age is an imprecise concept, and fuzzy logic provides the tools to
deal with such concepts. We explore fuzzy sets in detail in Section 3.8.

2.6.5 Spatial Operations
Spatial operations are performed directly on the pixels of a given image. We
classify spatial operations into three broad categories: (1) single-pixel opera-
tions, (2) neighborhood operations, and (3) geometric spatial transformations.

Single-pixel operations

The simplest operation we perform on a digital image is to alter the values of
its individual pixels based on their intensity. This type of process may be ex-
pressed as a transformation function, T, of the form:

(2.6-20)

where z is the intensity of a pixel in the original image and s is the (mapped)
intensity of the corresponding pixel in the processed image. For example,
Fig. 2.34 shows the transformation used to obtain the negative of an 8-bit
image, such as the image in Fig. 2.32(b), which we obtained using set operations.
We discuss in Chapter 3 a number of techniques for specifying intensity trans-
formation functions.

Neighborhood operations

Let denote the set of coordinates of a neighborhood centered on an arbi-
trary point (x, y) in an image, f. Neighborhood processing generates a corres-
ponding pixel at the same coordinates in an output (processed) image, g, such
that the value of that pixel is determined by a specified operation involving the
pixels in the input image with coordinates in For example, suppose that
the specified operation is to compute the average value of the pixels in a rec-
tangular neighborhood of size centered on (x, y).The locations of pixelsm * n

Sxy.

Sxy

s = T(z)

s � T(z)

z

s0

0 255z0

255

FIGURE 2.34 Intensity
transformation
function used to
obtain the negative of
an 8-bit image.The
dashed arrows show
transformation of an
arbitrary input
intensity value into
its corresponding
output value s0.

z0
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in this region constitute the set Figures 2.35(a) and (b) illustrate the
process. We can express this operation in equation form as

(2.6-21)

where r and c are the row and column coordinates of the pixels whose coordi-
nates are members of the set Image g is created by varying the coordi-
nates (x, y) so that the center of the neighborhood moves from pixel to pixel in
image f, and repeating the neighborhood operation at each new location. For
instance, the image in Fig. 2.35(d) was created in this manner using a neigh-
borhood of size The net effect is to perform local blurring in the orig-
inal image. This type of process is used, for example, to eliminate small details
and thus render “blobs” corresponding to the largest regions of an image. We

41 * 41.

Sxy.

g(x, y) =
1

mn a
(r,c)HSxy

f(r, c)

Sxy.

The value of this pixel
is the average value of the
pixels in Sxy

Image f Image g

(x, y)(x, y)

Sxy

m

n

FIGURE 2.35
Local averaging
using
neighborhood
processing. The
procedure is
illustrated in 
(a) and (b) for a
rectangular
neighborhood.
(c) The aortic
angiogram
discussed in
Section 1.3.2.
(d) The result of
using Eq. (2.6-21)
with
The images are of
size
pixels.

790 * 686

m = n = 41.

a b
c d
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discuss neighborhood processing in Chapters 3 and 5, and in several other
places in the book.

Geometric spatial transformations and image registration

Geometric transformations modify the spatial relationship between pixels in an
image. These transformations often are called rubber-sheet transformations be-
cause they may be viewed as analogous to “printing” an image on a sheet of
rubber and then stretching the sheet according to a predefined set of rules. In
terms of digital image processing, a geometric transformation consists of two
basic operations: (1) a spatial transformation of coordinates and (2) intensity
interpolation that assigns intensity values to the spatially transformed pixels.

The transformation of coordinates may be expressed as

(2.6-22)

where are pixel coordinates in the original image and (x, y) are the cor-
responding pixel coordinates in the transformed image. For example, the
transformation shrinks the original image to
half its size in both spatial directions. One of the most commonly used spatial
coordinate transformations is the affine transform (Wolberg [1990]), which has
the general form

(2.6-23)

This transformation can scale, rotate, translate, or sheer a set of coordinate
points, depending on the value chosen for the elements of matrix T. Table 2.2
illustrates the matrix values used to implement these transformations.The real
power of the matrix representation in Eq. (2.6-23) is that it provides the frame-
work for concatenating together a sequence of operations. For example, if we
want to resize an image, rotate it, and move the result to some location, we
simply form a matrix equal to the product of the scaling, rotation, and
translation matrices from Table 2.2.

The preceding transformations relocate pixels on an image to new loca-
tions.To complete the process, we have to assign intensity values to those loca-
tions. This task is accomplished using intensity interpolation. We already
discussed this topic in Section 2.4.4. We began that section with an example of
zooming an image and discussed the issue of intensity assignment to new pixel
locations. Zooming is simply scaling, as detailed in the second row of Table 2.2,
and an analysis similar to the one we developed for zooming is applicable to
the problem of assigning intensity values to the relocated pixels resulting from
the other transformations in Table 2.2. As in Section 2.4.4, we consider nearest
neighbor, bilinear, and bicubic interpolation techniques when working with
these transformations.

In practice, we can use Eq. (2.6-23) in two basic ways. The first, called a
forward mapping, consists of scanning the pixels of the input image and, at

3 * 3

C t11 t12 0
t21 t22 0
t31 t32 1

S[x y  1] = [v w  1] T = [v w  1]

(x, y) = T5(v, w)6 = (v>2, w>2)

(v, w)

(x, y) = T5(v, w)6
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Transformation
Name

Identity

Scaling

Rotation

Translation

Shear (vertical)

Shear (horizontal)

x � v

x

yy � w

x � cxv

y � cyw

x � v cos u � w sin u

y � v cos u � w sin u

x � v � tx

x � v � svw

y � w � ty

y � w

y � shv � w

x � v

Affine Matrix, T Coordinate
Equations Example

0cos u sin u

�sin u cos u

0 0

0

1

cx

0

0

0

cy

0

0

0

1

1

sv

0

0

1

0

0

0

1

1

0

0

sh

1

0

0

0

1

1

0

tx

0

1

ty

0

0

1

1

0

0

0

1

0

0

0

1

TABLE 2.2
Affine transformations based on Eq. (2.6-23).

each location, , computing the spatial location, (x, y), of the correspond-
ing pixel in the output image using Eq. (2.6-23) directly. A problem with the
forward mapping approach is that two or more pixels in the input image can
be transformed to the same location in the output image, raising the question
of how to combine multiple output values into a single output pixel. In addi-
tion, it is possible that some output locations may not be assigned a pixel at all.
The second approach, called inverse mapping, scans the output pixel locations
and, at each location, (x, y), computes the corresponding location in the input
image using It then interpolates (using one of the tech-
niques discussed in Section 2.4.4) among the nearest input pixels to determine
the intensity of the output pixel value. Inverse mappings are more efficient to
implement than forward mappings and are used in numerous commercial im-
plementations of spatial transformations (for example, MATLAB uses this
approach).

(v, w) = T-1(x, y).

(v, w)
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EXAMPLE 2.9:
Image rotation
and intensity
interpolation.

FIGURE 2.36 (a) A 300 dpi image of the letter T. (b) Image rotated 21° using nearest neighbor interpolation
to assign intensity values to the spatially transformed pixels. (c) Image rotated 21° using bilinear
interpolation. (d) Image rotated 21° using bicubic interpolation. The enlarged sections show edge detail for
the three interpolation approaches.

■ The objective of this example is to illustrate image rotation using an affine
transform. Figure 2.36(a) shows a 300 dpi image and Figs. 2.36(b)–(d) are the re-
sults of rotating the original image by 21°, using nearest neighbor, bilinear, and
bicubic interpolation, respectively. Rotation is one of the most demanding geo-
metric transformations in terms of preserving straight-line features. As we see in
the figure, nearest neighbor interpolation produced the most jagged edges and, as
in Section 2.4.4, bilinear interpolation yielded significantly improved results. As
before, using bicubic interpolation produced slightly sharper results. In fact, if you
compare the enlarged detail in Figs. 2.36(c) and (d), you will notice in the middle
of the subimages that the number of vertical gray “blocks” that provide the in-
tensity transition from light to dark in Fig. 2.36(c) is larger than the correspond-
ing number of blocks in (d), indicting that the latter is a sharper edge. Similar
results would be obtained with the other spatial transformations in Table 2.2 that
require interpolation (the identity transformation does not, and neither does the
translation transformation if the increments are an integer number of pixels).
This example was implemented using the inverse mapping approach discussed in
the preceding paragraph. ■

Image registration is an important application of digital image processing
used to align two or more images of the same scene. In the preceding discus-
sion, the form of the transformation function required to achieve a desired
geometric transformation was known. In image registration, we have available
the input and output images, but the specific transformation that produced the
output image from the input generally is unknown.The problem, then, is to es-
timate the transformation function and then use it to register the two images.
To clarify terminology, the input image is the image that we wish to transform,
and what we call the reference image is the image against which we want to
register the input.

a b c d
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For example, it may be of interest to align (register) two or more images
taken at approximately the same time, but using different imaging systems,
such as an MRI (magnetic resonance imaging) scanner and a PET (positron
emission tomography) scanner. Or, perhaps the images were taken at different
times using the same instrument, such as satellite images of a given location
taken several days, months, or even years apart. In either case, combining the
images or performing quantitative analysis and comparisons between them re-
quires compensating for geometric distortions caused by differences in view-
ing angle, distance, and orientation; sensor resolution; shift in object positions;
and other factors.

One of the principal approaches for solving the problem just discussed is to
use tie points (also called control points), which are corresponding points
whose locations are known precisely in the input and reference images. There
are numerous ways to select tie points, ranging from interactively selecting
them to applying algorithms that attempt to detect these points automatically.
In some applications, imaging systems have physical artifacts (such as small
metallic objects) embedded in the imaging sensors. These produce a set of
known points (called reseau marks) directly on all images captured by the sys-
tem, which can be used as guides for establishing tie points.

The problem of estimating the transformation function is one of modeling.
For example, suppose that we have a set of four tie points each in an input and a
reference image. A simple model based on a bilinear approximation is given by

(2.6-24)

and

(2.6-25)

where, during the estimation phase, and (x, y) are the coordinates of tie
points in the input and reference images, respectively. If we have four pairs of
corresponding tie points in both images, we can write eight equations using
Eqs. (2.6-24) and (2.6-25) and use them to solve for the eight unknown coeffi-
cients, These coefficients constitute the model that transforms
the pixels of one image into the locations of the pixels of the other to achieve
registration.

Once we have the coefficients, Eqs. (2.6-24) and (2.6-25) become our vehi-
cle for transforming all the pixels in the input image to generate the desired
new image, which, if the tie points were selected correctly, should be registered
with the reference image. In situations where four tie points are insufficient to
obtain satisfactory registration, an approach used frequently is to select a larger
number of tie points and then treat the quadrilaterals formed by groups of
four tie points as subimages. The subimages are processed as above, with all
the pixels within a quadrilateral being transformed using the coefficients de-
termined from those tie points. Then we move to another set of four tie points
and repeat the procedure until all quadrilateral regions have been processed.
Of course, it is possible to use regions that are more complex than quadrilater-
als and employ more complex models, such as polynomials fitted by least

c1, c2, Á , c8.

(v, w)

y = c5v + c6w + c7vw + c8

x = c1v + c2w + c3vw + c4
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FIGURE 2.37
Image
registration.
(a) Reference
image. (b) Input
(geometrically
distorted image).
Corresponding tie
points are shown
as small white
squares near the
corners.
(c) Registered
image (note the
errors in the
border).
(d) Difference
between (a) and
(c), showing more
registration
errors.

squares algorithms. In general, the number of control points and sophistication
of the model required to solve a problem is dependent on the severity of the
geometric distortion. Finally, keep in mind that the transformation defined by
Eqs. (2.6-24) and (2.6-25), or any other model for that matter, simply maps the
spatial coordinates of the pixels in the input image.We still need to perform in-
tensity interpolation using any of the methods discussed previously to assign
intensity values to those pixels.

EXAMPLE 2.10:
Image
registration.

■ Figure 2.37(a) shows a reference image and Fig. 2.37(b) shows the same
image, but distorted geometrically by vertical and horizontal shear. Our objec-
tive is to use the reference image to obtain tie points and then use the tie
points to register the images. The tie points we selected (manually) are shown
as small white squares near the corners of the images (we needed only four tie

a b
c d
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points because the distortion is linear shear in both directions). Figure 2.37(c)
shows the result of using these tie points in the procedure discussed in the pre-
ceding paragraphs to achieve registration. We note that registration was not
perfect, as is evident by the black edges in Fig. 2.37(c). The difference image in
Fig. 2.37(d) shows more clearly the slight lack of registration between the refer-
ence and corrected images.The reason for the discrepancies is error in the man-
ual selection of the tie points. It is difficult to achieve perfect matches for tie
points when distortion is so severe. ■

2.6.6 Vector and Matrix Operations
Multispectral image processing is a typical area in which vector and matrix op-
erations are used routinely. For example, you will learn in Chapter 6 that color
images are formed in RGB color space by using red, green, and blue component
images, as Fig. 2.38 illustrates. Here we see that each pixel of an RGB image has
three components, which can be organized in the form of a column vector

(2.6-26)

where is the intensity of the pixel in the red image, and the other two ele-
ments are the corresponding pixel intensities in the green and blue images,
respectively. Thus an RGB color image of size can be represented by
three component images of this size, or by a total of MN 3-D vectors. A general
multispectral case involving n component images (e.g., see Fig. 1.10) will result
in n-dimensional vectors. We use this type of vector representation in parts of
Chapters 6, 10, 11, and 12.

Once pixels have been represented as vectors we have at our disposal the
tools of vector-matrix theory. For example, the Euclidean distance, D, between
a pixel vector z and an arbitrary point a in n-dimensional space is defined as
the vector product

(2.6-27)

= C(z1 - a1)
2 + (z2 - a2)

2 + Á + (zn - an)2 D 12
D(z, a) = C(z - a)T(z - a) D 12

M * N

z1

z = C z1

z2

z3

S

Component image 3 (Blue)

Component image 2 (Green)

Component image 1 (Red)

z �
z1
z2
z3

FIGURE 2.38
Formation of a
vector from
corresponding
pixel values in
three RGB
component
images.

Consult the Tutorials sec-
tion in the book Web site
for a brief tutorial on vec-
tors and matrices.
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We see that this is a generalization of the 2-D Euclidean distance defined in
Eq. (2.5-1). Equation (2.6-27) sometimes is referred to as a vector norm, de-
noted by We will use distance computations numerous times in later
chapters.

Another important advantage of pixel vectors is in linear transformations,
represented as

(2.6-28)

where A is a matrix of size and z and a are column vectors of size
As you will learn later, transformations of this type have a number of

useful applications in image processing.
As noted in Eq. (2.4-2), entire images can be treated as matrices (or, equi-

valently, as vectors), a fact that has important implication in the solution of nu-
merous image processing problems. For example, we can express an image of
size as a vector of dimension by letting the first row of the
image be the first N elements of the vector, the second row the next N ele-
ments, and so on. With images formed in this manner, we can express a broad
range of linear processes applied to an image by using the notation

(2.6-29)

where f is an vector representing an input image, n is an vec-
tor representing an noise pattern, g is an vector representing
a processed image, and H is an matrix representing a linear process
applied to the input image (see Section 2.6.2 regarding linear processes). It is
possible, for example, to develop an entire body of generalized techniques for
image restoration starting with Eq. (2.6-29), as we discuss in Section 5.9. We
touch on the topic of using matrices again in the following section, and show
other uses of matrices for image processing in Chapters 5, 8, 11, and 12.

2.6.7 Image Transforms
All the image processing approaches discussed thus far operate directly on the
pixels of the input image; that is, they work directly in the spatial domain. In
some cases, image processing tasks are best formulated by transforming the
input images, carrying the specified task in a transform domain, and applying
the inverse transform to return to the spatial domain. You will encounter a
number of different transforms as you proceed through the book. A particu-
larly important class of 2-D linear transforms, denoted , can be ex-
pressed in the general form

(2.6-30)

where is the input image, is called the forward transforma-
tion kernel, and Eq. (2.6-30) is evaluated for and

As before, x and y are spatial variables, while M and Nv = 0, 1, 2, Á , N - 1.
u = 0, 1, 2, Á , M - 1

(x, y, u, v)r(x, y)f

T(u, v) = a
M - 1

x = 0
a
N - 1

y = 0
f(x, y)r(x, y, u, v)

(u, v)T

MN * MN
MN * 1M * N

MN * 1MN * 1

g = Hf � n

MN * 1M * N

n * 1.
m * n

w = A(z � a)

7z � a 7 .
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are the row and column dimensions of f. Variables u and are called the
transform variables. is called the forward transform of . Given 

, we can recover using the inverse transform of ,

(2.6-31)

for and where is
called the inverse transformation kernel. Together, Eqs. (2.6-30) and (2.6-31)
are called a transform pair.

Figure 2.39 shows the basic steps for performing image processing in the
linear transform domain. First, the input image is transformed, the transform is
then modified by a predefined operation, and, finally, the output image is ob-
tained by computing the inverse of the modified transform. Thus, we see that
the process goes from the spatial domain to the transform domain and then
back to the spatial domain.

(x, y, u, v)sy = 0, 1, 2, Á , N - 1,x = 0, 1, 2, Á , M - 1

f(x, y) = a
M - 1

u = 0
a
N - 1

v = 0
T(u, v)s(x, y, u, v)

(u, v)T(x, y)f(u, v)T
(x, y)f(u, v)T

v

FIGURE 2.40
(a) Image corrupted
by sinusoidal
interference. (b)
Magnitude of the
Fourier transform
showing the bursts 
of energy responsible
for the interference.
(c) Mask used to
eliminate the energy
bursts. (d) Result of
computing the
inverse of the
modified Fourier
transform. (Original
image courtesy of
NASA.)

Transform Operation
R

Inverse
transformf(x, y) g(x, y)

T(u, v) R[T(u, v)]

Transform domain
Spatial
domain

Spatial
domain

FIGURE 2.39
General approach
for operating in
the linear
transform
domain.

EXAMPLE 2.11:
Image processing
in the transform
domain.

■ Figure 2.40 shows an example of the steps in Fig. 2.39. In this case the trans-
form used was the Fourier transform, which we mention briefly later in this
section and discuss in detail in Chapter 4. Figure 2.40(a) is an image corrupted

a b
c d
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by sinusoidal interference, and Fig. 2.40(b) is the magnitude of its Fourier
transform, which is the output of the first stage in Fig. 2.39.As you will learn in
Chapter 4, sinusoidal interference in the spatial domain appears as bright
bursts of intensity in the transform domain. In this case, the bursts are in a cir-
cular pattern that can be seen in Fig. 2.40(b). Figure 2.40(c) shows a mask
image (called a filter) with white and black representing 1 and 0, respectively.
For this example, the operation in the second box of Fig. 2.39 is to multiply the
mask by the transform, thus eliminating the bursts responsible for the interfer-
ence. Figure 2.40(d) shows the final result, obtained by computing the inverse
of the modified transform. The interference is no longer visible, and important
detail is quite clear. In fact, you can even see the fiducial marks (faint crosses)
that are used for image alignment. ■

The forward transformation kernel is said to be separable if

(2.6-32)

In addition, the kernel is said to be symmetric if is functionally equal to
so that

(2.6-33)

Identical comments apply to the inverse kernel by replacing r with s in the pre-
ceding equations.

The 2-D Fourier transform discussed in Example 2.11 has the following for-
ward and inverse kernels:

(2.6-34)

and

(2.6-35)

respectively, where so these kernels are complex. Substituting these
kernels into the general transform formulations in Eqs. (2.6-30) and (2.6-31)
gives us the discrete Fourier transform pair:

(2.6-36)

and

(2.6-37)

These equations are of fundamental importance in digital image processing,
and we devote most of Chapter 4 to deriving them starting from basic princi-
ples and then using them in a broad range of applications.

It is not difficult to show that the Fourier kernels are separable and sym-
metric (Problem 2.25), and that separable and symmetric kernels allow 2-D
transforms to be computed using 1-D transforms (Problem 2.26). When the

f(x, y) =
1

MN a
M - 1

u = 0
a

N - 1

v = 0
T(u, v)e j2p(ux>M + vy>N)

T(u, v) = a
M - 1

x = 0
a
N - 1

y = 0
f(x, y)e-j 2p(ux>M + vy>N)

j = 2-1,

s(x, y, u, v) =
1

MN
ej 2p(ux>M + vy>N)

r(x, y, u, v) = e-j 2p(ux>M + vy>N)

r(x, y, u, v) = r1(x, u)r1(y, v)

r2(x, y),
r1(x, y)

r(x, y, u, v) = r1(x, u)r2(y, v)
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forward and inverse kernels of a transform pair satisfy these two conditions,
and is a square image of size Eqs. (2.6-30) and (2.6-31) can be
expressed in matrix form:

(2.6-38)

where F is an matrix containing the elements of [see Eq. (2.4-2)],
A is an matrix with elements and T is the resulting

transform, with values for 
To obtain the inverse transform, we pre- and post-multiply Eq. (2.6-38) by

an inverse transformation matrix B:

(2.6-39)

If

(2.6-40)

indicating that F [whose elements are equal to image ] can be recov-
ered completely from its forward transform. If B is not equal to then use
of Eq. (2.6-40) yields an approximation:

(2.6-41)

In addition to the Fourier transform, a number of important transforms, in-
cluding the Walsh, Hadamard, discrete cosine, Haar, and slant transforms, can
be expressed in the form of Eqs. (2.6-30) and (2.6-31) or, equivalently, in the
form of Eqs. (2.6-38) and (2.6-40). We discuss several of these and some other
types of image transforms in later chapters.

2.6.8 Probabilistic Methods
Probability finds its way into image processing work in a number of ways. The
simplest is when we treat intensity values as random quantities. For example,
let denote the values of all possible intensities in an

digital image.The probability, of intensity level occurring in a
given image is estimated as

(2.6-42)

where is the number of times that intensity occurs in the image and MN
is the total number of pixels. Clearly,

(2.6-43)

Once we have we can determine a number of important image charac-
teristics. For example, the mean (average) intensity is given by

(2.6-44)m = a
L - 1

k = 0

zkp(zk)

p(zk),

a
L - 1

k = 0

p(zk) = 1

zknk

p(zk) =
nk

MN

zkp(zk),M * N
zi, i = 0, 1, 2, Á , L - 1,

NF = BAFAB

A-1,
(x, y)f

F = BTB

B = A-1,

BTB = BAFAB

u, v = 0, 1, 2, Á , M - 1.(u, v)TM * M
aij = r1(i, j),M * M

(x, y)fM * M

T = AFA

M * M,(x, y)f

Consult the Tutorials sec-
tion in the book Web site
for a brief overview of
probability theory.
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Similarly, the variance of the intensities is

(2.6-45)

The variance is a measure of the spread of the values of z about the mean, so it
is a useful measure of image contrast. In general, the nth moment of random
variable z about the mean is defined as

(2.6-46)

We see that and Whereas the mean and
variance have an immediately obvious relationship to visual properties of an
image, higher-order moments are more subtle. For example, a positive third
moment indicates that the intensities are biased to values higher than the
mean, a negative third moment would indicate the opposite condition, and a
zero third moment would tell us that the intensities are distributed approxi-
mately equally on both sides of the mean. These features are useful for com-
putational purposes, but they do not tell us much about the appearance of an
image in general.

m2(z) = s2.m0(z) = 1, m1(z) = 0,

mn(z) = a
L - 1

k = 0

(zk - m)np(zk)

s2 = a
L - 1

k = 0

(zk - m)2p(zk)

FIGURE 2.41
Images exhibiting
(a) low contrast,
(b) medium
contrast, and 
(c) high contrast.

EXAMPLE 2.12:
Comparison of
standard
deviation values
as measures of
image intensity
contrast.

■ Figure 2.41 shows three 8-bit images exhibiting low, medium, and high con-
trast, respectively. The standard deviations of the pixel intensities in the three
images are 14.3, 31.6, and 49.2 intensity levels, respectively. The corresponding
variance values are 204.3, 997.8, and 2424.9, respectively. Both sets of values
tell the same story but, given that the range of possible intensity values in
these images is [0, 255], the standard deviation values relate to this range much
more intuitively than the variance. ■

As you will see in progressing through the book, concepts from probability
play a central role in the development of image processing algorithms. For ex-
ample, in Chapter 3 we use the probability measure in Eq. (2.6-42) to derive in-
tensity transformation algorithms. In Chaper 5, we use probability and matrix
formulations to develop image restoration algorithms. In Chapter 10, probabil-
ity is used for image segmentation, and in Chapter 11 we use it for texture de-
scription. In Chapter 12, we derive optimum object recognition techniques
based on a probabilistic formulation.

The units of the variance
are in intensity values
squared. When compar-
ing contrast values, we
usually use the standard
deviation, (square root
of the variance), instead
because its dimensions
are directly in terms of
intensity values.

s

a b c
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Thus far, we have addressed the issue of applying probability to a single ran-
dom variable (intensity) over a single 2-D image. If we consider sequences of
images, we may interpret the third variable as time. The tools needed to handle
this added complexity are stochastic image processing techniques (the word
stochastic is derived from a Greek word meaning roughly “to aim at a target,”
implying randomness in the outcome of the process). We can go a step further
and consider an entire image (as opposed to a point) to be a spatial random
event. The tools needed to handle formulations based on this concept are tech-
niques from random fields. We give one example in Section 5.8 of how to treat
entire images as random events, but further discussion of stochastic processes
and random fields is beyond the scope of this book.The references at the end of
this chapter provide a starting point for reading about these topics.

Summary
The material in this chapter is primarily background for subsequent discussions. Our treat-
ment of the human visual system, although brief, provides a basic idea of the capabilities of
the eye in perceiving pictorial information.The discussion on light and the electromagnetic
spectrum is fundamental in understanding the origin of the many images we use in this
book. Similarly, the image model developed in Section 2.3.4 is used in the Chapter 4 as the
basis for an image enhancement technique called homomorphic filtering.

The sampling and interpolation ideas introduced in Section 2.4 are the foundation
for many of the digitizing phenomena you are likely to encounter in practice. We will
return to the issue of sampling and many of its ramifications in Chapter 4, after you
have mastered the Fourier transform and the frequency domain.

The concepts introduced in Section 2.5 are the basic building blocks for processing
techniques based on pixel neighborhoods. For example, as we show in the following
chapter, and in Chapter 5, neighborhood processing methods are at the core of many
image enhancement and restoration procedures. In Chapter 9, we use neighborhood
operations for image morphology; in Chapter 10, we use them for image segmentation;
and in Chapter 11 for image description. When applicable, neighborhood processing is
favored in commercial applications of image processing because of their operational
speed and simplicity of implementation in hardware and/or firmware.

The material in Section 2.6 will serve you well in your journey through the book. Al-
though the level of the discussion was strictly introductory, you are now in a position to
conceptualize what it means to process a digital image.As we mentioned in that section,
the tools introduced there are expanded as necessary in the following chapters. Rather
than dedicate an entire chapter or appendix to develop a comprehensive treatment of
mathematical concepts in one place, you will find it considerably more meaningful to
learn the necessary extensions of the mathematical tools from Section 2.6 in later chap-
ters, in the context of how they are applied to solve problems in image processing.

References and Further Reading
Additional reading for the material in Section 2.1 regarding the structure of the human
eye may be found in Atchison and Smith [2000] and Oyster [1999]. For additional reading
on visual perception, see Regan [2000] and Gordon [1997].The book by Hubel [1988] and
the classic book by Cornsweet [1970] also are of interest. Born and Wolf [1999] is a basic
reference that discusses light in terms of electromagnetic theory. Electromagnetic energy
propagation is covered in some detail by Felsen and Marcuvitz [1994].
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The area of image sensing is quite broad and very fast moving. An excellent source
of information on optical and other imaging sensors is the Society for Optical Engi-
neering (SPIE). The following are representative publications by the SPIE in this area:
Blouke et al. [2001], Hoover and Doty [1996], and Freeman [1987].

The image model presented in Section 2.3.4 is from Oppenheim, Schafer, and
Stockham [1968]. A reference for the illumination and reflectance values used in that
section is the IESNA Lighting Handbook [2000]. For additional reading on image
sampling and some of its effects, such as aliasing, see Bracewell [1995]. We discuss this
topic in more detail in Chapter 4. The early experiments mentioned in Section 2.4.3
on perceived image quality as a function of sampling and quatization were reported
by Huang [1965]. The issue of reducing the number of samples and intensity levels in
an image while minimizing the ensuing degradation is still of current interest, as ex-
emplified by Papamarkos and Atsalakis [2000]. For further reading on image shrink-
ing and zooming, see Sid-Ahmed [1995], Unser et al. [1995], Umbaugh [2005], and
Lehmann et al. [1999]. For further reading on the topics covered in Section 2.5, see
Rosenfeld and Kak [1982], Marchand-Maillet and Sharaiha [2000], and Ritter and
Wilson [2001].

Additional reading on linear systems in the context of image processing (Section 2.6.2)
may be found in Castleman [1996]. The method of noise reduction by image averaging
(Section 2.6.3) was first proposed by Kohler and Howell [1963]. See Peebles [1993] re-
garding the expected value of the mean and variance of a sum of random variables.
Image subtraction (Section 2.6.3) is a generic image processing tool used widely for
change detection. For image subtraction to make sense, it is necessary that the images
being subtracted be registered or, alternatively, that any artifacts due to motion be
identified. Two papers by Meijering et al. [1999, 2001] are illustrative of the types of
techniques used to achieve these objectives.

A basic reference for the material in Section 2.6.4 is Cameron [2005]. For more ad-
vanced reading on this topic, see Tourlakis [2003]. For an introduction to fuzzy sets, see
Section 3.8 and the corresponding references in Chapter 3. For further details on single-
point and neighborhood processing (Section 2.6.5), see Sections 3.2 through 3.4 and the
references on these topics in Chapter 3. For geometric spatial transformations, see Wol-
berg [1990].

Noble and Daniel [1988] is a basic reference for matrix and vector operations
(Section 2.6.6). See Chapter 4 for a detailed discussion on the Fourier transform
(Section 2.6.7), and Chapters 7, 8, and 11 for examples of other types of transforms
used in digital image processing. Peebles [1993] is a basic introduction to probability
and random variables (Section 2.6.8) and Papoulis [1991] is a more advanced treat-
ment of this topic. For foundation material on the use of stochastic and random
fields for image processing, see Rosenfeld and Kak [1982], Jähne [2002], and Won
and Gray [2004].

For details of software implementation of many of the techniques illustrated in this
chapter, see Gonzalez, Woods, and Eddins [2004].

Problems
2.1 Using the background information provided in Section 2.1, and thinking purely

in geometric terms, estimate the diameter of the smallest printed dot that the
eye can discern if the page on which the dot is printed is 0.2 m away from the
eyes. Assume for simplicity that the visual system ceases to detect the dot when
the image of the dot on the fovea becomes smaller than the diameter of one re-
ceptor (cone) in that area of the retina. Assume further that the fovea can be

Detailed solutions to the
problems marked with a
star can be found in the
book Web site. The site
also contains suggested
projects based on the ma-
terial in this chapter.

�
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modeled as a square array of dimensions and that the cones
and spaces between the cones are distributed uniformly throughout this array.

2.2 When you enter a dark theater on a bright day, it takes an appreciable interval
of time before you can see well enough to find an empty seat. Which of the visual
processes explained in Section 2.1 is at play in this situation?

2.3 Although it is not shown in Fig. 2.10, alternating current certainly is part of the
electromagnetic spectrum. Commercial alternating current in the United States
has a frequency of 60 Hz. What is the wavelength in kilometers of this compo-
nent of the spectrum?

2.4 You are hired to design the front end of an imaging system for studying the
boundary shapes of cells, bacteria, viruses, and protein. The front end consists, in
this case, of the illumination source(s) and corresponding imaging camera(s).
The diameters of circles required to enclose individual specimens in each of
these categories are 50, 1, 0.1, and respectively.

(a) Can you solve the imaging aspects of this problem with a single sensor and
camera? If your answer is yes, specify the illumination wavelength band and
the type of camera needed. By “type,” we mean the band of the electromag-
netic spectrum to which the camera is most sensitive (e.g., infrared).

(b) If your answer in (a) is no, what type of illumination sources and corre-
sponding imaging sensors would you recommend? Specify the light sources
and cameras as requested in part (a). Use the minimum number of illumina-
tion sources and cameras needed to solve the problem.

By “solving the problem,” we mean being able to detect circular details of diam-
eter 50, 1, 0.1, and respectively.

2.5 A CCD camera chip of dimensions and having ele-
ments, is focused on a square, flat area, located 0.5 m away. How many line
pairs per mm will this camera be able to resolve? The camera is equipped with
a 35-mm lens. (Hint: Model the imaging process as in Fig. 2.3, with the focal
length of the camera lens substituting for the focal length of the eye.)

2.6 An automobile manufacturer is automating the placement of certain compo-
nents on the bumpers of a limited-edition line of sports cars. The components
are color coordinated, so the robots need to know the color of each car in order
to select the appropriate bumper component. Models come in only four colors:
blue, green, red, and white. You are hired to propose a solution based on imag-
ing. How would you solve the problem of automatically determining the color of
each car, keeping in mind that cost is the most important consideration in your
choice of components?

2.7 Suppose that a flat area with center at is illuminated by a light source
with intensity distribution

Assume for simplicity that the reflectance of the area is constant and equal to
1.0, and let If the resulting image is digitized with k bits of intensity
resolution, and the eye can detect an abrupt change of eight shades of intensity
between adjacent pixels, what value of k will cause visible false contouring?

2.8 Sketch the image in Problem 2.7 for 

2.9 A common measure of transmission for digital data is the baud rate, defined as
the number of bits transmitted per second. Generally, transmission is accomplished

k = 2.

K = 255.

i(x, y) = Ke-[(x - x0)
2 + (y - y0)

2]

(x0, y0)

1024 * 10247 * 7 mm,

0.01 �m,

0.01 �m,

1.5 mm * 1.5 mm,

�

�

�
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in packets consisting of a start bit, a byte (8 bits) of information, and a stop bit.
Using these facts, answer the following:

(a) How many minutes would it take to transmit a image with 256
intensity levels using a 56K baud modem?

(b) What would the time be at 3000K baud, a representative medium speed of a
phone DSL (Digital Subscriber Line) connection?

2.10 High-definition television (HDTV) generates images with 1125 horizontal TV
lines interlaced (where every other line is painted on the tube face in each of two
fields, each field being of a second in duration). The width-to-height as-
pect ratio of the images is 16:9. The fact that the number of horizontal lines is
fixed determines the vertical resolution of the images. A company has designed
an image capture system that generates digital images from HDTV images. The
resolution of each TV (horizontal) line in their system is in proportion to vertical
resolution, with the proportion being the width-to-height ratio of the images.
Each pixel in the color image has 24 bits of intensity resolution, 8 bits each for a
red, a green, and a blue image.These three “primary” images form a color image.
How many bits would it take to store a 2-hour HDTV movie?

2.11 Consider the two image subsets, and shown in the following figure. For
determine whether these two subsets are (a) 4-adjacent, (b) 8-adjacent,

or (c) m-adjacent.
V = 516,

S2,S1

1>60th

1024 * 1024
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�

0 0 0 0

0 0 1 0

0 0 1 0

0 1 1 1
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0 0

0

1

0

0

1

0 0

0 0 1 1

S1 S2

2.12 Develop an algorithm for converting a one-pixel-thick 8-path to a 4-path.

2.13 Develop an algorithm for converting a one-pixel-thick m-path to a 4-path.

2.14 Refer to the discussion at the end of Section 2.5.2, where we defined the back-
ground as the complement of the union of all the regions in an image. In
some applications, it is advantageous to define the background as the subset of
pixels that are not region hole pixels (informally, think of holes as sets of
background pixels surrounded by region pixels). How would you modify the de-
finition to exclude hole pixels from An answer such as “the background is
the subset of pixels of that are not hole pixels” is not acceptable. (Hint:
Use the concept of connectivity.)

2.15 Consider the image segment shown.

(a) Let and compute the lengths of the shortest 4-, 8-, and m-path
between p and q. If a particular path does not exist between these two
points, explain why.

(b) Repeat for V = 51, 26.

V = 50, 16

(Ru)c
(Ru)c?

(Ru)c

(Ru)c,

3 1 2 1

2 2 0 2

1 2 1 1

1(p)

(q)

0 1 2

�
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2.16 (a) Give the condition(s) under which the distance between two points p
and q is equal to the shortest 4-path between these points.

(b) Is this path unique?

2.17 Repeat Problem 2.16 for the distance.

2.18 In the next chapter, we will deal with operators whose function is to compute
the sum of pixel values in a small subimage area, S. Show that these are linear
operators.

2.19 The median, of a set of numbers is such that half the values in the set are
below and the other half are above it. For example, the median of the set of
values is 20. Show that an operator that computes the
median of a subimage area, S, is nonlinear.

2.20 Prove the validity of Eqs. (2.6-6) and (2.6-7). [Hint: Start with Eq. (2.6-4) and use
the fact that the expected value of a sum is the sum of the expected values.]

2.21 Consider two 8-bit images whose intensity levels span the full range from 0 to 255.

(a) Discuss the limiting effect of repeatedly subtracting image (2) from image
(1). Assume that the result is represented also in eight bits.

(b) Would reversing the order of the images yield a different result?

2.22 Image subtraction is used often in industrial applications for detecting missing
components in product assembly. The approach is to store a “golden” image that
corresponds to a correct assembly; this image is then subtracted from incoming
images of the same product. Ideally, the differences would be zero if the new prod-
ucts are assembled correctly. Difference images for products with missing compo-
nents would be nonzero in the area where they differ from the golden image.
What conditions do you think have to be met in practice for this method to work?

2.23 (a) With reference to Fig. 2.31, sketch the set 

(b) Give expressions for the sets shown shaded in the following figure in terms
of sets A, B, and C. The shaded areas in each figure constitute one set, so
give one expression for each of the three figures.

(A ¨ B) ´ (A ´ B)c.

52, 3, 8, 20, 21, 25, 316
z

z,

D8

D4

�

A

B C

2.24 What would be the equations analogous to Eqs. (2.6-24) and (2.6-25) that would
result from using triangular instead of quadrilateral regions?

2.25 Prove that the Fourier kernels in Eqs. (2.6-34) and (2.6-35) are separable and
symmetric.

2.26 Show that 2-D transforms with separable, symmetric kernels can be computed
by (1) computing 1-D transforms along the individual rows (columns) of the
input, followed by (2) computing 1-D transforms along the columns (rows) of
the result from step (1).

�

�

�

�

�
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2.27 A plant produces a line of translucent miniature polymer squares. Stringent qual-
ity requirements dictate 100% visual inspection, and the plant manager finds the
use of human inspectors increasingly expensive. Inspection is semiautomated.At
each inspection station, a robotic mechanism places each polymer square over a
light located under an optical system that produces a magnified image of the
square. The image completely fills a viewing screen measuring De-
fects appear as dark circular blobs, and the inspector’s job is to look at the screen
and reject any sample that has one or more such dark blobs with a diameter of
0.8 mm or larger, as measured on the scale of the screen. The manager believes
that if she can find a way to automate the process completely, she will increase
profits by 50%. She also believes that success in this project will aid her climb up
the corporate ladder.After much investigation, the manager decides that the way
to solve the problem is to view each inspection screen with a CCD TV camera
and feed the output of the camera into an image processing system capable of de-
tecting the blobs, measuring their diameter, and activating the accept/reject but-
tons previously operated by an inspector. She is able to find a system that can do
the job, as long as the smallest defect occupies an area of at least pixels in
the digital image. The manager hires you to help her specify the camera and lens
system, but requires that you use off-the-shelf components. For the lenses, as-
sume that this constraint means any integer multiple of 25 mm or 35 mm, up to
200 mm. For the cameras, it means resolutions of or

pixels. The individual imaging elements in these cameras are
squares measuring and the spaces between imaging elements are

For this application, the cameras cost much more than the lenses, so the
problem should be solved with the lowest-resolution camera possible, based on
the choice of lenses. As a consultant, you are to provide a written recommenda-
tion, showing in reasonable detail the analysis that led to your conclusion. Use
the same imaging geometry suggested in Problem 2.5.

2 �m.
8 * 8 �m,

2048 * 2048
512 * 512, 1024 * 1024,

2 * 2

80 * 80 mm.
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3 Intensity Transformations
and Spatial Filtering

Preview
The term spatial domain refers to the image plane itself, and image process-
ing methods in this category are based on direct manipulation of pixels in
an image. This is in contrast to image processing in a transform domain
which, as introduced in Section 2.6.7 and discussed in more detail in
Chapter 4, involves first transforming an image into the transform domain,
doing the processing there, and obtaining the inverse transform to bring the
results back into the spatial domain. Two principal categories of spatial pro-
cessing are intensity transformations and spatial filtering. As you will learn
in this chapter, intensity transformations operate on single pixels of an
image, principally for the purpose of contrast manipulation and image
thresholding. Spatial filtering deals with performing operations, such as
image sharpening, by working in a neighborhood of every pixel in an image.
In the sections that follow, we discuss a number of “classical” techniques for
intensity transformations and spatial filtering. We also discuss in some de-
tail fuzzy techniques that allow us to incorporate imprecise, knowledge-
based information in the formulation of intensity transformations and
spatial filtering algorithms.

It makes all the difference whether one sees darkness
through the light or brightness through the shadows.

David Lindsay
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3.1 Background

3.1.1 The Basics of Intensity Transformations and Spatial Filtering
All the image processing techniques discussed in this section are implemented
in the spatial domain, which we know from the discussion in Section 2.4.2 is
simply the plane containing the pixels of an image. As noted in Section 2.6.7,
spatial domain techniques operate directly on the pixels of an image as op-
posed, for example, to the frequency domain (the topic of Chapter 4) in which
operations are performed on the Fourier transform of an image, rather than on
the image itself. As you will learn in progressing through the book, some image
processing tasks are easier or more meaningful to implement in the spatial do-
main while others are best suited for other approaches. Generally, spatial do-
main techniques are more efficient computationally and require less processing
resources to implement.

The spatial domain processes we discuss in this chapter can be denoted by
the expression

(3.1-1)

where is the input image, is the output image, and T is an oper-
ator on f defined over a neighborhood of point (x, y). The operator can apply
to a single image (our principal focus in this chapter) or to a set of images, such
as performing the pixel-by-pixel sum of a sequence of images for noise reduc-
tion, as discussed in Section 2.6.3. Figure 3.1 shows the basic implementation
of Eq. (3.1-1) on a single image. The point (x, y) shown is an arbitrary location
in the image, and the small region shown containing the point is a neighbor-
hood of (x, y), as explained in Section 2.6.5. Typically, the neighborhood is rec-
tangular, centered on (x, y), and much smaller in size than the image.

(x, y)g(x, y)f

g(x, y) = T[ f(x, y)]

Other neighborhood
shapes, such as digital 
approximations to cir-
cles, are used sometimes,
but rectangular shapes
are by far the most
prevalent because they
are much easier to imple-
ment computationally.

Origin

3 � 3 neighborhood of (x, y)

(x, y)

Image f

Spatial domain

y

x

FIGURE 3.1
A
neighborhood
about a point
(x, y) in an image
in the spatial
domain. The
neighborhood is
moved from pixel
to pixel in the
image to generate
an output image.

3 * 3
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The process that Fig. 3.1 illustrates consists of moving the origin of the neigh-
borhood from pixel to pixel and applying the operator T to the pixels in the
neighborhood to yield the output at that location.Thus, for any specific location
(x, y), the value of the output image g at those coordinates is equal to the result
of applying T to the neighborhood with origin at (x, y) in f. For example, sup-
pose that the neighborhood is a square of size and that operator T is de-
fined as “compute the average intensity of the neighborhood.” Consider an
arbitrary location in an image, say (100, 150). Assuming that the origin of the
neighborhood is at its center, the result, , at that location is comput-
ed as the sum of and its 8-neighbors, divided by 9 (i.e., the average
intensity of the pixels encompassed by the neighborhood). The origin of the
neighborhood is then moved to the next location and the procedure is repeated
to generate the next value of the output image g. Typically, the process starts at
the top left of the input image and proceeds pixel by pixel in a horizontal scan,
one row at a time. When the origin of the neighborhood is at the border of the
image, part of the neighborhood will reside outside the image.The procedure is
either to ignore the outside neighbors in the computations specified by T, or to
pad the image with a border of 0s or some other specified intensity values. The
thickness of the padded border depends on the size of the neighborhood. We
will return to this issue in Section 3.4.1.

As we discuss in detail in Section 3.4, the procedure just described is called
spatial filtering, in which the neighborhood, along with a predefined operation,
is called a spatial filter (also referred to as a spatial mask, kernel, template, or
window). The type of operation performed in the neighborhood determines
the nature of the filtering process.

The smallest possible neighborhood is of size In this case, g depends
only on the value of f at a single point (x, y) and T in Eq. (3.1-1) becomes an
intensity (also called gray-level or mapping) transformation function of the form

(3.1-2)

where, for simplicity in notation, s and r are variables denoting, respectively,
the intensity of g and f at any point (x, y). For example, if T(r) has the form
in Fig. 3.2(a), the effect of applying the transformation to every pixel of f to
generate the corresponding pixels in g would be to produce an image of

s = T(r)
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higher contrast than the original by darkening the intensity levels below k
and brightening the levels above k. In this technique, sometimes called
contrast stretching (see Section 3.2.4), values of r lower than k are com-
pressed by the transformation function into a narrow range of s, toward
black. The opposite is true for values of r higher than k. Observe how an in-
tensity value is mapped to obtain the corresponding value In the limit-
ing case shown in Fig. 3.2(b), T(r) produces a two-level (binary) image. A
mapping of this form is called a thresholding function. Some fairly simple, yet
powerful, processing approaches can be formulated with intensity transfor-
mation functions. In this chapter, we use intensity transformations principally
for image enhancement. In Chapter 10, we use them for image segmentation.
Approaches whose results depend only on the intensity at a point sometimes
are called point processing techniques, as opposed to the neighborhood pro-
cessing techniques discussed earlier in this section.

3.1.2 About the Examples in This Chapter
Although intensity transformations and spatial filtering span a broad range of
applications, most of the examples in this chapter are applications to image
enhancement. Enhancement is the process of manipulating an image so that
the result is more suitable than the original for a specific application. The
word specific is important here because it establishes at the outset that en-
hancement techniques are problem oriented. Thus, for example, a method
that is quite useful for enhancing X-ray images may not be the best approach
for enhancing satellite images taken in the infrared band of the electromag-
netic spectrum. There is no general “theory” of image enhancement. When an
image is processed for visual interpretation, the viewer is the ultimate judge
of how well a particular method works. When dealing with machine percep-
tion, a given technique is easier to quantify. For example, in an automated
character-recognition system, the most appropriate enhancement method is
the one that results in the best recognition rate, leaving aside other consider-
ations such as computational requirements of one method over another.

Regardless of the application or method used, however, image enhancement
is one of the most visually appealing areas of image processing. By its very na-
ture, beginners in image processing generally find enhancement applications in-
teresting and relatively simple to understand. Therefore, using examples from
image enhancement to illustrate the spatial processing methods developed in
this chapter not only saves having an extra chapter in the book dealing with
image enhancement but, more importantly, is an effective approach for intro-
ducing newcomers to the details of processing techniques in the spatial domain.
As you will see as you progress through the book, the basic material developed in
this chapter is applicable to a much broader scope than just image enhancement.

3.2 Some Basic Intensity Transformation Functions

Intensity transformations are among the simplest of all image processing tech-
niques. The values of pixels, before and after processing, will be denoted by r
and s, respectively.As indicated in the previous section, these values are related

s0.r0
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by an expression of the form where T is a transformation that maps a
pixel value r into a pixel value s. Because we are dealing with digital quantities,
values of a transformation function typically are stored in a one-dimensional
array and the mappings from r to s are implemented via table lookups. For an 
8-bit environment, a lookup table containing the values of T will have 256 entries.

As an introduction to intensity transformations, consider Fig. 3.3, which
shows three basic types of functions used frequently for image enhance-
ment: linear (negative and identity transformations), logarithmic (log and
inverse-log transformations), and power-law (nth power and nth root trans-
formations). The identity function is the trivial case in which output intensi-
ties are identical to input intensities. It is included in the graph only for
completeness.

3.2.1 Image Negatives
The negative of an image with intensity levels in the range is ob-
tained by using the negative transformation shown in Fig. 3.3, which is given by
the expression

(3.2-1)

Reversing the intensity levels of an image in this manner produces the
equivalent of a photographic negative. This type of processing is particularly
suited for enhancing white or gray detail embedded in dark regions of an
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FIGURE 3.4
(a) Original digital
mammogram.
(b) Negative
image obtained
using the negative
transformation
in Eq. (3.2-1).
(Courtesy of G.E.
Medical Systems.)

image, especially when the black areas are dominant in size. Figure 3.4
shows an example. The original image is a digital mammogram showing a
small lesion. In spite of the fact that the visual content is the same in both
images, note how much easier it is to analyze the breast tissue in the nega-
tive image in this particular case.

3.2.2 Log Transformations
The general form of the log transformation in Fig. 3.3 is

(3.2-2)

where c is a constant, and it is assumed that The shape of the log curve
in Fig. 3.3 shows that this transformation maps a narrow range of low intensity
values in the input into a wider range of output levels. The opposite is true of
higher values of input levels. We use a transformation of this type to expand
the values of dark pixels in an image while compressing the higher-level val-
ues. The opposite is true of the inverse log transformation.

Any curve having the general shape of the log functions shown in Fig. 3.3
would accomplish this spreading/compressing of intensity levels in an image,
but the power-law transformations discussed in the next section are much
more versatile for this purpose. The log function has the important character-
istic that it compresses the dynamic range of images with large variations in
pixel values. A classic illustration of an application in which pixel values have
a large dynamic range is the Fourier spectrum, which will be discussed in
Chapter 4. At the moment, we are concerned only with the image characteris-
tics of spectra. It is not unusual to encounter spectrum values that range from 0
to or higher. While processing numbers such as these presents no problems
for a computer, image display systems generally will not be able to reproduce

106

r Ú 0.

s = c log(1 + r)
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FIGURE 3.5
(a) Fourier
spectrum.
(b) Result of
applying the log
transformation in
Eq. (3.2-2) with
c = 1.

faithfully such a wide range of intensity values. The net effect is that a signifi-
cant degree of intensity detail can be lost in the display of a typical Fourier
spectrum.

As an illustration of log transformations, Fig. 3.5(a) shows a Fourier spec-
trum with values in the range 0 to When these values are scaled lin-
early for display in an 8-bit system, the brightest pixels will dominate the
display, at the expense of lower (and just as important) values of the spec-
trum. The effect of this dominance is illustrated vividly by the relatively small
area of the image in Fig. 3.5(a) that is not perceived as black. If, instead of dis-
playing the values in this manner, we first apply Eq. (3.2-2) (with in this
case) to the spectrum values, then the range of values of the result becomes 0
to 6.2, which is more manageable. Figure 3.5(b) shows the result of scaling this
new range linearly and displaying the spectrum in the same 8-bit display. The
wealth of detail visible in this image as compared to an unmodified display of
the spectrum is evident from these pictures. Most of the Fourier spectra seen
in image processing publications have been scaled in just this manner.

3.2.3 Power-Law (Gamma) Transformations
Power-law transformations have the basic form

(3.2-3)

where c and are positive constants. Sometimes Eq. (3.2-3) is written as
to account for an offset (that is, a measurable output when the

input is zero). However, offsets typically are an issue of display calibration
and as a result they are normally ignored in Eq. (3.2-3). Plots of s versus r for
various values of are shown in Fig. 3.6. As in the case of the log transforma-
tion, power-law curves with fractional values of map a narrow range of dark
input values into a wider range of output values, with the opposite being true
for higher values of input levels. Unlike the log function, however, we notice
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here a family of possible transformation curves obtained simply by varying 
As expected, we see in Fig. 3.6 that curves generated with values of 
have exactly the opposite effect as those generated with values of 
Finally, we note that Eq. (3.2-3) reduces to the identity transformation when

A variety of devices used for image capture, printing, and display respond
according to a power law. By convention, the exponent in the power-law equa-
tion is referred to as gamma [hence our use of this symbol in Eq. (3.2-3)].
The process used to correct these power-law response phenomena is called
gamma correction. For example, cathode ray tube (CRT) devices have an 
intensity-to-voltage response that is a power function, with exponents vary-
ing from approximately 1.8 to 2.5. With reference to the curve for in
Fig. 3.6, we see that such display systems would tend to produce images that
are darker than intended. This effect is illustrated in Fig. 3.7. Figure 3.7(a)
shows a simple intensity-ramp image input into a monitor. As expected, the
output of the monitor appears darker than the input, as Fig. 3.7(b) shows.
Gamma correction in this case is straightforward. All we need to do is pre-
process the input image before inputting it into the monitor by performing 
the transformation The result is shown in Fig. 3.7(c). When
input into the same monitor, this gamma-corrected input produces an out-
put that is close in appearance to the original image, as Fig. 3.7(d) shows. A
similar analysis would apply to other imaging devices such as scanners and
printers. The only difference would be the device-dependent value of
gamma (Poynton [1996]).

s = r1>2.5 = r0.4.

g = 2.5

c = g = 1.

g 6 1.
g 7 1
g.
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Gamma correction is important if displaying an image accurately on a
computer screen is of concern. Images that are not corrected properly can
look either bleached out, or, what is more likely, too dark.Trying to reproduce
colors accurately also requires some knowledge of gamma correction because
varying the value of gamma changes not only the intensity, but also the ratios
of red to green to blue in a color image. Gamma correction has become in-
creasingly important in the past few years, as the use of digital images for
commercial purposes over the Internet has increased. It is not unusual that
images created for a popular Web site will be viewed by millions of people,
the majority of whom will have different monitors and/or monitor settings.
Some computer systems even have partial gamma correction built in. Also,
current image standards do not contain the value of gamma with which an
image was created, thus complicating the issue further. Given these con-
straints, a reasonable approach when storing images in a Web site is to pre-
process the images with a gamma that represents an “average” of the types of
monitors and computer systems that one expects in the open market at any
given point in time.

Original image Original image as viewed 
on monitor

Gamma
correction

Gamma-corrected image Gamma-corrected image as 
viewed on the same monitor

FIGURE 3.7
(a) Intensity ramp
image. (b) Image
as viewed on a
simulated monitor
with a gamma of
2.5. (c) Gamma-
corrected image.
(d) Corrected
image as viewed
on the same
monitor. Compare
(d) and (a).

a b
c d
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EXAMPLE 3.1:
Contrast
enhancement
using power-law
transformations.

■ In addition to gamma correction, power-law transformations are useful for
general-purpose contrast manipulation. Figure 3.8(a) shows a magnetic reso-
nance image (MRI) of an upper thoracic human spine with a fracture disloca-
tion and spinal cord impingement. The fracture is visible near the vertical
center of the spine, approximately one-fourth of the way down from the top of
the picture. Because the given image is predominantly dark, an expansion of
intensity levels is desirable. This can be accomplished with a power-law trans-
formation with a fractional exponent. The other images shown in the figure
were obtained by processing Fig. 3.8(a) with the power-law transformation

FIGURE 3.8
(a) Magnetic
resonance
image (MRI) of a
fractured human
spine.
(b)–(d) Results of
applying the
transformation in
Eq. (3.2-3) with

and
0.4, and

0.3, respectively.
(Original image
courtesy of Dr.
David R. Pickens,
Department of
Radiology and
Radiological
Sciences,
Vanderbilt
University
Medical Center.)

g = 0.6,
c = 1

a b
c d
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FIGURE 3.9
(a) Aerial image.
(b)–(d) Results of
applying the
transformation in
Eq. (3.2-3) with

and
4.0, and

5.0, respectively.
(Original image
for this example
courtesy of
NASA.)

g = 3.0,
c = 1

■ Figure 3.9(a) shows the opposite problem of Fig. 3.8(a). The image to be
processed now has a washed-out appearance, indicating that a compression
of intensity levels is desirable. This can be accomplished with Eq. (3.2-3)
using values of greater than 1. The results of processing Fig. 3.9(a) with

4.0, and 5.0 are shown in Figs. 3.9(b) through (d). Suitable results
were obtained with gamma values of 3.0 and 4.0, the latter having a slightly
g = 3.0,

g

EXAMPLE 3.2:
Another
illustration of
power-law
transformations.

function of Eq. (3.2-3). The values of gamma corresponding to images (b)
through (d) are 0.6, 0.4, and 0.3, respectively (the value of c was 1 in all cases).
We note that, as gamma decreased from 0.6 to 0.4, more detail became visible.
A further decrease of gamma to 0.3 enhanced a little more detail in the back-
ground, but began to reduce contrast to the point where the image started to
have a very slight “washed-out” appearance, especially in the background. By
comparing all results, we see that the best enhancement in terms of contrast
and discernable detail was obtained with A value of is an ap-
proximate limit below which contrast in this particular image would be 
reduced to an unacceptable level. ■

g = 0.3g = 0.4.

a b
c d
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more appealing appearance because it has higher contrast.The result obtained
with has areas that are too dark, in which some detail is lost. The dark
region to the left of the main road in the upper left quadrant is an example of
such an area. ■

3.2.4 Piecewise-Linear Transformation Functions
A complementary approach to the methods discussed in the previous three sec-
tions is to use piecewise linear functions. The principal advantage of piecewise
linear functions over the types of functions we have discussed thus far is that
the form of piecewise functions can be arbitrarily complex. In fact, as you will
see shortly, a practical implementation of some important transformations can
be formulated only as piecewise functions.The principal disadvantage of piece-
wise functions is that their specification requires considerably more user input.

Contrast stretching

One of the simplest piecewise linear functions is a contrast-stretching trans-
formation. Low-contrast images can result from poor illumination, lack of dy-
namic range in the imaging sensor, or even the wrong setting of a lens aperture
during image acquisition. Contrast stretching is a process that expands the
range of intensity levels in an image so that it spans the full intensity range of
the recording medium or display device.

Figure 3.10(a) shows a typical transformation used for contrast stretching. The
locations of points and control the shape of the transformation func-
tion.If and the transformation is a linear function that produces no
changes in intensity levels. If and the transformation
becomes a thresholding function that creates a binary image, as illustrated in
Fig. 3.2(b). Intermediate values of and produce various degrees of
spread in the intensity levels of the output image, thus affecting its contrast. In gen-
eral, and is assumed so that the function is single valued and mo-
notonically increasing. This condition preserves the order of intensity levels, thus
preventing the creation of intensity artifacts in the processed image.

Figure 3.10(b) shows an 8-bit image with low contrast. Figure 3.10(c) shows
the result of contrast stretching, obtained by setting and

, where and denote the minimum and maxi-
mum intensity levels in the image, respectively. Thus, the transformation func-
tion stretched the levels linearly from their original range to the full range

Finally, Fig. 3.10(d) shows the result of using the thresholding func-
tion defined previously, with and 
where m is the mean intensity level in the image. The original image on which
these results are based is a scanning electron microscope image of pollen, mag-
nified approximately 700 times.

Intensity-level slicing

Highlighting a specific range of intensities in an image often is of interest.Appli-
cations include enhancing features such as masses of water in satellite imagery
and enhancing flaws in X-ray images. The process, often called intensity-level

(r2, s2) = (m, L - 1),(r1, s1) = (m, 0)
[0, L - 1].

rmaxrmin(r2, s2) = (rmax, L - 1)
(r1, s1) = (rmin, 0)

s1 … s2r1 … r2

(r2, s2)(r1, s1)

s2 = L - 1,r1 = r2, s1 = 0
r2 = s2,r1 = s1

(r2, s2)(r1, s1)

g = 5.0
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FIGURE 3.11 (a) This
transformation
highlights intensity
range [A, B] and
reduces all other
intensities to a lower
level. (b) This
transformation
highlights range 
[A, B] and preserves
all other intensity
levels.
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FIGURE 3.10
Contrast stretching.
(a) Form of
transformation
function. (b) A 
low-contrast image.
(c) Result of
contrast stretching.
(d) Result of
thresholding.
(Original image
courtesy of Dr.
Roger Heady,
Research School of
Biological Sciences,
Australian National
University,
Canberra,
Australia.)

slicing, can be implemented in several ways, but most are variations of two basic
themes. One approach is to display in one value (say, white) all the values in the
range of interest and in another (say, black) all other intensities. This transfor-
mation, shown in Fig. 3.11(a), produces a binary image. The second approach,
based on the transformation in Fig. 3.11(b), brightens (or darkens) the desired
range of intensities but leaves all other intensity levels in the image unchanged.

a b
c d

a b
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EXAMPLE 3.3:
Intensity-level
slicing.

■ Figure 3.12(a) is an aortic angiogram near the kidney area (see Section
1.3.2 for a more detailed explanation of this image). The objective of this ex-
ample is to use intensity-level slicing to highlight the major blood vessels that
appear brighter as a result of an injected contrast medium. Figure 3.12(b)
shows the result of using a transformation of the form in Fig. 3.11(a), with the
selected band near the top of the scale, because the range of interest is brighter
than the background. The net result of this transformation is that the blood
vessel and parts of the kidneys appear white, while all other intensities are
black. This type of enhancement produces a binary image and is useful for
studying the shape of the flow of the contrast medium (to detect blockages, for
example).

If, on the other hand, interest lies in the actual intensity values of the region
of interest, we can use the transformation in Fig. 3.11(b). Figure 3.12(c) shows
the result of using such a transformation in which a band of intensities in the
mid-gray region around the mean intensity was set to black, while all other in-
tensities were left unchanged. Here, we see that the gray-level tonality of the
major blood vessels and part of the kidney area were left intact. Such a result
might be useful when interest lies in measuring the actual flow of the contrast
medium as a function of time in a series of images. ■

Bit-plane slicing

Pixels are digital numbers composed of bits. For example, the intensity of each
pixel in a 256-level gray-scale image is composed of 8 bits (i.e., one byte). In-
stead of highlighting intensity-level ranges, we could highlight the contribution

FIGURE 3.12 (a) Aortic angiogram. (b) Result of using a slicing transformation of the type illustrated in Fig.
3.11(a), with the range of intensities of interest selected in the upper end of the gray scale. (c) Result of
using the transformation in Fig. 3.11(b), with the selected area set to black, so that grays in the area of the
blood vessels and kidneys were preserved. (Original image courtesy of Dr. Thomas R. Gest, University of
Michigan Medical School.)

a b c
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FIGURE 3.14 (a) An 8-bit gray-scale image of size pixels. (b) through (i) Bit planes 1 through 8,
with bit plane 1 corresponding to the least significant bit. Each bit plane is a binary image.

500 * 1192

made to total image appearance by specific bits.As Fig. 3.13 illustrates, an 8-bit
image may be considered as being composed of eight 1-bit planes, with plane 1
containing the lowest-order bit of all pixels in the image and plane 8 all the
highest-order bits.

Figure 3.14(a) shows an 8-bit gray-scale image and Figs. 3.14(b) through (i)
are its eight 1-bit planes, with Fig. 3.14(b) corresponding to the lowest-order bit.
Observe that the four higher-order bit planes, especially the last two, contain a
significant amount of the visually significant data. The lower-order planes con-
tribute to more subtle intensity details in the image. The original image has a
gray border whose intensity is 194.Notice that the corresponding borders of some
of the bit planes are black (0), while others are white (1). To see why, consider a

One 8-bit byte Bit plane 8 
(most significant)

Bit plane 1 
(least significant)

FIGURE 3.13
Bit-plane
representation of
an 8-bit image.

a b c
d e f
g h i
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pixel in, say, the middle of the lower border of Fig. 3.14(a). The corresponding
pixels in the bit planes, starting with the highest-order plane, have values 1 1 0 0
0 0 1 0, which is the binary representation of decimal 194.The value of any pixel
in the original image can be similarly reconstructed from its corresponding
binary-valued pixels in the bit planes.

In terms of intensity transformation functions, it is not difficult to show that
the binary image for the 8th bit plane of an 8-bit image can be obtained by
processing the input image with a thresholding intensity transformation func-
tion that maps all intensities between 0 and 127 to 0 and maps all levels be-
tween 128 and 255 to 1. The binary image in Fig. 3.14(i) was obtained in just
this manner. It is left as an exercise (Problem 3.4) to obtain the intensity trans-
formation functions for generating the other bit planes.

Decomposing an image into its bit planes is useful for analyzing the rela-
tive importance of each bit in the image, a process that aids in determining
the adequacy of the number of bits used to quantize the image. Also, this type
of decomposition is useful for image compression (the topic of Chapter 8), in
which fewer than all planes are used in reconstructing an image. For example,
Fig. 3.15(a) shows an image reconstructed using bit planes 8 and 7. The recon-
struction is done by multiplying the pixels of the nth plane by the constant

This is nothing more than converting the nth significant binary bit to
decimal. Each plane used is multiplied by the corresponding constant, and all
planes used are added to obtain the gray scale image. Thus, to obtain 
Fig. 3.15(a), we multiplied bit plane 8 by 128, bit plane 7 by 64, and added the
two planes. Although the main features of the original image were restored,
the reconstructed image appears flat, especially in the background. This is not
surprising because two planes can produce only four distinct intensity levels.
Adding plane 6 to the reconstruction helped the situation, as Fig. 3.15(b)
shows. Note that the background of this image has perceptible false contour-
ing. This effect is reduced significantly by adding the 5th plane to the recon-
struction, as Fig. 3.15(c) illustrates. Using more planes in the reconstruction
would not contribute significantly to the appearance of this image. Thus, we
conclude that storing the four highest-order bit planes would allow us to re-
construct the original image in acceptable detail. Storing these four planes in-
stead of the original image requires 50% less storage (ignoring memory
architecture issues).

2n - 1.

FIGURE 3.15 Images reconstructed using (a) bit planes 8 and 7; (b) bit planes 8, 7, and 6; and (c) bit planes 8,
7, 6, and 5. Compare (c) with Fig. 3.14(a).
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3.3 Histogram Processing

The histogram of a digital image with intensity levels in the range 
is a discrete function where is the kth intensity value and is
the number of pixels in the image with intensity It is common practice to
normalize a histogram by dividing each of its components by the total num-
ber of pixels in the image, denoted by the product MN, where, as usual, M
and N are the row and column dimensions of the image. Thus, a normalized
histogram is given by for Loosely
speaking, is an estimate of the probability of occurrence of intensity
level in an image. The sum of all components of a normalized histogram is
equal to 1.

Histograms are the basis for numerous spatial domain processing tech-
niques. Histogram manipulation can be used for image enhancement, as
shown in this section. In addition to providing useful image statistics, we shall
see in subsequent chapters that the information inherent in histograms also is
quite useful in other image processing applications, such as image compression
and segmentation. Histograms are simple to calculate in software and also
lend themselves to economic hardware implementations, thus making them a
popular tool for real-time image processing.

As an introduction to histogram processing for intensity transformations,
consider Fig. 3.16, which is the pollen image of Fig. 3.10 shown in four basic in-
tensity characteristics: dark, light, low contrast, and high contrast. The right
side of the figure shows the histograms corresponding to these images. The
horizontal axis of each histogram plot corresponds to intensity values, The
vertical axis corresponds to values of or if the val-
ues are normalized. Thus, histograms may be viewed graphically simply as
plots of versus or versus 

We note in the dark image that the components of the histogram are con-
centrated on the low (dark) side of the intensity scale. Similarly, the compo-
nents of the histogram of the light image are biased toward the high side of
the scale. An image with low contrast has a narrow histogram located typi-
cally toward the middle of the intensity scale. For a monochrome image this
implies a dull, washed-out gray look. Finally, we see that the components of
the histogram in the high-contrast image cover a wide range of the intensity
scale and, further, that the distribution of pixels is not too far from uniform,
with very few vertical lines being much higher than the others. Intuitively, it
is reasonable to conclude that an image whose pixels tend to occupy the entire
range of possible intensity levels and, in addition, tend to be distributed uni-
formly, will have an appearance of high contrast and will exhibit a large vari-
ety of gray tones. The net effect will be an image that shows a great deal of
gray-level detail and has high dynamic range. It will be shown shortly that it
is possible to develop a transformation function that can automatically
achieve this effect, based only on information available in the histogram of
the input image.

rk.p(rk) = nk>MNrkh(rk) = nk

p(rk) = nk>MNh(rk) = nk

rk.

rk

p(rk)
k = 0, 1, 2, Á , L - 1.p(rk) = rk >MN,

rk.
nkrkh(rk) = nk,

[0, L - 1]

Consult the book Web
site for a review of basic
probability theory.
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Histogram of dark image

Histogram of light image

Histogram of low-contrast image

Histogram of high-contrast image

FIGURE 3.16 Four basic image types: dark, light, low contrast, high
contrast, and their corresponding histograms.
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FIGURE 3.17 
(a) Monotonically
increasing
function, showing
how multiple
values can map to
a single value.
(b) Strictly
monotonically
increasing
function. This is a
one-to-one
mapping, both
ways.

†Recall that a function is monotonically increasing if for is a strictly mo-
notonically increasing function if for Similar definitions apply to monotonically
decreasing functions.

r2 7 r1.T(r2) 7 T(r1)
(r)Tr2 7 r1.T(r2) Ú T(r1)T(r)

3.3.1 Histogram Equalization
Consider for a moment continuous intensity values and let the variable r de-
note the intensities of an image to be processed. As usual, we assume that r is
in the range with representing black and repre-
senting white. For r satisfying these conditions, we focus attention on transfor-
mations (intensity mappings) of the form

(3.3-1)

that produce an output intensity level s for every pixel in the input image hav-
ing intensity r. We assume that:

(a) is a monotonically† increasing function in the interval 
and

(b) for

In some formulations to be discussed later, we use the inverse

(3.3-2)

in which case we change condition (a) to

(a ) is a strictly monotonically increasing function in the interval

The requirement in condition (a) that be monotonically increasing
guarantees that output intensity values will never be less than corresponding
input values, thus preventing artifacts created by reversals of intensity. Condi-
tion (b) guarantees that the range of output intensities is the same as the
input. Finally, condition (a ) guarantees that the mappings from s back to r
will be one-to-one, thus preventing ambiguities. Figure 3.17(a) shows a function

¿

T(r)

0 … r … L - 1.
T(r)¿

r = T -1(s)  0 … s … L - 1

0 … r … L - 1.0 … T(r) … L - 1

0 … r … L - 1;T(r)

s = T(r)  0 … r … L - 1

r = L - 1r = 0[0, L - 1],

a b
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that satisfies conditions (a) and (b). Here, we see that it is possible for multi-
ple values to map to a single value and still satisfy these two conditions. That
is, a monotonic transformation function performs a one-to-one or many-to-
one mapping. This is perfectly fine when mapping from r to s. However,
Fig. 3.17(a) presents a problem if we wanted to recover the values of r unique-
ly from the mapped values (inverse mapping can be visualized by reversing
the direction of the arrows). This would be possible for the inverse mapping
of in Fig. 3.17(a), but the inverse mapping of is a range of values, which,
of course, prevents us in general from recovering the original value of r that
resulted in As Fig. 3.17(b) shows, requiring that be strictly monotonic
guarantees that the inverse mappings will be single valued (i.e., the mapping
is one-to-one in both directions). This is a theoretical requirement that allows
us to derive some important histogram processing techniques later in this
chapter. Because in practice we deal with integer intensity values, we are
forced to round all results to their nearest integer values. Therefore, when
strict monotonicity is not satisfied, we address the problem of a nonunique in-
verse transformation by looking for the closest integer matches. Example 3.8
gives an illustration of this.

The intensity levels in an image may be viewed as random variables in the
interval A fundamental descriptor of a random variable is its prob-
ability density function (PDF). Let and denote the PDFs of r and s,
respectively, where the subscripts on p are used to indicate that and are
different functions in general. A fundamental result from basic probability
theory is that if and are known, and is continuous and differen-
tiable over the range of values of interest, then the PDF of the transformed
(mapped) variable s can be obtained using the simple formula

(3.3-3)

Thus, we see that the PDF of the output intensity variable, s, is determined by
the PDF of the input intensities and the transformation function used [recall
that r and s are related by ].

A transformation function of particular importance in image processing has
the form

(3.3-4)

where is a dummy variable of integration. The right side of this equation is
recognized as the cumulative distribution function (CDF) of random variable
r. Because PDFs always are positive, and recalling that the integral of a func-
tion is the area under the function, it follows that the transformation function
of Eq. (3.3-4) satisfies condition (a) because the area under the function can-
not decrease as r increases. When the upper limit in this equation is

the integral evaluates to 1 (the area under a PDF curve always 
is 1), so the maximum value of s is and condition (b) is satisfied also.(L - 1)
r = (L - 1),

w

s = T(r) = (L - 1)L
r

0
pr(w) dw

T(r)

ps(s) = pr(r) ` dr

ds
`

T(r)T(r)pr(r)

pspr

ps(s)pr(r)
[0, L - 1].

T(r)sq.

sqsk
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Eq. (3.3-4)

r

pr(r)

0

A

L � 1
s

ps(s)

0 L � 1

L � 1
1

FIGURE 3.18 (a) An arbitrary PDF. (b) Result of applying the transformation in
Eq. (3.3-4) to all intensity levels, r. The resulting intensities, s, have a uniform PDF,
independently of the form of the PDF of the r’s.

To find the corresponding to the transformation just discussed, we use
Eq. (3.3-3).We know from Leibniz’s rule in basic calculus that the derivative of
a definite integral with respect to its upper limit is the integrand evaluated at
the limit. That is,

(3.3-5)

Substituting this result for dr ds in Eq. (3.3-3), and keeping in mind that all
probability values are positive, yields

(3.3-6)

We recognize the form of in the last line of this equation as a uniform
probability density function. Simply stated, we have demonstrated that per-
forming the intensity transformation in Eq. (3.3-4) yields a random variable, s,
characterized by a uniform PDF. It is important to note from this equation that

depends on but, as Eq. (3.3-6) shows, the resulting always is
uniform, independently of the form of . Figure 3.18 illustrates these 
concepts.

pr(r)
ps(s)pr(r)T(r)

ps(s)

=
1

L - 1
0 … s … L - 1

= pr(r) ` 1
(L - 1)pr(r)

`

ps(s) = pr(r) ` dr

ds
`

>
= (L - 1)pr(r)

= (L - 1)
d

dr
BLr

0
pr(w) dwR

ds

dr
=

dT(r)
dr

ps(s)

a b
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EXAMPLE 3.4:
Illustration of
Eqs. (3.3-4) and
(3.3-6).

■ To fix ideas, consider the following simple example. Suppose that the (con-
tinuous) intensity values in an image have the PDF

From Eq. (3.3-4),

Suppose next that we form a new image with intensities, s, obtained using
this transformation; that is, the s values are formed by squaring the corre-
sponding intensity values of the input image and dividing them by 
For example, consider an image in which and suppose that a pixel
in an arbitrary location (x, y) in the input image has intensity Then
the pixel in that location in the new image is We can
verify that the PDF of the intensities in the new image is uniform simply by
substituting into Eq. (3.3-6) and using the fact that 
that is,

where the last step follows from the fact that r is nonnegative and we assume
that As expected, the result is a uniform PDF. ■

For discrete values, we deal with probabilities (histogram values) and sum-
mations instead of probability density functions and integrals.† As mentioned
earlier, the probability of occurrence of intensity level in a digital image is
approximated by

(3.3-7)

where MN is the total number of pixels in the image, is the number of pix-
els that have intensity and L is the number of possible intensity levels in the
image (e.g., 256 for an 8-bit image). As noted in the beginning of this section, a
plot of versus is commonly referred to as a histogram.rkpr(rk)

rk,
nk

pr(rk) =
nk

MN
k = 0, 1, 2, Á , L - 1

rk

L 7 1.

=
2r

(L - 1)2 ` (L - 1)
2r

` =
1

L - 1

=
2r

(L - 1)2 ` B d

dr

r2

L - 1
R-1

`

ps(s) = pr(r) ` dr

ds
` =

2r

(L - 1)2 ` Bds

dr
R-1

`

s = r 2>(L - 1);pr(r)

s = T(r) = r 2>9 = 1.
r = 3.

L = 10,
(L - 1).

s = T(r) = (L - 1)L
r

0
pr(w) dw =

2
L - 1L

r

0
w dw =

r 2

L - 1

pr(r) = c 2r

(L - 1)2 for 0 … r … L - 1

0 otherwise

†The conditions of monotonicity stated earlier apply also in the discrete case. We simply restrict the val-
ues of the variables to be discrete.
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The discrete form of the transformation in Eq. (3.3-4) is

(3.3-8)

Thus, a processed (output) image is obtained by mapping each pixel in the
input image with intensity into a corresponding pixel with level in the
output image, using Eq. (3.3-8). The transformation (mapping) in this
equation is called a histogram equalization or histogram linearization trans-
formation. It is not difficult to show (Problem 3.10) that this transformation
satisfies conditions (a) and (b) stated previously in this section.

T(rk)
skrk

=
(L - 1)

MN a
k

j = 0
nj  k = 0, 1, 2, Á , L - 1

sk = T(rk) = (L - 1)a
k

j = 0
pr(rj)

790 0.19
1023 0.25
850 0.21
656 0.16
329 0.08
245 0.06
122 0.03
81 0.02r7 = 7

r6 = 6
r5 = 5
r4 = 4
r3 = 3
r2 = 2
r1 = 1
r0 = 0

pr(rk) = nk>MNnkrk
TABLE 3.1
Intensity
distribution and
histogram values
for a 3-bit,

digital
image.
64 * 64

EXAMPLE 3.5:
A simple
illustration of
histogram
equalization.

■ Before continuing, it will be helpful to work through a simple example.
Suppose that a 3-bit image of size pixels has
the intensity distribution shown in Table 3.1, where the intensity levels are in-
tegers in the range 

The histogram of our hypothetical image is sketched in Fig. 3.19(a). Values
of the histogram equalization transformation function are obtained using 
Eq. (3.3-8). For instance,

Similarly,

and This trans-
formation function has the staircase shape shown in Fig. 3.19(b).

s2 = 4.55, s3 = 5.67, s4 = 6.23, s5 = 6.65, s6 = 6.86, s7 = 7.00.

s1 = T(r1) = 7a
1

j = 0
pr(rj) = 7pr(r0) + 7pr(r1) = 3.08

s0 = T(r0) = 7a
0

j = 0
pr(rj) = 7pr(r0) = 1.33

[0, L - 1] = [0, 7].

(MN = 4096)64 * 64(L = 8)
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FIGURE 3.19 Illustration of histogram equalization of a 3-bit (8 intensity levels) image. (a) Original
histogram. (b) Transformation function. (c) Equalized histogram.

At this point, the s values still have fractions because they were generated
by summing probability values, so we round them to the nearest integer:

These are the values of the equalized histogram. Observe that there are only
five distinct intensity levels. Because was mapped to there are
790 pixels in the histogram equalized image with this value (see Table 3.1).
Also, there are in this image 1023 pixels with a value of and 850 pixels
with a value of However both and were mapped to the same
value, 6, so there are pixels in the equalized image with this
value. Similarly, there are pixels with a value of 7 in
the histogram equalized image. Dividing these numbers by yielded
the equalized histogram in Fig. 3.19(c).

Because a histogram is an approximation to a PDF, and no new allowed in-
tensity levels are created in the process, perfectly flat histograms are rare in
practical applications of histogram equalization. Thus, unlike its continuous
counterpart, it cannot be proved (in general) that discrete histogram equaliza-
tion results in a uniform histogram. However, as you will see shortly, using Eq.
(3.3-8) has the general tendency to spread the histogram of the input image so
that the intensity levels of the equalized image span a wider range of the in-
tensity scale. The net result is contrast enhancement. ■

We discussed earlier in this section the many advantages of having intensity
values that cover the entire gray scale. In addition to producing intensities that
have this tendency, the method just derived has the additional advantage that
it is fully “automatic.” In other words, given an image, the process of histogram
equalization consists simply of implementing Eq. (3.3-8), which is based on in-
formation that can be extracted directly from the given image, without the

MN = 4096
(245 + 122 + 81) = 448

(656 + 329) = 985
r4r3s2 = 5.

s1 = 3

s0 = 1,r0 = 0

s3 = 5.67: 6 s7 = 7.00: 7

s2 = 4.55: 5 s6 = 6.86: 7

s1 = 3.08: 3 s5 = 6.65: 7

s0 = 1.33: 1 s4 = 6.23: 6

a b c
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need for further parameter specifications. We note also the simplicity of the
computations required to implement the technique.

The inverse transformation from s back to r is denoted by

(3.3-9)

It can be shown (Problem 3.10) that this inverse transformation satisfies con-
ditions and (b) only if none of the levels, are
missing from the input image, which in turn means that none of the components
of the image histogram are zero. Although the inverse transformation is not
used in histogram equalization, it plays a central role in the histogram-matching
scheme developed in the next section.

 2, Á , L - 1,rk, k = 0, 1,(a¿)

rk = T-1(sk) k = 0, 1, 2, Á , L - 1

EXAMPLE 3.6:
Histogram
equalization.

■ The left column in Fig. 3.20 shows the four images from Fig. 3.16, and the
center column shows the result of performing histogram equalization on each
of these images. The first three results from top to bottom show significant im-
provement. As expected, histogram equalization did not have much effect on
the fourth image because the intensities of this image already span the full in-
tensity scale. Figure 3.21 shows the transformation functions used to generate the
equalized images in Fig. 3.20. These functions were generated using Eq. (3.3-8).
Observe that transformation (4) has a nearly linear shape, indicating that the
inputs were mapped to nearly equal outputs.

The third column in Fig. 3.20 shows the histograms of the equalized images. It
is of interest to note that, while all these histograms are different, the histogram-
equalized images themselves are visually very similar.This is not unexpected be-
cause the basic difference between the images on the left column is one of
contrast, not content. In other words, because the images have the same con-
tent, the increase in contrast resulting from histogram equalization was
enough to render any intensity differences in the equalized images visually in-
distinguishable. Given the significant contrast differences between the original
images, this example illustrates the power of histogram equalization as an
adaptive contrast enhancement tool. ■

3.3.2 Histogram Matching (Specification)
As indicated in the preceding discussion, histogram equalization automati-
cally determines a transformation function that seeks to produce an output
image that has a uniform histogram. When automatic enhancement is de-
sired, this is a good approach because the results from this technique are
predictable and the method is simple to implement. We show in this section
that there are applications in which attempting to base enhancement on a
uniform histogram is not the best approach. In particular, it is useful some-
times to be able to specify the shape of the histogram that we wish the
processed image to have. The method used to generate a processed image
that has a specified histogram is called histogram matching or histogram
specification.
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FIGURE 3.20 Left column: images from Fig. 3.16. Center column: corresponding histogram-
equalized images. Right column: histograms of the images in the center column.
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FIGURE 3.21
Transformation
functions for
histogram
equalization.
Transformations
(1) through (4)
were obtained from
the histograms of
the images (from
top to bottom) in
the left column of
Fig. 3.20 using 
Eq. (3.3-8).

Let us return for a moment to continuous intensities r and z (considered con-
tinuous random variables), and let and denote their corresponding
continuous probability density functions. In this notation, r and z denote the in-
tensity levels of the input and output (processed) images, respectively. We can
estimate from the given input image, while is the specified probabili-
ty density function that we wish the output image to have.

Let s be a random variable with the property

(3.3-10)

where, as before, is a dummy variable of integration.We recognize this expres-
sion as the continuous version of histogram equalization given in Eq. (3.3-4).

Suppose next that we define a random variable z with the property

(3.3-11)

where t is a dummy variable of integration. It then follows from these two
equations that and, therefore, that z must satisfy the condition

(3.3-12)

The transformation can be obtained from Eq. (3.3-10) once has
been estimated from the input image. Similarly, the transformation function
G(z) can be obtained using Eq. (3.3-11) because is given.

Equations (3.3-10) through (3.3-12) show that an image whose intensity
levels have a specified probability density function can be obtained from a
given image by using the following procedure:

1. Obtain from the input image and use Eq. (3.3-10) to obtain the val-
ues of s.

2. Use the specified PDF in Eq. (3.3-11) to obtain the transformation function
G(z).

pr(r)

pz(z)

pr(r)T(r)

z = G-1[T(r)] = G-1(s)

G(z) = T(r)

G(z) = (L - 1)3
 

z

0 

pz(t) dt = s

w

s = T(r) = (L - 1)L
r

0
pr(w) dw

pz(z)pr(r)

pz(z)pr(r)
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3. Obtain the inverse transformation because z is obtained from
s, this process is a mapping from s to z, the latter being the desired values.

4. Obtain the output image by first equalizing the input image using Eq.
(3.3-10); the pixel values in this image are the s values. For each pixel with
value s in the equalized image, perform the inverse mapping to
obtain the corresponding pixel in the output image. When all pixels have
been thus processed, the PDF of the output image will be equal to the
specified PDF.

z = G-1(s)

z = G-1(s);

EXAMPLE 3.7:
Histogram
specification.

■ Assuming continuous intensity values, suppose that an image has the inten-
sity PDF for and for other
values of r. Find the transformation function that will produce an image whose
intensity PDF is for and for
other values of z.

First, we find the histogram equalization transformation for the interval

By definition, this transformation is 0 for values outside the range 
Squaring the values of the input intensities and dividing them by will
produce an image whose intensities, s, have a uniform PDF because this is a
histogram-equalization transformation, as discussed earlier.

We are interested in an image with a specified histogram, so we find next

over the interval this function is 0 elsewhere by definition. Finally,
we require that but so and
we have

So, if we multiply every histogram equalized pixel by and raise the
product to the power , the result will be an image whose intensities, z, have
the PDF in the interval as desired.

Because we can generate the z’s directly from the intensi-
ties, r, of the input image:

Thus, squaring the value of each pixel in the original image, multiplying the re-
sult by and raising the product to the power will yield an image1>3(L - 1),

z = C(L - 1)2s D1/3
= B(L - 1)2 r 2

(L - 1) R1/3

= C(L - 1)r 2 D1/3

s = r2>(L - 1)
[0, L - 1],pz(z) = 3z2>(L - 1)3

1>3 (L - 1)2

z = C(L - 1)2s D1>3
z3>(L - 1)2 = s,G(z) = z3>(L - 1)2;G(z) = s,

[0, L - 1];

G(z) = (L - 1)L
z

0
pz(w) dw =

3

(L - 1)2L
z

0
w2 dw =

z3

(L - 1)2

(L - 1)2
[0, L - 1].

s = T(r) = (L - 1)L
r

0
pr(w) dw =

2
(L - 1)L

r

0
w dw =

r2

(L - 1)

[0, L - 1]:

pz(z) = 00 … z … (L - 1)pz(z) = 3z2>(L - 1)3

pr(r) = 00 … r … (L - 1)pr(r) = 2r>(L - 1)2
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whose intensity levels, z, have the specified PDF. We see that the intermedi-
ate step of equalizing the input image can be skipped; all we need is to obtain
the transformation function that maps r to s. Then, the two steps can be
combined into a single transformation from r to z. ■

As the preceding example shows, histogram specification is straightforward
in principle. In practice, a common difficulty is finding meaningful analytical
expressions for and Fortunately, the problem is simplified signifi-
cantly when dealing with discrete quantities. The price paid is the same as for
histogram equalization, where only an approximation to the desired histogram
is achievable. In spite of this, however, some very useful results can be ob-
tained, even with crude approximations.

The discrete formulation of Eq. (3.3-10) is the histogram equalization trans-
formation in Eq. (3.3-8), which we repeat here for convenience:

(3.3-13)

where, as before, MN is the total number of pixels in the image, is the num-
ber of pixels that have intensity value and L is the total number of possible
intensity levels in the image. Similarly, given a specific value of the discrete
formulation of Eq. (3.3-11) involves computing the transformation function

(3.3-14)

for a value of q, so that

(3.3-15)

where is the ith value of the specified histogram. As before, we find the
desired value by obtaining the inverse transformation:

(3.3-16)

In other words, this operation gives a value of z for each value of s; thus, it per-
forms a mapping from s to z.

In practice, we do not need to compute the inverse of G. Because we deal
with intensity levels that are integers (e.g., 0 to 255 for an 8-bit image), it is a
simple matter to compute all the possible values of G using Eq. (3.3-14) for

These values are scaled and rounded to their nearest
integer values spanning the range The values are stored in a table.
Then, given a particular value of we look for the closest match in the values
stored in the table. If, for example, the 64th entry in the table is the closest to

then (recall that we start counting at 0) and is the best solution
to Eq. (3.3-15). Thus, the given value would be associated with (i.e., thatz63sk

z63q = 63sk,

sk,
[0, L - 1].

q = 0, 1, 2, Á , L - 1.

zq = G-1(sk)

zq

pz(zi),

G(zq) = sk

G(zq) = (L - 1)a
q

i = 0
pz(zi)

sk,
rj,

nj

=
(L - 1)

MN a
k

j = 0
nj k = 0, 1, 2, Á , L - 1

sk = T(rk) = (L - 1)a
k

j = 0
pr(rj)

G-1.T(r)

T(r)
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specific value of would map to ). Because the zs are intensities used
as the basis for specifying the histogram it follows that 

so would have the intensity value 63. By re-
peating this procedure, we would find the mapping of each value of to the
value of that is the closest solution to Eq. (3.3-15). These mappings are the
solution to the histogram-specification problem.

Recalling that the are the values of the histogram-equalized image, we
may summarize the histogram-specification procedure as follows:

1. Compute the histogram of the given image, and use it to find the his-
togram equalization transformation in Eq. (3.3-13). Round the resulting
values, to the integer range 

2. Compute all values of the transformation function G using the Eq. (3.3-14)
for where are the values of the specified his-
togram. Round the values of G to integers in the range Store
the values of G in a table.

3. For every value of use the stored values of G
from step 2 to find the corresponding value of so that is closest to

and store these mappings from s to z. When more than one value of 
satisfies the given (i.e., the mapping is not unique), choose the smallest
value by convention.

4. Form the histogram-specified image by first histogram-equalizing the
input image and then mapping every equalized pixel value, of this
image to the corresponding value in the histogram-specified image
using the mappings found in step 3. As in the continuous case, the inter-
mediate step of equalizing the input image is conceptual. It can be skipped
by combining the two transformation functions, T and as Example 3.8
shows.

As mentioned earlier, for to satisfy conditions and (b), G has to be
strictly monotonic, which, according to Eq. (3.3-14), means that none of the val-
ues of the specified histogram can be zero (Problem 3.10).When working
with discrete quantities, the fact that this condition may not be satisfied is not a
serious implementation issue, as step 3 above indicates. The following example
illustrates this numerically.

pz(zi)

(a¿)G-1

G-1,

zq

sk,

sk

zqsk

G(zq)zq

k = 0, 1, 2, Á , L - 1,sk,

[0, L - 1].
pz(zi)q = 0, 1, 2, Á , L - 1,

[0, L - 1].sk,

pr(r)

sks

zq

sk

z63z1 = 1, Á , zL - 1 = L - 1,
z0 = 0,pz(z),

z63sk

EXAMPLE 3.8:
A simple example
of histogram
specification.

■ Consider again the hypothetical image from Example 3.5, whose
histogram is repeated in Fig. 3.22(a). It is desired to transform this histogram
so that it will have the values specified in the second column of Table 3.2.
Figure 3.22(b) shows a sketch of this histogram.

The first step in the procedure is to obtain the scaled histogram-equalized
values, which we did in Example 3.5:

s1 = 3 s3 = 6 s5 = 7 s7 = 7

s0 = 1 s2 = 5 s4 = 7 s6 = 7

64 * 64
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FIGURE 3.22
(a) Histogram of a
3-bit image. (b)
Specified
histogram.
(c) Transformation
function obtained
from the specified
histogram.
(d) Result of
performing
histogram
specification.
Compare
(b) and (d).

Specified Actual 

0.00 0.00
0.00 0.00
0.00 0.00
0.15 0.19
0.20 0.25
0.30 0.21
0.20 0.24
0.15 0.11z7 = 7

z6 = 6
z5 = 5
z4 = 4
z3 = 3
z2 = 2
z1 = 1
z0 = 0

pz(zk)pz(zq)zq

TABLE 3.2
Specified and
actual histograms
(the values in the
third column are
from the
computations
performed in the
body of Example
3.8).

In the next step, we compute all the values of the transformation function, G,
using Eq. (3.3-14):

Similarly,

and

G(z3) = 1.05 G(z5) = 4.55 G(z7) = 7.00

G(z2) = 0.00 G(z4) = 2.45 G(z6) = 5.95

G(z1) = 7a
1

j = 0
pz(zj) = 7 Cp(z0) + p(z1) D = 0.00

G(z0) = 7a
0

j = 0
pz(zj) = 0.00

a b
c d
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As in Example 3.5, these fractional values are converted to integers in our
valid range, [0, 7]. The results are:

These results are summarized in Table 3.3, and the transformation function is
sketched in Fig. 3.22(c). Observe that G is not strictly monotonic, so condition

is violated. Therefore, we make use of the approach outlined in step 3 of
the algorithm to handle this situation.

In the third step of the procedure, we find the smallest value of so that 
the value is the closest to We do this for every value of to create
the required mappings from s to z. For example, and we see that

which is a perfect match in this case, so we have the correspon-
dence That is, every pixel whose value is 1 in the histogram equalized
image would map to a pixel valued 3 (in the corresponding location) in the
histogram-specified image. Continuing in this manner, we arrive at the map-
pings in Table 3.4.

In the final step of the procedure, we use the mappings in Table 3.4 to map
every pixel in the histogram equalized image into a corresponding pixel in the
newly created histogram-specified image. The values of the resulting his-
togram are listed in the third column of Table 3.2, and the histogram is
sketched in Fig. 3.22(d). The values of were obtained using the same
procedure as in Example 3.5. For instance, we see in Table 3.4 that maps
to and there are 790 pixels in the histogram-equalized image with a
value of 1. Therefore,

Although the final result shown in Fig. 3.22(d) does not match the specified
histogram exactly, the general trend of moving the intensities toward the high
end of the intensity scale definitely was achieved. As mentioned earlier, ob-
taining the histogram-equalized image as an intermediate step is useful for ex-
plaining the procedure, but this is not necessary. Instead, we could list the
mappings from the rs to the ss and from the ss to the zs in a three-column

pz(z3) = 790>4096 = 0.19.
z = 3,

s = 1
pz(zq)

s0: z3.
G(z3) = 1,

s0 = 1,
sksk.G(zq)

zq

(a¿)

G(z3) = 1.05: 1 G(z7) = 7.00: 7

G(z2) = 0.00: 0 G(z6) = 5.95: 6

G(z1) = 0.00: 0 G(z5) = 4.55: 5

G(z0) = 0.00: 0 G(z4) = 2.45: 2

0
0
0
1
2
5
6
7z7 = 7

z6 = 6
z5 = 5
z4 = 4
z3 = 3
z2 = 2
z1 = 1
z0 = 0

G(zq)zq
TABLE 3.3
All possible
values of the
transformation
function G scaled,
rounded, and
ordered with
respect to z.
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table. Then, we would use those mappings to map the original pixels directly
into the pixels of the histogram-specified image. ■

EXAMPLE 3.9:
Comparison
between
histogram
equalization and
histogram
matching.

■ Figure 3.23(a) shows an image of the Mars moon, Phobos, taken by NASA’s
Mars Global Surveyor. Figure 3.23(b) shows the histogram of Fig. 3.23(a). The
image is dominated by large, dark areas, resulting in a histogram characterized
by a large concentration of pixels in the dark end of the gray scale. At first
glance, one might conclude that histogram equalization would be a good ap-
proach to enhance this image, so that details in the dark areas become more
visible. It is demonstrated in the following discussion that this is not so.

Figure 3.24(a) shows the histogram equalization transformation [Eq. (3.3-8)
or (3.3-13)] obtained from the histogram in Fig. 3.23(b). The most relevant
characteristic of this transformation function is how fast it rises from intensity
level 0 to a level near 190.This is caused by the large concentration of pixels in
the input histogram having levels near 0. When this transformation is applied
to the levels of the input image to obtain a histogram-equalized result, the net
effect is to map a very narrow interval of dark pixels into the upper end of the
gray scale of the output image. Because numerous pixels in the input image
have levels precisely in this interval, we would expect the result to be an image
with a light, washed-out appearance. As Fig. 3.24(b) shows, this is indeed the
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FIGURE 3.23
(a) Image of the
Mars moon
Phobos taken by
NASA’s Mars
Global Surveyor.
(b) Histogram.
(Original image
courtesy of
NASA.)

1 3
3 4
5 5
6 6
7 7:

:
:
:
:

zq:sk
TABLE 3.4
Mappings of all
the values of sk

into corresponding
values of zq.

a b
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FIGURE 3.24
(a) Transformation
function for
histogram
equalization.
(b) Histogram-
equalized image
(note the washed-
out appearance).
(c) Histogram 
of (b).

case. The histogram of this image is shown in Fig. 3.24(c). Note how all the in-
tensity levels are biased toward the upper one-half of the gray scale.

Because the problem with the transformation function in Fig. 3.24(a) was
caused by a large concentration of pixels in the original image with levels near
0, a reasonable approach is to modify the histogram of that image so that it
does not have this property. Figure 3.25(a) shows a manually specified function
that preserves the general shape of the original histogram, but has a smoother
transition of levels in the dark region of the gray scale. Sampling this function
into 256 equally spaced discrete values produced the desired specified his-
togram. The transformation function G(z) obtained from this histogram using
Eq. (3.3-14) is labeled transformation (1) in Fig. 3.25(b). Similarly, the inverse
transformation from Eq. (3.3-16) (obtained using the step-by-step pro-
cedure discussed earlier) is labeled transformation (2) in Fig. 3.25(b). The en-
hanced image in Fig. 3.25(c) was obtained by applying transformation (2) to
the pixels of the histogram-equalized image in Fig. 3.24(b). The improvement
of the histogram-specified image over the result obtained by histogram equal-
ization is evident by comparing these two images. It is of interest to note that a
rather modest change in the original histogram was all that was required to
obtain a significant improvement in appearance. Figure 3.25(d) shows the his-
togram of Fig. 3.25(c). The most distinguishing feature of this histogram is
how its low end has shifted right toward the lighter region of the gray scale
(but not excessively so), as desired. ■

G-1(s)

a b
c
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FIGURE 3.25
(a) Specified
histogram.
(b) Transformations.
(c) Enhanced image
using mappings
from curve (2).
(d) Histogram of (c).

Although it probably is obvious by now, we emphasize before leaving this
section that histogram specification is, for the most part, a trial-and-error
process. One can use guidelines learned from the problem at hand, just as we
did in the preceding example. At times, there may be cases in which it is possi-
ble to formulate what an “average” histogram should look like and use that as
the specified histogram. In cases such as these, histogram specification be-
comes a straightforward process. In general, however, there are no rules for
specifying histograms, and one must resort to analysis on a case-by-case basis
for any given enhancement task.

a c
b
d
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3.3.3 Local Histogram Processing
The histogram processing methods discussed in the previous two sections are
global, in the sense that pixels are modified by a transformation function
based on the intensity distribution of an entire image. Although this global ap-
proach is suitable for overall enhancement, there are cases in which it is neces-
sary to enhance details over small areas in an image. The number of pixels in
these areas may have negligible influence on the computation of a global
transformation whose shape does not necessarily guarantee the desired local
enhancement. The solution is to devise transformation functions based on the
intensity distribution in a neighborhood of every pixel in the image.

The histogram processing techniques previously described are easily adapted
to local enhancement. The procedure is to define a neighborhood and move
its center from pixel to pixel. At each location, the histogram of the points in
the neighborhood is computed and either a histogram equalization or his-
togram specification transformation function is obtained. This function is
then used to map the intensity of the pixel centered in the neighborhood. The
center of the neighborhood region is then moved to an adjacent pixel location
and the procedure is repeated. Because only one row or column of the neigh-
borhood changes during a pixel-to-pixel translation of the neighborhood, up-
dating the histogram obtained in the previous location with the new data
introduced at each motion step is possible (Problem 3.12). This approach has
obvious advantages over repeatedly computing the histogram of all pixels in
the neighborhood region each time the region is moved one pixel location.
Another approach used sometimes to reduce computation is to utilize
nonoverlapping regions, but this method usually produces an undesirable
“blocky” effect.

EXAMPLE 3.10:
Local histogram
equalization.

■ Figure 3.26(a) shows an 8-bit, image that at first glance appears
to contain five black squares on a gray background.The image is slightly noisy,
but the noise is imperceptible. Figure 3.26(b) shows the result of global his-
togram equalization. As often is the case with histogram equalization of
smooth, noisy regions, this image shows significant enhancement of the noise.
Aside from the noise, however, Fig. 3.26(b) does not reveal any new significant
details from the original, other than a very faint hint that the top left and bot-
tom right squares contain an object. Figure 3.26(c) was obtained using local
histogram equalization with a neighborhood of size Here, we see signif-
icant detail contained within the dark squares.The intensity values of these ob-
jects were too close to the intensity of the large squares, and their sizes were
too small, to influence global histogram equalization significantly enough to
show this detail. ■

3.3.4 Using Histogram Statistics for Image Enhancement
Statistics obtained directly from an image histogram can be used for image en-
hancement. Let r denote a discrete random variable representing intensity val-
ues in the range and let denote the normalized histogramp(ri)[0, L - 1],

3 * 3.

512 * 512
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FIGURE 3.26 (a) Original image. (b) Result of global histogram equalization. (c) Result of local
histogram equalization applied to (a), using a neighborhood of size 3 * 3.

component corresponding to value As indicated previously, we may view
as an estimate of the probability that intensity occurs in the image from

which the histogram was obtained.
As we discussed in Section 2.6.8, the nth moment of r about its mean is de-

fined as

(3.3-17)

where m is the mean (average intensity) value of r (i.e., the average intensity
of the pixels in the image):

(3.3-18)

The second moment is particularly important:

(3.3-19)

We recognize this expression as the intensity variance, normally denoted by 
(recall that the standard deviation is the square root of the variance).Whereas
the mean is a measure of average intensity, the variance (or standard devia-
tion) is a measure of contrast in an image. Observe that all moments are com-
puted easily using the preceding expressions once the histogram has been
obtained from a given image.

When working with only the mean and variance, it is common practice to es-
timate them directly from the sample values, without computing the histogram.
Appropriately, these estimates are called the sample mean and sample variance.
They are given by the following familiar expressions from basic statistics:

(3.3-20)m =
1

MN a
M - 1

x = 0
a

N - 1

y = 0
f(x, y)

s2

m2(r) = a
L - 1

i = 0
(ri - m)2 p(ri)

m = a
L - 1

i = 0
rip(ri)

mn(r) = a
L - 1

i = 0
(ri - m)n p(ri)

rip(ri)
ri.

We follow convention in
using m for the mean
value. Do not confuse it
with the same symbol
used to denote the num-
ber of rows in an 
neighborhood, in which
we also follow notational
convention.

m * n

a b c
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and

(3.3-21)

for and In other words, as we
know, the mean intensity of an image can be obtained simply by summing the
values of all its pixels and dividing the sum by the total number of pixels in the
image.A similar interpretation applies to Eq. (3.3-21).As we illustrate in the fol-
lowing example, the results obtained using these two equations are identical to
the results obtained using Eqs. (3.3-18) and (3.3-19), provided that the histogram
used in these equations is computed from the same image used in Eqs. (3.3-20)
and (3.3-21).

y = 0, 1, 2, Á , N - 1.x = 0, 1, 2, Á , M - 1

s2 =
1

MN a
M - 1

x = 0
a

N - 1

y = 0
Cf(x, y) - m D2

The denominator in 
Eq. (3.3-21) is written
sometimes as 
instead of MN. This is
done to obtain a so-
called unbiased estimate
of the variance. Howev-
er, we are more interest-
ed in Eqs. (3.3-21) and
(3.3-19) agreeing when
the histogram in the lat-
ter equation is computed
from the same image
used in Eq. (3.3-21). For
this we require the MN
term. The difference is
negligible for any image
of practical size.

MN - 1

EXAMPLE 3.11:
Computing
histogram
statistics.

■ Before proceeding, it will be useful to work through a simple numerical ex-
ample to fix ideas. Consider the following 2-bit image of size 5 * 5:

0 0 1 1 2
1 2 3 0 1
3 3 2 2 0
2 3 1 0 0
1 1 3 2 2

The pixels are represented by 2 bits; therefore, and the intensity levels
are in the range [0, 3].The total number of pixels is 25, so the histogram has the
components

where the numerator in is the number of pixels in the image with intensity
level We can compute the average value of the intensities in the image using
Eq. (3.3-18):

Letting denote the preceding array and using Eq. (3.3-20), we obtain

= 1.44

m =
1

25 a
4

x = 0
a

4

y = 0
f(x, y)

5 * 5(x, y)f

= 1.44

= (0)(0.24) + (1)(0.28) + (2)(0.28) + (3)(0.20)

m = a
3

i = 0
ri p(ri)

ri.
p(ri)

p(r2) =
7
25

= 0.28; p(r3) =
5

25
= 0.20

p(r0) =
6
25

= 0.24; p(r1) =
7

25
= 0.28;

L = 4
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EXAMPLE 3.12:
Local enhance-
ment using
histogram
statistics.

■ Figure 3.27(a) shows an SEM (scanning electron microscope) image of a
tungsten filament wrapped around a support. The filament in the center of
the image and its support are quite clear and easy to study. There is another
filament structure on the right, dark side of the image, but it is almost imper-
ceptible, and its size and other characteristics certainly are not easily discern-
able. Local enhancement by contrast manipulation is an ideal approach to
problems such as this, in which parts of an image may contain hidden features.

As expected, the results agree. Similarly, the result for the variance is the same
(1.1264) using either Eq. (3.3-19) or (3.3-21). ■

We consider two uses of the mean and variance for enhancement purposes.
The global mean and variance are computed over an entire image and are use-
ful for gross adjustments in overall intensity and contrast. A more powerful
use of these parameters is in local enhancement, where the local mean and
variance are used as the basis for making changes that depend on image char-
acteristics in a neighborhood about each pixel in an image.

Let (x, y) denote the coordinates of any pixel in a given image, and let 
denote a neighborhood (subimage) of specified size, centered on (x, y). The
mean value of the pixels in this neighborhood is given by the expression

(3.3-22)

where is the histogram of the pixels in region This histogram has L
components, corresponding to the L possible intensity values in the input image.
However, many of the components are 0, depending on the size of For ex-
ample, if the neighborhood is of size and only between 1 and 9
of the 256 components of the histogram of the neighborhood will be nonzero.
These non-zero values will correspond to the number of different intensities in

(the maximum number of possible different intensities in a region is 9,
and the minimum is 1).

The variance of the pixels in the neighborhood similarly is given by

(3.3-23)

As before, the local mean is a measure of average intensity in neighborhood
and the local variance (or standard deviation) is a measure of intensity

contrast in that neighborhood. Expressions analogous to (3.3-20) and (3.3-21)
can be written for neighborhoods. We simply use the pixel values in the neigh-
borhoods in the summations and the number of pixels in the neighborhood in
the denominator.

As the following example illustrates, an important aspect of image process-
ing using the local mean and variance is the flexibility they afford in developing
simple, yet powerful enhancement techniques based on statistical measures
that have a close, predictable correspondence with image appearance.

Sxy,

sSxy

2 = a
L - 1

i = 0
(ri - mSxy

)2pSxy
(ri)

3 * 3Sxy

L = 256,3 * 3
Sxy.

Sxy.pSxy

mSxy
= a

L - 1

i = 0
ripSxy

(ri)

Sxy
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FIGURE 3.27 (a) SEM image of a tungsten filament magnified approximately 
(b) Result of global histogram equalization. (c) Image enhanced using local histogram
statistics. (Original image courtesy of Mr. Michael Shaffer, Department of Geological
Sciences, University of Oregon, Eugene.)

130* .

In this particular case, the problem is to enhance dark areas while leaving
the light area as unchanged as possible because it does not require enhance-
ment. We can use the concepts presented in this section to formulate an en-
hancement method that can tell the difference between dark and light and, at
the same time, is capable of enhancing only the dark areas. A measure of
whether an area is relatively light or dark at a point (x, y) is to compare the av-
erage local intensity, to the average image intensity, called the global
mean and denoted This quantity is obtained with Eq. (3.3-18) or (3.3-20)
using the entire image. Thus, we have the first element of our enhancement
scheme:We will consider the pixel at a point (x, y) as a candidate for processing
if where is a positive constant with value less than 1.0.

Because we are interested in enhancing areas that have low contrast, we also
need a measure to determine whether the contrast of an area makes it a candi-
date for enhancement. We consider the pixel at a point (x, y) as a candidate for
enhancement if where is the global standard deviation
obtained using Eqs. (3.3-19) or (3.3-21) and is a positive constant. The value
of this constant will be greater than 1.0 if we are interested in enhancing light
areas and less than 1.0 for dark areas.

Finally, we need to restrict the lowest values of contrast we are willing to ac-
cept; otherwise the procedure would attempt to enhance constant areas, whose
standard deviation is zero. Thus, we also set a lower limit on the local standard
deviation by requiring that with A pixel at (x, y) that
meets all the conditions for local enhancement is processed simply by multi-
plying it by a specified constant, E, to increase (or decrease) the value of its in-
tensity level relative to the rest of the image. Pixels that do not meet the
enhancement conditions are not changed.

k1 6 k2.k1sG … sSxy
,

k2

sGsSxy
… k2sG,

k0mSxy
… k0mG,

mG.
mSxy

,

a b c
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We summarize the preceding approach as follows. Let represent the
value of an image at any image coordinates (x, y), and let represent the
corresponding enhanced value at those coordinates. Then,

(3.3-24)

for and where, as indicated
above, E, and are specified parameters, is the global mean of the
input image, and is its standard deviation. Parameters and are the
local mean and standard deviation, respectively.As usual, M and N are the row
and column image dimensions.

Choosing the parameters in Eq. (3.3-24) generally requires a bit of experi-
mentation to gain familiarity with a given image or class of images. In this
case, the following values were selected: and

The relatively low value of 4.0 for E was chosen so that, when it was
multiplied by the levels in the areas being enhanced (which are dark), the re-
sult would still tend toward the dark end of the scale, and thus preserve the
general visual balance of the image. The value of was chosen as less than
half the global mean because we can see by looking at the image that the areas
that require enhancement definitely are dark enough to be below half the
global mean. A similar analysis led to the choice of values for and 
Choosing these constants is not difficult in general, but their choice definitely
must be guided by a logical analysis of the enhancement problem at hand. Fi-
nally, the size of the local area should be as small as possible in order to
preserve detail and keep the computational burden as low as possible. We
chose a region of size 

As a basis for comparison, we enhanced the image using global histogram
equalization. Figure 3.27(b) shows the result. The dark area was improved but
details still are difficult to discern, and the light areas were changed, something
we did not want to do. Figure 3.27(c) shows the result of using the local statis-
tics method explained above. In comparing this image with the original in Fig.
3.27(a) or the histogram equalized result in Fig. 3.27(b), we note the obvious
detail that has been brought out on the right side of Fig. 3.27(c). Observe, for
example, the clarity of the ridges in the dark filaments. It is noteworthy that
the light-intensity areas on the left were left nearly intact, which was one of
our initial objectives. ■

3.4 Fundamentals of Spatial Filtering

In this section, we introduce several basic concepts underlying the use of spa-
tial filters for image processing. Spatial filtering is one of the principal tools
used in this field for a broad spectrum of applications, so it is highly advisable
that you develop a solid understanding of these concepts. As mentioned at the
beginning of this chapter, the examples in this section deal mostly with the use
of spatial filters for image enhancement. Other applications of spatial filtering
are discussed in later chapters.

3 * 3.

Sxy

k2.k1

k0

k2 = 0.4.
E = 4.0, k0 = 0.4, k1 = 0.02,

sSxy
mSxy

sG

mGk2k0, k1,
y = 0, 1, 2, Á , N - 1,x = 0, 1, 2, Á , M - 1

g(x, y) = c E # f(x, y) if mSxy
… k0mG  AND k1sG … sSxy

… k2sG

f(x, y) otherwise

(x, y)g
(x, y)f
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† The filtered pixel value typically is assigned to a corresponding location in a new image created to hold
the results of filtering. It is seldom the case that filtered pixels replace the values of the corresponding
location in the original image, as this would change the content of the image while filtering still is being
performed.

The name filter is borrowed from frequency domain processing, which is
the topic of the next chapter, where “filtering” refers to accepting (passing) or
rejecting certain frequency components. For example, a filter that passes low
frequencies is called a lowpass filter. The net effect produced by a lowpass fil-
ter is to blur (smooth) an image. We can accomplish a similar smoothing di-
rectly on the image itself by using spatial filters (also called spatial masks,
kernels, templates, and windows). In fact, as we show in Chapter 4, there is a
one-to-one correspondence between linear spatial filters and filters in the fre-
quency domain. However, spatial filters offer considerably more versatility be-
cause, as you will see later, they can be used also for nonlinear filtering,
something we cannot do in the frequency domain.

3.4.1 The Mechanics of Spatial Filtering
In Fig. 3.1, we explained briefly that a spatial filter consists of (1) a
neighborhood, (typically a small rectangle), and (2) a predefined operation that
is performed on the image pixels encompassed by the neighborhood. Filtering
creates a new pixel with coordinates equal to the coordinates of the center of
the neighborhood, and whose value is the result of the filtering operation.† A
processed (filtered) image is generated as the center of the filter visits each
pixel in the input image. If the operation performed on the image pixels is lin-
ear, then the filter is called a linear spatial filter. Otherwise, the filter is
nonlinear. We focus attention first on linear filters and then illustrate some
simple nonlinear filters. Section 5.3 contains a more comprehensive list of non-
linear filters and their application.

Figure 3.28 illustrates the mechanics of linear spatial filtering using a 
neighborhood.At any point (x, y) in the image, the response, , of the fil-
ter is the sum of products of the filter coefficients and the image pixels encom-
passed by the filter:

Observe that the center coefficient of the filter, , aligns with the pixel at
location (x, y). For a mask of size we assume that and

where a and b are positive integers. This means that our focus in
the following discussion is on filters of odd size, with the smallest being of size

In general, linear spatial filtering of an image of size with a fil-
ter of size is given by the expression:

where x and y are varied so that each pixel in visits every pixel in f.w

g(x, y) = a
a

s = -a
a

b

t = -b
w(s, t)f(x + s, y + t)

m * n
M * N3 * 3.

n = 2b + 1,
m = 2a + 1m * n,

w(0, 0)

+ w(0, 0)f(x, y) + Á + w(1, 1)f(x + 1, y + 1)

g(x, y) = w(-1, -1)f(x - 1, y - 1) + w(-1, 0)f(x - 1, y) + Á

(x, y)g
3 * 3

See Section 2.6.2
regarding linearity.

It certainly is possible to
work with filters of even
size or mixed even and
odd sizes. However,
working with odd sizes
simplifies indexing and
also is more intuitive 
because the filters have
centers falling on integer
values.
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Filter mask
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FIGURE 3.28 The mechanics of linear spatial filtering using a filter mask. The form chosen to denote
the coordinates of the filter mask coefficients simplifies writing expressions for linear filtering.

3 * 3

3.4.2 Spatial Correlation and Convolution
There are two closely related concepts that must be understood clearly when
performing linear spatial filtering. One is correlation and the other is
convolution. Correlation is the process of moving a filter mask over the image
and computing the sum of products at each location, exactly as explained in
the previous section. The mechanics of convolution are the same, except that
the filter is first rotated by 180°. The best way to explain the differences be-
tween the two concepts is by example. We begin with a 1-D illustration.

Figure 3.29(a) shows a 1-D function, f, and a filter, , and Fig. 3.29(b) shows
the starting position to perform correlation. The first thing we note is that there

w
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are parts of the functions that do not overlap. The solution to this problem is to
pad f with enough 0s on either side to allow each pixel in to visit every pixel in
f. If the filter is of size m, we need 0s on either side of f. Figure 3.29(c)
shows a properly padded function. The first value of correlation is the sum of
products of f and for the initial position shown in Fig. 3.29(c) (the sum of
products is 0). This corresponds to a displacement To obtain the second
value of correlation, we shift one pixel location to the right (a displacement of

) and compute the sum of products. The result again is 0. In fact, the first
nonzero result is when , in which case the 8 in overlaps the 1 in f and the
result of correlation is 8. Proceeding in this manner, we obtain the full correlation
result in Fig. 3.29(g). Note that it took 12 values of x (i.e., ) to
fully slide past f so that each pixel in visited every pixel in f. Often, we like
to work with correlation arrays that are the same size as f, in which case we crop
the full correlation to the size of the original function, as Fig. 3.29(h) shows.

ww
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f Origin w rotated 180�fw

FIGURE 3.29 Illustration of 1-D correlation and convolution of a filter with a discrete unit impulse. Note that
correlation and convolution are functions of displacement.

Zero padding is not the
only option. For example,
we could duplicate the
value of the first and last
element times on
each side of f, or mirror
the first and last 
elements and use the
mirrored values for
padding.

m - 1

m - 1
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In 2-D, rotation by 180°
is equivalent to flipping
the mask along one axis
and then the other.

There are two important points to note from the discussion in the preceding
paragraph. First, correlation is a function of displacement of the filter. In other
words, the first value of correlation corresponds to zero displacement of the
filter, the second corresponds to one unit displacement, and so on. The second
thing to notice is that correlating a filter with a function that contains all 0s
and a single 1 yields a result that is a copy of , but rotated by 180°. We call a
function that contains a single 1 with the rest being 0s a discrete unit impulse.
So we conclude that correlation of a function with a discrete unit impulse
yields a rotated version of the function at the location of the impulse.

The concept of convolution is a cornerstone of linear system theory. As you
will learn in Chapter 4, a fundamental property of convolution is that convolv-
ing a function with a unit impulse yields a copy of the function at the location
of the impulse.We saw in the previous paragraph that correlation yields a copy
of the function also, but rotated by 180°. Therefore, if we pre-rotate the filter
and perform the same sliding sum of products operation, we should be able to
obtain the desired result. As the right column in Fig. 3.29 shows, this indeed is
the case. Thus, we see that to perform convolution all we do is rotate one func-
tion by 180° and perform the same operations as in correlation.As it turns out,
it makes no difference which of the two functions we rotate.

The preceding concepts extend easily to images, as Fig. 3.30 shows. For a fil-
ter of size we pad the image with a minimum of rows of 0s at
the top and bottom and columns of 0s on the left and right. In this case,
m and n are equal to 3, so we pad f with two rows of 0s above and below and
two columns of 0s to the left and right, as Fig. 3.30(b) shows. Figure 3.30(c)
shows the initial position of the filter mask for performing correlation, and
Fig. 3.30(d) shows the full correlation result. Figure 3.30(e) shows the corre-
sponding cropped result. Note again that the result is rotated by 180°. For con-
volution, we pre-rotate the mask as before and repeat the sliding sum of
products just explained. Figures 3.30(f) through (h) show the result. You see
again that convolution of a function with an impulse copies the function at the
location of the impulse. It should be clear that, if the filter mask is symmetric,
correlation and convolution yield the same result.

If, instead of containing a single 1, image f in Fig. 3.30 had contained a re-
gion identically equal to , the value of the correlation function (after nor-
malization) would have been maximum when was centered on that region
of f. Thus, as you will see in Chapter 12, correlation can be used also to find
matches between images.

Summarizing the preceding discussion in equation form, we have that the
correlation of a filter of size with an image , denoted as

is given by the equation listed at the end of the last section,
which we repeat here for convenience:

(3.4-1)

This equation is evaluated for all values of the displacement variables x and y
so that all elements of visit every pixel in f, where we assume that f has been
padded appropriately. As explained earlier,
and we assume for notational convenience that m and n are odd integers.

a = (m - 1)>2, b = (n - 1)>2,
w

w(x, y) � f(x, y) = a
a

s = -a
a
b

t = -b
w(s, t)f(x + s, y + t)

w(x, y) � f(x, y),
(x, y)fm * n(x, y)w

w
w

n - 1
m - 1m * n,

w
w

Note that rotation by
180° is equivalent to flip-
ping the function hori-
zontally.
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FIGURE 3.30
Correlation
(middle row) and
convolution (last
row) of a 2-D
filter with a 2-D
discrete, unit
impulse. The 0s
are shown in gray
to simplify visual
analysis.

In a similar manner, the convolution of and , denoted by
† is given by the expression

(3.4-2)

where the minus signs on the right flip f (i.e., rotate it by 180°). Flipping and
shifting f instead of is done for notational simplicity and also to follow
convention. The result is the same. As with correlation, this equation is eval-
uated for all values of the displacement variables x and y so that every ele-
ment of visits every pixel in f, which we assume has been padded
appropriately. You should expand Eq. (3.4-2) for a mask and convince
yourself that the result using this equation is identical to the example in
Fig. 3.30. In practice, we frequently work with an algorithm that implements

3 * 3
w

w

w(x, y) � f(x, y) = a
a

s = -a
a
b

t = -b
w(s, t)f(x - s, y - t)

w(x, y) � f(x, y),
(x, y)f(x, y)w

† Because correlation and convolution are commutative, we have that 
and w(x, y) � f(x, y) = f(x, y) � w(x, y).= f(x, y) � w(x, y)

w(x, y) � f(x, y)

Often, when the mean-
ing is clear, we denote
the result of correlation
or convolution by a func-
tion , instead of
writing
or For
example, see the equa-
tion at the end of the
previous section, and 
Eq. (3.5-1).

w(x, y) � f(x, y).
w(x, y) � f(x, y)

(x, y)g
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Consult the Tutorials sec-
tion of the book Web site
for a brief review of vec-
tors and matrices.

Eq. (3.4-1). If we want to perform correlation, we input into the algorithm;
for convolution, we input rotated by 180°. The reverse is true if an algo-
rithm that implements Eq. (3.4-2) is available instead.

As mentioned earlier, convolution is a cornerstone of linear system theory.
As you will learn in Chapter 4, the property that the convolution of a function
with a unit impulse copies the function at the location of the impulse plays a
central role in a number of important derivations. We will revisit convolution
in Chapter 4 in the context of the Fourier transform and the convolution the-
orem. Unlike Eq. (3.4-2), however, we will be dealing with convolution of
functions that are of the same size. The form of the equation is the same, but
the limits of summation are different.

Using correlation or convolution to perform spatial filtering is a matter of
preference. In fact, because either Eq. (3.4-1) or (3.4-2) can be made to per-
form the function of the other by a simple rotation of the filter, what is impor-
tant is that the filter mask used in a given filtering task be specified in a way
that corresponds to the intended operation. All the linear spatial filtering re-
sults in this chapter are based on Eq. (3.4-1).

Finally, we point out that you are likely to encounter the terms,
convolution filter, convolution mask or convolution kernel in the image pro-
cessing literature. As a rule, these terms are used to denote a spatial filter,
and not necessarily that the filter will be used for true convolution. Similarly,
“convolving a mask with an image” often is used to denote the sliding, sum-
of-products process we just explained, and does not necessarily differentiate
between correlation and convolution. Rather, it is used generically to denote
either of the two operations. This imprecise terminology is a frequent source
of confusion.

3.4.3 Vector Representation of Linear Filtering
When interest lies in the characteristic response, R, of a mask either for cor-
relation or convolution, it is convenient sometimes to write the sum of
products as

(3.4-3)

where the s are the coefficients of an filter and the zs are the corre-
sponding image intensities encompassed by the filter. If we are interested in
using Eq. (3.4-3) for correlation, we use the mask as given. To use the same
equation for convolution, we simply rotate the mask by 180°, as explained in
the last section. It is implied that Eq. (3.4-3) holds for a particular pair of coor-
dinates (x, y). You will see in the next section why this notation is convenient
for explaining the characteristics of a given linear filter.

m * nw

= wTz

= a
mn

k = 1
wkzk

R = w1z1 + w2z2 + Á + wmnzmn

w
w
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As an example, Fig. 3.31 shows a general mask with coefficients la-
beled as above. In this case, Eq. (3.4-3) becomes

(3.4-4)

where w and z are 9-dimensional vectors formed from the coefficients of the
mask and the image intensities encompassed by the mask, respectively.

3.4.4 Generating Spatial Filter Masks
Generating an linear spatial filter requires that we specify mn mask co-
efficients. In turn, these coefficients are selected based on what the filter is
supposed to do, keeping in mind that all we can do with linear filtering is to im-
plement a sum of products. For example, suppose that we want to replace the
pixels in an image by the average intensity of a neighborhood centered
on those pixels.The average value at any location (x, y) in the image is the sum
of the nine intensity values in the neighborhood centered on (x, y) di-
vided by 9. Letting , denote these intensities, the average is

But this is the same as Eq. (3.4-4) with coefficient values In other
words, a linear filtering operation with a mask whose coefficients are 1 9
implements the desired averaging. As we discuss in the next section, this oper-
ation results in image smoothing. We discuss in the following sections a num-
ber of other filter masks based on this basic approach.

In some applications, we have a continuous function of two variables, and
the objective is to obtain a spatial filter mask based on that function. For ex-
ample, a Gaussian function of two variables has the basic form

where is the standard deviation and, as usual, we assume that coordinates x
and y are integers. To generate, say, a filter mask from this function, we3 * 3

s
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2s2
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R =
1
9 a

9

i = 1
zi

zi, i = 1, 2, Á , 9
3 * 3

3 * 3

m * n

= wTz

= a
9

k = 1
wkzk

R = w1z1 + w2z2 + Á + w9z9

3 * 3

w1 w2 w3

w4 w5 w6

w7 w8 w9

FIGURE 3.31
Another
representation of
a general 
filter mask.
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sample it about its center. Thus,
An filter mask is generated in a similar manner. Recall

that a 2-D Gaussian function has a bell shape, and that the standard deviation
controls the “tightness” of the bell.

Generating a nonlinear filter requires that we specify the size of a neigh-
borhood and the operation(s) to be performed on the image pixels contained
in the neighborhood. For example, recalling that the max operation is nonlin-
ear (see Section 2.6.2), a max filter centered at an arbitrary point (x, y)
of an image obtains the maximum intensity value of the 25 pixels and assigns
that value to location (x, y) in the processed image. Nonlinear filters are quite
powerful, and in some applications can perform functions that are beyond the
capabilities of linear filters, as we show later in this chapter and in Chapter 5.

3.5 Smoothing Spatial Filters

Smoothing filters are used for blurring and for noise reduction. Blurring is
used in preprocessing tasks, such as removal of small details from an image
prior to (large) object extraction, and bridging of small gaps in lines or curves.
Noise reduction can be accomplished by blurring with a linear filter and also
by nonlinear filtering.

3.5.1 Smoothing Linear Filters
The output (response) of a smoothing, linear spatial filter is simply the average
of the pixels contained in the neighborhood of the filter mask. These filters
sometimes are called averaging filters. As mentioned in the previous section,
they also are referred to a lowpass filters.

The idea behind smoothing filters is straightforward. By replacing the value
of every pixel in an image by the average of the intensity levels in the neigh-
borhood defined by the filter mask, this process results in an image with re-
duced “sharp” transitions in intensities. Because random noise typically
consists of sharp transitions in intensity levels, the most obvious application of
smoothing is noise reduction. However, edges (which almost always are desir-
able features of an image) also are characterized by sharp intensity transitions,
so averaging filters have the undesirable side effect that they blur edges. An-
other application of this type of process includes the smoothing of false con-
tours that result from using an insufficient number of intensity levels, as
discussed in Section 2.4.3. A major use of averaging filters is in the reduction
of “irrelevant” detail in an image. By “irrelevant” we mean pixel regions that
are small with respect to the size of the filter mask. This latter application is il-
lustrated later in this section.

Figure 3.32 shows two smoothing filters. Use of the first filter yields
the standard average of the pixels under the mask. This can best be seen by
substituting the coefficients of the mask into Eq. (3.4-4):

which is the average of the intensity levels of the pixels in the neighbor-
hood defined by the mask, as discussed earlier. Note that, instead of being ,1>93 * 3

R =
1
9 a

9

i = 1
zi

3 * 3

5 * 5

m * nw9 = h(1, 1).
w1 = h(-1, -1), w2 = h(-1, 0), Á ,
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the coefficients of the filter are all 1s. The idea here is that it is computationally
more efficient to have coefficients valued 1. At the end of the filtering process
the entire image is divided by 9. An mask would have a normalizing
constant equal to mn. A spatial averaging filter in which all coefficients are
equal sometimes is called a box filter.

The second mask in Fig. 3.32 is a little more interesting.This mask yields a so-
called weighted average, terminology used to indicate that pixels are multiplied by
different coefficients, thus giving more importance (weight) to some pixels at the
expense of others. In the mask shown in Fig. 3.32(b) the pixel at the center of the
mask is multiplied by a higher value than any other, thus giving this pixel more
importance in the calculation of the average. The other pixels are inversely
weighted as a function of their distance from the center of the mask.The diagonal
terms are further away from the center than the orthogonal neighbors (by a fac-
tor of ) and, thus, are weighed less than the immediate neighbors of the center
pixel. The basic strategy behind weighing the center point the highest and then
reducing the value of the coefficients as a function of increasing distance from the
origin is simply an attempt to reduce blurring in the smoothing process.We could
have chosen other weights to accomplish the same general objective. However,
the sum of all the coefficients in the mask of Fig. 3.32(b) is equal to 16, an attrac-
tive feature for computer implementation because it is an integer power of 2. In
practice, it is difficult in general to see differences between images smoothed by
using either of the masks in Fig. 3.32, or similar arrangements, because the area
spanned by these masks at any one location in an image is so small.

With reference to Eq. (3.4-1), the general implementation for filtering an
image with a weighted averaging filter of size (m and n odd) is

given by the expression

(3.5-1)

The parameters in this equation are as defined in Eq. (3.4-1).As before, it is un-
derstood that the complete filtered image is obtained by applying Eq. (3.5-1)
for and The denominator in y = 0, 1, 2, Á , N - 1.x = 0, 1, 2, Á , M - 1

g(x, y) =
a
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s = -a
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b
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FIGURE 3.32 Two
smoothing

(averaging) filter
masks. The
constant multipli-
er in front of each
mask is equal to 1
divided by the
sum of the values
of its coefficients,
as is required to
compute an
average.
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Eq. (3.5-1) is simply the sum of the mask coefficients and, therefore, it is a con-
stant that needs to be computed only once.

EXAMPLE 3.13:
Image smoothing
with masks of
various sizes.

■ The effects of smoothing as a function of filter size are illustrated in Fig. 3.33,
which shows an original image and the corresponding smoothed results ob-
tained using square averaging filters of sizes 5, 9, 15, and 35 pixels, re-
spectively. The principal features of these results are as follows: For we
note a general slight blurring throughout the entire image but, as expected, de-
tails that are of approximately the same size as the filter mask are affected con-
siderably more. For example, the and black squares in the image,
the small letter “a,” and the fine grain noise show significant blurring when com-
pared to the rest of the image. Note that the noise is less pronounced, and the
jagged borders of the characters were pleasingly smoothed.

The result for is somewhat similar, with a slight further increase in
blurring. For we see considerably more blurring, and the 20% black cir-
cle is not nearly as distinct from the background as in the previous three im-
ages, illustrating the blending effect that blurring has on objects whose
intensities are close to that of its neighboring pixels. Note the significant fur-
ther smoothing of the noisy rectangles. The results for and 35 are ex-
treme with respect to the sizes of the objects in the image. This type of
aggresive blurring generally is used to eliminate small objects from an image.
For instance, the three small squares, two of the circles, and most of the noisy
rectangle areas have been blended into the background of the image in 
Fig. 3.33(f). Note also in this figure the pronounced black border. This is a re-
sult of padding the border of the original image with 0s (black) and then
trimming off the padded area after filtering. Some of the black was blended
into all filtered images, but became truly objectionable for the images
smoothed with the larger filters. ■

As mentioned earlier, an important application of spatial averaging is to
blur an image for the purpose of getting a gross representation of objects of
interest, such that the intensity of smaller objects blends with the back-
ground and larger objects become “bloblike” and easy to detect. The size of
the mask establishes the relative size of the objects that will be blended with
the background. As an illustration, consider Fig. 3.34(a), which is an image
from the Hubble telescope in orbit around the Earth. Figure 3.34(b) shows
the result of applying a averaging mask to this image. We see that a
number of objects have either blended with the background or their inten-
sity has diminished considerably. It is typical to follow an operation like this
with thresholding to eliminate objects based on their intensity. The result of
using the thresholding function of Fig. 3.2(b) with a threshold value equal to
25% of the highest intensity in the blurred image is shown in Fig. 3.34(c).
Comparing this result with the original image, we see that it is a reasonable
representation of what we would consider to be the largest, brightest ob-
jects in that image.

15 * 15

m = 15

m = 9
m = 5

5 * 53 * 3

m = 3,
m = 3,
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FIGURE 3.33 (a) Original image, of size pixels. (b)–(f) Results of smoothing
with square averaging filter masks of sizes 5, 9, 15, and 35, respectively. The black
squares at the top are of sizes 3, 5, 9, 15, 25, 35, 45, and 55 pixels, respectively; their borders
are 25 pixels apart. The letters at the bottom range in size from 10 to 24 points, in
increments of 2 points; the large letter at the top is 60 points.The vertical bars are 5 pixels
wide and 100 pixels high; their separation is 20 pixels. The diameter of the circles is 25
pixels, and their borders are 15 pixels apart; their intensity levels range from 0% to 100%
black in increments of 20%. The background of the image is 10% black. The noisy
rectangles are of size pixels.50 * 120

m = 3,
500 * 500 a b
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e
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3.5.2 Order-Statistic (Nonlinear) Filters
Order-statistic filters are nonlinear spatial filters whose response is based on or-
dering (ranking) the pixels contained in the image area encompassed by the fil-
ter, and then replacing the value of the center pixel with the value determined
by the ranking result. The best-known filter in this category is the median filter,
which, as its name implies, replaces the value of a pixel by the median of the in-
tensity values in the neighborhood of that pixel (the original value of the pixel is
included in the computation of the median). Median filters are quite popular be-
cause, for certain types of random noise, they provide excellent noise-reduction
capabilities, with considerably less blurring than linear smoothing filters of simi-
lar size. Median filters are particularly effective in the presence of impulse noise,
also called salt-and-pepper noise because of its appearance as white and black
dots superimposed on an image.

The median, of a set of values is such that half the values in the set are
less than or equal to and half are greater than or equal to In order to per-
form median filtering at a point in an image, we first sort the values of the pixel
in the neighborhood, determine their median, and assign that value to the cor-
responding pixel in the filtered image. For example, in a neighborhood
the median is the 5th largest value, in a neighborhood it is the 13th
largest value, and so on. When several values in a neighborhood are the same,
all equal values are grouped. For example, suppose that a neighborhood
has values (10, 20, 20, 20, 15, 20, 20, 25, 100). These values are sorted as (10, 15,
20, 20, 20, 20, 20, 25, 100), which results in a median of 20. Thus, the principal
function of median filters is to force points with distinct intensity levels to be
more like their neighbors. In fact, isolated clusters of pixels that are light or
dark with respect to their neighbors, and whose area is less than (one-
half the filter area), are eliminated by an median filter. In this case
“eliminated” means forced to the median intensity of the neighbors. Larger
clusters are affected considerably less.

m * m
m2>2

3 * 3

5 * 5
3 * 3

j.j,
j,

FIGURE 3.34 (a) Image of size pixels from the Hubble Space Telescope. (b) Image filtered with a
averaging mask. (c) Result of thresholding (b). (Original image courtesy of NASA.)15 * 15

528 * 485

a b c
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Although the median filter is by far the most useful order-statistic filter in
image processing, it is by no means the only one. The median represents the
50th percentile of a ranked set of numbers, but recall from basic statistics that
ranking lends itself to many other possibilities. For example, using the 100th
percentile results in the so-called max filter, which is useful for finding the
brightest points in an image. The response of a max filter is given by

The 0th percentile filter is the min filter, used
for the opposite purpose. Median, max, min, and several other nonlinear filters
are considered in more detail in Section 5.3.

R = max5zk ƒ k = 1, 2, Á , 96. 3 * 3

EXAMPLE 3.14:
Use of median
filtering for noise
reduction.

■ Figure 3.35(a) shows an X-ray image of a circuit board heavily corrupted
by salt-and-pepper noise. To illustrate the point about the superiority of medi-
an filtering over average filtering in situations such as this, we show in Fig.
3.35(b) the result of processing the noisy image with a neighborhood av-
eraging mask, and in Fig. 3.35(c) the result of using a median filter. The
averaging filter blurred the image and its noise reduction performance was
poor. The superiority in all respects of median over average filtering in this
case is quite evident. In general, median filtering is much better suited than av-
eraging for the removal of salt-and-pepper noise. ■

3.6 Sharpening Spatial Filters

The principal objective of sharpening is to highlight transitions in intensity.
Uses of image sharpening vary and include applications ranging from electron-
ic printing and medical imaging to industrial inspection and autonomous guid-
ance in military systems. In the last section, we saw that image blurring could be
accomplished in the spatial domain by pixel averaging in a neighborhood. Be-
cause averaging is analogous to integration, it is logical to conclude that sharp-
ening can be accomplished by spatial differentiation. This, in fact, is the case,

3 * 3
3 * 3

FIGURE 3.35 (a) X-ray image of circuit board corrupted by salt-and-pepper noise. (b) Noise reduction with
a averaging mask. (c) Noise reduction with a median filter. (Original image courtesy of Mr.
Joseph E. Pascente, Lixi, Inc.)

3 * 33 * 3

See Section 10.3.5 regard-
ing percentiles.
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We return to Eq. (3.6-1)
in Section 10.2.1 and
show how it follows from
a Taylor series expansion.
For now, we accept it as a
definition.

and the discussion in this section deals with various ways of defining and imple-
menting operators for sharpening by digital differentiation. Fundamentally, the
strength of the response of a derivative operator is proportional to the degree
of intensity discontinuity of the image at the point at which the operator is ap-
plied. Thus, image differentiation enhances edges and other discontinuities
(such as noise) and deemphasizes areas with slowly varying intensities.

3.6.1 Foundation
In the two sections that follow, we consider in some detail sharpening filters
that are based on first- and second-order derivatives, respectively. Before pro-
ceeding with that discussion, however, we stop to look at some of the funda-
mental properties of these derivatives in a digital context. To simplify the
explanation, we focus attention initially on one-dimensional derivatives. In
particular, we are interested in the behavior of these derivatives in areas of
constant intensity, at the onset and end of discontinuities (step and ramp dis-
continuities), and along intensity ramps. As you will see in Chapter 10, these
types of discontinuities can be used to model noise points, lines, and edges in
an image. The behavior of derivatives during transitions into and out of these
image features also is of interest.

The derivatives of a digital function are defined in terms of differences.
There are various ways to define these differences. However, we require that
any definition we use for a first derivative (1) must be zero in areas of constant
intensity; (2) must be nonzero at the onset of an intensity step or ramp; and 
(3) must be nonzero along ramps. Similarly, any definition of a second deriva-
tive (1) must be zero in constant areas; (2) must be nonzero at the onset and
end of an intensity step or ramp; and (3) must be zero along ramps of constant
slope. Because we are dealing with digital quantities whose values are finite,
the maximum possible intensity change also is finite, and the shortest distance
over which that change can occur is between adjacent pixels.

A basic definition of the first-order derivative of a one-dimensional func-
tion is the difference

(3.6-1)

We used a partial derivative here in order to keep the notation the same as
when we consider an image function of two variables, , at which time we
will be dealing with partial derivatives along the two spatial axes. Use of a par-
tial derivative in the present discussion does not affect in any way the nature
of what we are trying to accomplish. Clearly, when there is
only one variable in the function; the same is true for the second derivative.

We define the second-order derivative of as the difference

(3.6-2)

It is easily verified that these two definitions satisfy the conditions stated
above.To illustrate this, and to examine the similarities and differences between

02f

0x2 = f(x + 1) + f(x - 1) - 2f(x)

(x)f

0f>0x = df>dx

(x, y)f

0f

0x
= f(x + 1) - f(x)

(x)f
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first- and second-order derivatives of a digital function, consider the example
in Fig. 3.36.

Figure 3.36(b) (center of the figure) shows a section of a scan line (inten-
sity profile). The values inside the small squares are the intensity values in
the scan line, which are plotted as black dots above it in Fig. 3.36(a). The
dashed line connecting the dots is included to aid visualization. As the fig-
ure shows, the scan line contains an intensity ramp, three sections of con-
stant intensity, and an intensity step. The circles indicate the onset or end of
intensity transitions. The first- and second-order derivatives computed
using the two preceding definitions are included below the scan line in Fig.
3.36(b), and are plotted in Fig. 3.36(c). When computing the first derivative
at a location x, we subtract the value of the function at that location from
the next point. So this is a “look-ahead” operation. Similarly, to compute the
second derivative at x, we use the previous and the next points in the com-
putation. To avoid a situation in which the previous or next points are out-
side the range of the scan line, we show derivative computations in Fig. 3.36
from the second through the penultimate points in the sequence.

Let us consider the properties of the first and second derivatives as we tra-
verse the profile from left to right. First, we encounter an area of constant inten-
sity and, as Figs. 3.36(b) and (c) show, both derivatives are zero there, so condition
(1) is satisfied for both. Next, we encounter an intensity ramp followed by a step,
and we note that the first-order derivative is nonzero at the onset of the ramp and
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Illustration of the
first and second
derivatives of a 
1-D digital
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section of a
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a visualization aid.

a
b
c



160 Chapter 3 ■ Intensity Transformations and Spatial Filtering

the step; similarly, the second derivative is nonzero at the onset and end of both
the ramp and the step; therefore, property (2) is satisfied for both derivatives. Fi-
nally, we see that property (3) is satisfied also for both derivatives because the
first derivative is nonzero and the second is zero along the ramp. Note that the
sign of the second derivative changes at the onset and end of a step or ramp. In
fact, we see in Fig. 3.36(c) that in a step transition a line joining these two values
crosses the horizontal axis midway between the two extremes.This zero crossing
property is quite useful for locating edges, as you will see in Chapter 10.

Edges in digital images often are ramp-like transitions in intensity, in which
case the first derivative of the image would result in thick edges because the de-
rivative is nonzero along a ramp. On the other hand, the second derivative would
produce a double edge one pixel thick, separated by zeros. From this, we con-
clude that the second derivative enhances fine detail much better than the first
derivative, a property that is ideally suited for sharpening images.Also, as you will
learn later in this section, second derivatives are much easier to implement than
first derivates, so we focus our attention initially on second derivatives.

3.6.2 Using the Second Derivative for Image 
Sharpening—The Laplacian

In this section we consider the implementation of 2-D, second-order deriva-
tives and their use for image sharpening. We return to this derivative in
Chapter 10, where we use it extensively for image segmentation.The approach
basically consists of defining a discrete formulation of the second-order deriv-
ative and then constructing a filter mask based on that formulation. We are in-
terested in isotropic filters, whose response is independent of the direction of
the discontinuities in the image to which the filter is applied. In other words,
isotropic filters are rotation invariant, in the sense that rotating the image and
then applying the filter gives the same result as applying the filter to the image
first and then rotating the result.

It can be shown (Rosenfeld and Kak [1982]) that the simplest isotropic de-
rivative operator is the Laplacian, which, for a function (image) of two
variables, is defined as

(3.6-3)

Because derivatives of any order are linear operations, the Laplacian is a lin-
ear operator.To express this equation in discrete form, we use the definition in
Eq. (3.6-2), keeping in mind that we have to carry a second variable. In the 
x-direction, we have

(3.6-4)

and, similarly, in the y-direction we have

(3.6-5)
02f

0y2 = f(x, y + 1) + f(x, y - 1) - 2f(x, y)
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02f
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Therefore, it follows from the preceding three equations that the discrete
Laplacian of two variables is

(3.6-6)

This equation can be implemented using the filter mask in Fig. 3.37(a), which
gives an isotropic result for rotations in increments of 90°. The mechanics of
implementation are as in Section 3.5.1 for linear smoothing filters. We simply
are using different coefficients here.

The diagonal directions can be incorporated in the definition of the digital
Laplacian by adding two more terms to Eq. (3.6-6), one for each of the two di-
agonal directions.The form of each new term is the same as either Eq. (3.6-4) or
(3.6-5), but the coordinates are along the diagonals. Because each diagonal term
also contains a term, the total subtracted from the difference terms
now would be Figure 3.37(b) shows the filter mask used to imple-
ment this new definition. This mask yields isotropic results in increments of 45°.
You are likely to see in practice the Laplacian masks in Figs. 3.37(c) and (d).
They are obtained from definitions of the second derivatives that are the nega-
tives of the ones we used in Eqs. (3.6-4) and (3.6-5). As such, they yield equiva-
lent results, but the difference in sign must be kept in mind when combining (by
addition or subtraction) a Laplacian-filtered image with another image.

Because the Laplacian is a derivative operator, its use highlights intensity
discontinuities in an image and deemphasizes regions with slowly varying in-
tensity levels.This will tend to produce images that have grayish edge lines and
other discontinuities, all superimposed on a dark, featureless background.
Background features can be “recovered” while still preserving the sharpening

-8f(x, y).
-2f(x, y)

-4f(x, y)

§2f(x, y) = f(x + 1, y) + f(x - 1, y) + f(x, y + 1) + f(x, y - 1)
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FIGURE 3.37
(a) Filter mask used
to implement 
Eq. (3.6-6).
(b) Mask used to
implement an
extension of this
equation that
includes the
diagonal terms.
(c) and (d) Two
other implementa-
tions of the
Laplacian found
frequently in
practice.
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effect of the Laplacian simply by adding the Laplacian image to the original.
As noted in the previous paragraph, it is important to keep in mind which def-
inition of the Laplacian is used. If the definition used has a negative center co-
efficient, then we subtract, rather than add, the Laplacian image to obtain a
sharpened result. Thus, the basic way in which we use the Laplacian for image
sharpening is

(3.6-7)

where and are the input and sharpened images, respectively.
The constant is if the Laplacian filters in Fig. 3.37(a) or (b) are used,
and if either of the other two filters is used.c = 1

c = -1
(x, y)g(x, y)f

g(x, y) = f(x, y) + c C§2f(x, y) D

EXAMPLE 3.15:
Image sharpening
using the
Laplacian.

■ Figure 3.38(a) shows a slightly blurred image of the North Pole of the
moon. Figure 3.38(b) shows the result of filtering this image with the Lapla-
cian mask in Fig. 3.37(a). Large sections of this image are black because the
Laplacian contains both positive and negative values, and all negative values
are clipped at 0 by the display.

A typical way to scale a Laplacian image is to add to it its minimum value to
bring the new minimum to zero and then scale the result to the full 
intensity range, as explained in Eqs. (2.6-10) and (2.6-11). The image in 
Fig. 3.38(c) was scaled in this manner. Note that the dominant features of the
image are edges and sharp intensity discontinuities. The background, previously
black, is now gray due to scaling.This grayish appearance is typical of Laplacian
images that have been scaled properly. Figure 3.38(d) shows the result obtained
using Eq. (3.6-7) with The detail in this image is unmistakably clearer
and sharper than in the original image. Adding the original image to the Lapla-
cian restored the overall intensity variations in the image, with the Laplacian in-
creasing the contrast at the locations of intensity discontinuities.The net result is
an image in which small details were enhanced and the background tonality was
reasonably preserved. Finally, Fig. 3.38(e) shows the result of repeating the pre-
ceding procedure with the filter in Fig. 3.37(b). Here, we note a significant im-
provement in sharpness over Fig. 3.38(d). This is not unexpected because using
the filter in Fig. 3.37(b) provides additional differentiation (sharpening) in the
diagonal directions. Results such as those in Figs. 3.38(d) and (e) have made the
Laplacian a tool of choice for sharpening digital images. ■

3.6.3 Unsharp Masking and Highboost Filtering
A process that has been used for many years by the printing and publishing in-
dustry to sharpen images consists of subtracting an unsharp (smoothed) ver-
sion of an image from the original image.This process, called unsharp masking,
consists of the following steps:

1. Blur the original image.
2. Subtract the blurred image from the original (the resulting difference is

called the mask.)
3. Add the mask to the original.

c = -1.

[0, L - 1]
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FIGURE 3.38
(a) Blurred image
of the North Pole
of the moon.
(b) Laplacian
without scaling.
(c) Laplacian with
scaling. (d) Image
sharpened using
the mask in Fig.
3.37(a). (e) Result
of using the mask
in Fig. 3.37(b).
(Original image
courtesy of
NASA.)

Letting denote the blurred image, unsharp masking is expressed in
equation form as follows. First we obtain the mask:

(3.6-8)

Then we add a weighted portion of the mask back to the original image:

(3.6-9)

where we included a weight, for generality. When we have
unsharp masking, as defined above. When the process is referred to ask 7 1,

k = 1,k (k Ú 0),

g(x, y) = f(x, y) + k*gmask(x, y)

gmask(x, y) = f(x, y) - f (x, y)

-f (x, y)

b c
d e
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Original signal

Blurred signal

Unsharp mask

Sharpened signal

FIGURE 3.39 1-D
illustration of the
mechanics of
unsharp masking.
(a) Original
signal. (b) Blurred
signal with
original shown
dashed for refere-
nce. (c) Unsharp
mask. (d) Sharp-
ened signal,
obtained by
adding (c) to (a).

EXAMPLE 3.16:
Image sharpening
using unsharp
masking.

■ Figure 3.40(a) shows a slightly blurred image of white text on a dark gray
background. Figure 3.40(b) was obtained using a Gaussian smoothing filter
(see Section 3.4.4) of size with Figure 3.40(c) is the unsharp
mask, obtained using Eq. (3.6-8). Figure 3.40(d) was obtained using unsharp

s = 3.5 * 5

highboost filtering. Choosing de-emphasizes the contribution of the un-
sharp mask.

Figure 3.39 explains how unsharp masking works. The intensity profile in
Fig. 3.39(a) can be interpreted as a horizontal scan line through a vertical edge
that transitions from a dark to a light region in an image. Figure 3.39(b) shows
the result of smoothing, superimposed on the original signal (shown dashed)
for reference. Figure 3.39(c) is the unsharp mask, obtained by subtracting the
blurred signal from the original. By comparing this result with the section of
Fig. 3.36(c) corresponding to the ramp in Fig. 3.36(a), we note that the unsharp
mask in Fig. 3.39(c) is very similar to what we would obtain using a second-
order derivative. Figure 3.39(d) is the final sharpened result, obtained by
adding the mask to the original signal.The points at which a change of slope in
the intensity occurs in the signal are now emphasized (sharpened). Observe
that negative values were added to the original. Thus, it is possible for the final
result to have negative intensities if the original image has any zero values or
if the value of k is chosen large enough to emphasize the peaks of the mask to
a level larger than the minimum value in the original. Negative values would
cause a dark halo around edges, which, if k is large enough, can produce objec-
tionable results.

k 6 1

a
b
c
d
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FIGURE 3.40
(a) Original
image.
(b) Result of
blurring with a
Gaussian filter.
(c) Unsharp
mask. (d) Result
of using unsharp
masking.
(e) Result of
using highboost
filtering.

masking [Eq. (3.6-9) with ]. This image is a slight improvement over the
original, but we can do better. Figure 3.40(e) shows the result of using Eq. (3.6-9)
with the largest possible value we could use and still keep positive all the
values in the final result. The improvement in this image over the original is 
significant. ■

3.6.4 Using First-Order Derivatives for (Nonlinear) Image
Sharpening—The Gradient

First derivatives in image processing are implemented using the magnitude of
the gradient. For a function , the gradient of f at coordinates (x, y) is de-
fined as the two-dimensional column vector

(3.6-10)

This vector has the important geometrical property that it points in the direc-
tion of the greatest rate of change of f at location (x, y).

The magnitude (length) of vector denoted as M(x, y), where

(3.6-11)

is the value at (x, y) of the rate of change in the direction of the gradient vec-
tor. Note that M(x, y) is an image of the same size as the original, created when
x and y are allowed to vary over all pixel locations in f. It is common practice
to refer to this image as the gradient image (or simply as the gradient when the
meaning is clear).

M(x, y) = mag(§f ) = 2gx
2 + gy

2

§f,

§f K grad(f ) K Bgx
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R = D 0f
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k = 4.5,

k = 1
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We discuss the gradient
in detail in Section
10.2.5. Here, we are inter-
ested only in using the
magnitude of the gradi-
ent for image sharpening.
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FIGURE 3.41
A region of
an image (the zs
are intensity
values).
(b)–(c) Roberts
cross gradient
operators.
(d)–(e) Sobel
operators. All the
mask coefficients
sum to zero, as
expected of a
derivative
operator.

3 * 3

Because the components of the gradient vector are derivatives, they are lin-
ear operators. However, the magnitude of this vector is not because of the
squaring and square root operations. On the other hand, the partial derivatives
in Eq. (3.6-10) are not rotation invariant (isotropic), but the magnitude of the
gradient vector is. In some implementations, it is more suitable computational-
ly to approximate the squares and square root operations by absolute values:

(3.6-12)

This expression still preserves the relative changes in intensity, but the isotropic
property is lost in general. However, as in the case of the Laplacian, the isotrop-
ic properties of the discrete gradient defined in the following paragraph are pre-
served only for a limited number of rotational increments that depend on the
filter masks used to approximate the derivatives.As it turns out, the most popu-
lar masks used to approximate the gradient are isotropic at multiples of 90°.
These results are independent of whether we use Eq. (3.6-11) or (3.6-12), so
nothing of significance is lost in using the latter equation if we choose to do so.

As in the case of the Laplacian, we now define discrete approximations to
the preceding equations and from there formulate the appropriate filter
masks. In order to simplify the discussion that follows, we will use the notation
in Fig. 3.41(a) to denote the intensities of image points in a region. For3 * 3

M(x, y) L ƒ gx ƒ + ƒ gy ƒ

b c
d e
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example, the center point, denotes at an arbitrary location, (x, y);
denotes and so on, using the notation introduced in Fig. 3.28.
As indicated in Section 3.6.1, the simplest approximations to a first-order de-
rivative that satisfy the conditions stated in that section are and

Two other definitions proposed by Roberts [1965] in the early
development of digital image processing use cross differences:

(3.6-13)

If we use Eqs. (3.6-11) and (3.6-13), we compute the gradient image as

(3.6-14)

If we use Eqs. (3.6-12) and (3.6-13), then

(3.6-15)

where it is understood that x and y vary over the dimensions of the image in
the manner described earlier. The partial derivative terms needed in equation
(3.6-13) can be implemented using the two linear filter masks in Figs. 3.41(b)
and (c). These masks are referred to as the Roberts cross-gradient operators.

Masks of even sizes are awkward to implement because they do not have a
center of symmetry. The smallest filter masks in which we are interested are of
size Approximations to and using a neighborhood centered
on are as follows:

(3.6-16)

and

(3.6-17)

These equations can be implemented using the masks in Figs. 3.41(d) and (e).
The difference between the third and first rows of the image region im-
plemented by the mask in Fig. 3.41(d) approximates the partial derivative in
the x-direction, and the difference between the third and first columns in the
other mask approximates the derivative in the y-direction. After computing
the partial derivatives with these masks, we obtain the magnitude of the gradi-
ent as before. For example, substituting and into Eq. (3.6-12) yields

(3.6-18)

The masks in Figs. 3.41(d) and (e) are called the Sobel operators. The idea be-
hind using a weight value of 2 in the center coefficient is to achieve some
smoothing by giving more importance to the center point (we discuss this in
more detail in Chapter 10). Note that the coefficients in all the masks shown in
Fig. 3.41 sum to 0, indicating that they would give a response of 0 in an area of
constant intensity, as is expected of a derivative operator.

+ ƒ (z3 + 2z6 + z9) - (z1 + 2z4 + z7) ƒ
M(x, y) L ƒ (z7 + 2z8 + z9) - (z1 + 2z2 + z3) ƒ
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■ The gradient is used frequently in industrial inspection, either to aid hu-
mans in the detection of defects or, what is more common, as a preprocessing
step in automated inspection. We will have more to say about this in Chapters
10 and 11. However, it will be instructive at this point to consider a simple ex-
ample to show how the gradient can be used to enhance defects and eliminate
slowly changing background features. In this example, enhancement is used as
a preprocessing step for automated inspection, rather than for human analysis.

Figure 3.42(a) shows an optical image of a contact lens, illuminated by a
lighting arrangement designed to highlight imperfections, such as the two edge
defects in the lens boundary seen at 4 and 5 o’clock. Figure 3.42(b) shows the
gradient obtained using Eq. (3.6-12) with the two Sobel masks in Figs. 3.41(d)
and (e). The edge defects also are quite visible in this image, but with the
added advantage that constant or slowly varying shades of gray have been
eliminated, thus simplifying considerably the computational task required for
automated inspection. The gradient can be used also to highlight small specs
that may not be readily visible in a gray-scale image (specs like these can be
foreign matter, air pockets in a supporting solution, or miniscule imperfections
in the lens). The ability to enhance small discontinuities in an otherwise flat
gray field is another important feature of the gradient. ■

FIGURE 3.42
(a) Optical image
of contact lens
(note defects on
the boundary at 4
and 5 o’clock).
(b) Sobel
gradient.
(Original image
courtesy of Pete
Sites, Perceptics
Corporation.)

As mentioned earlier, the computations of and are linear opera-
tions because they involve derivatives and, therefore, can be implemented
as a sum of products using the spatial masks in Fig. 3.41. The nonlinear as-
pect of sharpening with the gradient is the computation of M(x, y) involving
squaring and square roots, or the use of absolute values, all of which are
nonlinear operations. These operations are performed after the linear
process that yields and gy.gx

gygx

EXAMPLE 3.17:
Use of the
gradient for edge
enhancement.

a b
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3.7 Combining Spatial Enhancement Methods

With a few exceptions, like combining blurring with thresholding (Fig. 3.34),
we have focused attention thus far on individual approaches. Frequently, a
given task will require application of several complementary techniques in
order to achieve an acceptable result. In this section we illustrate by means of
an example how to combine several of the approaches developed thus far in
this chapter to address a difficult image enhancement task.

The image in Fig. 3.43(a) is a nuclear whole body bone scan, used to detect
diseases such as bone infection and tumors. Our objective is to enhance this
image by sharpening it and by bringing out more of the skeletal detail. The
narrow dynamic range of the intensity levels and high noise content make this
image difficult to enhance. The strategy we will follow is to utilize the Lapla-
cian to highlight fine detail, and the gradient to enhance prominent edges. For
reasons that will be explained shortly, a smoothed version of the gradient
image will be used to mask the Laplacian image (see Fig. 2.30 regarding mask-
ing). Finally, we will attempt to increase the dynamic range of the intensity lev-
els by using an intensity transformation.

Figure 3.43(b) shows the Laplacian of the original image, obtained using the
filter in Fig. 3.37(d). This image was scaled (for display only) using the same
technique as in Fig. 3.38(c).We can obtain a sharpened image at this point sim-
ply by adding Figs. 3.43(a) and (b), according to Eq. (3.6-7). Just by looking at
the noise level in Fig. 3.43(b), we would expect a rather noisy sharpened image
if we added Figs. 3.43(a) and (b), a fact that is confirmed by the result in 
Fig. 3.43(c). One way that comes immediately to mind to reduce the noise is to
use a median filter. However, median filtering is a nonlinear process capable
of removing image features. This is unacceptable in medical image processing.

An alternate approach is to use a mask formed from a smoothed version of
the gradient of the original image.The motivation behind this is straightforward
and is based on the properties of first- and second-order derivatives explained in
Section 3.6.1. The Laplacian, being a second-order derivative operator, has the
definite advantage that it is superior in enhancing fine detail. However, this
causes it to produce noisier results than the gradient. This noise is most objec-
tionable in smooth areas, where it tends to be more visible. The gradient has a
stronger average response in areas of significant intensity transitions (ramps and
steps) than does the Laplacian. The response of the gradient to noise and fine
detail is lower than the Laplacian’s and can be lowered further by smoothing the
gradient with an averaging filter. The idea, then, is to smooth the gradient and
multiply it by the Laplacian image. In this context, we may view the smoothed
gradient as a mask image. The product will preserve details in the strong areas
while reducing noise in the relatively flat areas. This process can be interpreted
roughly as combining the best features of the Laplacian and the gradient. The
result is added to the original to obtain a final sharpened image.

Figure 3.43(d) shows the Sobel gradient of the original image, computed
using Eq. (3.6-12). Components and were obtained using the masks in
Figs. 3.41(d) and (e), respectively.As expected, edges are much more dominant

gygx
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FIGURE 3.43 
(a) Image of
whole body bone
scan.
(b) Laplacian of
(a). (c) Sharpened
image obtained by
adding (a) and (b).
(d) Sobel gradient
of (a).
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FIGURE 3.43
(Continued)
(e) Sobel image
smoothed with a

averaging
filter. (f) Mask
image formed by
the product of (c)
and (e).
(g) Sharpened
image obtained
by the sum of (a)
and (f). (h) Final
result obtained by
applying a power-
law transformation
to (g). Compare
(g) and (h) with
(a). (Original
image courtesy of
G.E. Medical
Systems.)
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in this image than in the Laplacian image. The smoothed gradient image in 
Fig. 3.43(e) was obtained by using an averaging filter of size The two
gradient images were scaled for display in the same manner as the Laplacian
image. Because the smallest possible value of a gradient image is 0, the back-
ground is black in the scaled gradient images, rather than gray as in the scaled
Laplacian.The fact that Figs. 3.43(d) and (e) are much brighter than Fig. 3.43(b)
is again evidence that the gradient of an image with significant edge content
has values that are higher in general than in a Laplacian image.

The product of the Laplacian and smoothed-gradient image is shown in 
Fig. 3.43(f). Note the dominance of the strong edges and the relative lack of
visible noise, which is the key objective behind masking the Laplacian with a
smoothed gradient image.Adding the product image to the original resulted in
the sharpened image shown in Fig. 3.43(g). The significant increase in sharp-
ness of detail in this image over the original is evident in most parts of the
image, including the ribs, spinal cord, pelvis, and skull. This type of improve-
ment would not have been possible by using the Laplacian or the gradient
alone.

The sharpening procedure just discussed does not affect in an appreciable
way the dynamic range of the intensity levels in an image. Thus, the final step
in our enhancement task is to increase the dynamic range of the sharpened
image. As we discussed in some detail in Sections 3.2 and 3.3, there are a num-
ber of intensity transformation functions that can accomplish this objective.
We do know from the results in Section 3.3.2 that histogram equalization is not
likely to work well on images that have dark intensity distributions like our
images have here. Histogram specification could be a solution, but the dark
characteristics of the images with which we are dealing lend themselves much
better to a power-law transformation. Since we wish to spread the intensity
levels, the value of in Eq. (3.2-3) has to be less than 1. After a few trials with
this equation, we arrived at the result in Fig. 3.43(h), obtained with 
and Comparing this image with Fig. 3.43(g), we see that significant new
detail is visible in Fig. 3.43(h). The areas around the wrists, hands, ankles, and
feet are good examples of this. The skeletal bone structure also is much more
pronounced, including the arm and leg bones. Note also the faint definition of
the outline of the body, and of body tissue. Bringing out detail of this nature by
expanding the dynamic range of the intensity levels also enhanced noise, but 
Fig. 3.43(h) represents a significant visual improvement over the original image.

The approach just discussed is representative of the types of processes that
can be linked in order to achieve results that are not possible with a single tech-
nique. The way in which the results are used depends on the application. The
final user of the type of images shown in this example is likely to be a radiologist.
For a number of reasons that are beyond the scope of our discussion, physicians
are unlikely to rely on enhanced results to arrive at a diagnosis. However, en-
hanced images are quite useful in highlighting details that can serve as clues for
further analysis in the original image or sequence of images. In other areas, the
enhanced result may indeed be the final product. Examples are found in the
printing industry, in image-based product inspection, in forensics, in microscopy,

c = 1.
g = 0.5

g

5 * 5.
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in surveillance, and in a host of other areas where the principal objective of en-
hancement is to obtain an image with a higher content of visual detail.

3.8 Using Fuzzy Techniques for Intensity
Transformations and Spatial Filtering

We conclude this chapter with an introduction to fuzzy sets and their applica-
tion to intensity transformations and spatial filtering, which are the main top-
ics of discussion in the preceding sections. As it turns out, these two
applications are among the most frequent areas in which fuzzy techniques for
image processing are applied.The references at the end of this chapter provide
an entry point to the literature on fuzzy sets and to other applications of fuzzy
techniques in image processing. As you will see in the following discussion,
fuzzy sets provide a framework for incorporating human knowledge in the so-
lution of problems whose formulation is based on imprecise concepts.

3.8.1 Introduction
As noted in Section 2.6.4, a set is a collection of objects (elements) and set the-
ory is the set of tools that deals with operations on and among sets. Set theory,
along with mathematical logic, is one of the axiomatic foundations of classical
mathematics. Central to set theory is the notion of set membership. We are
used to dealing with so-called “crisp” sets, whose membership only can be true
or false in the traditional sense of bi-valued Boolean logic, with 1 typically in-
dicating true and 0 indicating false. For example, let Z denote the set of all
people, and suppose that we want to define a subset, A, of Z, called the “set of
young people.” In order to form this subset, we need to define a membership
function that assigns a value of 1 or 0 to every element, z, of Z. Because we are
dealing with a bi-valued logic, the membership function simply defines a
threshold at or below which a person is considered young, and above which a
person is considered not young. Figure 3.44(a) summarizes this concept using
an age threshold of 20 years and letting denote the membership func-
tion just discussed.

We see an immediate difficulty with this formulation: A person 20 years of
age is considered young, but a person whose age is 20 years and 1 second is not
a member of the set of young people. This is a fundamental problem with crisp
sets that limits the use of classical set theory in many practical applications.
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FIGURE 3.44
Membership
functions used to
generate (a) a
crisp set, and (b) a
fuzzy set.
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†The term fuzzy subset is also used in the literature, indicating that A is as subset of Z. However, fuzzy set
is used more frequently.

We follow conventional
fuzzy set notation in
using Z, instead of the
more traditional set 
notation U, to denote the
set universe in a given
application.

What we need is more flexibility in what we mean by “young,” that is, a gradual
transition from young to not young. Figure 3.44(b) shows one possibility. The
key feature of this function is that it is infinite valued, thus allowing a continu-
ous transition between young and not young. This makes it possible to have
degrees of “youngness.” We can make statements now such as a person being
young (upper flat end of the curve), relatively young (toward the beginning of
the ramp), 50% young (in the middle of the ramp), not so young (toward the
end of the ramp), and so on (note that decreasing the slope of the curve in Fig.
3.44(b) introduces more vagueness in what we mean by “young.”) These types
of vague (fuzzy) statements are more in line with what humans use when talk-
ing imprecisely about age. Thus, we may interpret infinite-valued membership
functions as being the foundation of a fuzzy logic, and the sets generated using
them may be viewed as fuzzy sets. These ideas are formalized in the following
section.

3.8.2 Principles of Fuzzy Set Theory
Fuzzy set theory was introduced by L. A. Zadeh in a paper more than four
decades ago (Zadeh [1965]). As the following discussion shows, fuzzy sets pro-
vide a formalism for dealing with imprecise information.

Definitions

Let Z be a set of elements (objects), with a generic element of Z denoted by z;
that is, This set is called the universe of discourse.A fuzzy set† A in Z
is characterized by a membership function, that associates with each el-
ement of Z a real number in the interval [0, 1]. The value of at z repre-
sents the grade of membership of z in A. The nearer the value of is to
unity, the higher the membership grade of z in A, and conversely when the
value of is closer to zero. The concept of “belongs to,” so familiar in or-
dinary sets, does not have the same meaning in fuzzy set theory. With ordinary
sets, we say that an element either belongs or does not belong to a set. With
fuzzy sets, we say that all zs for which are full members of the set,
all zs for which are not members of the set, and all zs for which

is between 0 and 1 have partial membership in the set.Therefore, a fuzzy
set is an ordered pair consisting of values of z and a corresponding member-
ship function that assigns a grade of membership to each z. That is,

(3.8-1)

When the variables are continuous, the set A in this equation can have an infi-
nite number of elements.When the values of z are discrete, we can show the el-
ements of A explicitly. For instance, if age increments in Fig. 3.44 were limited
to integer years, then we would have

A = 5(1, 1), (2, 1), (3, 1), Á , (20, 1), (21, 0.9), (22, 0.8), Á , (25, 0.5)(24, 0.4), Á , (29, 0.1)6

A = 5z, mA(z) ƒ z H Z6

mA(z)
mA(z) = 0

mA(z) = 1

mA(z)

mA(z)
mA(z)

mA(z),
Z = 5z6.
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where, for example, the element (22, 0.8) denotes that age 22 has a 0.8 degree
of membership in the set. All elements with ages 20 and under are full mem-
bers of the set and those with ages 30 and higher are not members of the set.
Note that a plot of this set would simply be discrete points lying on the curve
of Fig. 3.44(b), so completely defines A.Viewed another way, we see that
a (discrete) fuzzy set is nothing more than the set of points of a function that
maps each element of the problem domain (universe of discourse) into a num-
ber greater than 0 and less than or equal to 1. Thus, one often sees the terms
fuzzy set and membership function used interchangeably.

When can have only two values, say 0 and 1, the membership function
reduces to the familiar characteristic function of an ordinary (crisp) set A.
Thus, ordinary sets are a special case of fuzzy sets. Next, we consider several
definitions involving fuzzy sets that are extensions of the corresponding defin-
itions from ordinary sets.

Empty set: A fuzzy set is empty if and only if its membership function is iden-
tically zero in Z.

Equality: Two fuzzy sets A and B are equal, written if and only if
for all 

Complement: The complement (NOT) of a fuzzy set A, denoted by or
NOT(A), is defined as the set whose membership function is

(3.8-2)

for all 

Subset: A fuzzy set A is a subset of a fuzzy set B if and only if

(3.8-3)

for all 

Union: The union (OR) of two fuzzy sets A and B, denoted or A OR B,
is a fuzzy set U with membership function

(3.8-4)

for all 

Intersection: The intersection (AND) of two fuzzy sets A and B, denoted
or A AND B, is a fuzzy set I with membership function

(3.8-5)

for all 
Note that the familiar terms NOT, OR, and AND are used interchangeably

when working with fuzzy sets to denote complementation, union, and intersec-
tion, respectively.

z H Z.

mI(z) = min[mA(z), mB(z)]

A ¨ B,

z H Z.

mU(z) = max[mA(z), mB(z)]

A ´ B,

z H Z.

mA(z) … mB(z)

z H Z.

mA
- (z) = 1 - mA(z)

A,

z H Z.mA(z) = mB(z)
A = B,

mA(z)

mA(z)

The notation “for all
” reads: “for all z

belonging to Z.”
z H Z
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FIGURE 3.45
(a) Membership
functions of two
sets, A and B. (b)
Membership
function of the
complement of A.
(c) and (d)
Membership
functions of the
union and
intersection of the
two sets.

†You are likely to encounter examples in the literature in which the area under the curve of the mem-
bership function of, say, the intersection of two fuzzy sets, is shaded to indicate the result of the opera-
tion. This is a carryover from ordinary set operations and is incorrect. Only the points along the
membership function itself are applicable when dealing with fuzzy sets.

EXAMPLE 3.18:
Illustration of
fuzzy set
definitions.

■ Figure 3.45 illustrates some of the preceding definitions. Figure 3.45(a)
shows the membership functions of two sets, A and B, and Fig. 3.45(b) shows
the membership function of the complement of A. Figure 3.45(c) shows the
membership function of the union of A and B, and Fig. 3.45(d) shows the
corresponding result for the intersection of these two sets. Note that these
figures are consistent with our familiar notion of complement, union, and
intersection of crisp sets.† ■

Although fuzzy logic and probability operate over the same [0, 1] interval,
there is a significant distinction to be made between the two. Consider the
example from Fig. 3.44. A probabilistic statement might read: “There is a
50% chance that a person is young,” while a fuzzy statement would read
“A person’s degree of membership within the set of young people is 0.5.”
The difference between these two statements is important. In the first
statement, a person is considered to be either in the set of young or the set
of not young people; we simply have only a 50% chance of knowing to
which set the person belongs. The second statement presupposes that a
person is young to some degree, with that degree being in this case 0.5.
Another interpretation is to say that this is an “average” young person:
not really young, but not too near being not young. In other words, fuzzy
logic is not probabilistic at all; it just deals with degrees of membership in
a set. In this sense, we see that fuzzy logic concepts find application in sit-
uations characterized by vagueness and imprecision, rather than by ran-
domness.

a b
c d
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Some common membership functions

Types of membership functions used in practice include the following.

Triangular:

(3.8-6)

Trapezoidal:

(3.8-7)

Sigma:

(3.8-8)

S-shape:

(3.8-9)

Bell-shape:

(3.8-10)

Truncated Gaussian:

(3.8-11)

Typically, only the independent variable, z, is included when writing in
order to simplify equations. We made an exception in Eq. (3.8-9) in order to
use its form in Eq. (3.8-10). Figure 3.46 shows examples of the membership

m(z)

m(z) = c e- (z - a)2

2b2 a - c … z … a + c

0 otherwise

m(z) = bS(z; c - b, c - b>2, c) z … c

1 - S(z; c, c + b>2, c + b) z 7 c

S(z; a, b, c) = f
0 z 6 a

2 ¢ z - a
c - a

≤2

a … z … b

1 - 2¢ z - c
c - a ≤2

b 6 z … c

1 z 7 c

m(z) = c 1 - (a - z)>b a - b … z … a

1 z 7 a

0 otherwise

m(z) = d 1 - (a - z)>c a - c … z 6 a

1 a … z 6 b

1 - (z - b)>d b … z … b + d

0 otherwise

m(z) = c 1 - (a - z)>b a - b … z 6 a

1 - (z - a)>c a … z … a + c

0 otherwise

The bell-shape function
sometimes is referred to
as the (or ) function.pß
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FIGURE 3.46
Membership
functions cor-
responding to Eqs.
(3.8-6)–(3.8-11).

functions just discussed. The first three functions are piecewise linear, the next
two functions are smooth, and the last function is a truncated Gaussian func-
tion. Equation (3.8-9) describes an important S-shape function that it used fre-
quently when working with fuzzy sets. The value of at which in
this equation is called the crossover point. As Fig. 3.46(d) shows, this is the
point at which the curve changes inflection. It is not difficult to show (Problem
3.31) that In the bell-shape curve of Fig. 3.46(e), the value of b
defines the bandwidth of the curve.

3.8.3 Using Fuzzy Sets
In this section, we lay the foundation for using fuzzy sets and illustrate the re-
sulting concepts with examples from simple, familiar situations. We then apply
the results to image processing in Sections 3.8.4 and 3.8.5. Approaching the
presentation in this way makes the material much easier to understand, espe-
cially for readers new to this area.

Suppose that we are interested in using color to categorize a given type of
fruit into three groups: verdant, half-mature, and mature. Assume that obser-
vations of fruit at various stages of maturity have led to the conclusion that
verdant fruit is green, half-mature fruit is yellow, and mature fruit is red. The
labels green, yellow, and red are vague descriptions of color sensation. As a
starting point, these labels have to be expressed in a fuzzy format. That is, they
have to be fuzzified. This is achieved by defining membership as a function of

b = (a + c)>2.

S = 0.5z = b

a b

e f
c d
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color (wavelength of light), as Fig. 3.47(a) shows. In this context, color is a
linguistic variable, and a particular color (e.g., red at a fixed wavelength) is a
linguistic value. A linguistic value, is fuzzified by using a membership func-
tions to map it to the interval [0, 1], as Fig. 3.47(b) shows.

The problem-specific knowledge just explained can be formalized in the
form of the following fuzzy IF-THEN rules:

IF the color is green, THEN the fruit is verdant.

OR

IF the color is yellow, THEN the fruit is half-mature.

OR

IF the color is red, THEN the fruit is mature.

These rules represent the sum total of our knowledge about this problem; they
are really nothing more than a formalism for a thought process.

The next step of the procedure is to find a way to use inputs (color) and the
knowledge base represented by the IF-THEN rules to create the output of the
fuzzy system. This process is known as implication or inference. However, be-
fore implication can be applied, the antecedent of each rule has to be
processed to yield a single value. As we show at the end of this section, multi-
ple parts of an antecedent are linked by ANDs and ORs. Based on the defini-
tions from Section 3.8.2, this means performing min and max operations. To
simplify the explanation, we deal initially with rules whose antecedents con-
tain only one part.

Because we are dealing with fuzzy inputs, the outputs themselves are fuzzy,
so membership functions have to be defined for the outputs as well. Figure 3.48
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FIGURE 3.47
(a) Membership
functions used to
fuzzify color.
(b) Fuzzifying a
specific color 
(Curves describing
color sensation are
bell shaped; see
Section 6.1 for an
example. Howe-
ver, using trian-
gular shapes as an
approximation is
common practice
when working
with fuzzy sets.)

z0.

The part of an IF-THEN
rule to the left of THEN
often is referred to as the
antecedent (or premise).
The part to the right is
called the consequent (or
conclusion.)
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(a) Shape of the
membership function
associated with the
color red, and
(b) corresponding
output membership
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functions are
associated by rule 
(c) Combined
representation of the
two functions. The
representation is 2-D
because the
independent
variables in (a) and
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(d) The AND of (a)
and (b), as defined in
Eq. (3.8-5).

R3.

shows the membership functions of the fuzzy outputs we are going to use in this
example. Note that the independent variable of the outputs is maturity, which is
different from the independent variable of the inputs.

Figures 3.47 and 3.48, together with the rule base, contain all the informa-
tion required to relate inputs and outputs. For example, we note that the ex-
pression red AND mature is nothing more than the intersection (AND)
operation defined earlier. In the present case, the independent variables of the
membership functions of inputs and outputs are different, so the result will be
two-dimensional. For instance, Figs. 3.49(a) and (b) show the membership
functions of red and mature, and Fig. 3.49(c) shows how they relate in two di-
mensions. To find the result of the AND operation between these two func-
tions, recall from Eq. (3.8-5) that AND is defined as the minimum of the two
membership functions; that is,

(3.8-12)m3(z, v) = min5mred (z), mmat (v)6
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outputs verdant,
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† Note that Eq. (3.8-12) is formed from ordered pairs of values and recall that a set of
ordered pairs is commonly called a Cartesian product, denoted by where X is a set of values

generated from by varying z, and V is a similar set of n values
generated from by varying . Thus,
and we see from Fig. 3.49(d) that the AND operation involving two variables can be expresses as a
mapping from to the range [0, 1], denoted as Although we do not use this no-
tation in the present discussion, we mention it here because you are likely to encounter it in the litera-
ture on fuzzy sets.

X * V: [0, 1].X * V

X * V = 5(mred(z1), mmed(v1)), Á , (mred(zn), mmed(vn))6,vmmed(v)
mred(z)5mred(z1), mred(z2), Á , mred(zn)6 X * V,

5mred(z), mmat(v)6,

where 3 in the subscript denotes that this is the result of rule in the knowl-
edge base. Figure 3.49(d) shows the result of the AND operation.†

Equation (3.8-12) is a general result involving two membership functions.
In practice, we are interested in the output resulting from a specific input. Let

denote a specific value of red. The degree of membership of the red color
component in response to this input is simply a scalar value, We find
the output corresponding to rule and this specific input by performing the
AND operation between and the general result, evaluated
also at As noted before, the AND operation is implemented using the min-
imum operation:

(3.8-13)

where denotes the fuzzy output due to rule and a specific input. The
only variable in is the output variable, , as expected.

To interpret Eq. (3.8-13) graphically, consider Fig. 3.49(d) again, which
shows the general function Performing the minimum operation of a
positive constant, c, and this function would clip all values of above
that constant, as Fig. 3.50(a) shows. However, we are interested only in one
value along the color axis, so the relevant result is a cross section of the
truncated function along the maturity axis, with the cross section placed at 
as Fig. 3.50(b) shows [because Fig. 3.50(a) corresponds to rule it follows
that ]. Equation (3.8-13) is the expression for this cross section.

Using the same line of reasoning, we obtain the fuzzy responses due to the
other two rules and the specific input as follows:

(3.8-14)Q2(v) = min5myellow(z0), m2(z0, v)6
z0,

c = mred (z0)
R3,
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(a) Result of
computing the
minimum of an
arbitrary
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and

(3.8-15)

Each of these equations is the output associated with a particular rule and a
specific input.That is, they represent the result of the implication process men-
tioned a few paragraphs back. Keep in mind that each of these three responses
is a fuzzy set, even though the input is a scalar value.

To obtain the overall response, we aggregate the individual responses. In the
rule base given at the beginning of this section the three rules are associated
by the OR operation.Thus, the complete (aggregated) fuzzy output is given by

(3.8-16)

and we see that the overall response is the union of three individual fuzzy sets.
Because OR is defined as a max operation, we can write this result as

(3.8-17)

for and Although it was developed in
the context of an example, this expression is perfectly general; to extend it to n
rules, we simply let similarly, we can expand s to include any
finite number of membership functions. Equations (3.8-16) and (3.8-17) say
the same thing: The response, Q, of our fuzzy system is the union of the indi-
vidual fuzzy sets resulting from each rule by the implication process.

Figure 3.51 summarizes graphically the discussion up to this point. Figure
3.51(a) shows the three input membership functions evaluated at and Fig.
3.51(b) shows the outputs in response to input These fuzzy sets are the
clipped cross sections discussed in connection with Fig. 3.50(b). Note that, nu-
merically, consists of all 0s because that is, is empty, as de-
fined in Section 3.8.2. Figure 3.51(c) shows the final result, Q, itself a fuzzy set
formed from the union of and 

We have successfully obtained the complete output corresponding to a spe-
cific input, but we are still dealing with a fuzzy set. The last step is to obtain a
crisp output, from fuzzy set Q using a process appropriately called
defuzzification. There are a number of ways to defuzzify Q to obtain a crisp
output. One of the approaches used most frequently is to compute the center
of gravity of this set (the references cited at the end of this chapter discuss
others). Thus, if Q( ) from Eq. (3.8-17) can have K possible values,

its center of gravity is given by

(3.8-18)

Evaluating this equation with the (discrete)† values of Q in Fig. 3.51(c) yields
indicating that the given color implies a fruit maturity of approx-

imately 72%.
z0v0 = 72.3,

v0 = a
K
v = 1vQ(v)

aK
v = 1Q(v)

Q(1), Q(2), Á Q(K),
v

v0,

Q3.Q1, Q2,

Q1mgreen(z0) = 0;Q1

z0.
z0,

r = 51, 2, Á , n6;
s = 5green, yellow, red6.r = 51, 2, 36

Q(v) = max
r
Emin

s
5ms(z0), mr(z0, v)6F

Q = Q1 OR Q2 OR Q3

Q1(v) = min5mgreen(z0), m1(z0, v)6

† Fuzzy set Q in Fig. 3.51(c) is shown as a solid curve for clarity, but keep in mind that we are dealing with
digital quantities in this book, so Q is a digital function.
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Up to this point, we have considered IF-THEN rules whose antecedents
have only one part, such as “IF the color is red.” Rules containing more than
one part must be combined to yield a single number that represents the en-
tire antecedent for that rule. For example, suppose that we have the rule: IF
the color is red OR the consistency is soft, THEN the fruit is mature. A
membership function would have to be defined for the linguistic variable
soft. Then, to obtain a single number for this rule that takes into account
both parts of the antecedent, we first evaluate a given input color value of
red using the red membership function and a given value of consistency using
the soft membership function. Because the two parts are linked by OR, we
use the maximum of the two resulting values.† This value is then used in the
implication process to “clip” the mature output membership function, which
is the function associated with this rule. The rest of the procedure is as be-
fore, as the following summary illustrates.
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FIGURE 3.51
(a) Membership
functions with a
specific color,
selected.
(b) Individual fuzzy
sets obtained from
Eqs. (3.8-13)–
(3.8-15). (c) Final
fuzzy set obtained
by using Eq. (3.8-
16) or (3.8-17).

z 0 ,

†Antecedents whose parts are connected by ANDs are similarly evaluated using the min operation.

a
b
c
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IF consistency is hardcolor is green THEN fruit is verdantOR

IF consistency is mediumcolor is yellow THEN fruit is half-matureOR

IF consistency is softcolor is red THEN fruit is matureOR

5. Defuzzify
(center of
gravity).

Input 1
Color (z0)

Input 2
Consistency (c0)

Output
Maturity (v0)

green hard verdant

yellow medium half mat

red soft mature

1. Fuzzify inputs. 2. Apply fuzzy logical
operation(s) (OR � max).

3. Apply implication
method (min).

4. Apply
aggregation
method (max).

FIGURE 3.52 Example illustrating the five basic steps used typically to implement a fuzzy, rule-based system:
(1) fuzzification, (2) logical operations (only OR was used in this example), (3) implication,
(4) aggregation, and (5) defuzzification.

Figure 3.52 shows the fruit example using two inputs: color and consistency.
We can use this figure and the preceding material to summarize the principal
steps followed in the application of rule-based fuzzy logic:

1. Fuzzify the inputs: For each scalar input, find the corresponding fuzzy val-
ues by mapping that input to the interval [0, 1], using the applicable mem-
bership functions in each rule, as the first two columns of Fig. 3.52 show.

2. Perform any required fuzzy logical operations: The outputs of all parts of
an antecedent must be combined to yield a single value using the max or
min operation, depending on whether the parts are connected by ORs or
by ANDs. In Fig. 3.52, all the parts of the antecedents are connected by



3.8 ■ Using Fuzzy Techniques for Intensity 185

ORs, so the max operation is used throughout. The number of parts of an
antecedent and the type of logic operator used to connect them can be dif-
ferent from rule to rule.

3. Apply an implication method: The single output of the antecedent of each
rule is used to provide the output corresponding to that rule. We use
AND for implication, which is defined as the min operation.This clips the
corresponding output membership function at the value provided by the
antecedent, as the third and fourth columns in Fig. 3.52 show.

4. Apply an aggregation method to the fuzzy sets from step 3: As the last col-
umn in Fig. 3.52 shows, the output of each rule is a fuzzy set.These must be
combined to yield a single output fuzzy set. The approach used here is to
OR the individual outputs, so the max operation is employed.

5. Defuzzify the final output fuzzy set: In this final step, we obtain a crisp,
scalar output. This is achieved by computing the center of gravity of the
aggregated fuzzy set from step 4.

When the number of variables is large, it is common practice to use the short-
hand notation (variable, fuzzy set) to pair a variable with its corresponding
membership function. For example, the rule IF the color is green THEN the
fruit is verdant would be written as IF (z, green) THEN ( , verdant) where, as
before, variables z and represent color and degree of maturity, respectively,
while green and verdant are the two fuzzy sets defined by the membership
functions and respectively.

In general, when dealing with M IF-THEN rules, N input variables,
and one output variable, , the type of fuzzy rule formulation

used most frequently in image processing has the form

(3.8-19)

where is the fuzzy set associated with the ith rule and the jth input variable,
is the fuzzy set associated with the output of the ith rule,and we have assumed that
the components of the rule antecedents are linked by ANDs. Note that we have
introduced an ELSE rule, with associated fuzzy set This rule is executed when
none of the preceding rules is completely satisfied; its output is explained below.

As indicated earlier, all the elements of the antecedent of each rule must be
evaluated to yield a single scalar value. In Fig. 3.52, we used the max operation
because the rules were based on fuzzy ORs. The formulation in Eq. (3.8-19)
uses ANDs, so we have to use the min operator. Evaluating the antecedents of
the ith rule in Eq. (3.8-19) produces a scalar output, given by

(3.8-20)li = minEmAij
(zj); j = 1, 2, Á , MF

li,

BE.

BiAij

ELSE (v, BE)

IF (z1, AM1) AND (z2, AM2) AND Á AND (zN, AMN) THEN (v, BM)

Á Á

IF (z1, A21) AND (z2, A22) AND Á AND (zN, A2N) THEN (v, B2)

IF (z1, A11) AND (z2, A12) AND Á AND (zN, A1N) THEN (v, B1)

vz1, z2, Á zN,

mverd(v),mgreen(z)

v
v

The use of OR or AND
in the rule set depends
on how the rules are 
stated, which in turn 
depends on the problem
at hand. We used ORs in
Fig. 3.52 and ANDs in
Eq. (3.8-19) to give you
familiarity with both 
formulations.



186 Chapter 3 ■ Intensity Transformations and Spatial Filtering

for where is the membership function of fuzzy set 
evaluated at the value of the jth input. Often, is called the strength level (or
firing level) of the ith rule.With reference to the preceding discussion, is sim-
ply the value used to clip the output function of the ith rule.

The ELSE rule is executed when the conditions of the THEN rules are
weakly satisfied (we give a detailed example of how ELSE rules are used in
Section 3.8.5). Its response should be strong when all the others are weak. In a
sense, one can view an ELSE rule as performing a NOT operation on the 
results of the other rules. We know from Section 3.8.2 that 

Then, using this idea in combining (ANDing) all the lev-
els of the THEN rules gives the following strength level for the ELSE rule:

(3.8-21)

We see that if all the THEN rules fire at “full strength” (all their responses
are 1), then the response of the ELSE rule is 0, as expected. As the responses
of the THEN rules weaken, the strength of the ELSE rule increases. This is
the fuzzy counterpart of the familiar IF-THEN-ELSE rules used in soft-
ware programming.

When dealing with ORs in the antecedents, we simply replace the ANDs in
Eq. (3.8-19) by ORs and the min in Eq. (3.8-20) by a max; Eq. (3.8-21) does not
change. Although one could formulate more complex antecedents and conse-
quents than the ones discussed here, the formulations we have developed using
only ANDs or ORs are quite general and are used in a broad spectrum of
image processing applications.The references at the end of this chapter contain
additional (but less used) definitions of fuzzy logical operators, and 
discuss other methods for implication (including multiple outputs) and defuzzi-
fication.The introduction presented in this section is fundamental and serves as
a solid base for more advanced reading on this topic. In the next two sections,
we show how to apply fuzzy concepts to image processing.

3.8.4 Using Fuzzy Sets for Intensity Transformations
Consider the general problem of contrast enhancement, one of the principal
applications of intensity transformations. We can state the process of enhanc-
ing the contrast of a gray-scale image using the following rules:

IF a pixel is dark, THEN make it darker.

IF a pixel is gray, THEN make it gray.

IF a pixel is bright, THEN make it brighter.

Keeping in mind that these are fuzzy terms, we can express the concepts of
dark, gray, and bright by the membership functions in Fig. 3.53(a).

In terms of the output, we can consider darker as being degrees of a dark in-
tensity value (100% black being the limiting shade of dark), brighter, as being
degrees of a bright shade (100% white being the limiting value), and gray as
being degrees of an intensity in the middle of the gray scale. What we mean by

lE = minE1 - li ; i = 1, 2, Á , MF

mA-(z) = 1 - mA(z).
mNOT(A) =

li

li

AijmAij
(zj)i = 1, 2, Á , M,
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“degrees” here is the amount of one specific intensity. For example, 80% black
is a very dark gray. When interpreted as constant intensities whose strength is
modified, the output membership functions are singletons (membership func-
tions that are constant), as Fig. 3.53(b) shows.The various degrees of an intensity
in the range [0, 1] occur when the singletons are clipped by the strength of the re-
sponse from their corresponding rules, as in the fourth column of Fig. 3.52 (but
keep in mind that we are working here with only one input, not two, as in the fig-
ure). Because we are dealing with constants in the output membership func-
tions, it follows from Eq. (3.8-18) that the output, to any input, is given by

(3.8-22)

The summations in the numerator and denominator in this expressions are
simpler than in Eq. (3.8-18) because the output membership functions are con-
stants modified (clipped) by the fuzzified values.

Fuzzy image processing is computationally intensive because the entire
process of fuzzification, processing the antecedents of all rules, implication, ag-
gregation, and defuzzification must be applied to every pixel in the input
image. Thus, using singletons as in Eq. (3.8-22) significantly reduces computa-
tional requirements by simplifying implication, aggregation, and defuzzifica-
tion. These savings can be significant in applications where processing speed is
an important requirement.

v0 =
mdark(z0) * vd + mgray(z0) * vg + mbright(z0) * vb

mdark(z0) + mgray(z0) + mbright(z0)

z0,v0,

1

.5

0 z

mdark(z) mbright(z)
1

.5

0 v
vd vg vb

mdarker(v)

mgray(v) mbrighter(v)mgray(z)

FIGURE 3.53
(a) Input and
(b) output
membership
functions for
fuzzy, rule-based
contrast
enhancement.

EXAMPLE 3.19:
Illustration of
image
enhancement
using fuzzy, rule-
based contrast
modification.

a b

■ Figure 3.54(a) shows an image whose intensities span a narrow range of the
gray scale [see the image histogram in Fig. 3.55(a)], thus giving the image an
appearance of low contrast.As a basis for comparison, Fig. 3.54(b) is the result
of histogram equalization. As the histogram of this result shows [Fig. 3.55(b)],
expanding the entire gray scale does increase contrast, but introduces intensi-
ties in the high and low end that give the image an “overexposed” appearance.
For example, the details in Professor Einstein’s forehead and hair are mostly
lost. Figure 3.54(c) shows the result of using the rule-based contrast modifica-
tion approach discussed in the preceding paragraphs. Figure 3.55(c) shows the
input membership functions used, superimposed on the histogram of the orig-
inal image. The output singletons were selected at (black),
(mid gray), and (white).vb = 255

vg = 127vd = 0
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0 63 127 191 255

0 63 127 191 255

0 63 127 191 255

0 63 127 191 255

mdark(z) mbright(z)

mgray(z)

FIGURE 3.55 (a) and (b) Histograms of Figs. 3.54(a) and (b). (c) Input membership
functions superimposed on (a). (d) Histogram of Fig. 3.54(c).

FIGURE 3.54 (a) Low-contrast image. (b) Result of histogram equalization. (c) Result of using
fuzzy, rule-based contrast enhancement.

a b c

a b
c d
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Comparing Figs. 3.54(b) and 3.54(c), we see in the latter a considerable im-
provement in tonality. Note, for example, the level of detail in the forehead
and hair, as compared to the same regions in Fig. 3.54(b). The reason for the
improvement can be explained easily by studying the histogram of Fig. 3.54(c),
shown in Fig. 3.55(d). Unlike the histogram of the equalized image, this his-
togram has kept the same basic characteristics of the histogram of the original
image. However, it is quite evident that the dark levels (talk peaks in the low
end of the histogram) were moved left, thus darkening the levels.The opposite
was true for bright levels. The mid grays were spread slightly, but much less
than in histogram equalization.

The price of this improvement in performance is considerably more pro-
cessing complexity. A practical approach to follow when processing speed and
image throughput are important considerations is to use fuzzy techniques to
determine what the histograms of well-balanced images should look like.
Then, faster techniques, such as histogram specification, can be used to achieve
similar results by mapping the histograms of the input images to one or more
of the “ideal” histograms determined using a fuzzy approach. ■

3.8.5 Using Fuzzy Sets for Spatial Filtering
When applying fuzzy sets to spatial filtering, the basic approach is to define
neighborhood properties that “capture” the essence of what the filters are sup-
posed to detect. For example, consider the problem of detecting boundaries
between regions in an image. This is important in numerous applications of
image processing, such as sharpening, as discussed earlier in this section, and in
image segmentation, as discussed in Chapter 10.

We can develop a boundary extraction algorithm based on a simple fuzzy
concept: If a pixel belongs to a uniform region, then make it white; else make it
black, where, black and white are fuzzy sets. To express the concept of a “uni-
form region” in fuzzy terms, we can consider the intensity differences between
the pixel at the center of a neighborhood and its neighbors. For the 
neighborhood in Fig. 3.56(a), the differences between the center pixel (labeled

) and each of the neighbors forms the subimage of size in Fig. 3.56(b),
where denotes the intensity difference between the ith neighbor and the
center point (i.e., where the zs are intensity values). A simple set
of four IF-THEN rules and one ELSE rule implements the essence of the
fuzzy concept mentioned at the beginning of this paragraph:

IF is zero AND is zero THEN is white

IF is zero AND is zero THEN is white

IF is zero AND is zero THEN is white

IF is zero AND is zero THEN is white

ELSE is blackz5

z5d2d4

z5d4d8

z5d8d6

z5d6d2

di = zi - z5,
di

3 * 3z5

3 * 3

We used only the 
intensity differences
between the 
4-neighbors and the
center point to 
simplify the example.
Using the 8-neighbors
would be a direct 
extension of the ap-
proach shown here.
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1

0
�L � 1 L � 1 0 L � 1

ZE BL WH

Intensity differences Intensity

0

FIGURE 3.57
(a) Membership
function of the
fuzzy set zero.
(b) Membership
functions of the
fuzzy sets black
and white.

where zero is a fuzzy set also. The consequent of each rule defines the values to
which the intensity of the center pixel is mapped. That is, the statement
“THEN is white” means that the intensity of the pixel located at the center
of the mask is mapped to white. These rules simply state that the center pixel is
considered to be part of a uniform region if the intensity differences just men-
tioned are zero (in a fuzzy sense); otherwise it is considered a boundary pixel.

Figure 3.57 shows possible membership functions for the fuzzy sets zero, black,
and white, respectively, where we used ZE, BL, and WH to simplify notation. Note
that the range of the independent variable of the fuzzy set ZE for an image with L
possible intensity levels is because intensity differences can
range between and On the other hand, the range of the output
intensities is as in the original image. Figure 3.58 shows graphically the
rules stated above, where the box labeled indicates that the intensity of the cen-
ter pixel is mapped to the output value WH or BL.

z5

[0, L - 1],
(L - 1).-(L - 1)

[-L + 1, L - 1]

z5

(z5)

z1 z2 z3

z6z5z4

z7 z8 z9

d1 d2 d3

d60d4

d7 d8 d9

Pixel neighborhood Intensity differences

FIGURE 3.56 (a) A pixel neighborhood, and (b) corresponding intensity differences
between the center pixels and its neighbors. Only and were used in the
present application to simplify the discussion.

d8d2, d4, d6,
3 * 3

■ Figure 3.59(a) shows a CT scan of a human head, and Fig. 3.59(b) is
the result of using the fuzzy spatial filtering approach just discussed. Note the ef-
fectiveness of the method in extracting the boundaries between regions, including
the contour of the brain (inner gray region).The constant regions in the image ap-
pear as gray because when the intensity differences discussed earlier are near
zero, the THEN rules have a strong response.These responses in turn clip function
WH. The output (the center of gravity of the clipped triangular regions) is a con-
stant between and thus producing the grayish tone seen in the
image. The contrast of this image can be improved significantly by expanding the

(L - 1),(L - 1)>2

512 * 512EXAMPLE 3.20:
Illustration of
boundary
enhancement
using fuzzy, rule-
based spatial
filtering.

a b

a b
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z5 z5

THEN

IF IF

THEN
WH WH

ZE

ZE

ZE ZE

Rule 1 Rule 2

z5z5

IFIF

THEN THEN
WHWH

ELSE BLz5

ZEZE

ZE

ZE

Rule 4Rule 3

FIGURE 3.58
Fuzzy rules for
boundary
detection.

FIGURE 3.59 (a) CT scan of a human head. (b) Result of fuzzy spatial filtering using the membership
functions in Fig. 3.57 and the rules in Fig. 3.58. (c) Result after intensity scaling. The thin black picture
borders in (b) and (c) were added for clarity; they are not part of the data. (Original image courtesy of
Dr. David R. Pickens, Vanderbilt University.)

a b c

gray scale. For example, Fig. 3.59(c) was obtained by performing the intensity
scaling defined in Eqs. (2.6-10) and (2.6-11), with The net result is
that intensity values in Fig. 3.59(c) span the full gray scale from 0 to ■  (L - 1).

K = L - 1.
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Summary
The material you have just learned is representative of current techniques used for in-
tensity transformations and spatial filtering.The topics included in this chapter were se-
lected for their value as fundamental material that would serve as a foundation in an
evolving field. Although most of the examples used in this chapter were related to
image enhancement, the techniques presented are perfectly general, and you will en-
counter them again throughout the remaining chapters in contexts totally unrelated to
enhancement. In the following chapter, we look again at filtering, but using concepts
from the frequency domain. As you will see, there is a one-to-one correspondence be-
tween the linear spatial filters studied here and frequency domain filters.

References and Further Reading
The material in Section 3.1 is from Gonzalez [1986]. Additional reading for the mate-
rial in Section 3.2 may be found in Schowengerdt [1983], Poyton [1996], and Russ
[1999]. See also the paper by Tsujii et al. [1998] regarding the optimization of image
displays. Early references on histogram processing are Hummel [1974], Gonzalez and
Fittes [1977], and Woods and Gonzalez [1981]. Stark [2000] gives some interesting gen-
eralizations of histogram equalization for adaptive contrast enhancement. Other ap-
proaches for contrast enhancement are exemplified by Centeno and Haertel [1997]
and Cheng and Xu [2000]. For further reading on exact histogram specification see
Coltuc, Bolon, and Chassery [2006]. For extensions of the local histogram equalization
method, see Caselles et al. [1999], and Zhu et al. [1999]. See Narendra and Fitch [1981]
on the use and implementation of local statistics for image processing. Kim et al.
[1997] present an interesting approach combining the gradient with local statistics for
image enhancement.

For additional reading on linear spatial filters and their implementation, see Um-
baugh [2005], Jain [1989], and Rosenfeld and Kak [1982]. Rank-order filters are dis-
cussed in these references as well. Wilburn [1998] discusses generalizations of
rank-order filters. The book by Pitas and Venetsanopoulos [1990] also deals with
median and other nonlinear spatial filters. A special issue of the IEEE Transactions
in Image Processing [1996] is dedicated to the topic of nonlinear image processing.
The material on high boost filtering is from Schowengerdt [1983]. We will encounter
again many of the spatial filters introduced in this chapter in discussions dealing
with image restoration (Chapter 5) and edge detection (Chapter 10).

Fundamental references for Section 3.8 are three papers on fuzzy logic by 
L. A. Zadeh (Zadeh [1965, 1973, 1976]). These papers are well written and worth
reading in detail, as they established the foundation for fuzzy logic and some of its
applications. An overview of a broad range of applications of fuzzy logic in image
processing can be found in the book by Kerre and Nachtegael [2000]. The example
in Section 3.8.4 is based on a similar application described by Tizhoosh [2000]. The
example in Section 3.8.5 is basically from Russo and Ramponi [1994]. For additional
examples of applications of fuzzy sets to intensity transformations and image filter-
ing, see Patrascu [2004] and Nie and Barner [2006], respectively. The preceding
range of references from 1965 through 2006 is a good starting point for more de-
tailed study of the many ways in which fuzzy sets can be used in image processing.
Software implementation of most of the methods discussed in this chapter can be
found in Gonzalez, Woods, and Eddins [2004].



3.3 (a) Give a continuous function for implementing the contrast stretching trans-
formation shown in Fig. 3.2(a). In addition to m, your function must include
a parameter, E, for controlling the slope of the function as it transitions
from low to high intensity values. Your function should be normalized so
that its minimum and maximum values are 0 and 1, respectively.

(b) Sketch a family of transformations as a function of parameter E, for a fixed
value where L is the number of intensity levels in the image.

(c) What is the smallest value of E that will make your function effectively per-
form as the function in Fig. 3.2(b)? In other words, your function does not
have to be identical to Fig. 3.2(b). It just has to yield the same result of pro-
ducing a binary image. Assume that you are working with 8-bit images, and
let Let C denote the smallest positive number representable in
the computer you are using.

3.4 Propose a set of intensity-slicing transformations capable of producing all the
individual bit planes of an 8-bit monochrome image. (For example, a transfor-
mation function with the property for r in the range [0, 127], and

for r in the range [128, 255] produces an image of the 8th bit plane in
an 8-bit image.)

3.5 (a) What effect would setting to zero the lower-order bit planes have on the his-
togram of an image in general?

(b) What would be the effect on the histogram if we set to zero the higher-order
bit planes instead?

3.6 Explain why the discrete histogram equalization technique does not, in general,
yield a flat histogram.

T(r) = 255
T(r) = 0

m = 128.

m = L>2,

■ Problems 193

Problems
3.1 Give a single intensity transformation function for spreading the intensities of

an image so the lowest intensity is 0 and the highest is 
3.2 Exponentials of the form with a positive constant, are useful for con-

structing smooth intensity transformation functions. Start with this basic func-
tion and construct transformation functions having the general shapes shown in
the following figures. The constants shown are input parameters, and your pro-
posed transformations must include them in their specification. (For simplicity
in your answers, is not a required parameter in the third curve.)L0

ae-ar 2
,

L - 1.

�

�

�

Detailed solutions to the
problems marked with a
star can be found in the
book Web site. The site
also contains suggested
projects based on the ma-
terial in this chapter.
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3.12 Propose a method for updating the local histogram for use in the local enhance-
ment technique discussed in Section 3.3.3.

3.13 Two images, and , have histograms and Give the condi-
tions under which you can determine the histograms of

(a)

(b)

(c)

(d)

in terms of and Explain how to obtain the histogram in each case.

3.14 The images shown on the next page are quite different, but their histograms are
the same. Suppose that each image is blurred with a averaging mask.

(a) Would the histograms of the blurred images still be equal? Explain.

(b) If your answer is no, sketch the two histograms.

3 * 3

hg.hf

f(x, y) , g(x, y)

f(x, y) * g(x, y)

f(x, y) - g(x, y)

f(x, y) + g(x, y)

hg.hf(x, y)g(x, y)f

3.7 Suppose that a digital image is subjected to histogram equalization. Show that a
second pass of histogram equalization (on the histogram-equalized image) will
produce exactly the same result as the first pass.

3.8 In some applications it is useful to model the histogram of input images as
Gaussian probability density functions of the form

where m and are the mean and standard deviation of the Gaussian PDF. The
approach is to let m and be measures of average intensity and contrast of a
given image. What is the transformation function you would use for histogram
equalization?

3.9 Assuming continuous values, show by example that it is possible to have a case
in which the transformation function given in Eq. (3.3-4) satisfies conditions (a)
and (b) in Section 3.3.1, but its inverse may fail condition (a ).

3.10 (a) Show that the discrete transformation function given in Eq. (3.3-8) for his-
togram equalization satisfies conditions (a) and (b) in Section 3.3.1.

(b) Show that the inverse discrete transformation in Eq. (3.3-9) satisfies condi-
tions and (b) in Section 3.3.1 only if none of the intensity levels

are missing.

3.11 An image with intensities in the range [0, 1] has the PDF shown in the fol-
lowing diagram. It is desired to transform the intensity levels of this image so
that they will have the specified shown.Assume continuous quantities and
find the transformation (in terms of r and z) that will accomplish this.

pz(z)

pr(r)

rk, k = 0, 1, Á , L - 1,
(a¿)

¿

s

s

pr(r) =
1

22ps
e- (r - m )2

2s
2
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3.15 The implementation of linear spatial filters requires moving the center of a
mask throughout an image and, at each location, computing the sum of products
of the mask coefficients with the corresponding pixels at that location (see
Section 3.4). A lowpass filter can be implemented by setting all coefficients to 1,
allowing use of a so-called box-filter or moving-average algorithm, which con-
sists of updating only the part of the computation that changes from one loca-
tion to the next.

(a) Formulate such an algorithm for an filter, showing the nature of the
computations involved and the scanning sequence used for moving the
mask around the image.

(b) The ratio of the number of computations performed by a brute-force imple-
mentation to the number of computations performed by the box-filter algo-
rithm is called the computational advantage. Obtain the computational
advantage in this case and plot it as a function of n for The scal-
ing factor is common to both approaches, so you need not consider it in ob-
taining the computational advantage. Assume that the image has an outer
border of zeros that is wide enough to allow you to ignore border effects in
your analysis.

3.16 (a) Suppose that you filter an image, , with a spatial filter mask, ,
using convolution, as defined in Eq. (3.4-2), where the mask is smaller than
the image in both spatial directions. Show the important property that, if the
coefficients of the mask sum to zero, then the sum of all the elements in the
resulting convolution array (filtered image) will be zero also (you may ig-
nore computational inaccuracies). Also, you may assume that the border of
the image has been padded with the appropriate number of zeros.

(b) Would the result to (a) be the same if the filtering is implemented using cor-
relation, as defined in Eq. (3.4-1)?

3.17 Discuss the limiting effect of repeatedly applying a lowpass spatial filter
to a digital image. You may ignore border effects.

3.18 (a) It was stated in Section 3.5.2 that isolated clusters of dark or light (with re-
spect to the background) pixels whose area is less than one-half the area of
a median filter are eliminated (forced to the median value of the neighbors)
by the filter. Assume a filter of size with n odd, and explain why this
is so.

(b) Consider an image having various sets of pixel clusters. Assume that all
points in a cluster are lighter or darker than the background (but not both
simultaneously in the same cluster), and that the area of each cluster is less
than or equal to In terms of n, under what condition would one or
more of these clusters cease to be isolated in the sense described in part (a)?

n2>2.

n * n,

3 * 3

(x, y)w(x, y)f

1>n2n 7 1.

n * n
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(a) (b) (c)

3.19 (a) Develop a procedure for computing the median of an neighborhood.

(b) Propose a technique for updating the median as the center of the neighbor-
hood is moved from pixel to pixel.

3.20 (a) In a character recognition application, text pages are reduced to binary
form using a thresholding transformation function of the form shown in Fig.
3.2(b). This is followed by a procedure that thins the characters until they
become strings of binary 1s on a background of 0s. Due to noise, the bina-
rization and thinning processes result in broken strings of characters with
gaps ranging from 1 to 3 pixels. One way to “repair” the gaps is to run an av-
eraging mask over the binary image to blur it, and thus create bridges of
nonzero pixels between gaps. Give the (odd) size of the smallest averaging
mask capable of performing this task.

(b) After bridging the gaps, it is desired to threshold the image in order to con-
vert it back to binary form. For your answer in (a), what is the minimum
value of the threshold required to accomplish this, without causing the seg-
ments to break up again?

3.21 The three images shown were blurred using square averaging masks of sizes
25, and 45, respectively. The vertical bars on the left lower part of (a)

and (c) are blurred, but a clear separation exists between them. However, the
bars have merged in image (b), in spite of the fact that the mask that produced
this image is significantly smaller than the mask that produced image (c). Ex-
plain the reason for this.

n = 23,

n * n�

�

3.22 Consider an application such as the one shown in Fig. 3.34, in which it is desired
to eliminate objects smaller than those enclosed by a square of size pixels.
Suppose that we want to reduce the average intensity of those objects to one-
tenth of their original average value. In this way, those objects will be closer to
the intensity of the background and they can then be eliminated by threshold-
ing. Give the (odd) size of the smallest averaging mask that will accomplish the
desired reduction in average intensity in only one pass of the mask over the
image.

3.23 In a given application an averaging mask is applied to input images to reduce
noise, and then a Laplacian mask is applied to enhance small details. Would the
result be the same if the order of these operations were reversed?

q * q
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3.24 Show that the Laplacian defined in Eq. (3.6-3) is isotropic (invariant to rota-
tion). You will need the following equations relating coordinates for axis rota-
tion by an angle 

where (x, y) are the unrotated and are the rotated coordinates.

3.25 You saw in Fig. 3.38 that the Laplacian with a in the center yields sharper re-
sults than the one with a in the center. Explain the reason in detail.

3.26 With reference to Problem 3.25,

(a) Would using a larger “Laplacian-like” mask, say, of size with a in
the center, yield an even sharper result? Explain in detail.

(b) How does this type of filtering behave as a function of mask size?

3.27 Give a mask for performing unsharp masking in a single pass through an
image. Assume that the average image is obtained using the filter in Fig. 3.32(a).

3.28 Show that subtracting the Laplacian from an image is proportional to unsharp
masking. Use the definition for the Laplacian given in Eq. (3.6-6).

3.29 (a) Show that the magnitude of the gradient given in Eq. (3.6-11) is an isotropic
operation. (See Problem 3.24.)

(b) Show that the isotropic property is lost in general if the gradient is computed
using Eq. (3.6-12).

3.30 A CCD TV camera is used to perform a long-term study by observing the
same area 24 hours a day, for 30 days. Digital images are captured and trans-
mitted to a central location every 5 minutes. The illumination of the scene
changes from natural daylight to artificial lighting. At no time is the scene
without illumination, so it is always possible to obtain an image. Because the
range of illumination is such that it is always in the linear operating range of
the camera, it is decided not to employ any compensating mechanisms on the
camera itself. Rather, it is decided to use image processing techniques to post-
process, and thus normalize, the images to the equivalent of constant illumina-
tion. Propose a method to do this. You are at liberty to use any method you
wish, but state clearly all the assumptions you made in arriving at your design.

3.31 Show that the crossover point in Fig. 3.46(d) is given by 

3.32 Use the fuzzy set definitions in Section 3.8.2 and the basic membership func-
tions in Fig. 3.46 to form the membership functions shown below.

b = (a + c)> 2.

3 * 3

-245 * 5
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3.33 What would be the effect of increasing the neighborhood size in the fuzzy filter-
ing approach discussed in Section 3.8.5? Explain the reasoning for your answer
(you may use an example to support your answer).

3.34 Design a fuzzy, rule-based system for reducing the effects of impulse noise on a
noisy image with intensity values in the interval As in Section 3.8.5,
use only the differences and in a neighborhood in order to
simplify the problem. Let denote the intensity at the center of the neighbor-
hood, anywhere in the image. The corresponding output intensity values should
be where is the output of your fuzzy system.That is, the output of
your fuzzy system is a correction factor used to reduce the effect of a noise spike
that may be present at the center of the neighborhood. Assume that the
noise spikes occur sufficiently apart so that you need not be concerned with
multiple noise spikes being present in the same neighborhood.The spikes can be
dark or light. Use triangular membership functions throughout.

(a) Give a fuzzy statement for this problem.

(b) Specify the IF-THEN and ELSE rules.

(c) Specify the membership functions graphically, as in Fig. 3.57.

(d) Show a graphical representation of the rule set, as in Fig. 3.58.

(e) Give a summary diagram of your fuzzy system similar to the one in Fig. 3.52.

3 * 3

vz5
œ = z5 + v,

z5

3 * 3d8d2, d4, d6,
[0, L - 1].

�

�
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4 Filtering in the Frequency
Domain

199

Filter: A device or material for suppressing 
or minimizing waves or oscillations of certain
frequencies.

Frequency: The number of times that a periodic
function repeats the same sequence of values during 
a unit variation of the independent variable.

Webster’s New Collegiate Dictionary

Preview
Although significant effort was devoted in the previous chapter to spatial fil-
tering, a thorough understanding of this area is impossible without having at
least a working knowledge of how the Fourier transform and the frequency
domain can be used for image filtering.You can develop a solid understanding
of this topic without having to become a signal processing expert. The key lies
in focusing on the fundamentals and their relevance to digital image process-
ing. The notation, usually a source of trouble for beginners, is clarified signifi-
cantly in this chapter by emphasizing the connection between image
characteristics and the mathematical tools used to represent them. This chap-
ter is concerned primarily with establishing a foundation for the Fourier trans-
form and how it is used in basic image filtering. Later, in Chapters 5, 8, 10, and
11, we discuss other applications of the Fourier transform. We begin the dis-
cussion with a brief outline of the origins of the Fourier transform and its im-
pact on countless branches of mathematics, science, and engineering. Next, we
start from basic principles of function sampling and proceed step-by-step to
derive the one- and two-dimensional discrete Fourier transforms, the basic sta-
ples of frequency domain processing. During this development, we also touch
upon several important aspects of sampling, such as aliasing, whose treatment
requires an understanding of the frequency domain and thus are best covered
in this chapter.This material is followed by a formulation of filtering in the fre-
quency domain and the development of sections that parallel the spatial
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smoothing and sharpening filtering techniques discussed in Chapter 3.We con-
clude the chapter with a discussion of issues related to implementing the
Fourier transform in the context of image processing. Because the material in
Sections 4.2 through 4.4 is basic background, readers familiar with the con-
cepts of 1-D signal processing, including the Fourier transform, sampling, alias-
ing, and the convolution theorem, can proceed to Section 4.5, where we begin
a discussion of the 2-D Fourier transform and its application to digital image
processing.

4.1 Background

4.1.1 A Brief History of the Fourier Series and Transform
The French mathematician Jean Baptiste Joseph Fourier was born in 1768 in
the town of Auxerre, about midway between Paris and Dijon.The contribution
for which he is most remembered was outlined in a memoir in 1807 and pub-
lished in 1822 in his book, La Théorie Analitique de la Chaleur (The Analytic
Theory of Heat). This book was translated into English 55 years later by Free-
man (see Freeman [1878]). Basically, Fourier’s contribution in this field states
that any periodic function can be expressed as the sum of sines and/or cosines
of different frequencies, each multiplied by a different coefficient (we now call
this sum a Fourier series). It does not matter how complicated the function is;
if it is periodic and satisfies some mild mathematical conditions, it can be rep-
resented by such a sum. This is now taken for granted but, at the time it first
appeared, the concept that complicated functions could be represented as a
sum of simple sines and cosines was not at all intuitive (Fig. 4.1), so it is not sur-
prising that Fourier’s ideas were met initially with skepticism.

Even functions that are not periodic (but whose area under the curve is fi-
nite) can be expressed as the integral of sines and/or cosines multiplied by a
weighing function.The formulation in this case is the Fourier transform, and its
utility is even greater than the Fourier series in many theoretical and applied
disciplines. Both representations share the important characteristic that a
function, expressed in either a Fourier series or transform, can be reconstruct-
ed (recovered) completely via an inverse process, with no loss of information.
This is one of the most important characteristics of these representations be-
cause it allows us to work in the “Fourier domain” and then return to the orig-
inal domain of the function without losing any information. Ultimately, it was
the utility of the Fourier series and transform in solving practical problems
that made them widely studied and used as fundamental tools.

The initial application of Fourier’s ideas was in the field of heat diffusion,
where they allowed the formulation of differential equations representing heat
flow in such a way that solutions could be obtained for the first time. During the
past century, and especially in the past 50 years, entire industries and academic
disciplines have flourished as a result of Fourier’s ideas. The advent of digital
computers and the “discovery” of a fast Fourier transform (FFT) algorithm in
the early 1960s (more about this later) revolutionized the field of signal process-
ing.These two core technologies allowed for the first time practical processing of
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FIGURE 4.1 The function at the bottom is the sum of the four functions above it.
Fourier’s idea in 1807 that periodic functions could be represented as a weighted sum
of sines and cosines was met with skepticism.

a host of signals of exceptional importance, ranging from medical monitors and
scanners to modern electronic communications.

We will be dealing only with functions (images) of finite duration, so the
Fourier transform is the tool in which we are interested. The material in the
following section introduces the Fourier transform and the frequency domain.
It is shown that Fourier techniques provide a meaningful and practical way to
study and implement a host of image processing approaches. In some cases,
these approaches are similar to the ones we developed in Chapter 3.

4.1.2 About the Examples in this Chapter
As in Chapter 3, most of the image filtering examples in this chapter deal with
image enhancement. For example, smoothing and sharpening are traditionally
associated with image enhancement, as are techniques for contrast manipula-
tion. By its very nature, beginners in digital image processing find enhance-
ment to be interesting and relatively simple to understand. Therefore, using
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examples from image enhancement in this chapter not only saves having an
extra chapter in the book but, more importantly, is an effective tool for intro-
ducing newcomers to filtering techniques in the frequency domain. We use
frequency domain processing methods for other applications in Chapters 5, 8,
10, and 11.

4.2 Preliminary Concepts

In order to simplify the progression of ideas presented in this chapter, we
pause briefly to introduce several of the basic concepts that underlie the mate-
rial that follows in later sections.

4.2.1 Complex Numbers
A complex number, C, is defined as

(4.2-1)

where R and I are real numbers, and j is an imaginary number equal to the
square of that is, Here, R denotes the real part of the complex
number and I its imaginary part. Real numbers are a subset of complex
numbers in which The conjugate of a complex number C, denoted
is defined as

(4.2-2)

Complex numbers can be viewed geometrically as points in a plane (called the
complex plane) whose abscissa is the real axis (values of R) and whose ordi-
nate is the imaginary axis (values of I). That is, the complex number is
point (R, I) in the rectangular coordinate system of the complex plane.

Sometimes, it is useful to represent complex numbers in polar coordinates,

(4.2-3)

where is the length of the vector extending from the origin of
the complex plane to point (R, I), and is the angle between the vector and the
real axis. Drawing a simple diagram of the real and complex axes with the vec-
tor in the first quadrant will reveal that or The
arctan function returns angles in the range However, because I
and R can be positive and negative independently, we need to be able to obtain
angles in the full range This is accomplished simply by keeping track
of the sign of I and R when computing Many programming languages do this
automatically via so called four-quadrant arctangent functions. For example,
MATLAB provides the function atan2(Imag, Real) for this purpose.

Using Euler’s formula,

(4.2-4)

where gives the following familiar representation of complex
numbers in polar coordinates,

(4.2-5)C = ƒ C ƒ e ju

e = 2.71828 Á ,

e ju = cos u + j sin u

u.
[-p, p].

[-p>2, p>2].
u = arctan(I>R).tan u = (I>R)

u

ƒ C ƒ = 2R2 + I2

C = ƒ C ƒ (cos u + j sin u)

R + jI

C* = R - jI

C*,I = 0.

j = 1-1.-1;

C = R + jI
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An impulse is not a func-
tion in the usual sense. A
more accurate name is a
distribution or
generalized function.
However, one often finds
in the literature the
names impulse function,
delta function, and Dirac
delta function, despite the
misnomer.

where and are as defined above. For example, the polar representation of
the complex number is where or 1.1 radians. The pre-
ceding equations are applicable also to complex functions. For example, a
complex function, (u), of a variable u, can be expressed as the sum

where R(u) and are the real and imaginary compo-
nent functions. As previously noted, the complex conjugate is 

the magnitude is and the angle is
We return to complex functions several times in the

course of this and the next chapter.

4.2.2 Fourier Series
As indicated in Section 4.1.1, a function (t) of a continuous variable t that is pe-
riodic with period, T, can be expressed as the sum of sines and cosines multiplied
by appropriate coefficients.This sum, known as a Fourier series, has the form

(4.2-6)

where

(4.2-7)

are the coefficients. The fact that Eq. (4.2-6) is an expansion of sines and
cosines follows from Euler’s formula, Eq. (4.2-4). We will return to the Fourier
series later in this section.

4.2.3 Impulses and Their Sifting Property
Central to the study of linear systems and the Fourier transform is the concept
of an impulse and its sifting property. A unit impulse of a continuous variable t
located at denoted is defined as

(4.2-8a)

and is constrained also to satisfy the identity

(4.2-8b)

Physically, if we interpret t as time, an impulse may be viewed as a spike of in-
finity amplitude and zero duration, having unit area. An impulse has the so-
called sifting property with respect to integration,

(4.2-9)

provided that (t) is continuous at a condition typically satisfied in prac-
tice. Sifting simply yields the value of the function (t) at the location of the im-
pulse (i.e., the origin, in the previous equation).A more general statementt = 0,

f
t = 0,f

L
q

-q
f(t)d(t) dt = f(0)

L
q

-q
d(t) dt = 1

d(t) = bq if t = 0
0 if t Z 0

d(t),t = 0,

cn =
1
TL

T>2

-T>2
f(t)e-j 2pn

T t dt for n = 0, ;1, ;2, Á

f(t) = a
q

n = -q
cne j 2pn

T t

f

arctan[I(u)>R(u)].u(u) =
ƒ F(u) ƒ = 2R(u)2 + I(u)2,= R(u) - jI(u),

F*(u)
I(u)F(u) = R(u) + jI(u),

F

u = 64.4°13e ju,1 + j2
uƒ C ƒ

To sift means literally to
separate, or to separate
out by putting through a
sieve.
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of the sifting property involves an impulse located at an arbitrary point denot-
ed by In this case, the sifting property becomes

(4.2-10)

which yields the value of the function at the impulse location, For instance,
if using the impulse in Eq. (4.2-10) yields the result

The power of the sifting concept will become quite evi-
dent shortly.

Let x represent a discrete variable.The unit discrete impulse, serves the
same purposes in the context of discrete systems as the impulse does when
working with continuous variables. It is defined as

(4.2-11a)

Clearly, this definition also satisfies the discrete equivalent of Eq. (4.2-8b):

(4.2-11b)

The sifting property for discrete variables has the form

(4.2-12)

or, more generally using a discrete impulse located at 

(4.2-13)

As before, we see that the sifting property simply yields the value of the func-
tion at the location of the impulse. Figure 4.2 shows the unit discrete impulse
diagrammatically. Unlike its continuous counterpart, the discrete impulse is an
ordinary function.

Of particular interest later in this section is an impulse train, defined
as the sum of infinitely many periodic impulses units apart:

(4.2-14)s¢T(t) = a
q

n = -q
d(t - n¢T)

¢T
s¢T(t),

a
q

x = -q
f(x)d(x - x0) = f(x0)

x = x0,

a
q

x = -q
f(x)d(x) = f(0)

a
q

x = -q
d(x) = 1

d(x) = b1 x = 0
0 x Z 0

d(t)
d(x),

f(p) = cos(p) = -1.
d(t - p)f(t) = cos(t),

t0.

L
q

-q
f(t)d(t - t0) dt = f(t0)

d(t - t0).
t0,

x

1

x00

d(x � x0)
FIGURE 4.2
A unit discrete
impulse located at

Variable x
is discrete, and 
is 0 everywhere
except at x = x0.

d
x = x0.
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FIGURE 4.3 An
impulse train.

†Conditions for the existence of the Fourier transform are complicated to state in general (Champeney
[1987]), but a sufficient condition for its existence is that the integral of the absolute value of (t), or the
integral of the square of (t), be finite. Existence is seldom an issue in practice, except for idealized sig-
nals, such as sinusoids that extend forever. These are handled using generalized impulse functions. Our
primary interest is in the discrete Fourier transform pair which, as you will see shortly, is guaranteed to
exist for all finite functions.

f
f

Figure 4.3 shows an impulse train. The impulses can be continuous or discrete.

4.2.4 The Fourier Transform of Functions of 
One Continuous Variable

The Fourier transform of a continuous function (t) of a continuous variable, t,
denoted is defined by the equation†

(4.2-15)

where is also a continuous variable. Because t is integrated out, is a
function only of We denote this fact explicitly by writing the Fourier trans-
form as that is, the Fourier transform of (t) may be written
for convenience as

(4.2-16)

Conversely, given we can obtain (t) back using the inverse Fourier
transform, written as

(4.2-17)

where we made use of the fact that variable is integrated out in the inverse
transform and wrote simple (t), rather than the more cumbersome notation

Equations (4.2-16) and (4.2-17) comprise the so-called
Fourier transform pair. They indicate the important fact mentioned in
Section 4.1 that a function can be recovered from its transform.

Using Euler’s formula we can express Eq. (4.2-16) as

(4.2-18)F(m) = L
q

-q
f(t) Ccos(2pmt) - j sin(2pmt) D dt

f(t) = �-15F(m)6. f
m

f(t) = L
q

-q
F(m)e j2pmt dm

f(t) = �-15F(m)6, fF(m),

F(m) = L
q

-q
f(t)e-j2pmt dt

f�5f(t)6 = F(m);
m.

�5f(t)6m

�5f(t)6 = L
q

-q
f(t)e-j2pmt dt

�5f(t)6, f
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If (t) is real, we see that its transform in general is complex. Note that the
Fourier transform is an expansion of (t) multiplied by sinusoidal terms whose
frequencies are determined by the values of (variable t is integrated out, as
mentioned earlier). Because the only variable left after integration is frequen-
cy, we say that the domain of the Fourier transform is the frequency domain.
We discuss the frequency domain and its properties in more detail later in this
chapter. In our discussion, t can represent any continuous variable, and the
units of the frequency variable depend on the units of t. For example, if t rep-
resents time in seconds, the units of are cycles/sec or Hertz (Hz). If t repre-
sents distance in meters, then the units of are cycles/meter, and so on. In
other words, the units of the frequency domain are cycles per unit of the inde-
pendent variable of the input function.

m

m

m

m

f
f

For consistency in termi-
nology used in the previ-
ous two chapters, and to
be used later in this
chapter in connection
with images, we refer to
the domain of variable t
in general as the spatial
domain.

t
0

f(t)
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FIGURE 4.4 (a) A simple function; (b) its Fourier transform; and (c) the spectrum. All functions extend to
infinity in both directions.

EXAMPLE 4.1:
Obtaining the
Fourier transform
of a simple
function.

■ The Fourier transform of the function in Fig. 4.4(a) follows from Eq. (4.2-16):

where we used the trigonometric identity In this case
the complex terms of the Fourier transform combined nicely into a real sine

sin u = (e ju - e-ju)>2j.

= AW
sin(pmW)

(pmW)

=
A

j2pm
Ce jpmW - e-jpmW D
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function.The result in the last step of the preceding expression is known as the
sinc function:

(4.2-19)

where and for all other integer values of m. Figure 4.4(b)
shows a plot of 

In general, the Fourier transform contains complex terms, and it is custom-
ary for display purposes to work with the magnitude of the transform (a real
quantity), which is called the Fourier spectrum or the frequency spectrum:

Figure 4.4(c) shows a plot of as a function of frequency. The key prop-
erties to note are that the locations of the zeros of both and are
inversely proportional to the width, W, of the “box” function, that the height of
the lobes decreases as a function of distance from the origin, and that the func-
tion extends to infinity for both positive and negative values of As you will
see later, these properties are quite helpful in interpreting the spectra of two-
dimensional Fourier transforms of images. ■

m.

ƒ F(m) ƒF(m)
ƒ F(m) ƒ

ƒ F(m) ƒ = AT ` sin(pmW)
(pmW)

`

F(m).
sinc(m) = 0sinc(0) = 1,

sinc(m) =
sin(pm)

(pm)

EXAMPLE 4.2:
Fourier transform
of an impulse and
of an impulse
train.

■ The Fourier transform of a unit impulse located at the origin follows from
Eq. (4.2-16):

where the third step follows from the sifting property in Eq. (4.2-9). Thus, we
see that the Fourier transform of an impulse located at the origin of the spatial
domain is a constant in the frequency domain. Similarly, the Fourier transform
of an impulse located at is

= cos(2pmt0) - j sin(2pmt0)

= e-j2pmt0

= L
q

-q
e-j2pmtd(t - t0)dt

F(m) = L
q

-q
d(t - t0)e-j2pmtdt

t = t0

= 1

= e-j2pm0 = e0

= L
q

-q
e-j2pmtd(t) dt

F(m) = L
q

-q
d(t)e-j2pmtdt
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where the third line follows from the sifting property in Eq. (4.2-10) and the
last line follows from Euler’s formula. These last two lines are equivalent rep-
resentations of a unit circle centered on the origin of the complex plane.

In Section 4.3, we make use of the Fourier transform of a periodic im-
pulse train. Obtaining this transform is not as straightforward as we just
showed for individual impulses. However, understanding how to derive the
transform of an impulse train is quite important, so we take the time to de-
rive it in detail here. We start by noting that the only difference in the form
of Eqs. (4.2-16) and (4.2-17) is the sign of the exponential. Thus, if a function

(t) has the Fourier transform then the latter function evaluated at t,
that is, (t), must have the transform Using this symmetry property
and given, as we showed above, that the Fourier transform of an impulse

is it follows that the function has the transform
By letting it follows that the transform of is

where the last step is true because is not zero only
when which is the same result for either or so
the two forms are equivalent.

The impulse train in Eq. (4.2-14) is periodic with period so we
know from Section 4.2.2 that it can be expressed as a Fourier series:

where

With reference to Fig. 4.3, we see that the integral in the interval
encompasses only the impulse of that is located at the

origin. Therefore, the preceding equation becomes

The Fourier series expansion then becomes

Our objective is to obtain the Fourier transform of this expression. Because
summation is a linear process, obtaining the Fourier transform of a sum is
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the same as obtaining the sum of the transforms of the individual compo-
nents. These components are exponentials, and we established earlier in this
example that

So, the Fourier transform of the periodic impulse train is

This fundamental result tells us that the Fourier transform of an impulse train
with period is also an impulse train, whose period is This inverse
proportionality between the periods of and is analogous to what
we found in Fig. 4.4 in connection with a box function and its transform. This
property plays a fundamental role in the remainder of this chapter. ■

4.2.5 Convolution
We need one more building block before proceeding. We introduced the idea
of convolution in Section 3.4.2. You learned in that section that convolution of
two functions involves flipping (rotating by 180°) one function about its origin
and sliding it past the other. At each displacement in the sliding process, we
perform a computation, which in the case of Chapter 3 was a sum of products.
In the present discussion, we are interested in the convolution of two continu-
ous functions, (t) and h(t), of one continuous variable, t, so we have to use in-
tegration instead of a summation. The convolution of these two functions,
denoted as before by the operator is defined as

(4.2-20)

where the minus sign accounts for the flipping just mentioned, t is the
displacement needed to slide one function past the other, and is a dummy
variable that is integrated out. We assume for now that the functions extend
from to 

We illustrated the basic mechanics of convolution in Section 3.4.2, and we
will do so again later in this chapter and in Chapter 5. At the moment, we are
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interested in finding the Fourier transform of Eq. (4.2-20). We start with 
Eq. (4.2-15):

The term inside the brackets is the Fourier transform of We show
later in this chapter that where is the
Fourier transform of h(t). Using this fact in the preceding equation gives us

Recalling from Section 4.2.4 that we refer to the domain of t as the spatial do-
main, and the domain of as the frequency domain, the preceding equation
tells us that the Fourier transform of the convolution of two functions in the
spatial domain is equal to the product in the frequency domain of the Fourier
transforms of the two functions. Conversely, if we have the product of the two
transforms, we can obtain the convolution in the spatial domain by computing
the inverse Fourier transform. In other words, and (u) (u) are a
Fourier transform pair. This result is one-half of the convolution theorem and
is written as

(4.2-21)

The double arrow is used to indicate that the expression on the right is ob-
tained by taking the Fourier transform of the expression on the left, while the
expression on the left is obtained by taking the inverse Fourier transform of
the expression on the right.

Following a similar development would result in the other half of the con-
volution theorem:

(4.2-22)

which states that convolution in the frequency domain is analogous to multi-
plication in the spatial domain, the two being related by the forward and in-
verse Fourier transforms, respectively. As you will see later in this chapter, the
convolution theorem is the foundation for filtering in the frequency domain.
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The same result would 
be obtained if the order
of (t) and h(t) were 
reversed, so convolution
is commutative.

f
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FIGURE 4.5
(a) A continuous
function. (b) Train
of impulses used
to model the
sampling process.
(c) Sampled
function formed
as the product of
(a) and (b).
(d) Sample values
obtained by
integration and
using the sifting
property of the
impulse. (The
dashed line in (c)
is shown for
reference. It is not
part of the data.)

4.3 Sampling and the Fourier Transform of Sampled
Functions

In this section, we use the concepts from Section 4.2 to formulate a basis for
expressing sampling mathematically. This will lead us, starting from basic prin-
ciples, to the Fourier transform of sampled functions.

4.3.1 Sampling
Continuous functions have to be converted into a sequence of discrete values
before they can be processed in a computer. This is accomplished by using
sampling and quantization, as introduced in Section 2.4. In the following dis-
cussion, we examine sampling in more detail.

With reference to Fig. 4.5, consider a continuous function, (t), that we
wish to sample at uniform intervals of the independent variable t. We(¢T)

f

a
b
c
d
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assume that the function extends from to with respect to t. One way
to model sampling is to multiply (t) by a sampling function equal to a train
of impulses units apart, as discussed in Section 4.2.3. That is,

(4.3-1)

where denotes the sampled function. Each component of this summation
is an impulse weighted by the value of (t) at the location of the impulse, as
Fig. 4.5(c) shows. The value of each sample is then given by the “strength” of
the weighted impulse, which we obtain by integration. That is, the value, of
an arbitrary sample in the sequence is given by

(4.3-2)

where we used the sifting property of in Eq. (4.2-10). Equation (4.3-2) holds
for any integer value Figure 4.5(d) shows the re-
sult, which consists of equally-spaced samples of the original function.

4.3.2 The Fourier Transform of Sampled Functions

Let denote the Fourier transform of a continuous function (t). As
discussed in the previous section, the corresponding sampled function, is
the product of (t) and an impulse train. We know from the convolution theo-
rem in Section 4.2.5 that the Fourier transform of the product of two functions
in the spatial domain is the convolution of the transforms of the two functions
in the frequency domain. Thus, the Fourier transform, of the sampled
function is:

(4.3-3)

where, from Example 4.2,

(4.3-4)S(m) =
1

¢T a
q

n = -q
d¢m -

n

¢T
≤

= F(m)�S(m)

= �Ef(t)s¢T(t)F
F
~

(m) = �Ef~(t)F
f
'

(t)
F
~

(m),

f
f
~

(t),
fF(m)

k = Á , -2, -1, 0, 1, 2, Á .
d

= f(k¢T)

fk = L
q

-q
f(t)d(t - k¢T) dt

fk,

f
f
~

(t)

~
f(t) = f(t)s¢T (t) = a

q

n = - q
f(t)d(t - n¢T)

¢T
f

q- q

Taking samples units
apart implies a sampling
rate equal to If the
units of are seconds,
then the sampling rate is
in samples/s. If the units
of are meters, then
the sampling rate is in
samples/m, and so on.

¢T

¢T
1>¢T.

¢T



4.3 ■ Sampling and the Fourier Transform of Sampled Functions 213

†For the sake of clarity in illustrations, sketches of Fourier transforms in Fig. 4.6, and other similar figures
in this chapter, ignore the fact that transforms typically are complex functions.

is the Fourier transform of the impulse train We obtain the convolution
of and directly from the definition in Eq. (4.2-20):

(4.3-5)

where the final step follows from the sifting property of the impulse, as given
in Eq. (4.2-10).

The summation in the last line of Eq. (4.3-5) shows that the Fourier transform
of the sampled function is an infinite, periodic sequence of copies of
the transform of the original, continuous function.The separation between

copies is determined by the value of Observe that although is a
sampled function, its transform is continuous because it consists of copies
of which is a continuous function.

Figure 4.6 is a graphical summary of the preceding results.† Figure 4.6(a) is a
sketch of the Fourier transform, of a function (t), and Fig. 4.6(b) shows
the transform, , of the sampled function.As mentioned in the previous sec-
tion, the quantity is the sampling rate used to generate the sampled func-
tion. So, in Fig. 4.6(b) the sampling rate was high enough to provide sufficient
separation between the periods and thus preserve the integrity of In
Fig. 4.6(c), the sampling rate was just enough to preserve but in Fig.
4.6(d), the sampling rate was below the minimum required to maintain dis-
tinct copies of and thus failed to preserve the original transform. Figure
4.6(b) is the result of an over-sampled signal, while Figs. 4.6(c) and (d) are the
results of critically-sampling and under-sampling the signal, respectively.
These concepts are the basis for the material in the following section.

4.3.3 The Sampling Theorem
We introduced the idea of sampling intuitively in Section 2.4. Now we consid-
er the sampling process formally and establish the conditions under which a
continuous function can be recovered uniquely from a set of its samples.
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A function (t) whose Fourier transform is zero for values of frequencies out-
side a finite interval (band) about the origin is called a band-limited
function. Figure 4.7(a), which is a magnified section of Fig. 4.6(a), is such a func-
tion. Similarly, Fig. 4.7(b) is a more detailed view of the transform of a critically-
sampled function shown in Fig. 4.6(c). A lower value of would cause the
periods in to merge; a higher value would provide a clean separation
between the periods.

We can recover (t) from its sampled version if we can isolate a copy of
from the periodic sequence of copies of this function contained in ,

the transform of the sampled function . Recall from the discussion in the
previous section that is a continuous, periodic function with period

Therefore, all we need is one complete period to characterize the entire
transform. This implies that we can recover (t) from that single period by
using the inverse Fourier transform.
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(a) Fourier
transform of a
band-limited
function.
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FIGURE 4.7
(a) Transform of a
band-limited
function.
(b) Transform
resulting from
critically sampling
the same function.

†The sampling theorem is a cornerstone of digital signal processing theory. It was first formulated in 1928
by Harry Nyquist, a Bell Laboratories scientist and engineer. Claude E. Shannon, also from Bell Labs,
proved the theorem formally in 1949. The renewed interest in the sampling theorem in the late 1940s
was motivated by the emergence of early digital computing systems and modern communications,
which created a need for methods dealing with digital (sampled) data.

A sampling rate equal to
exactly twice the highest
frequency is called the
Nyquist rate.

Extracting from a single period that is equal to is possible if the
separation between copies is sufficient (see Fig. 4.6). In terms of Fig. 4.7(b),
sufficient separation is guaranteed if or

(4.3-6)

This equation indicates that a continuous, band-limited function can be re-
covered completely from a set of its samples if the samples are acquired at a
rate exceeding twice the highest frequency content of the function.This result
is known as the sampling theorem.† We can say based on this result that no in-
formation is lost if a continuous, band-limited function is represented by sam-
ples acquired at a rate greater than twice the highest frequency content of the
function. Conversely, we can say that the maximum frequency that can be
“captured” by sampling a signal at a rate is Sampling at
the Nyquist rate sometimes is sufficient for perfect function recovery, but
there are cases in which this leads to difficulties, as we illustrate later in
Example 4.3. Thus, the sampling theorem specifies that sampling must exceed
the Nyquist rate.
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To see how the recovery of from is possible in principle, consider
Fig. 4.8, which shows the Fourier transform of a function sampled at a rate slightly
higher than the Nyquist rate.The function in Fig. 4.8(b) is defined by the equation

(4.3-7)

When multiplied by the periodic sequence in Fig. 4.8(a), this function isolates
the period centered on the origin.Then, as Fig. 4.8(c) shows, we obtain by
multiplying by 

(4.3-8)

Once we have we can recover (t) by using the inverse Fourier trans-
form:

(4.3-9)

Equations (4.3-7) through (4.3-9) prove that, theoretically, it is possible to
recover a band-limited function from samples of the function obtained at a
rate exceeding twice the highest frequency content of the function. As we
discuss in the following section, the requirement that (t) must be band-
limited implies in general that (t) must extend from to a conditionq ,- qf
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that cannot be met in practice. As you will see shortly, having to limit the du-
ration of a function prevents perfect recovery of the function, except in some
special cases.

Function is called a lowpass filter because it passes frequencies at the
low end of the frequency range but it eliminates (filters out) all higher fre-
quencies. It is called also an ideal lowpass filter because of its infinitely rapid
transitions in amplitude (between 0 and at location and the reverse
at ), a characteristic that cannot be achieved with physical electronic com-
ponents. We can simulate ideal filters in software, but even then there are lim-
itations, as we explain in Section 4.7.2. We will have much more to say about
filtering later in this chapter. Because they are instrumental in recovering (re-
constructing) the original function from its samples, filters used for the pur-
pose just discussed are called reconstruction filters.

4.3.4 Aliasing
A logical question at this point is: What happens if a band-limited function is
sampled at a rate that is less than twice its highest frequency? This corresponds
to the under-sampled case discussed in the previous section. Figure 4.9(a) is
the same as Fig. 4.6(d), which illustrates this condition.The net effect of lower-
ing the sampling rate below the Nyquist rate is that the periods now overlap,
and it becomes impossible to isolate a single period of the transform, regard-
less of the filter used. For instance, using the ideal lowpass filter in Fig. 4.9(b)
would result in a transform that is corrupted by frequencies from adjacent pe-
riods, as Fig. 4.9(c) shows. The inverse transform would then yield a corrupted
function of t. This effect, caused by under-sampling a function, is known as
frequency aliasing or simply as aliasing. In words, aliasing is a process in which
high frequency components of a continuous function “masquerade” as lower
frequencies in the sampled function.This is consistent with the common use of
the term alias, which means “a false identity.”

Unfortunately, except for some special cases mentioned below, aliasing is
always present in sampled signals because, even if the original sampled func-
tion is band-limited, infinite frequency components are introduced the mo-
ment we limit the duration of the function, which we always have to do in
practice. For example, suppose that we want to limit the duration of a band-
limited function (t) to an interval, say [0, T ]. We can do this by multiplying 

(t) by the function

(4.3-10)

This function has the same basic shape as Fig. 4.4(a) whose transform,
has frequency components extending to infinity, as Fig. 4.4(b) shows.

From the convolution theorem we know that the transform of the product
of h(t) (t) is the convolution of the transforms of the functions. Even if the
transform of (t) is band-limited, convolving it with which involves
sliding one function across the other, will yield a result with frequency
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components extending to infinity. Therefore, no function of finite duration
can be band-limited. Conversely, a function that is band-limited must ex-
tend from to †

We conclude that aliasing is an inevitable fact of working with sampled
records of finite length for the reasons stated in the previous paragraph. In
practice, the effects of aliasing can be reduced by smoothing the input function
to attenuate its higher frequencies (e.g., by defocusing in the case of an image).
This process, called anti-aliasing, has to be done before the function is sampled
because aliasing is a sampling issue that cannot be “undone after the fact”
using computational techniques.
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FIGURE 4.9 (a) Fourier transform of an under-sampled, band-limited function.
(Interference from adjacent periods is shown dashed in this figure). (b) The same ideal
lowpass filter used in Fig. 4.8(b). (c) The product of (a) and (b). The interference from
adjacent periods results in aliasing that prevents perfect recovery of and,
therefore, of the original, band-limited continuous function. Compare with Fig. 4.8.

F(m)

†An important special case is when a function that extends from to is band-limited and periodic. In
this case, the function can be truncated and still be band-limited, provided that the truncation encompass-
es exactly an integral number of periods. A single truncated period (and thus the function) can be repre-
sented by a set of discrete samples satisfying the sampling theorem, taken over the truncated interval.
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. . .
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t

�T

FIGURE 4.10 Illustration of aliasing. The under-sampled function (black dots) looks
like a sine wave having a frequency much lower than the frequency of the continuous
signal. The period of the sine wave is 2 s, so the zero crossings of the horizontal axis
occur every second. is the separation between samples.¢T

■ Figure 4.10 shows a classic illustration of aliasing. A pure sine wave
extending infinitely in both directions has a single frequency so, obviously, it is
band-limited. Suppose that the sine wave in the figure (ignore the large dots
for now) has the equation and that the horizontal axis corresponds to
time, t, in seconds. The function crosses the axis at 

The period, P, of is 2 s, and its frequency is 1 P, or 1 2 cycles s.
According to the sampling theorem, we can recover this signal from a set of
its samples if the sampling rate, exceeds twice the highest frequency
of the signal. This means that a sampling rate greater than 1 sample s

or is required to recover the signal. Observe that
sampling this signal at exactly twice the frequency (1 sample s), with sam-
ples taken at results in 

which are all 0. This illustrates the reason why the sampling the-
orem requires a sampling rate that exceeds twice the highest frequency, as
mentioned earlier.

The large dots in Fig. 4.10 are samples taken uniformly at a rate of less than
1 sample s (in fact, the separation between samples exceeds 2 s, which gives a
sampling rate lower than 1 2 samples s). The sampled signal looks like a sine
wave, but its frequency is about one-tenth the frequency of the original. This
sampled signal, having a frequency well below anything present in the original
continuous function is an example of aliasing. Given just the samples in 
Fig. 4.10, the seriousness of aliasing in a case such as this is that we would have
no way of knowing that these samples are not a true representation of the
original function. As you will see in later in this chapter, aliasing in images can
produce similarly misleading results. ■

4.3.5 Function Reconstruction (Recovery) from Sampled Data
In this section, we show that reconstruction of a function from a set of its sam-
ples reduces in practice to interpolating between the samples. Even the simple
act of displaying an image requires reconstruction of the image from its samples

>>>

sin(2p), Á ,
Á sin(-p), sin(0), sin(p),t = Á -1, 0, 1, 2, 3 Á ,

>¢T 6 1 s,[2 * (1>2) = 1],
>1>¢T,

>>>sin(pt)
t = Á -1, 0, 1, 2, 3 Á .

sin(pt),

Recall that 1 cycle/s is
defined as 1 Hz.

EXAMPLE 4.3:
Aliasing.
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by the display medium. Therefore, it is important to understand the fundamen-
tals of sampled data reconstruction. Convolution is central to developing this
understanding, showing again the importance of this concept.

The discussion of Fig. 4.8 and Eq. (4.3-8) outlines the procedure for perfect
recovery of a band-limited function from its samples using frequency domain
methods. Using the convolution theorem, we can obtain the equivalent result
in the spatial domain. From Eq. (4.3-8), so it follows that

(4.3-11)

where the last step follows from the convolution theorem, Eq. (4.2-21). It can
be shown (Problem 4.6) that substituting Eq. (4.3-1) for into Eq. (4.3-11)
and then using Eq. (4.2-20) leads to the following spatial domain expression
for (t):

(4.3-12)

where the sinc function is defined in Eq. (4.2-19). This result is not unexpected
because the inverse Fourier transform of the box filter, is a sinc function
(see Example 4.1). Equation (4.3-12) shows that the perfectly reconstructed
function is an infinite sum of sinc functions weighted by the sample values, and
has the important property that the reconstructed function is identically equal
to the sample values at multiple integer increments of That is, for any

where k is an integer, (t) is equal to the kth sample This
follows from Eq. (4.3-12) because and for any other
integer value of m. Between sample points, values of (t) are interpolations
formed by the sum of the sinc functions.

Equation (4.3-12) requires an infinite number of terms for the interpola-
tions between samples. In practice, this implies that we have to look for ap-
proximations that are finite interpolations between samples. As we discussed
in Section 2.4.4, the principal interpolation approaches used in image process-
ing are nearest-neighbor, bilinear, and bicubic interpolation.We discuss the ef-
fects of interpolation on images in Section 4.5.4.

4.4 The Discrete Fourier Transform (DFT) of One
Variable

One of the key goals of this chapter is the derivation of the discrete Fourier
transform (DFT) starting from basic principles. The material up to this point
may be viewed as the foundation of those basic principles, so now we have in
place the necessary tools to derive the DFT.

f
sinc(m) = 0sinc(0) = 1

f(k¢T).ft = k ¢T,
¢T.

H(m),

f(t) = a
q

n = -q
f(n ¢T) sinc C(t - n ¢T)>n¢T D

f

f
~

(t)

= h(t)� f
~

(t)

= �-15H(m)F
~

(m)6
f(t) = �-15F(m)6

F(m) = H(m)F
~

(m) ,
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4.4.1 Obtaining the DFT from the Continuous Transform 
of a Sampled Function

As discussed in Section 4.3.2, the Fourier transform of a sampled, band-limited
function extending from to is a continuous, periodic function that also
extends from to In practice, we work with a finite number of samples,
and the objective of this section is to derive the DFT corresponding to such
sample sets.

Equation (4.3-5) gives the transform, of sampled data in terms of the
transform of the original function, but it does not give us an expression for

in terms of the sampled function itself. We find such an expression
directly from the definition of the Fourier transform in Eq. (4.2-16):

(4.4-1)

By substituting Eq. (4.3-1) for we obtain

(4.4-2)

where the last step follows from Eq. (4.3-2). Although is a discrete function,

its Fourier is continuous and infinitely periodic with period as we

know from Eq. (4.3-5).Therefore, all we need to characterize is one period,

and sampling one period is the basis for the DFT.
Suppose that we want to obtain M equally spaced samples of taken

over the period to This is accomplished by taking the sam-
ples at the following frequencies:

(4.4-3)

Substituting this result for into Eq. (4.4-2) and letting denote the result
yields

(4.4-4)Fm = a
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n = 0
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This expression is the discrete Fourier transform we are seeking.† Given a set
consisting of M samples of (t), Eq. (4.4-4) yields a sample set of M

complex discrete values corresponding to the discrete Fourier transform of the
input sample set. Conversely, given we can recover the sample set 
by using the inverse discrete Fourier transform (IDFT)

(4.4-5)

It is not difficult to show (Problem 4.8) that substituting Eq. (4.4-5) for 
into Eq. (4.4-4) gives the identity Similarly, substituting Eq. (4.4-4)
into Eq. (4.4-5) for yields This implies that Eqs. (4.4-4) and (4.4-5)
constitute a discrete Fourier transform pair. Furthermore, these identities in-
dicate that the forward and inverse Fourier transforms exist for any set of
samples whose values are finite. Note that neither expression depends ex-
plicitly on the sampling interval nor on the frequency intervals of Eq.
(4.4-3). Therefore, the DFT pair is applicable to any finite set of discrete
samples taken uniformly.

We used m and n in the preceding development to denote discrete variables
because it is typical to do so for derivations. However, it is more intuitive, es-
pecially in two dimensions, to use the notation x and y for image coordinate
variables and u and v for frequency variables, where these are understood to
be integers.‡ Then, Eqs. (4.4-4) and (4.4-5) become

(4.4-6)

and

(4.4-7)

where we used functional notation instead of subscripts for simplicity. Clearly,
and From this point on, we use Eqs. (4.4-6) and (4.4-7)

to denote the 1-D DFT pair. Some authors include the 1 M term in Eq. (4.4-6)
instead of the way we show it in Eq. (4.4-7).That does not affect the proof that
the two equations form a Fourier transform pair.

>f(x) K fn.F(u) K Fm

f(x) =
1

M a
M - 1

u = 0
F(u)e j 2pux>M x = 0, 1, 2, Á , M - 1

F(u) = a
M - 1

x = 0
f(x)e-j 2pux>M u = 0, 1, 2, Á , M - 1

¢T

fn K fn.Fm

Fm K Fm.
fn

fn =
1

M a
M - 1

m = 0
Fme j 2pmn>M n = 0, 1, 2, Á , M - 1

5fn65Fm6,
5Fm6f5fn6

†Note from Fig. 4.6(b) that the interval covers two back-to-back half periods of the transform.
This means that the data in requires re-ordering to obtain samples that are ordered from the lowest
the highest frequency of a period. This is the price paid for the notational convenience of taking the
samples at instead of using samples on either side of the origin, which would re-
quire the use of negative notation. The procedure to order the transform data is discussed in Section
4.6.3.

‡We have been careful in using t for continuous spatial variables and for the corresponding continuous
frequency variable. From this point on, we will use x and u to denote one-dimensional discrete spatial
and frequency variables, respectively. When dealing with two-dimensional functions, we will use (t, z)
and to denote continuous spatial and frequency domain variables, respectively. Similarly, we will use
(x, y) and (u, v) to denote their discrete counterparts.

(m, n)

m

m = 0, 1, Á , M - 1,

Fm

[0, 1>¢T]
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It can be shown (Problem 4.9) that both the forward and inverse discrete
transforms are infinitely periodic, with period M. That is,

(4.4-8)

and

(4.4-9)

where k is an integer.
The discrete equivalent of the convolution in Eq. (4.2-20) is

(4.4-10)

for Because in the preceding formulations the functions
are periodic, their convolution also is periodic. Equation (4.4-10) gives one
period of the periodic convolution. For this reason, the process inherent in this
equation often is referred to as circular convolution, and is a direct result of the
periodicity of the DFT and its inverse. This is in contrast with the convolution
you studied in Section 3.4.2, in which values of the displacement, x, were deter-
mined by the requirement of sliding one function completely past the other,
and were not fixed to the range as in circular convolution.We discuss
this difference and its significance in Section 4.6.3 and in Fig. 4.28.

Finally, we point out that the convolution theorem given in Eqs. (4.2-21) and
(4.2-22) is applicable also to discrete variables (Problem 4.10).

4.4.2 Relationship Between the Sampling and Frequency Intervals

If (x) consists of M samples of a function (t) taken units apart, the
duration of the record comprising the set is

(4.4-11)

The corresponding spacing, in the discrete frequency domain follows from
Eq. (4.4-3):

(4.4-12)

The entire frequency range spanned by the M components of the DFT is

(4.4-13)

Thus, we see from Eqs. (4.4-12) and (4.4-13) that that the resolution in fre-
quency, of the DFT depends on the duration T over which the continuous
function, (t), is sampled, and the range of frequencies spanned by the DFT
depends on the sampling interval Observe that both expressions exhibit
inverse relationships with respect to T and ¢T.

¢T.
f
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1
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¢u,
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Ef(x)F , x = 0, 1, 2, Á , M - 1,
¢Tff

[0, M - 1]

x = 0, 1, 2, Á , M - 1.

f(x)�h(x) = a
M - 1

m = 0
f(m)h(x - m)

f(x) = f(x + kM)

F(u) = F(u + kM)

It is not obvious why the
discrete function (x)
should be periodic, con-
sidering that the continu-
ous function from which
it was sampled may not
be. One informal way to
reason this out is to keep
in mind that sampling re-
sults in a periodic DFT. It
is logical that (x), which
is the inverse DFT, has to
be periodic also for the
DFT pair to exist.

f

f
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■ Figure 4.11(a) shows four samples of a continuous function, (t), taken 
units apart. Figure 4.11(b) shows the sampled values in the x-domain. Note
that the values of x are 0, 1, 2, and 3, indicating that we could be referring to
any four samples of (t).

From Eq. (4.4-6),

The next value of (u) is

Similarly, and Observe that all values of
(x) are used in computing each term of (u).

If instead we were given (u) and were asked to compute its inverse, we
would proceed in the same manner, but using the inverse transform. For instance,

which agrees with Fig. 4.11(b). The other values of (x) are obtained in a simi-
lar manner. ■
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¢TfEXAMPLE 4.4:
The mechanics of
computing the
DFT.
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FIGURE 4.11
(a) A function,
and (b) samples in
the x-domain. In
(a), t is a
continuous
variable; in (b), x
represents integer
values.
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4.5 Extension to Functions of Two Variables

In this section, we extend to two variables the concepts introduced in Sections
4.2 through 4.4.

4.5.1 The 2-D Impulse and Its Sifting Property
The impulse, of two continuous variables, t and z, is defined as in 
Eq. (4.2-8):

(4.5-1a)

and

(4.5-1b)

As in the 1-D case, the 2-D impulse exhibits the sifting property under
integration,

(4.5-2)

or, more generally for an impulse located at coordinates 

(4.5-3)

As before, we see that the sifting property yields the value of the function 
at the location of the impulse.

For discrete variables x and y, the 2-D discrete impulse is defined as

(4.5-4)

and its sifting property is

(4.5-5)

where is a function of discrete variables x and y. For an impulse located
at coordinates (see Fig. 4.12) the sifting property is

(4.5-6)

As before, the sifting property of a discrete impulse yields the value of the dis-
crete function at the location of the impulse.(x, y)f
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■ Figure 4.13(a) shows a 2-D function analogous to the 1-D case in Example 4.1.
Following a procedure similar to the one used in that example gives the result

The magnitude (spectrum) is given by the expression

Figure 4.13(b) shows a portion of the spectrum about the origin. As in the 1-D
case, the locations of the zeros in the spectrum are inversely proportional to

ƒ F(m, n) ƒ = ATZ ` sin(pmT)
(pmT)

` ` sin(pnZ)
(pnZ)

`

= ATZ B sin(pmT)
(pmT)

R B sin(pnZ)
(pnZ)

R
= L

T> 2

-T> 2L
Z> 2

-Z> 2
Ae-j 2p(mt +nz) dt dz

F(m, n) = L
q

-qL
q

-q
f(t, z)e-j 2p(mt +nz) dt dz

EXAMPLE 4.5:
Obtaining the 2-D
Fourier transform
of a simple
function.

4.5.2 The 2-D Continuous Fourier Transform Pair
Let be a continuous function of two continuous variables, t and z. The
two-dimensional, continuous Fourier transform pair is given by the expressions

(4.5-7)

and

(4.5-8)

where and are the frequency variables. When referring to images, t and z
are interpreted to be continuous spatial variables. As in the 1-D case, the do-
main of the variables and defines the continuous frequency domain.nm
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FIGURE 4.12
Two-dimensional
unit discrete
impulse. Variables
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discrete, and is
zero everywhere
except at
coordinates
(x0, y0).
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the values of T and Z. Thus, the larger T and Z are, the more “contracted” the
spectrum will become, and vice versa. ■

4.5.3 Two-Dimensional Sampling and the 2-D Sampling Theorem
In a manner similar to the 1-D case, sampling in two dimensions can be mod-
eled using the sampling function (2-D impulse train):

(4.5-9)

where and are the separations between samples along the t- and z-axis
of the continuous function . Equation (4.5-9) describes a set of periodic
impulses extending infinitely along the two axes (Fig. 4.14). As in the 1-D case
illustrated in Fig. 4.5, multiplying by yields the sampled
function.

Function is said to be band-limited if its Fourier transform is 0 out-
side a rectangle established by the intervals and ;
that is,

(4.5-10)

The two-dimensional sampling theorem states that a continuous, band-limited
function can be recovered with no error from a set of its samples if the
sampling intervals are

(4.5-11)

and

(4.5-12)

or, expressed in terms of the sampling rate, if
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FIGURE 4.13 (a) A 2-D function, and (b) a section of its spectrum (not to scale). The
block is longer along the t-axis, so the spectrum is more “contracted” along the 
Compare with Fig. 4.4.

m-axis.
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m m

v

vmax

v

mmax

Footprint of an
ideal lowpass
(box) filter

FIGURE 4.15
Two-dimensional
Fourier transforms
of (a) an over-
sampled, and 
(b) under-sampled
band-limited
function.
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FIGURE 4.14
Two-dimensional
impulse train.

(4.5-13)

and

(4.5-14)

Stated another way, we say that no information is lost if a 2-D, band-limited, con-
tinuous function is represented by samples acquired at rates greater than twice
the highest frequency content of the function in both the and 

Figure 4.15 shows the 2-D equivalents of Figs. 4.6(b) and (d).A 2-D ideal box
filter has the form illustrated in Fig. 4.13(a). The dashed portion of Fig. 4.15(a)
shows the location of the filter to achieve the necessary isolation of a single pe-
riod of the transform for reconstruction of a band-limited function from its sam-
ples, as in Section 4.3.3. From Section 4.3.4, we know that if the function is
under-sampled the periods overlap, and it becomes impossible to isolate a single
period, as Fig. 4.15(b) shows.Aliasing would result under such conditions.

4.5.4 Aliasing in Images
In this section, we extend the concept of aliasing to images and discuss several
aspects related to image sampling and resampling.

n-directions.m-

1
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■ Suppose that we have an imaging system that is perfect, in the sense that it
is noiseless and produces an exact digital image of what it sees, but the number
of samples it can take is fixed at pixels. If we use this system to digitize
checkerboard patterns, it will be able to resolve patterns that are up to

squares, in which the size of each square is pixels. In this limit-
ing case, each pixel in the resulting image will correspond to one square in the
pattern. We are interested in examining what happens when the detail (the
size of the checkerboard squares) is less than one camera pixel; that is, when
the imaging system is asked to digitize checkerboard patterns that have more
than squares in the field of view.

Figures 4.16(a) and (b) show the result of sampling checkerboards whose
squares are of size 16 and 6 pixels on the side, respectively. These results are as
expected. However, when the size of the squares is reduced to slightly less than
one camera pixel a severely aliased image results, as Fig. 4.16(c) shows. Finally,
reducing the size of the squares to slightly less than 0.5 pixels on the side yielded
the image in Fig. 4.16(d). In this case, the aliased result looks like a normal
checkerboard pattern. In fact, this image would result from sampling a checker-
board image whose squares were 12 pixels on the side.This last image is a good
reminder that aliasing can create results that may be quite misleading. ■

The effects of aliasing can be reduced by slightly defocusing the scene to be
digitized so that high frequencies are attenuated.As explained in Section 4.3.4,
anti-aliasing filtering has to be done at the “front-end,” before the image is
sampled.There are no such things as after-the-fact software anti-aliasing filters
that can be used to reduce the effects of aliasing caused by violations of the
sampling theorem. Most commercial digital image manipulation packages do
have a feature called “anti-aliasing.” However, as illustrated in Examples 4.7

96 * 96

1 * 196 * 96

96 * 96

EXAMPLE 4.6:
Aliasing in
images.

Extension from 1-D aliasing

As in the 1-D case, a continuous function of two continuous variables, t and
z, can be band-limited in general only if it extends infinitely in both coordinate di-
rections.The very act of limiting the duration of the function introduces corrupting
frequency components extending to infinity in the frequency domain,as explained
in Section 4.3.4. Because we cannot sample a function infinitely, aliasing is always
present in digital images, just as it is present in sampled 1-D functions. There are
two principal manifestations of aliasing in images: spatial aliasing and temporal
aliasing. Spatial aliasing is due to under-sampling, as discussed in Section 4.3.4.
Temporal aliasing is related to time intervals between images in a sequence of im-
ages. One of the most common examples of temporal aliasing is the “wagon
wheel” effect, in which wheels with spokes in a sequence of images (for example,
in a movie) appear to be rotating backwards.This is caused by the frame rate being
too low with respect to the speed of wheel rotation in the sequence.

Our focus in this chapter is on spatial aliasing. The key concerns with spatial
aliasing in images are the introduction of artifacts such as jaggedness in line
features, spurious highlights, and the appearance of frequency patterns not pre-
sent in the original image. The following example illustrates aliasing in images.

(t, z)f

This example should not
be construed as being un-
realistic. Sampling a
“perfect” scene under
noiseless, distortion-free
conditions is common
when converting computer-
generated models and
vector drawings to digital
images.
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and 4.8, this term is related to blurring a digital image to reduce additional
aliasing artifacts caused by resampling. The term does not apply to reducing
aliasing in the original sampled image. A significant number of commercial
digital cameras have true anti-aliasing filtering built in, either in the lens or on
the surface of the sensor itself. For this reason, it is difficult to illustrate alias-
ing using images obtained with such cameras.

Image interpolation and resampling

As in the 1-D case, perfect reconstruction of a band-limited image function
from a set of its samples requires 2-D convolution in the spatial domain with a
sinc function. As explained in Section 4.3.5, this theoretically perfect recon-
struction requires interpolation using infinite summations which, in practice,
forces us to look for approximations. One of the most common applications of
2-D interpolation in image processing is in image resizing (zooming and
shrinking). Zooming may be viewed as over-sampling, while shrinking may be
viewed as under-sampling. The key difference between these two operations
and the sampling concepts discussed in previous sections is that zooming and
shrinking are applied to digital images.

Interpolation was explained in Section 2.4.4. Our interest there was to illus-
trate the performance of nearest neighbor, bilinear, and bicubic interpolation.
In this section, we give some additional examples with a focus on sampling and
anti-aliasing issues.A special case of nearest neighbor interpolation that ties in
nicely with over-sampling is zooming by pixel replication, which is applicable
when we want to increase the size of an image an integer number of times. For

FIGURE 4.16 Aliasing in images. In (a) and (b), the lengths of the sides of the squares
are 16 and 6 pixels, respectively, and aliasing is visually negligible. In (c) and (d), the
sides of the squares are 0.9174 and 0.4798 pixels, respectively, and the results show
significant aliasing. Note that (d) masquerades as a “normal” image.

a b
c d



4.5 ■ Extension to Functions of Two Variables 231

FIGURE 4.17 Illustration of aliasing on resampled images. (a) A digital image with negligible visual aliasing.
(b) Result of resizing the image to 50% of its original size by pixel deletion. Aliasing is clearly visible.
(c) Result of blurring the image in (a) with a averaging filter prior to resizing. The image is slightly
more blurred than (b), but aliasing is not longer objectionable. (Original image courtesy of the Signal
Compression Laboratory, University of California, Santa Barbara.)

3 * 3

■ The effects of aliasing generally are worsened when the size of a digital
image is reduced. Figure 4.17(a) is an image purposely created to illustrate the
effects of aliasing (note the thinly-spaced parallel lines in all garments worn by
the subject).There are no objectionable artifacts in Fig. 4.17(a), indicating that

instance, to double the size of an image, we duplicate each column. This dou-
bles the image size in the horizontal direction. Then, we duplicate each row of
the enlarged image to double the size in the vertical direction. The same pro-
cedure is used to enlarge the image any integer number of times.The intensity-
level assignment of each pixel is predetermined by the fact that new locations
are exact duplicates of old locations.

Image shrinking is done in a manner similar to zooming. Under-sampling is
achieved by row-column deletion (e.g., to shrink an image by one-half, we
delete every other row and column). We can use the zooming grid analogy in
Section 2.4.4 to visualize the concept of shrinking by a non-integer factor, ex-
cept that we now expand the grid to fit over the original image, do intensity-
level interpolation, and then shrink the grid back to its specified size.To reduce
aliasing, it is a good idea to blur an image slightly before shrinking it (we discuss
frequency domain blurring in Section 4.8). An alternate technique is to super-
sample the original scene and then reduce (resample) its size by row and col-
umn deletion. This can yield sharper results than with smoothing, but it clearly
requires access to the original scene. Clearly, if we have no access to the original
scene (as typically is the case in practice) super-sampling is not an option.

EXAMPLE 4.7:
Illustration of
aliasing in
resampled images.

a b c

The process of resam-
pling an image without
using band-limiting blur-
ring is called decimation.
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the sampling rate used initially was sufficient to avoid visible aliasing. In
Fig. 4.17(b), the image was reduced to 50% of its original size using row-
column deletion. The effects of aliasing are quite visible in this image (see,
for example the areas around the subject’s knees). The digital “equivalent”
of anti-aliasing filtering of continuous images is to attenuate the high fre-
quencies of a digital image by smoothing it before resampling. Figure
4.17(c) shows the result of smoothing the image in Fig. 4.17(a) with a 
averaging filter (see Section 3.5) before reducing its size. The improvement
over Fig. 4.17(b) is evident. Images (b) and (c) were resized up to their orig-
inal dimension by pixel replication to simplify comparisons. ■

When you work with images that have strong edge content, the effects of
aliasing are seen as block-like image components, called jaggies. The following
example illustrates this phenomenon.

3 * 3

EXAMPLE 4.8:
Illustration of
jaggies in image
shrinking.

■ Figure 4.18(a) shows a digital image of a computer-generated
scene in which aliasing is negligible. Figure 4.18(b) is the result of reducing
the size of (a) by 75% to pixels using bilinear interpolation and
then using pixel replication to bring the image back to its original size in
order to make the effects of aliasing (jaggies in this case) more visible. As in
Example 4.7, the effects of aliasing can be made less objectionable by
smoothing the image before resampling. Figure 4.18(c) is the result of using a

averaging filter prior to reducing the size of the image. As this figure
shows, jaggies were reduced significantly. The size reduction and increase to
the original size in Fig. 4.18(c) were done using the same approach used to
generate Fig. 4.18(b). ■

5 * 5

256 * 256

1024 * 1024

FIGURE 4.18 Illustration of jaggies. (a) A digital image of a computer-generated scene with
negligible visible aliasing. (b) Result of reducing (a) to 25% of its original size using bilinear interpolation.
(c) Result of blurring the image in (a) with a averaging filter prior to resizing it to 25% using bilinear
interpolation. (Original image courtesy of D. P. Mitchell, Mental Landscape, LLC.)

5 * 5

1024 * 1024

a b c
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■ In the previous two examples, we used pixel replication to zoom the small
resampled images. This is not a preferred approach in general, as Fig. 4.19 il-
lustrates. Figure 4.19(a) shows a zoomed image generated by
pixel replication from a section out of the center of the image in
Fig. 4.18(a). Note the “blocky” edges. The zoomed image in Fig. 4.19(b) was
generated from the same section, but using bilinear interpolation.
The edges in this result are considerably smoother. For example, the edges of
the bottle neck and the large checkerboard squares are not nearly as blocky
in (b) as they are in (a). ■

Moiré patterns

Before leaving this section, we examine another type of artifact, called moiré
patterns,† that sometimes result from sampling scenes with periodic or nearly
periodic components. In optics, moiré patterns refer to beat patterns pro-
duced between two gratings of approximately equal spacing. These patterns
are a common everyday occurrence.We see them, for example, in overlapping
insect window screens and on the interference between TV raster lines and
striped materials. In digital image processing, the problem arises routinely
when scanning media print, such as newspapers and magazines, or in images
with periodic components whose spacing is comparable to the spacing be-
tween samples. It is important to note that moiré patterns are more general
than sampling artifacts. For instance, Fig. 4.20 shows the moiré effect using ink
drawings that have not been digitized. Separately, the patterns are clean and
void of interference. However, superimposing one pattern on the other creates

256 * 256

256 * 256
1024 * 1024

FIGURE 4.19 Image zooming. (a) A digital image generated by pixel
replication from a image extracted from the middle of Fig. 4.18(a).
(b) Image generated using bi-linear interpolation, showing a significant reduction in
jaggies.

256 * 256
1024 * 1024

EXAMPLE 4.9:
Illustration of
jaggies in image
zooming.

†The term moiré is a French word (not the name of a person) that appears to have originated with
weavers who first noticed interference patterns visible on some fabrics; the term is rooted on the word
mohair, a cloth made from Angola goat hairs.

a b
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a beat pattern that has frequencies not present in either of the original pat-
terns. Note in particular the moiré effect produced by two patterns of dots, as
this is the effect of interest in the following discussion.

Newspapers and other printed materials make use of so called halftone
dots, which are black dots or ellipses whose sizes and various joining schemes
are used to simulate gray tones. As a rule, the following numbers are typical:
newspapers are printed using 75 halftone dots per inch (dpi for short), maga-
zines use 133 dpi, and high-quality brochures use 175 dpi. Figure 4.21 shows

Color printing uses red,
green, and blue dots to
produce the sensation in
the eye of continuous
color.

FIGURE 4.20
Examples of the
moiré effect.
These are ink
drawings, not
digitized patterns.
Superimposing
one pattern on
the other is
equivalent
mathematically to
multiplying the
patterns.

a b c
d e f

FIGURE 4.21
A newspaper
image of size

pixels
sampled at 75 dpi
showing a moiré
pattern. The
moiré pattern in
this image is the
interference
pattern created
between the 
orientation of the
halftone dots and
the north–south
orientation of the
sampling grid
used to digitize
the image.

;45°

246 * 168
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†As mentioned in Section 4.4.1, keep in mind that in this chapter we use (t, z) and to denote 2-D
continuous spatial and frequency-domain variables. In the 2-D discrete case, we use (x, y) for spatial
variables and for frequency-domain variables.(u, v)

(m, n)

Sometimes you will find
in the literature the
1/MN constant in front of
DFT instead of the
IDFT. At times, the con-
stant is expressed as

and is included
in front of the forward
and inverse transforms,
thus creating a more
symmetric pair. Any of
these formulations is cor-
rect, provided that you
are consistent.

1>2MN

what happens when a newspaper image is sampled at 75 dpi. The sampling lat-
tice (which is oriented vertically and horizontally) and dot patterns on the
newspaper image (oriented at ) interact to create a uniform moiré pat-
tern that makes the image look blotchy. (We discuss a technique in Section
4.10.2 for reducing moiré interference patterns.)

As a related point of interest, Fig. 4.22 shows a newspaper image sam-
pled at 400 dpi to avoid moiré effects. The enlargement of the region sur-
rounding the subject’s left eye illustrates how halftone dots are used to
create shades of gray. The dot size is inversely proportional to image inten-
sity. In light areas, the dots are small or totally absent (see, for example, the
white part of the eye). In light gray areas, the dots are larger, as shown
below the eye. In darker areas, when dot size exceeds a specified value (typ-
ically 50%), dots are allowed to join along two specified directions to form
an interconnected mesh (see, for example, the left part of the eye). In some
cases the dots join along only one direction, as in the top right area below
the eyebrow.

4.5.5 The 2-D Discrete Fourier Transform and Its Inverse
A development similar to the material in Sections 4.3 and 4.4 would yield the
following 2-D discrete Fourier transform (DFT):

(4.5-15)

where is a digital image of size As in the 1-D case, Eq. (4.5-15)
must be evaluated for values of the discrete variables u and v in the ranges

and †v = 0, 1, 2, Á , N - 1.u = 0, 1, 2, Á , M - 1

M * N.(x, y)f

F(u, v) = a
M - 1

x = 0
a

N - 1

y = 0
f(x, y)e-j2p(ux>M + vy>N)

;45°

FIGURE 4.22
A newspaper
image and an
enlargement
showing how
halftone dots are
arranged to
render shades of
gray.
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Given the transform , we can obtain by using the inverse dis-
crete Fourier transform (IDFT):

(4.5-16)

for and Equations (4.5-15) and
(4.5-16) constitute the 2-D discrete Fourier transform pair. The rest of this
chapter is based on properties of these two equations and their use for image
filtering in the frequency domain.

4.6 Some Properties of the 2-D Discrete Fourier
Transform

In this section, we introduce several properties of the 2-D discrete Fourier
transform and its inverse.

4.6.1 Relationships Between Spatial and Frequency Intervals
The relationships between spatial sampling and the corresponding frequency-
domain intervals are as explained in Section 4.4.2. Suppose that a continuous
function is sampled to form a digital image, , consisting of

samples taken in the t- and z-directions, respectively. Let and 
denote the separations between samples (see Fig. 4.14). Then, the separations
between the corresponding discrete, frequency domain variables are given by

(4.6-1)

and

(4.6-2)

respectively. Note that the separations between samples in the frequency do-
main are inversely proportional both to the spacing between spatial samples
and the number of samples.

4.6.2 Translation and Rotation
It can be shown by direct substitution into Eqs. (4.5-15) and (4.5-16) that
the Fourier transform pair satisfies the following translation properties
(Problem 4.16):

(4.6-3)

and

(4.6-4)f(x - x0, y - y0) 3 F(u, v)e-j2p(x0u>M + y0 v>N)

f(x, y)e j 2p(u0x>M + v0 y>N) 3 F(u - u0, v - v0)

¢v =
1

N¢Z

¢u =
1

M¢T

¢Z¢TM * N
(x, y)f(t, z)f

y = 0, 1, 2, Á , N - 1.x = 0, 1, 2, Á , M - 1

f(x, y) =
1

MN a
M - 1

u = 0
a

N - 1

v = 0
F(u, v)e j 2p(ux>M + vy>N)

(x, y)f(u, v)F
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That is, multiplying by the exponential shown shifts the origin of the
DFT to and, conversely, multiplying by the negative of that
exponential shifts the origin of to As we illustrate in
Example 4.13, translation has no effect on the magnitude (spectrum) of 

.
Using the polar coordinates

results in the following transform pair:

(4.6-5)

which indicates that rotating by an angle rotates by the same
angle. Conversely, rotating rotates by the same angle.

4.6.3 Periodicity
As in the 1-D case, the 2-D Fourier transform and its inverse are infinitely pe-
riodic in the u and v directions; that is,

(4.6-6)

and

(4.6-7)

where and are integers.
The periodicities of the transform and its inverse are important issues in

the implementation of DFT-based algorithms. Consider the 1-D spectrum in
Fig. 4.23(a). As explained in Section 4.4.1, the transform data in the interval
from 0 to consists of two back-to-back half periods meeting at point
M 2. For display and filtering purposes, it is more convenient to have in this
interval a complete period of the transform in which the data are contiguous,
as in Fig. 4.23(b). It follows from Eq. (4.6-3) that

In other words, multiplying (x) by the exponential term shown shifts the data
so that the origin, (0), is located at If we let the exponential
term becomes which is equal to because x is an integer. In this case,

That is, multiplying (x) by shifts the data so that (0) is at the center of
the interval which corresponds to Fig. 4.23(b), as desired.

In 2-D the situation is more difficult to graph, but the principle is the same,
as Fig. 4.23(c) shows. Instead of two half periods, there are now four quarter
periods meeting at the point (M 2, N 2). The dashed rectangles correspond to>>

[0, M - 1],
F(-1)xf

f(x)(-1)x 3 F(u - M>2)

(-1)xe jpx
u0 = M>2,u0.F

f

f(x)e j 2p(u0x/M) 3 F(u - u0)

> M - 1

k2k1

f(x, y) = f(x + k1M, y) = f(x, y + k2N) = f(x + k1M, y + k2N)

F(u, v) = F(u + k1M, v) = F(u, v + k2N) = F(u + k1M, v + k2N)

(x, y)f(u, v)F
(u, v)Fu0(x, y)f

f(r, u + u0) 3 F(v, w + u0)

x = r cos u y = r sin u u = v cos w v = v sin w

(u, v)F

(x0, y0).(x, y)f
(u, v)F(u0, v0)

(x, y)f
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the infinite number of periods of the 2-D DFT.As in the 1-D case, visualization
is simplified if we shift the data so that is at (M 2, N 2). Letting

in Eq. (4.6-3) results in the expression

(4.6-8)

Using this equation shifts the data so that is at the center of the
frequency rectangle defined by the intervals and as
desired. Figure 4.23(d) shows the result. We illustrate these concepts later in
this section as part of Example 4.11 and Fig. 4.24.

[0, N - 1],[0, M - 1]
F(0, 0)

f(x, y)(-1)x + y 3 F(u - M>2, v - N>2)

(u0, v0) = (M>2, N>2)
>>F(0, 0)

�M/2 M/2 � 10

0

(0, 0)

M/2

M/2

N/2

M/2

M � 1

M � 1

M � 1

N � 1

M

Two back-to-back
periods meet here.

F(u)

F(u)

F(u, v)

F(u, v)

u

u

u

v

Two back-to-back
periods meet here.

Four back-to-back
periods meet here.

Four back-to-back
periods meet here.

One period (M samples)

� Periods of the DFT.

� M � N data array, F(u, v).

FIGURE 4.23
Centering the
Fourier transform.
(a) A 1-D DFT
showing an infinite
number of periods.
(b) Shifted DFT
obtained by
multiplying (x)
by before
computing (u).
(c) A 2-D DFT
showing an infinite
number of periods.
The solid area is
the data
array, (u, v),
obtained with Eq.
(4.5-15). This array
consists of four
quarter periods.
(d) A Shifted DFT
obtained by
multiplying (x, y)
by
before computing

(u, v). The data
now contains one
complete, centered
period, as in (b).

F

(-1)x + y
f

F
M * N

F
(-1)x

f

a
b
c d
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4.6.4 Symmetry Properties
An important result from functional analysis is that any real or complex func-
tion, w(x, y), can be expressed as the sum of an even and an odd part (each of
which can be real or complex):

(4.6-9)

where the even and odd parts are defined as

(4.6-10a)

and

(4.6-10b)

Substituting Eqs. (4.6-10a) and (4.6-10b) into Eq. (4.6-9) gives the identity
thus proving the validity of the latter equation. It follows

from the preceding definitions that

(4.6-11a)

and that

(4.6-11b)

Even functions are said to be symmetric and odd functions are antisymmetric.
Because all indices in the DFT and IDFT are positive, when we talk about
symmetry (antisymmetry) we are referring to symmetry (antisymmetry) about
the center point of a sequence. In terms of Eq. (4.6-11), indices to the right of
the center point of a 1-D array are considered positive, and those to the left
are considered negative (similarly in 2-D). In our work, it is more convenient
to think only in terms of nonnegative indices, in which case the definitions of
evenness and oddness become:

(4.6-12a)

and

(4.6-12b)

where, as usual, M and N are the number of rows and columns of a 2-D array.

wo(x, y) = -wo(M - x, N - y)

we(x, y) = we(M - x, N - y)

wo(x, y) = -wo(-x, -y)

we(x, y) = we(-x, -y)

w(x, y) K w(x, y),

wo(x, y) !
w(x, y) - w(-x, -y)

2

we(x, y) !
w(x, y) + w(-x, -y)

2

w(x, y) = we(x, y) + wo(x, y)
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We know from elementary mathematical analysis that the product of two
even or two odd functions is even, and that the product of an even and an
odd function is odd. In addition, the only way that a discrete function can be
odd is if all its samples sum to zero. These properties lead to the important
result that

(4.6-13)

for any two discrete even and odd functions and In other words, be-
cause the argument of Eq. (4.6-13) is odd, the result of the summations is 0.
The functions can be real or complex.

wo.we

a
M - 1

x = 0
a

N - 1

y = 0
we(x, y)wo(x, y) = 0

EXAMPLE 4.10:
Even and odd
functions.

■ Although evenness and oddness are visualized easily for continuous func-
tions, these concepts are not as intuitive when dealing with discrete sequences.
The following illustrations will help clarify the preceding ideas. Consider the 
1-D sequence

in which To test for evenness, the condition must be
satisfied; that is, we require that

Because (4) is outside the range being examined, and it can be any value,
the value of (0) is immaterial in the test for evenness. We see that the next
three conditions are satisfied by the values in the array, so the sequence is
even. In fact, we conclude that any 4-point even sequence has to have the
form

That is, only the second and last points must be equal in a 4-point even se-
quence.

An odd sequence has the interesting property that its first term, is
always 0, a fact that follows directly from Eq. (4.6-10b). Consider the 1-D se-
quence

= 50 -1 0 16
g = Eg(0) g(1) g(2) g(3)F

w0(0, 0),

5a b c b6

f
f

f(0) = f(4), f(2) = f(2), f(1) = f(3), f(3) = f(1)

f(x) = f(4 - x)M = 4.

= E2 1 1 1F
f = Ef(0) f(1) f(2) f(3)F

To convince yourself that
the samples of an odd
function sum to zero,
sketch one period of a 
1-D sine wave about the
origin or any other inter-
val spanning one period.
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We easily can confirm that this is an odd sequence by noting that the terms in
the sequence satisfy the condition For example,

Any 4-point odd sequence has the form

That is, when M is an even number, a 1-D odd sequence has the property that
the points at locations 0 and M 2 always are zero. When M is odd, the first
term still has to be 0, but the remaining terms form pairs with equal value but
opposite sign.

The preceding discussion indicates that evenness and oddness of sequences
depend also on the length of the sequences. For example, we already showed
that the sequence is odd. However, the sequence

is neither odd nor even, although the “basic” structure ap-
pears to be odd. This is an important issue in interpreting DFT results. We
show later in this section that the DFTs of even and odd functions have some
very important characteristics. Thus, it often is the case that understanding
when a function is odd or even plays a key role in our ability to interpret image
results based on DFTs.

The same basic considerations hold in 2-D. For example, the 2-D se-
quence

is odd. However, adding another row and column of 0s would give a result
that is neither odd nor even. Note that the inner structure of this array is a
Sobel mask, as discussed in Section 3.6.4. We return to this mask in
Example 4.15. ■

Armed with the preceding concepts, we can establish a number of important
symmetry properties of the DFT and its inverse. A property used frequently is
that the Fourier transform of a real function, (x, y), is conjugate symmetric:

(4.6-14)

If (x, y) is imaginary, its Fourier transform is conjugate antisymmetric:
The proof of Eq. (4.6-14) is as follows:

F*(u, v) = B aM - 1

x = 0
a

N - 1

y = 0
f(x, y)e-j 2p(ux>M + vy>N)R*

F*(-u, -v) = -F(u, v).
f

F*(u, v) = F(-u, -v)

f

0 0 0 0 0 0
0 0 0 0 0 0
0 0 -1 0 1 0
0 0 -2 0 2 0
0 0 -1 0 1 0
0 0 0 0 0 0

6 * 6

50 -1 0 1 06 50 -1 0 16

>

50 -b 0 b6
g(1) = -g(3).

g(x) = -g(4 - x).

As an exercise, you
should use Eq. (4.6-12b)
to convince yourself that
this 2-D sequence is odd.

Conjugate symmetry also
is called hermitian sym-
metry. The term
antihermitian is used
sometimes to refer to
conjugate antisymmetry.
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where the third step follows from the fact that (x, y) is real. A similar ap-
proach can be used to prove the conjugate antisymmetry exhibited by the
transform of imaginary functions.

Table 4.1 lists symmetries and related properties of the DFT that are useful
in digital image processing. Recall that the double arrows indicate Fourier
transform pairs; that is, for any row in the table, the properties on the right are
satisfied by the Fourier transform of the function having the properties listed
on the left, and vice versa. For example, entry 5 reads: The DFT of a real
function in which is replaced by is where

the DFT of is a complex function, and vice versa.f1x , y2 ,F(u, v) ,
F*(u, v) ,1-x , -y2 ,1x , y2f1x , y2 ,

f

= F(-u, -v)

= a
M - 1

x = 0
a

N - 1

y = 0
f(x, y)e-j 2p( [-u] x>M + [-v] y>N)

= a
M - 1

x = 0
a

N - 1

y = 0
f*(x, y)e j 2p(ux>M + vy>N)

TABLE 4.1 Some
symmetry
properties of the
2-D DFT and its
inverse. R(u, v)
and I(u, v) are the
real and imaginary
parts of (u, v),
respectively.The
term complex
indicates that a
function has
nonzero real and
imaginary parts.

F

Spatial Domain† Frequency Domain†

1) (x, y) real

2) (x, y) imaginary

3) (x, y) real R(u, v) even; I(u, v) odd

4) (x, y) imaginary R(u, v) odd; I(u, v) even

5) real complex

6) complex complex

7) complex complex

8) (x, y) real and even (u, v) real and even

9) (x, y) real and odd (u, v) imaginary and odd

10) (x, y) imaginary and even (u, v) imaginary and even

11) (x, y) imaginary and odd (u, v) real and odd

12) (x, y) complex and even (u, v) complex and even

13) (x, y) complex and odd (u, v) complex and oddF3f

F3f

F3f

F3f

F3f

F3f

F*(-u - v)3f*(x, y)

F(-u, -v)3f(-x, -y)

F*(u, v)3f(-x, -y)

3f

3f

F*(-u, -v) = -F(u, v)3f

F*(u, v) = F(-u, -v)3f

†Recall that x, y, u, and v are discrete (integer) variables, with x and u in the range and y, and
v in the range To say that a complex function is even means that its real and imaginary parts
are even, and similarly for an odd complex function.

[0, N - 1].
[0, M - 1],
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EXAMPLE 4.11:
1-D illustrations
of properties from
Table 4.1.

■ With reference to the even and odd concepts discussed earlier and illustrat-
ed in Example 4.10, the following 1-D sequences and their transforms are
short examples of the properties listed in Table 4.1. The numbers in parenthe-
ses on the right are the individual elements of (u), and similarly for (x) in
the last two properties.

fF

Property f(x) F(u)

3
4
8
9

10
11
12
13 5(0 + 0j) (2 - 2j) (0 + 0j) (-2 + 2j)635(0 + 0j) (1 + 1j) (0 + 0j) (-1 - j)6

5(10 + 10j) (4 + 2j) (-2 + 2j) (4 + 2j)635(4 + 4j) (3 + 2j) (0 + 2j) (3 + 2j)6
5(0) (-2) (0) (2)63j50 -1 0 16
5(5j) (j) (j) (j)63j52 1 1 16
5(0) (2j) (0) (-2j)6350 -1 0 16
5(5) (1) (1) (1)6352 1 1 16
5(2.5j) (.5 - .5j) (- .5j) (- .5 - .5j)63j51 2 3 46
5(10) (-2 + 2j) (-2) (-2 - 2j)6351 2 3 46

For example, in property 3 we see that a real function with elements
has Fourier transform whose real part, is

even and whose imaginary part, is odd. Property 8 tells us that
a real even function has a transform that is real and even also. Property 12
shows that an even complex function has a transform that is also complex and
even. The other property examples are analyzed in a similar manner. ■

50 2 0 -26, 510 -2 -2 -26,51 2 3 46

■ In this example, we prove several of the properties in Table 4.1 to develop
familiarity with manipulating these important properties, and to establish a
basis for solving some of the problems at the end of the chapter.We prove only
the properties on the right given the properties on the left. The converse is
proved in a manner similar to the proofs we give here.

Consider property 3, which reads: If (x, y) is a real function, the real part of
its DFT is even and the odd part is odd; similarly, if a DFT has real and
imaginary parts that are even and odd, respectively, then its IDFT is a real
function. We prove this property formally as follows. (u, v) is complex in
general, so it can be expressed as the sum of a real and an imaginary part:

Then, Also,
But, as proved earlier, if (x, y) is real

then , which, based on the preceding two equations, means
that and In view of Eqs. (4.6-11a)
and (4.6-11b), this proves that R is an even function and I is an odd function.

Next, we prove property 8. If (x, y) is real we know from property 3 that
the real part of (u, v) is even, so to prove property 8 all we have to do is show
that if (x, y) is real and even then the imaginary part of (u, v) is 0 (i.e., F is
real). The steps are as follows:

which we can write as

F(u, v) = a
M - 1

x = 0
a

N - 1

y = 0
f(x, y)e-j2p(ux>M + vy>N)

Ff
F

f

I(u, v) = -I(-u, -v).R(u, v) = R(-u, -v)
F*(u, v) = F(-u, -v)

fF(-u, -v) = R(-u, -v) + jI(-u, -v).
F*(u, v) = R(u, v) - jI(u, v).F(u, v) = R(u, v) + jI(u, v).

F

f

EXAMPLE 4.12:
Proving several
symmetry
properties of the
DFT from Table
4.1.



244 Chapter 4 ■ Filtering in the Frequency Domain

Note that we are not
making a change of 
variable here. We are
evaluating the DFT of

so we simply
insert this function into
the equation, as we would
any other function.

f(-x, -y),

The fourth step follows from Euler’s equation and the fact that the cos and sin
are even and odd functions, respectively.We also know from property 8 that, in
addition to being real, f is an even function. The only term in the penultimate
line containing imaginary components is the second term, which is 0 according
to Eq. (4.6-14). Thus, if f is real and even then F is real. As noted earlier, F is
also even because f is real. This concludes the proof.

Finally, we prove the validity of property 6. From the definition of the DFT,

Because of periodicity, If we now define
and then

(To convince yourself that the summations are correct, try a 1-D transform
and expand a few terms by hand.) Because it
follows that

exp[-j2p(integer)] = 1,

�Ef(-x, -y)F = a
M - 1

m = 0
a

N - 1

n = 0
f(m, n)e-j2p(u[M - m] >M + v [N - n] >N)

n = N - y,m = M - x
f(-x, -y) = f(M - x, N - y).

�Ef(-x, -y)F = a
M - 1

x = 0
a

N - 1

y = 0
f(-x, -y)e-j2p(ux>M + vy>N)

= real

- a
M - 1

x = 0
a

N - 1

y = 0
[even # even]

= a
M - 1

x = 0
a

N - 1

y = 0
[even # even] - 2j a

M - 1

x = 0
a

N - 1

y = 0
[even # odd]

= a
M - 1

x = 0
a

N - 1

y = 0
[even][even # even - 2jeven # odd - odd # odd]

= a
M - 1

x = 0
a

N - 1

y = 0
[even][even - jodd][even - jodd]

= a
M - 1

x = 0
a

N - 1

y = 0
[fr(x, y)]e-j2p(ux>M)e-j2p(vy>N)

F(u, v) = a
M - 1

x = 0
a

N - 1

y = 0
[ fr(x, y)]e-j 2p(ux>M + vy>N)
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This concludes the proof. ■

4.6.5 Fourier Spectrum and Phase Angle
Because the 2-D DFT is complex in general, it can be expressed in polar
form:

(4.6-15)

where the magnitude

(4.6-16)

is called the Fourier (or frequency) spectrum, and

(4.6-17)

is the phase angle. Recall from the discussion in Section 4.2.1 that the arctan
must be computed using a four-quadrant arctangent, such as MATLAB’s
atan2(Imag, Real) function.

Finally, the power spectrum is defined as

(4.6-18)

As before, R and I are the real and imaginary parts of (u, v) and all compu-
tations are carried out for the discrete variables and

Therefore, and P(u, v) are arrays of
size

The Fourier transform of a real function is conjugate symmetric [Eq. (4.6-14)],
which implies that the spectrum has even symmetry about the origin:

(4.6-19)

The phase angle exhibits the following odd symmetry about the origin:

(4.6-20)

It follows from Eq. (4.5-15) that

F(0, 0) = a
M - 1

x = 0
a

N - 1

y = 0
f(x, y)

f(u, v) = -f(-u, -v)

ƒ F(u, v) ƒ = ƒ F(-u, -v) ƒ

M * N.
f(u, v),ƒ F(u, v) ƒ ,v = 0, 1, 2, Á , N - 1.

u = 0, 1, 2, Á , M - 1
F

= R2(u, v) + I2(u, v)

P(u, v) = ƒ F(u, v) ƒ 2

f(u, v) = arctanB I(u, v)
R(u, v)

R
ƒ F(u, v) ƒ = CR2(u, v) + I2(u, v) D1>2

F(u, v) = ƒ F(u, v) ƒ e jf(u,v)

= F(-u, -v)

�Ef(-x, -y)F = a
M - 1

m = 0
a

N - 1

n = 0
f(m, n)e j 2p(um>M + vn>N)
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EXAMPLE 4.13:
The 2-D Fourier
spectrum of a
simple function.

■ Figure 4.24(a) shows a simple image and Fig. 4.24(b) shows its spectrum,
whose values were scaled to the range [0, 255] and displayed in image form.The
origins of both the spatial and frequency domains are at the top left.Two things
are apparent in Fig. 4.22(b). As expected, the area around the origin of the

x u

u u

y

v

v

v

FIGURE 4.24
(a) Image.
(b) Spectrum
showing bright spots
in the four corners.
(c) Centered
spectrum. (d) Result
showing increased
detail after a log
transformation.The
zero crossings of the
spectrum are closer in
the vertical direction
because the rectangle
in (a) is longer in that
direction.The
coordinate
convention used
throughout the book
places the origin of
the spatial and
frequency domains at
the top left.

a b
c d

which indicates that the zero-frequency term is proportional to the average
value of (x, y). That is,

(4.6-21)

where denotes the average value of f. Then,

(4.6-22)

Because the proportionality constant MN usually is large, typically is
the largest component of the spectrum by a factor that can be several orders of
magnitude larger than other terms. Because frequency components u and v
are zero at the origin, (0, 0) sometimes is called the dc component of the
transform.This terminology is from electrical engineering, where “dc” signifies
direct current (i.e., current of zero frequency).

F

ƒ F(0, 0) ƒ

ƒ F(0, 0) ƒ = MN ƒ f(x, y) ƒ

f

= MNf(x, y)

F(0, 0) = MN
1

MN a
M - 1

x = 0
a
N - 1

y = 0
f(x, y)

f



4.6 ■ Some Properties of the 2-D Discrete Fourier Transform 247

FIGURE 4.25
(a) The rectangle
in Fig. 4.24(a)
translated,
and (b) the
corresponding
spectrum.
(c) Rotated
rectangle,
and (d) the
corresponding
spectrum. The
spectrum
corresponding to
the translated
rectangle is
identical to the
spectrum
corresponding to
the original image
in Fig. 4.24(a).

a b
c d

transform contains the highest values (and thus appears brighter in the image).
However, note that the four corners of the spectrum contain similarly high 
values. The reason is the periodicity property discussed in the previous section.
To center the spectrum, we simply multiply the image in (a) by before
computing the DFT, as indicated in Eq. (4.6-8). Figure 4.22(c) shows the result,
which clearly is much easier to visualize (note the symmetry about the center
point). Because the dc term dominates the values of the spectrum, the dynamic
range of other intensities in the displayed image are compressed. To bring out
those details, we perform a log transformation, as described in Section 3.2.2.
Figure 4.24(d) shows the display of The increased rendition
of detail is evident. Most spectra shown in this and subsequent chapters are
scaled in this manner.

It follows from Eqs. (4.6-4) and (4.6-5) that the spectrum is insensitive to
image translation (the absolute value of the exponential term is 1), but it rotates
by the same angle of a rotated image. Figure 4.25 illustrates these properties.
The spectrum in Fig. 4.25(b) is identical to the spectrum in Fig. 4.24(d). Clearly,
the images in Figs. 4.24(a) and 4.25(a) are different, so if their Fourier spectra
are the same then, based on Eq. (4.6-15), their phase angles must be different.
Figure 4.26 confirms this. Figures 4.26(a) and (b) are the phase angle arrays
(shown as images) of the DFTs of Figs. 4.24(a) and 4.25(a). Note the lack of
similarity between the phase images, in spite of the fact that the only differences
between their corresponding images is simple translation. In general, visual
analysis of phase angle images yields little intuitive information. For instance,
due to its 45° orientation, one would expect intuitively that the phase angle in

(1 + log ƒ F(u, v) ƒ ).

(-1)x + y
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Fig. 4.26(a) should correspond to the rotated image in Fig. 4.25(c), rather than to
the image in Fig. 4.24(a). In fact, as Fig. 4.26(c) shows, the phase angle of the ro-
tated image has a strong orientation that is much less than 45°. ■

The components of the spectrum of the DFT determine the amplitudes of
the sinusoids that combine to form the resulting image. At any given frequen-
cy in the DFT of an image, a large amplitude implies a greater prominence of
a sinusoid of that frequency in the image. Conversely, a small amplitude im-
plies that less of that sinusoid is present in the image. Although, as Fig. 4.26
shows, the contribution of the phase components is less intuitive, it is just as
important. The phase is a measure of displacement of the various sinusoids
with respect to their origin. Thus, while the magnitude of the 2-D DFT is an
array whose components determine the intensities in the image, the corre-
sponding phase is an array of angles that carry much of the information about
where discernable objects are located in the image. The following example
clarifies these concepts further.

FIGURE 4.26 Phase angle array corresponding (a) to the image of the centered rectangle
in Fig. 4.24(a), (b) to the translated image in Fig. 4.25(a), and (c) to the rotated image in
Fig. 4.25(c).

a b c

EXAMPLE 4.14:
Further
illustration of the
properties of the
Fourier spectrum
and phase angle.

■ Figure 4.27(b) is the phase angle of the DFT of Fig. 4.27(a). There is no de-
tail in this array that would lead us by visual analysis to associate it with fea-
tures in its corresponding image (not even the symmetry of the phase angle is
visible). However, the importance of the phase in determining shape charac-
teristics is evident in Fig. 4.27(c), which was obtained by computing the inverse
DFT of Eq. (4.6-15) using only phase information (i.e., with in
the equation). Although the intensity information has been lost (remember,
that information is carried by the spectrum) the key shape features in this
image are unmistakably from Fig. 4.27(a).

Figure 4.27(d) was obtained using only the spectrum in Eq. (4.6-15) and com-
puting the inverse DFT. This means setting the exponential term to 1, which in
turn implies setting the phase angle to 0.The result is not unexpected. It contains
only intensity information, with the dc term being the most dominant. There is
no shape information in the image because the phase was set to zero.

ƒ F(u, v) ƒ = 1



4.6 ■ Some Properties of the 2-D Discrete Fourier Transform 249

Finally, Figs. 4.27(e) and (f) show yet again the dominance of the phase in de-
termining the feature content of an image. Figure 4.27(e) was obtained by com-
puting the IDFT of Eq. (4.6-15) using the spectrum of the rectangle in Fig. 4.24(a)
and the phase angle corresponding to the woman. The shape of the woman
clearly dominates this result. Conversely, the rectangle dominates Fig. 4.27(f),
which was computed using the spectrum of the woman and the phase angle of
the rectangle. ■

4.6.6 The 2-D Convolution Theorem
Extending Eq. (4.4-10) to two variables results in the following expression for
2-D circular convolution:

(4.6-23)

for and As in Eq. (4.4-10),
Eq. (4.6-23) gives one period of a 2-D periodic sequence. The 2-D convolution
theorem is given by the expressions

(4.6-24)

and, conversely,

f(x, y)�h(x, y) 3 F(u, v)H(u, v)

y = 0, 1, 2, Á , N - 1.x = 0, 1, 2, Á , M - 1

f(x, y)�h(x, y) = a
M - 1

m = 0
a

N - 1

n = 0
f(m, n)h(x - m, y - n)

FIGURE 4.27 (a) Woman. (b) Phase angle. (c) Woman reconstructed using only the
phase angle. (d) Woman reconstructed using only the spectrum. (e) Reconstruction
using the phase angle corresponding to the woman and the spectrum corresponding to
the rectangle in Fig. 4.24(a). (f) Reconstruction using the phase of the rectangle and the
spectrum of the woman.

a b c
d e f



250 Chapter 4 ■ Filtering in the Frequency Domain

(4.6-25)

where F and H are obtained using Eq. (4.5-15) and, as before, the double
arrow is used to indicate that the left and right sides of the expressions consti-
tute a Fourier transform pair. Our interest in the remainder of this chapter is in
Eq. (4.6-24), which states that the inverse DFT of the product (u, v) (u, v)
yields the 2-D spatial convolution of f and h. Similarly, the
DFT of the spatial convolution yields the product of the transforms in the fre-
quency domain. Equation (4.6-24) is the foundation of linear filtering and, as
explained in Section 4.7, is the basis for all the filtering techniques discussed in
this chapter.

Because we are dealing here with discrete quantities, computation of the
Fourier transforms is carried out with a DFT algorithm. If we elect to compute
the spatial convolution using the IDFT of the product of the two transforms,
then the periodicity issues discussed in Section 4.6.3 must be taken into ac-
count. We give a 1-D example of this and then extend the conclusions to two
variables.The left column of Fig. 4.28 implements convolution of two functions,
f and h, using the 1-D equivalent of Eq. (3.4-2) which, because the two func-
tions are of same size, is written as

This equation is identical to Eq. (4.4-10), but the requirement on the displace-
ment x is that it be sufficiently large to cause the flipped (rotated) version of h
to slide completely past f. In other words, the procedure consists of (1) mirror-
ing h about the origin (i.e., rotating it by 180°) [Fig. 4.28(c)], (2) translating the
mirrored function by an amount x [Fig. 4.28(d)], and (3) for each value x of
translation, computing the entire sum of products in the right side of the pre-
ceding equation. In terms of Fig. 4.28 this means multiplying the function in
Fig. 4.28(a) by the function in Fig. 4.28(d) for each value of x.The displacement
x ranges over all values required to completely slide h across f. Figure 4.28(e)
shows the convolution of these two functions. Note that convolution is a func-
tion of the displacement variable, x, and that the range of x required in this ex-
ample to completely slide h past f is from 0 to 799.

If we use the DFT and the convolution theorem to obtain the same result as
in the left column of Fig. 4.28, we must take into account the periodicity inher-
ent in the expression for the DFT. This is equivalent to convolving the two pe-
riodic functions in Figs. 4.28(f) and (g). The convolution procedure is the same
as we just discussed, but the two functions now are periodic. Proceeding with
these two functions as in the previous paragraph would yield the result in 
Fig. 4.28(j) which obviously is incorrect. Because we are convolving two peri-
odic functions, the convolution itself is periodic.The closeness of the periods in
Fig. 4.28 is such that they interfere with each other to cause what is commonly
referred to as wraparound error. According to the convolution theorem, if we
had computed the DFT of the two 400-point functions, f and h, multiplied the

f(x) �h(x) = a
399

m = 0
f(x)h(x - m)

f(x, y)�h(x, y),
HF

f(x, y)h(x, y) 3 F(u, v)�H(u, v)

We discuss efficient ways
to compute the DFT in
Section 4.11.
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two transforms, and then computed the inverse DFT, we would have obtained
the erroneous 400-point segment of the convolution shown in Fig. 4.28(j).

Fortunately, the solution to the wraparound error problem is simple. Consider
two functions, (x) and h(x) composed of A and B samples, respectively. It can be
shown (Brigham [1988]) that if we append zeros to both functions so that they
have the same length, denoted by P, then wraparound is avoided by choosing

(4.6-26)

In our example, each function has 400 points, so the minimum value we could
use is which implies that we would append 399 zeros to the trailing
edge of each function. This process is called zero padding. As an exercise, you

P = 799,

P Ú A + B - 1

f

f(m)

m m

33

200 4000 0 200 400

f(m)

2

m m
200 4000

2

0 200 400

h(m) h(m)

m m
200 4000 0 200 400

h(�m) h(�m)

m m
200 4000 0 200 400

xx

h(x � m) h(x � m)

x x

Range of
Fourier transform

computation

200 400 600 8000

600

1200

600

1200

0 200 400

f(x) g(x) f(x) g(x)

FIGURE 4.28 Left
column:
convolution of
two discrete
functions
obtained using the
approach
discussed in
Section 3.4.2. The
result in (e) is
correct. Right
column:
Convolution of
the same
functions, but
taking into
account the
periodicity
implied by the
DFT. Note in (j)
how data from
adjacent periods
produce
wraparound error,
yielding an
incorrect
convolution
result. To obtain
the correct result,
function padding
must be used.

a f
b g
c h
d i
e j

The zeros could be 
appended also to the
beginning of the func-
tions, or they could be 
divided between the 
beginning and end of the
functions. It is simpler 
to append them at the
end.
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should convince yourself that if the periods of the functions in Figs. 4.28(f) and
(g) were lengthened by appending to each period at least 399 zeros, the result
would be a periodic convolution in which each period is identical to the correct
result in Fig. 4.28(e). Using the DFT via the convolution theorem would result
in a 799-point spatial function identical to Fig. 4.28(e). The conclusion, then, is
that to obtain the same convolution result between the “straight” representa-
tion of the convolution equation approach in Chapter 3, and the DFT ap-
proach, functions in the latter must be padded prior to computing their
transforms.

Visualizing a similar example in 2-D would be more difficult, but we would
arrive at the same conclusion regarding wraparound error and the need for ap-
pending zeros to the functions. Let and h(x, y) be two image arrays of
sizes and pixels, respectively.Wraparound error in their circular
convolution can be avoided by padding these functions with zeros, as follows:

(4.6-27)

and

(4.6-28)

with

(4.6-29)

and

(4.6-30)

The resulting padded images are of size If both arrays are of the same
size, then we require that

(4.6-31)

and

(4.6-32)

We give an example in Section 4.7.2 showing the effects of wraparound error
on images. As rule, DFT algorithms tend to execute faster with arrays of even
size, so it is good practice to select P and Q as the smallest even integers that
satisfy the preceding equations. If the two arrays are of the same size, this
means that P and Q are selected as twice the array size.

The two functions in Figs. 4.28(a) and (b) conveniently become zero before
the end of the sampling interval. If one or both of the functions were not zero at

Q Ú 2N - 1

P Ú 2M - 1

M * N,
P * Q.

Q Ú B + D - 1

P Ú A + C - 1

hp(x, y) = bh(x, y) 0 … x … C - 1 and 0 … y … D - 1
0 C … x … P or D … y … Q

fp(x, y) = bf(x, y) 0 … x … A - 1 and 0 … y … B - 1
0 A … x … P or B … y … Q

C * DA * B
f(x, y)
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the end of the interval, then a discontinuity would be created when zeros were
appended to the function to eliminate wraparound error. This is analogous to
multiplying a function by a box, which in the frequency domain would imply
convolution of the original transform with a sinc function (see Example 4.1).
This, in turn, would create so-called frequency leakage, caused by the high-
frequency components of the sinc function. Leakage produces a blocky effect
on images. Although leakage never can be totally eliminated, it can be reduced
significantly by multiplying the sampled function by another function that ta-
pers smoothly to near zero at both ends of the sampled record to dampen the
sharp transitions (and thus the high frequency components) of the box.This ap-
proach, called windowing or apodizing, is an important consideration when fi-
delity in image reconstruction (as in high-definition graphics) is desired. If you
are faced with the need for windowing, a good approach is to use a 2-D Gaussian
function (see Section 4.8.3). One advantage of this function is that its Fourier
transform is Gaussian also, thus producing low leakage.

4.6.7 Summary of 2-D Discrete Fourier Transform Properties
Table 4.2 summarizes the principal DFT definitions introduced in this chapter.
Separability is discussed in Section 4.11.1 and obtaining the inverse using a
forward transform algorithm is discussed in Section 4.11.2. Correlation is dis-
cussed in Chapter 12.

A simple apodizing func-
tion is a triangle, cen-
tered on the data record,
which tapers to 0 at both
ends of the record. This is
called the Bartlett win-
dow. Other common win-
dows are the Hamming
and the Hann windows.
We can even use a
Gaussian function. We
return to the issue of
windowing in Section
5.11.5.

TABLE 4.2
Summary of DFT
definitions and
corresponding
expressions.

Name Expression(s)

1) Discrete Fourier
transform (DFT)
of

2) Inverse discrete
Fourier transform
(IDFT) of F(u, v)

3) Polar representation

4) Spectrum

5) Phase angle

6) Power spectrum

7) Average value f(x, y) =
1

MN a
M - 1

x = 0
a

N - 1

y = 0
f(x, y) =

1
MN

F(0, 0)

P(u, v) = ƒ F(u, v) ƒ 2

f(u, v) = tan-1B I(u, v)

R(u, v)
RR = Real(F); I = Imag(F)

ƒ F (u, v) ƒ = CR 2(u, v) + I 2(u, v) D1/2
 

F(u, v) = ƒ F(u, v) ƒ ejf(u,v)

f(x, y) =
1

MN a
M - 1

u = 0
a

N - 1

v = 0
F(u, v)ej2p(ux>M + vy>N)

(x, y)f
F(u, v) = a

M - 1

x = 0
a

N - 1

y = 0
f(x, y)e-j2p(ux>M + vy>N)

(Continued)



Name Expression(s)

8) Periodicity ( and
are integers)

9) Convolution

10) Correlation

11) Separability The 2-D DFT can be computed by computing 1-D 
DFT transforms along the rows (columns) of the 
image, followed by 1-D transforms along the columns 
(rows) of the result. See Section 4.11.1.

12) Obtaining the inverse
Fourier transform 

Thisequation indicates that inputting into an using a forward 
algorithm that computes the forward transform transform algorithm.
(right side of above equation) yields 
Taking the complex conjugate and dividing by 
gives the desired inverse. See Section 4.11.2.

MN
MNf*(x, y).

F*(u, v)

MNf*(x, y) = a
M - 1

u = 0
a

N - 1

v = 0
F*(u, v)e-j2p(ux>M + vy>N)

f(x, y)�h(x, y) = a
M - 1

m = 0
a

N - 1

n = 0
f*(m, n)h(x + m, y + n)

f(x, y)�h(x, y) = a
M - 1

m = 0
a

N - 1

n = 0
f(m, n)h(x - m, y - n)

= f(x + k1M, y + k2N)

f(x, y) = f(x + k1M, y) = f(x, y + k2N)

= F(u + k1M, v + k2N)k2

F(u, v) = F(u + k1M, v) = F(u, v + k2N)k1
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Table 4.3 summarizes some important DFT pairs. Although our focus is on
discrete functions, the last two entries in the table are Fourier transform pairs
that can be derived only for continuous variables (note the use of continuous
variable notation). We include them here because, with proper interpretation,
they are quite useful in digital image processing. The differentiation pair can

TABLE 4.3
Summary of DFT
pairs. The closed-
form expressions
in 12 and 13 are
valid only for
continuous
variables. They
can be used with
discrete variables
by sampling the
closed-form,
continuous
expressions.

Name DFT Pairs

1) Symmetry See Table 4.1
properties

2) Linearity

3) Translation 
(general)

4) Translation 
to center of
the frequency
rectangle,
(M/2, N/2)

5) Rotation

6) Convolution
theorem†

f(x, y)h(x, y) 3 F(u, v)�H(u, v)
f(x, y)�h(x, y) 3 F(u, v)H(u, v)

x = r cos u y = r sin u u = v cos w v = v sin w
f(r, u + u0) 3 F(v, w + u0)

f(x - M>2, y - N>2) 3 F(u, v)(-1)u + v
f(x, y)(-1)x + y 3 F(u - M>2, v - N>2)

f(x - x0, y - y0) 3 F(u, v)e-j2p(ux0/M + vy0/N)

f(x, y)e j2p(u0x>M + v0y>N) 3 F(u - u0, v - v0)

af1(x, y) + bf2(x, y) 3 aF1(u, v) + bF2(u, v)

TABLE 4.2
(Continued)

(Continued)
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be used to derive the frequency-domain equivalent of the Laplacian defined in
Eq. (3.6-3) (Problem 4.26). The Gaussian pair is discussed in Section 4.7.4.

Tables 4.1 through 4.3 provide a summary of properties useful when working
with the DFT. Many of these properties are key elements in the development of
the material in the rest of this chapter, and some are used in subsequent chapters.

4.7 The Basics of Filtering in the Frequency Domain

In this section, we lay the groundwork for all the filtering techniques discussed
in the remainder of the chapter.

4.7.1 Additional Characteristics of the Frequency Domain
We begin by observing in Eq. (4.5-15) that each term of (u, v) contains all val-
ues of (x, y), modified by the values of the exponential terms. Thus, with the
exception of trivial cases, it usually is impossible to make direct associations be-
tween specific components of an image and its transform. However, some gen-
eral statements can be made about the relationship between the frequency

f
F

Name DFT Pairs

7)    Correlation
theorem†

8)    Discrete unit
impulse

9) Rectangle

10) Sine

11)    Cosine

The following Fourier transform pairs are derivable only for continuous variables,
denoted as before by t and z for spatial variables and by and for frequency
variables.These results can be used for DFT work by sampling the continuous forms.

12) Differentiation
(The expressions
on the right
assume that

)

13) Gaussian (A is a constant)A2ps2e-2p2s2(t2 + z2) 3 Ae-(m2 +n2)>2s2

f(; q , ; q) = 0.

0mf(t, z)

0tm 3 (j2pm)mF(m, n);
0nf(t, z)

0zn 3 (j2pn)nF(m, n)

a 0
0t
bma 0

0z
bn

f(t, z) 3 (j2pm)m(j2pn)nF(m, n)

nm

1
2
Cd(u + Mu0, v + Nv0) + d(u - Mu0, v - Nv0) D

cos(2pu0x + 2pv0y) 3

j
1
2
Cd(u + Mu0, v + Nv0) - d(u - Mu0, v - Nv0) D

sin(2pu0x + 2pv0y) 3

rect[a, b] 3 ab
sin(pua)

(pua)

sin(pvb)

(pvb)
e-jp(ua + vb)

d(x, y) 3 1

f*(x, y)h(x, y) 3 F(u, v)�H(u, v)
f(x, y)�h(x, y) 3 F*(u, v)H(u, v)

†Assumes that the functions have been extended by zero padding. Convolution and correlation are asso-
ciative, commutative, and distributive.

TABLE 4.3
(Continued)
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components of the Fourier transform and spatial features of an image. For
instance, because frequency is directly related to spatial rates of change, it is not
difficult intuitively to associate frequencies in the Fourier transform with pat-
terns of intensity variations in an image. We showed in Section 4.6.5 that the
slowest varying frequency component is proportional to the aver-
age intensity of an image. As we move away from the origin of the transform,
the low frequencies correspond to the slowly varying intensity components of
an image. In an image of a room, for example, these might correspond to
smooth intensity variations on the walls and floor. As we move further away
from the origin, the higher frequencies begin to correspond to faster and faster
intensity changes in the image.These are the edges of objects and other compo-
nents of an image characterized by abrupt changes in intensity.

Filtering techniques in the frequency domain are based on modifying the
Fourier transform to achieve a specific objective and then computing the in-
verse DFT to get us back to the image domain, as introduced in Section
2.6.7. It follows from Eq. (4.6-15) that the two components of the transform
to which we have access are the transform magnitude (spectrum) and the
phase angle. Section 4.6.5 covered the basic properties of these two compo-
nents of the transform. We learned there that visual analysis of the phase
component generally is not very useful. The spectrum, however, provides
some useful guidelines as to gross characteristics of the image from which
the spectrum was generated. For example, consider Fig. 4.29(a), which is a
scanning electron microscope image of an integrated circuit, magnified ap-
proximately 2500 times. Aside from the interesting construction of the de-
vice itself, we note two principal features: strong edges that run
approximately at and two white, oxide protrusions resulting from 
thermally-induced failure.The Fourier spectrum in Fig. 4.29(b) shows prominent
components along the directions that correspond to the edges just
mentioned. Looking carefully along the vertical axis, we see a vertical component

;45°

;45°

(u = v = 0)

FIGURE 4.29 (a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of
(a). (Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials
Research, McMaster University, Hamilton, Ontario, Canada.)
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that is off-axis slightly to the left. This component was caused by the edges of
the oxide protrusions. Note how the angle of the frequency component with
respect to the vertical axis corresponds to the inclination (with respect to the
horizontal axis) of the long white element, and note also the zeros in the ver-
tical frequency component, corresponding to the narrow vertical span of the
oxide protrusions.

These are typical of the types of associations that can be made in general
between the frequency and spatial domains. As we show later in this chapter,
even these types of gross associations, coupled with the relationships men-
tioned previously between frequency content and rate of change of intensity
levels in an image, can lead to some very useful results. In the next section,
we show the effects of modifying various frequency ranges in the transform
of Fig. 4.29(a).

4.7.2 Frequency Domain Filtering Fundamentals
Filtering in the frequency domain consists of modifying the Fourier transform
of an image and then computing the inverse transform to obtain the processed
result. Thus, given a digital image, (x, y), of size the basic filtering
equation in which we are interested has the form:

(4.7-1)

where is the IDFT, (u, v) is the DFT of the input image, (x, y), (u, v)
is a filter function (also called simply the filter, or the filter transfer function),
and (x, y) is the filtered (output) image. Functions F, H, and g are arrays of
size the same as the input image. The product (u, v) (u, v) is
formed using array multiplication, as defined in Section 2.6.1. The filter func-
tion modifies the transform of the input image to yield a processed output,

(x, y). Specification of (u, v) is simplified considerably by using functions
that are symmetric about their center, which requires that (u, v) be centered
also. As explained in Section 4.6.3, this is accomplished by multiplying the
input image by prior to computing its transform.†

We are now in a position to consider the filtering process in some detail. One
of the simplest filters we can construct is a filter (u, v) that is 0 at the center of
the transform and 1 elsewhere. This filter would reject the dc term and “pass”
(i.e., leave unchanged) all other terms of (u, v) when we form the product 
H(u, v) (u, v).We know from Eq. (4.6-21) that the dc term is responsible for the
average intensity of an image, so setting it to zero will reduce the average intensi-
ty of the output image to zero. Figure 4.30 shows the result of this operation using
Eq. (4.7-1). As expected, the image became much darker. (An average of zero

F
F

H

(-1)x + y

F
Hg

FHM * N,
g

HfF�-1

g(x, y) = �-1[H(u, v)F(u, v)]

M * N,f

†Many software implementations of the 2-D DFT (e.g., MATLAB) do not center the transform.This im-
plies that filter functions must be arranged to correspond to the same data format as the uncentered
transform (i.e., with the origin at the top left). The net result is that filters are more difficult to generate
and display. We use centering in our discussions to aid in visualization, which is crucial in developing a
clear understanding of filtering concepts. Either method can be used practice, as long as consistency is
maintained.

If H is real and symmet-
ric and f is real (as is typ-
ically the case), then the
IDFT in Eq. (4.7-1)
should yield real quanti-
ties in theory. In practice,
the inverse generally
contains parasitic com-
plex terms from round-
off and other
computational inaccura-
cies. Thus, it is customary
to take the real part of
the IDFT to form g.
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implies the existence of negative intensities. Therefore, although it illustrates the
principle, Fig. 4.30 is not a true representation of the original, as all negative in-
tensities were clipped (set to 0) for display purposes.)

As noted earlier, low frequencies in the transform are related to slowly
varying intensity components in an image, such as the walls of a room or a
cloudless sky in an outdoor scene. On the other hand, high frequencies are
caused by sharp transitions in intensity, such as edges and noise. Therefore, we
would expect that a filter (u, v) that attenuates high frequencies while passing
low frequencies (appropriately called a lowpass filter) would blur an image,
while a filter with the opposite property (called a highpass filter) would en-
hance sharp detail, but cause a reduction in contrast in the image. Figure 4.31 il-
lustrates these effects. Note the similarity between Figs. 4.31(e) and Fig. 4.30.
The reason is that the highpass filter shown eliminates the dc term, resulting in
the same basic effect that led to Fig. 4.30. Adding a small constant to the filter
does not affect sharpening appreciably, but it does prevent elimination of the
dc term and thus preserves tonality, as Fig. 4.31(f) shows.

Equation (4.7-1) involves the product of two functions in the frequency do-
main which, by the convolution theorem, implies convolution in the spatial do-
main. We know from the discussion in Section 4.6.6 that if the functions in
question are not padded we can expect wraparound error. Consider what hap-
pens when we apply Eq. (4.7-1) without padding. Figure 4.32(a) shows a sim-
ple image, and Fig. 4.32(b) is the result of lowpass filtering the image with a
Gaussian lowpass filter of the form shown in Fig. 4.31(a). As expected, the
image is blurred. However, the blurring is not uniform; the top white edge is
blurred, but the side white edges are not. Padding the input image according to
Eqs. (4.6-31) and (4.6-32) before applying Eq. (4.7-1) results in the filtered
image in Fig. 4.32(c). This result is as expected.

Figure 4.33 illustrates the reason for the discrepancy between Figs. 4.32(b)
and (c). The dashed areas in Fig. 4.33 correspond to the image in Fig. 4.32(a).
Figure 4.33(a) shows the periodicity implicit in the use of the DFT, as ex-
plained in Section 4.6.3. Imagine convolving the spatial representation of the
blurring filter with this image. When the filter is passing through the top of the

H

FIGURE 4.30
Result of filtering
the image in 
Fig. 4.29(a) by
setting to 0 the
term (M 2, N 2)
in the Fourier
transform.

>>F
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H(u, v)

v

v v

u

u u
a

H(u, v)
H(u, v)

M/2

M/2 M/2

N/2

N/2 N/2

FIGURE 4.31 Top row: frequency domain filters. Bottom row: corresponding filtered images obtained using 
Eq. (4.7-1).We used in (c) to obtain (f) (the height of the filter itself is 1). Compare (f) with Fig. 4.29(a).a = 0.85

FIGURE 4.32 (a) A simple image. (b) Result of blurring with a Gaussian lowpass filter without padding.
(c) Result of lowpass filtering with padding. Compare the light area of the vertical edges in (b) and (c).

a b c
d e f
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dashed image, it will encompass part of the image and also part of the bottom
of the periodic image right above it. When a dark and a light region reside
under the filter, the result is a mid-gray, blurred output. However, when the fil-
ter is passing through the top right side of the image, the filter will encompass
only light areas in the image and its right neighbor. The average of a constant
is the same constant, so filtering will have no effect in this area, giving the re-
sult in Fig. 4.32(b). Padding the image with 0s creates a uniform border around
the periodic sequence, as Fig. 4.33(b) shows. Convolving the blurring function
with the padded “mosaic” of Fig. 4.33(b) gives the correct result in Fig. 4.32(c).
You can see from this example that failure to pad an image can lead to erro-
neous results. If the purpose of filtering is only for rough visual analysis, the
padding step is skipped sometimes.

Thus far, the discussion has centered on padding the input image, but 
Eq. (4.7-1) also involves a filter that can be specified either in the spatial or in
the frequency domain. However, padding is done in the spatial domain, which
raises an important question about the relationship between spatial padding
and filters specified directly in the frequency domain.

At first glance, one could conclude that the way to handle padding of a
frequency domain filter is to construct the filter to be of the same size as the
image, compute the IDFT of the filter to obtain the corresponding spatial fil-
ter, pad that filter in the spatial domain, and then compute its DFT to return
to the frequency domain.The 1-D example in Fig. 4.34 illustrates the pitfalls in
this approach. Figure 4.34(a) shows a 1-D ideal lowpass filter in the frequency
domain. The filter is real and has even symmetry, so we know from property 8
in Table 4.1 that its IDFT will be real and symmetric also. Figure 4.34(b)
shows the result of multiplying the elements of the  frequency domain filter

FIGURE 4.33 2-D image periodicity inherent in using the DFT. (a) Periodicity without
image padding. (b) Periodicity after padding with 0s (black). The dashed areas in the
center correspond to the image in Fig. 4.32(a). (The thin white lines in both images are
superimposed for clarity; they are not part of the data.)
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by and computing its IDFT to obtain the corresponding spatial filter.
The extremes of this spatial function are not zero so, as Fig. 4.34(c) shows,
zero-padding the function created two discontinuities (padding the two ends
of the function is the same as padding one end, as long as the total number of
zeros used is the same).

To get back to the frequency domain, we compute the DFT of the spatial,
padded filter. Figure 4.34(d) shows the result.The discontinuities in the spatial fil-
ter created ringing in its frequency domain counterpart, as you would expect
from the results in Example 4.1. Viewed another way, we know from that exam-
ple that the Fourier transform of a box function is a sinc function with frequency
components extending to infinity, and we would expect the same behavior from
the inverse transform of a box.That is, the spatial representation of an ideal (box)
frequency domain filter has components extending to infinity. Therefore, any
spatial truncation of the filter to implement zero-padding will introduce disconti-
nuities, which will then in general result in ringing in the frequency domain (trun-
cation can be avoided in this case if it is done at zero crossings, but we are
interested in general procedures, and not all filters have zero crossings).

What the preceding results tell us is that, because we cannot work with an infi-
nite number of components, we cannot use an ideal frequency domain filter [as in
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FIGURE 4.34
(a) Original filter
specified in the
(centered)
frequency domain.
(b) Spatial
representation
obtained by
computing the
IDFT of (a).
(c) Result of
padding (b) to twice
its length (note the
discontinuities).
(d) Corresponding
filter in the
frequency domain
obtained by
computing the DFT
of (c). Note the
ringing caused by
the discontinuities
in (c). (The curves
appear continuous
because the points
were joined to
simplify visual
analysis.)
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c
d

See the end of Section
4.3.3 regarding the defini-
tion  of an ideal filter.
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Fig. 4.34(a)] and simultaneously use zero padding to avoid wraparound error. A
decision on which limitation to accept is required. Our objective is to work with
specified filter shapes in the frequency domain (including ideal filters) without
having to be concerned with truncation issues. One approach is to zero-pad im-
ages and then create filters in the frequency domain to be of the same size as the
padded images (remember, images and filters must be of the same size when
using the DFT). Of course, this will result in wraparound error because no
padding is used for the filter, but in practice this error is mitigated significantly by
the separation provided by the padding of the image, and it is preferable to ring-
ing. Smooth filters (such as those in Fig. 4.31) present even less of a problem.
Specifically, then, the approach we will follow in this chapter in order to work
with filters of a specified shape directly in the frequency domain is to pad images
to size and construct filters of the same dimensions. As explained ear-
lier, P and Q are given by Eqs. (4.6-29) and (4.6-30).

We conclude this section by analyzing the phase angle of the filtered trans-
form. Because the DFT is a complex array, we can express it in terms of its real
and imaginary parts:

(4.7-2)

Equation (4.7-1) then becomes

(4.7-3)

The phase angle is not altered by filtering in the manner just described be-
cause (u, v) cancels out when the ratio of the imaginary and real parts is
formed in Eq. (4.6-17). Filters that affect the real and imaginary parts equally,
and thus have no effect on the phase, are appropriately called zero-phase-shift
filters. These are the only types of filters considered in this chapter.

Even small changes in the phase angle can have dramatic (usually undesir-
able) effects on the filtered output. Figure 4.35 illustrates the effect of some-
thing as simple as a scalar change. Figure 4.35(a) shows an image resulting
from multiplying the angle array in Eq. (4.6-15) by 0.5, without changing

H

g(x, y) = �-1 CH(u, v)R(u, v) + jH(u, v)I(u, v) D

F(u, v) = R(u, v) + jI(u, v)

P * Q

FIGURE 4.35
(a) Image resulting
from multiplying by
0.5 the phase angle
in Eq. (4.6-15) and
then computing the
IDFT. (b) The
result of
multiplying the
phase by 0.25.The
spectrum was not
changed in either of
the two cases.
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and then computing the IDFT. The basic shapes remain unchanged,
but the intensity distribution is quite distorted. Figure 4.35(b) shows the result
of multiplying the phase by 0.25. The image is almost unrecognizable.

4.7.3 Summary of Steps for Filtering in the Frequency Domain
The material in the previous two sections can be summarized as follows:

1. Given an input image (x, y) of size obtain the padding parame-
ters P and Q from Eqs. (4.6-31) and (4.6-32). Typically, we select 
and

2. Form a padded image, of size by appending the necessary
number of zeros to (x, y).

3. Multiply by to center its transform.
4. Compute the DFT, (u, v), of the image from step 3.
5. Generate a real, symmetric filter function, H(u, v), of size with cen-

ter at coordinates (P 2, Q 2).† Form the product 
using array multiplication; that is,

6. Obtain the processed image:

where the real part is selected in order to ignore parasitic complex com-
ponents resulting from computational inaccuracies, and the subscript p in-
dicates that we are dealing with padded arrays.

7. Obtain the final processed result, (x, y), by extracting the region
from the top, left quadrant of 

Figure 4.36 illustrates the preceding steps.The legend in the figure explains the
source of each image. If it were enlarged, Fig. 4.36(c) would show black dots
interleaved in the image because negative intensities are clipped to 0 for dis-
play. Note in Fig. 4.36(h) the characteristic dark border exhibited by lowpass
filtered images processed using zero padding.

4.7.4 Correspondence Between Filtering in the Spatial and
Frequency Domains

The link between filtering in the spatial and frequency domains is the convo-
lution theorem. In Section 4.7.2, we defined filtering in the frequency domain
as the multiplication of a filter function, H(u, v), times (u, v), the Fourier
transform of the input image. Given a filter H(u, v), suppose that we want to
find its equivalent representation in the spatial domain. If we let

it follows from Table 4.3 that Then, from 
Eq. (4.7-1), the filtered output is But this is the inverse trans-
form of the frequency domain filter, which is the corresponding filter in the

�-15H(u, v)6. F(u, v) = 1.f(x, y) = d(x, y),

F

gp(x, y).
M * Ng

gp(x, y) = Ereal C�-1[G(u, v)] D F(-1)x + y

G(i, k) = H(i, k)F(i, k).
G(u, v) = H(u, v)F(u, v)>> P * Q

F
(-1)x + yfp(x, y)

f
P * Qfp(x, y),

Q = 2N.
P = 2M

M * N,f

ƒ F(u, v) ƒ ,

†If (u, v) is to be generated from a given spatial filter, h(x, y), then we form by padding the
spatial filter to size multiply the expanded array by and compute the DFT of the result
to obtain a centered (u, v). Example 4.15 illustrates this procedure.H

(-1)x + y,P * Q,
hp(x, y)H

As noted earlier, center-
ing helps in visualizing
the filtering process and
in generating the filter
functions themselves, but
centering is not a funda-
mental requirement.
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spatial domain. Conversely, it follows from a similar analysis and the convolu-
tion theorem that, given a spatial filter, we obtain its frequency domain repre-
sentation by taking the forward Fourier transform of the spatial filter.
Therefore, the two filters form a Fourier transform pair:

(4.7-4)

where h(x, y) is a spatial filter. Because this filter can be obtained from the re-
sponse of a frequency domain filter to an impulse, h(x, y) sometimes is re-
ferred to as the impulse response of (u, v). Also, because all quantities in a
discrete implementation of Eq. (4.7-4) are finite, such filters are called finite
impulse response (FIR) filters. These are the only types of linear spatial filters
considered in this book.

We introduced spatial convolution in Section 3.4.1 and discussed its imple-
mentation in connection with Eq. (3.4-2), which involved convolving func-
tions of different sizes. When we speak of spatial convolution in terms of the

H

h(x, y) 3 H(u, v)

FIGURE 4.36
(a) An 
image, f.
(b) Padded image,

of size 
(c) Result of
multiplying by

(d) Spectrum of
(e) Centered 

Gaussian lowpass
filter, H, of size

(f) Spectrum of
the product 
(g) the product
of and
the real part of
the IDFT of 
(h) Final result, g,
obtained by
cropping the first
M rows and N
columns of gp.
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convolution theorem and the DFT, it is implied that we are convolving peri-
odic functions, as explained in Fig. 4.28. For this reason, as explained earlier,
Eq. (4.6-23) is referred to as circular convolution. Furthermore, convolution
in the context of the DFT involves functions of the same size, whereas in
Eq. (3.4-2) the functions typically are of different sizes.

In practice, we prefer to implement convolution filtering using Eq. (3.4-2)
with small filter masks because of speed and ease of implementation in
hardware and/or firmware. However, filtering concepts are more intuitive in
the frequency domain. One way to take advantage of the properties of both
domains is to specify a filter in the frequency domain, compute its IDFT,
and then use the resulting, full-size spatial filter as a guide for constructing
smaller spatial filter masks (more formal approaches are mentioned in
Section 4.11.4). This is illustrated next. Later in this section, we illustrate
also the converse, in which a small spatial filter is given and we obtain its
full-size frequency domain representation. This approach is useful for ana-
lyzing the behavior of small spatial filters in the frequency domain. Keep in
mind during the following discussion that the Fourier transform and its in-
verse are linear processes (Problem 4.14), so the discussion is limited to lin-
ear filtering.

In the following discussion, we use Gaussian filters to illustrate how
frequency domain filters can be used as guides for specifying the coefficients
of some of the small masks discussed in Chapter 3. Filters based on Gaussian
functions are of particular interest because, as noted in Table 4.3, both the
forward and inverse Fourier transforms of a Gaussian function are real
Gaussian functions. We limit the discussion to 1-D to illustrate the underly-
ing principles. Two-dimensional Gaussian filters are discussed later in this
chapter.

Let H(u) denote the 1-D frequency domain Gaussian filter:

(4.7-5)

where is the standard deviation of the Gaussian curve. The corresponding
filter in the spatial domain is obtained by taking the inverse Fourier transform
of H(u) (Problem 4.31):

(4.7-6)

These equations† are important for two reasons: (1) They are a Fourier trans-
form pair, both components of which are Gaussian and real. This facilitates
analysis because we do not have to be concerned with complex numbers. In
addition, Gaussian curves are intuitive and easy to manipulate. (2) The func-
tions behave reciprocally. When (u) has a broad profile (large value of ),sH

h(x) = 12psAe-2p2s2x2

s

H(u) = Ae-u2>2s2

†As mentioned in Table 4.3, closed forms for the forward and inverse Fourier transforms of Gaussians
are valid only for continuous functions. To use discrete formulations we simply sample the continuous
Gaussian transforms. Our use of discrete variables here implies that we are dealing with sampled 
transforms.
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h(x) has a narrow profile, and vice versa. In fact, as approaches infinity, (u)
tends toward a constant function and h(x) tends toward an impulse, which im-
plies no filtering in the frequency and spatial domains, respectively.

Figures 4.37(a) and (b) show plots of a Gaussian lowpass filter in the fre-
quency domain and the corresponding lowpass filter in the spatial domain.
Suppose that we want to use the shape of h(x) in Fig. 4.37(b) as a guide for
specifying the coefficients of a small spatial mask. The key similarity be-
tween the two filters is that all their values are positive. Thus, we conclude
that we can implement lowpass filtering in the spatial domain by using a
mask with all positive coefficients (as we did in Section 3.5.1). For reference,
Fig. 4.37(b) shows two of the masks discussed in that section. Note the recip-
rocal relationship between the width of the filters, as discussed in the previ-
ous paragraph. The narrower the frequency domain filter, the more it will
attenuate the low frequencies, resulting in increased blurring. In the spatial
domain, this means that a larger mask must be used to increase blurring, as
illustrated in Example 3.13.

More complex filters can be constructed using the basic Gaussian function
of Eq. (4.7-5). For example, we can construct a highpass filter as the difference
of Gaussians:

(4.7-7)

with and The corresponding filter in the spatial domain is

(4.7-8)

Figures 4.37(c) and (d) show plots of these two equations. We note again the
reciprocity in width, but the most important feature here is that h(x) has a pos-
itive center term with negative terms on either side. The small masks shown in
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2x2

- 12ps2Be-2p2s2
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FIGURE 4.37
(a) A 1-D Gaussian
lowpass filter in the
frequency domain.
(b) Spatial 
lowpass filter
corresponding to
(a). (c) Gaussian
highpass filter in
the frequency
domain. (d) Spatial
highpass filter
corresponding to
(c).The small 2-D
masks shown are
spatial filters we
used in Chapter 3.
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FIGURE 4.38
(a) Image of a
building, and 
(b) its spectrum.

a b

Fig. 4.37(d) “capture” this property. These two masks were used in Chapter 3
as sharpening filters, which we now know are highpass filters.

Although we have gone through significant effort to get here, be assured
that it is impossible to truly understand filtering in the frequency domain
without the foundation we have just established. In practice, the frequency
domain can be viewed as a “laboratory” in which we take advantage of the
correspondence between frequency content and image appearance. As is
demonstrated numerous times later in this chapter, some tasks that would be
exceptionally difficult or impossible to formulate directly in the spatial do-
main become almost trivial in the frequency domain. Once we have selected a
specific filter via experimentation in the frequency domain, the actual imple-
mentation of the method usually is done in the spatial domain. One approach
is to specify small spatial masks that attempt to capture the “essence” of the
full filter function in the spatial domain, as we explained in Fig. 4.37. A more
formal approach is to design a 2-D digital filter by using approximations
based on mathematical or statistical criteria. We touch on this point again in
Section 4.11.4.

EXAMPLE 4.15:
Obtaining a
frequency domain
filter from a small
spatial mask.

■ In this example, we start with a spatial mask and show how to generate its
corresponding filter in the frequency domain. Then, we compare the filtering
results obtained using frequency domain and spatial techniques. This type of
analysis is useful when one wishes to compare the performance of given spa-
tial masks against one or more “full” filter candidates in the frequency do-
main, or to gain deeper understanding about the performance of a mask. To
keep matters simple, we use the Sobel vertical edge detector from 
Fig. 3.41(e). Figure 4.38(a) shows a pixel image, (x, y), that we wish
to filter, and Fig. 4.38(b) shows its spectrum.

Figure 4.39(a) shows the Sobel mask, h(x, y) (the perspective plot is ex-
plained below). Because the input image is of size pixels and the fil-
ter is of size we avoid wraparound error by padding f and h to size3 * 3

600 * 600

f600 * 600
3 * 3
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FIGURE 4.39
(a) A spatial
mask and
perspective plot
of its
corresponding
frequency domain
filter. (b) Filter
shown as an
image. (c) Result
of filtering 
Fig. 4.38(a) in the
frequency domain
with the filter in
(b). (d) Result of
filtering the same
image with the
spatial filter in
(a). The results
are identical.

pixels, according to Eqs. (4.6-29) and (4.6-30). The Sobel mask ex-
hibits odd symmetry, provided that it is embedded in an array of zeros of even
size (see Example 4.10). To maintain this symmetry, we place h(x, y) so that its
center is at the center of the padded array. This is an important as-
pect of filter generation. If we preserve the odd symmetry with respect to the
padded array in forming we know from property 9 in Table 4.1 that
H(u, v) will be purely imaginary. As we show at the end of this example, this
will yield results that are identical to filtering the image spatially using h(x, y).
If the symmetry were not preserved, the results would no longer be same.

The procedure used to generate (u, v) is: (1) multiply by 
to center the frequency domain filter; (2) compute the forward DFT of the re-
sult in (1); (3) set the real part of the resulting DFT to 0 to account for parasitic
real parts (we know that (u, v) has to be purely imaginary); and (4) multiply
the result by This last step reverses the multiplication of H(u, v) by

which is implicit when h(x, y) was moved to the center of 
Figure 4.39(a) shows a perspective plot of (u, v), and Fig. 4.39(b) showsH

hp(x, y).(-1)u + v,
(-1)u + v.

H

(-1)x + yhp(x, y)H

hp(x, y),

602 * 602

602 * 602

a b
c d
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H(u, v) as an image. As, expected, the function is odd, thus the antisymmetry
about its center. Function (u, v) is used as any other frequency domain filter
in the procedure outlined in Section 4.7.3.

Figure 4.39(c) is the result of using the filter just obtained in the proce-
dure outlined in Section 4.7.3 to filter the image in Fig. 4.38(a). As expected
from a derivative filter, edges are enhanced and all the constant intensity
areas are reduced to zero (the grayish tone is due to scaling for display).
Figure 4.39(d) shows the result of filtering the same image in the spatial do-
main directly, using h(x, y) in the procedure outlined in Section 3.6.4. The re-
sults are identical. ■

4.8 Image Smoothing Using Frequency Domain Filters

The remainder of this chapter deals with various filtering techniques in the fre-
quency domain. We begin with lowpass filters. Edges and other sharp intensity
transitions (such as noise) in an image contribute significantly to the high-
frequency content of its Fourier transform. Hence, smoothing (blurring) is
achieved in the frequency domain by high-frequency attenuation; that is, by
lowpass filtering. In this section, we consider three types of lowpass filters:
ideal, Butterworth, and Gaussian. These three categories cover the range from
very sharp (ideal) to very smooth (Gaussian) filtering. The Butterworth filter
has a parameter called the filter order. For high order values, the Butterworth
filter approaches the ideal filter. For lower order values, the Butterworth filter
is more like a Gaussian filter. Thus, the Butterworth filter may be viewed as
providing a transition between two “extremes.” All filtering in this section fol-
lows the procedure outlined in Section 4.7.3, so all filter functions, (u, v), are
understood to be discrete functions of size that is, the discrete frequency
variables are in the range and 

4.8.1 Ideal Lowpass Filters
A 2-D lowpass filter that passes without attenuation all frequencies within a
circle of radius from the origin and “cuts off” all frequencies outside this
circle is called an ideal lowpass filter (ILPF); it is specified by the function

(4.8-1)

where is a positive constant and D(u, v) is the distance between a point (u, v)
in the frequency domain and the center of the frequency rectangle; that is,

(4.8-2)

where, as before, P and Q are the padded sizes from Eqs. (4.6-31) and (4.6-32).
Figure 4.40(a) shows a perspective plot of (u, v) and Fig. 4.40(b) shows the
filter displayed as an image. As mentioned in Section 4.3.3, the name ideal
indicates that all frequencies on or inside a circle of radius are passedD0

H

D(u, v) = C(u - P>2)2 + (v - Q>2)2 D 1/2

D0

H(u, v) = b1 if D(u, v) … D0

0 if D(u, v) 7 D0

D0

v = 0, 1, 2, Á , Q - 1.u = 0, 1, 2, Á , P - 1
P * Q;

H

H
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v

u

H(u, v)

D(u, v)
D0

1

u v

H(u, v)

FIGURE 4.40 (a) Perspective plot of an ideal lowpass-filter transfer function. (b) Filter displayed as an image.
(c) Filter radial cross section.

without attenuation, whereas all frequencies outside the circle are completely
attenuated (filtered out). The ideal lowpass filter is radially symmetric about
the origin, which means that the filter is completely defined by a radial cross
section, as Fig. 4.40(c) shows. Rotating the cross section by 360° yields the fil-
ter in 2-D.

For an ILPF cross section, the point of transition between and
is called the cutoff frequency. In the case of Fig. 4.40, for example,

the cutoff frequency is The sharp cutoff frequencies of an ILPF cannot be
realized with electronic components, although they certainly can be simulated
in a computer. The effects of using these “nonphysical” filters on a digital
image are discussed later in this section.

The lowpass filters introduced in this chapter are compared by studying
their behavior as a function of the same cutoff frequencies. One way to estab-
lish a set of standard cutoff frequency loci is to compute circles that enclose
specified amounts of total image power This quantity is obtained by sum-
ming the components of the power spectrum of the padded images at each
point (u, v), for and that is,

(4.8-3)

where P(u, v) is given in Eq. (4.6-18). If the DFT has been centered, a circle of
radius with origin at the center of the frequency rectangle encloses per-
cent of the power, where

(4.8-4)

and the summation is taken over values of (u, v) that lie inside the circle or on
its boundary.

a = 100 ca
u
a
v

P(u, v)>PT d

aD0

PT = a
P - 1

u = 0
a

Q - 1

v = 0
P(u, v)

v = 0, 1, Á , Q - 1;u = 0, 1, Á , P - 1

PT.

D0.
H(u, v) = 0

H(u, v) = 1

a b c
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EXAMPLE 4.16:
Image smoothing
using an ILPF.

FIGURE 4.41 (a) Test pattern of size pixels, and (b) its Fourier spectrum.The
spectrum is double the image size due to padding but is shown in half size so that it fits
in the page. The superimposed circles have radii equal to 10, 30, 60, 160, and 460 with
respect to the full-size spectrum image. These radii enclose 87.0, 93.1, 95.7, 97.8, and
99.2% of the padded image power, respectively.

688 * 688

Figures 4.41(a) and (b) show a test pattern image and its spectrum. The
circles superimposed on the spectrum have radii of 10, 30, 60, 160, and 460
pixels, respectively. These circles enclose percent of the image power, for

93.1, 95.7, 97.8, and 99.2%, respectively. The spectrum falls off
rapidly, with 87% of the total power being enclosed by a relatively small
circle of radius 10.

■ Figure 4.42 shows the results of applying ILPFs with cutoff frequencies at
the radii shown in Fig. 4.41(b). Figure 4.42(b) is useless for all practical pur-
poses, unless the objective of blurring is to eliminate all detail in the image,
except the “blobs” representing the largest objects. The severe blurring in
this image is a clear indication that most of the sharp detail information in
the picture is contained in the 13% power removed by the filter. As the filter
radius increases, less and less power is removed, resulting in less blurring.
Note that the images in Figs. 4.42(c) through (e) are characterized by “ring-
ing,” which becomes finer in texture as the amount of high frequency con-
tent removed decreases. Ringing is visible even in the image [Fig. 4.42(e)] in
which only 2% of the total power was removed. This ringing behavior is a
characteristic of ideal filters, as you will see shortly. Finally, the result for

shows very slight blurring in the noisy squares but, for the most
part, this image is quite close to the original. This indicates that little edge
information is contained in the upper 0.8% of the spectrum power in this
particular case.

It is clear from this example that ideal lowpass filtering is not very practi-
cal. However, it is useful to study their behavior as part of our development of

a = 99.2

a = 87.0,
a

a b
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FIGURE 4.42 (a) Original image. (b)–(f) Results of filtering using ILPFs with cutoff
frequencies set at radii values 10, 30, 60, 160, and 460, as shown in Fig. 4.41(b). The
power removed by these filters was 13, 6.9, 4.3, 2.2, and 0.8% of the total, respectively.

a b
c d
e f
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FIGURE 4.43
(a) Representation
in the spatial
domain of an
ILPF of radius 5
and size

.
(b) Intensity
profile of a
horizontal line
passing through
the center of the
image.

1000 * 1000

filtering concepts. Also, as shown in the discussion that follows, some interest-
ing insight is gained by attempting to explain the ringing property of ILPFs in
the spatial domain. ■

The blurring and ringing properties of ILPFs can be explained using the
convolution theorem. Figure 4.43(a) shows the spatial representation, h(x, y), of
an ILPF of radius 10, and Fig. 4.43(b) shows the intensity profile of a line passing
through the center of the image. Because a cross section of the ILPF in the fre-
quency domain looks like a box filter, it is not unexpected that a cross section of
the corresponding spatial filter has the shape of a sinc function. Filtering in the
spatial domain is done by convolving h(x, y) with the image. Imagine each pixel
in the image being a discrete impulse whose strength is proportional to the in-
tensity of the image at that location. Convolving a sinc with an impulse copies
the sinc at the location of the impulse.The center lobe of the sinc is the principal
cause of blurring, while the outer, smaller lobes are mainly responsible for ring-
ing. Convolving the sinc with every pixel in the image provides a nice model for
explaining the behavior of ILPFs. Because the “spread” of the sinc function is in-
versely proportional to the radius of (u, v), the larger becomes, the more
the spatial sinc approaches an impulse which, in the limit, causes no blurring at
all when convolved with the image. This type of reciprocal behavior should be
routine to you by now. In the next two sections, we show that it is possible to
achieve blurring with little or no ringing, which is an important objective in
lowpass filtering.

4.8.2 Butterworth Lowpass Filters
The transfer function of a Butterworth lowpass filter (BLPF) of order n, and
with cutoff frequency at a distance from the origin, is defined as

(4.8-5)

where D(u, v) is given by Eq. (4.8-2). Figure 4.44 shows a perspective plot,
image display, and radial cross sections of the BLPF function.

H(u, v) =
1

1 + [D(u, v)>D0]2n

D0

D0H

The transfer function of
the Butterworth lowpass
filter normally is written
as the square root of our
expression. However, our
interest here is in the
basic form of the filter, so
we exclude the square
root for computational
convenience.

a b
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0.5

D0

n � 1
n � 2

n � 3

n � 4

1.0v

u

H(u, v)

D(u, v)

u
v

H(u, v)

FIGURE 4.44 (a) Perspective plot of a Butterworth lowpass-filter transfer function. (b) Filter displayed as an
image. (c) Filter radial cross sections of orders 1 through 4.

Unlike the ILPF, the BLPF transfer function does not have a sharp discon-
tinuity that gives a clear cutoff between passed and filtered frequencies. For
filters with smooth transfer functions, defining a cutoff frequency locus at
points for which (u, v) is down to a certain fraction of its maximum value is
customary. In Eq. (4.8-5), (down 50% from its maximum value of 1) when
D(u, v) = D0.

H

EXAMPLE 4.17:
Image smoothing
with a
Butterworth
lowpass filter.

■ Figure 4.45 shows the results of applying the BLPF of Eq. (4.8-5) to 
Fig. 4.45(a), with and equal to the five radii in Fig. 4.41(b). Unlike the
results in Fig. 4.42 for the ILPF, we note here a smooth transition in blurring as
a function of increasing cutoff frequency. Moreover, no ringing is visible in any
of the images processed with this particular BLPF, a fact attributed to the fil-
ter’s smooth transition between low and high frequencies. ■

A BLPF of order 1 has no ringing in the spatial domain. Ringing generally
is imperceptible in filters of order 2, but can become significant in filters of
higher order. Figure 4.46 shows a comparison between the spatial representa-
tion of BLPFs of various orders (using a cutoff frequency of 5 in all cases).
Shown also is the intensity profile along a horizontal scan line through the cen-
ter of each filter.These filters were obtained and displayed using the same pro-
cedure used to generate Fig. 4.43. To facilitate comparisons, additional
enhancing with a gamma transformation [see Eq. (3.2-3)] was applied to the
images of Fig. 4.46. The BLPF of order 1 [Fig. 4.46(a)] has neither ringing nor
negative values.The filter of order 2 does show mild ringing and small negative
values, but they certainly are less pronounced than in the ILPF.As the remain-
ing images show, ringing in the BLPF becomes significant for higher-order fil-
ters.A Butterworth filter of order 20 exhibits characteristics similar to those of
the ILPF (in the limit, both filters are identical). BLPFs of order 2 are a good
compromise between effective lowpass filtering and acceptable ringing.

D0n = 2

a b c
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FIGURE 4.45 (a) Original image. (b)–(f) Results of filtering using BLPFs of order 2,
with cutoff frequencies at the radii shown in Fig. 4.41. Compare with Fig. 4.42.
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FIGURE 4.46 (a)–(d) Spatial representation of BLPFs of order 1, 2, 5, and 20, and corresponding intensity
profiles through the center of the filters (the size in all cases is and the cutoff frequency is 5).
Observe how ringing increases as a function of filter order.

1000 * 1000

4.8.3 Gaussian Lowpass Filters
Gaussian lowpass filters (GLPFs) of one dimension were introduced in
Section 4.7.4 as an aid in exploring some important relationships between the
spatial and frequency domains. The form of these filters in two dimensions is
given by

(4.8-6)

where, as in Eq. (4.8-2), D is the distance from the center of the frequency
rectangle. Here we do not use a multiplying constant as in Section 4.7.4 in
order to be consistent with the filters discussed in the present section, whose
highest value is 1. As before, is a measure of spread about the center. By let-
ting we can express the filter using the notation of the other filters in
this section:

(4.8-7)

where is the cutoff frequency. When the GLPF is down to
0.607 of its maximum value.

As Table 4.3 shows, the inverse Fourier transform of the GLPF is Gaussian
also. This means that a spatial Gaussian filter, obtained by computing the
IDFT of Eq. (4.8-6) or (4.8-7), will have no ringing. Figure 4.47 shows a per-
spective plot, image display, and radial cross sections of a GLPF function, and
Table 4.4 summarizes the lowpass filters discussed in this section.

D(u, v) = D0,D0

H(u, v) = e-D 2(u, v)>2D0
2

s = D0,
s

(u, v)

H(u, v) = e-D2(u, v)>2s2

a b c d
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EXAMPLE 4.18:
Image smoothing
with a Gaussian
lowpass filter.

1.0

0.667
D0 � 10

D0 � 20

D0 � 40

D0 � 100

v

u

H(u, v)

D(u, v)

u v

H(u, v)

FIGURE 4.47 (a) Perspective plot of a GLPF transfer function. (b) Filter displayed as an image. (c) Filter
radial cross sections for various values of D0.

■ Figure 4.48 shows the results of applying the GLPF of Eq. (4.8-7) to 
Fig. 4.48(a), with equal to the five radii in Fig. 4.41(b). As in the case of the
BLPF of order 2 (Fig. 4.45), we note a smooth transition in blurring as a func-
tion of increasing cutoff frequency.The GLPF achieved slightly less smoothing
than the BLPF of order 2 for the same value of cutoff frequency, as can be
seen, for example, by comparing Figs. 4.45(c) and 4.48(c). This is expected, be-
cause the profile of the GLPF is not as “tight” as the profile of the BLPF of
order 2. However, the results are quite comparable, and we are assured of no
ringing in the case of the GLPF. This is an important characteristic in practice,
especially in situations (e.g., medical imaging) in which any type of artifact is
unacceptable. In cases where tight control of the transition between low and
high frequencies about the cutoff frequency are needed, then the BLPF pre-
sents a more suitable choice. The price of this additional control over the filter
profile is the possibility of ringing. ■

4.8.4 Additional Examples of Lowpass Filtering
In the following discussion, we show several practical applications of lowpass
filtering in the frequency domain. The first example is from the field of ma-
chine perception with application to character recognition; the second is from
the printing and publishing industry; and the third is related to processing

D0

a b c

Ideal Butterworth Gaussian

H(u, v) = e-D2(u,v)>2D0
2

H(u, v) =
1

1 + [D(u, v)>D0]
2nH(u, v) = b1 if D(u, v) … D0

0 if D(u, v) 7 D0

TABLE 4.4
Lowpass filters. is the cutoff frequency and n is the order of the Butterworth filter.D0
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FIGURE 4.48 (a) Original image. (b)–(f) Results of filtering using GLPFs with cutoff
frequencies at the radii shown in Fig. 4.41. Compare with Figs. 4.42 and 4.45.
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FIGURE 4.49
(a) Sample text of
low resolution
(note broken
characters in
magnified view).
(b) Result of
filtering with a
GLPF (broken
character
segments were
joined).

satellite and aerial images. Similar results can be obtained using the lowpass
spatial filtering techniques discussed in Section 3.5.

Figure 4.49 shows a sample of text of poor resolution. One encounters text
like this, for example, in fax transmissions, duplicated material, and historical
records. This particular sample is free of additional difficulties like smudges,
creases, and torn sections. The magnified section in Fig. 4.49(a) shows that the
characters in this document have distorted shapes due to lack of resolution,
and many of the characters are broken. Although humans fill these gaps visu-
ally without difficulty, machine recognition systems have real difficulties read-
ing broken characters. One approach for handling this problem is to bridge
small gaps in the input image by blurring it. Figure 4.49(b) shows how well
characters can be “repaired” by this simple process using a Gaussian lowpass
filter with The images are of size pixels.

Lowpass filtering is a staple in the printing and publishing industry, where it
is used for numerous preprocessing functions, including unsharp masking, as
discussed in Section 3.6.3. “Cosmetic” processing is another use of lowpass fil-
tering prior to printing. Figure 4.50 shows an application of lowpass filtering
for producing a smoother, softer-looking result from a sharp original. For
human faces, the typical objective is to reduce the sharpness of fine skin lines
and small blemishes. The magnified sections in Figs. 4.50(b) and (c) clearly
show a significant reduction in fine skin lines around the eyes in this case. In
fact, the smoothed images look quite soft and pleasing.

Figure 4.51 shows two applications of lowpass filtering on the same image,
but with totally different objectives. Figure 4.51(a) is an very high
resolution radiometer (VHRR) image showing part of the Gulf of Mexico
(dark) and Florida (light), taken from a NOAA satellite (note the horizontal
sensor scan lines). The boundaries between bodies of water were caused by
loop currents.This image is illustrative of remotely sensed images in which sen-
sors have the tendency to produce pronounced scan lines along the direction in
which the scene is being scanned (see Example 4.24 for an illustration of a

808 * 754

444 * 508D0 = 80.

We discuss unsharp
masking in the frequency
domain in Section 4.9.5
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FIGURE 4.50 (a) Original image (b) Result of filtering using a GLPF with 
(c) Result of filtering using a GLPF with Note the reduction in fine skin lines in the magnified
sections in (b) and (c).

D0 = 80.
D0 = 100.(784 * 732 pixels).

physical cause). Lowpass filtering is a crude but simple way to reduce the effect
of these lines, as Fig. 4.51(b) shows (we consider more effective approaches in
Sections 4.10 and 5.4.1). This image was obtained using a GLFP with 
The reduction in the effect of the scan lines can simplify the detection of fea-
tures such as the interface boundaries between ocean currents.

Figure 4.51(c) shows the result of significantly more aggressive Gaussian
lowpass filtering with Here, the objective is to blur out as much de-
tail as possible while leaving large features recognizable. For instance, this type
of filtering could be part of a preprocessing stage for an image analysis system
that searches for features in an image bank.An example of such features could
be lakes of a given size, such as Lake Okeechobee in the lower eastern region
of Florida, shown as a nearly round dark region in Fig. 4.51(c). Lowpass filter-
ing helps simplify the analysis by averaging out features smaller than the ones
of interest.

4.9 Image Sharpening Using Frequency Domain Filters

In the previous section, we showed that an image can be smoothed by attenu-
ating the high-frequency components of its Fourier transform. Because edges
and other abrupt changes in intensities are associated with high-frequency
components, image sharpening can be achieved in the frequency domain by
highpass filtering, which attenuates the low-frequency components without
disturbing high-frequency information in the Fourier transform. As in Section

D0 = 20.

D0 = 50.
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FIGURE 4.51 (a) Image showing prominent horizontal scan lines. (b) Result of filtering using a GLPF with
(c) Result of using a GLPF with (Original image courtesy of NOAA.)D0 = 20.D0 = 50.

4.8, we consider only zero-phase-shift filters that are radially symmetric. All
filtering in this section is based on the procedure outlined in Section 4.7.3, so
all filter functions, , are understood to be discrete functions of size

that is, the discrete frequency variables are in the range
and

A highpass filter is obtained from a given lowpass filter using the equation

(4.9-1)

where is the transfer function of the lowpass filter. That is, when the
lowpass filter attenuates frequencies, the highpass filter passes them, and vice
versa.

In this section, we consider ideal, Butterworth, and Gaussian highpass fil-
ters. As in the previous section, we illustrate the characteristics of these filters
in both the frequency and spatial domains. Figure 4.52 shows typical 3-D plots,
image representations, and cross sections for these filters. As before, we see
that the Butterworth filter represents a transition between the sharpness of
the ideal filter and the broad smoothness of the Gaussian filter. Figure 4.53,
discussed in the sections that follow, illustrates what these filters look like in
the spatial domain.The spatial filters were obtained and displayed by using the
procedure used to generate Figs. 4.43 and 4.46.

4.9.1 Ideal Highpass Filters
A 2-D ideal highpass filter (IHPF) is defined as

(4.9-2)H(u, v) = b0 if D(u, v) … D0

1 if D(u, v) 7 D0

HLP(u, v)

HHP(u, v) = 1 - HLP(u, v)

v = 0, 1, 2, Á , Q - 1.u = 0, 1, 2, Á , P - 1
P * Q;

(u, v)H

a b c
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1.0

1.0

1.0

v

u

u v

H(u, v) H(u, v)

H(u, v)

H(u, v)

H(u, v)

H(u, v)
u

u

v

v

u v

u v

D(u, v)

D(u, v)

D(u, v)

FIGURE 4.52 Top row: Perspective plot, image representation, and cross section of a typical ideal highpass
filter. Middle and bottom rows: The same sequence for typical Butterworth and Gaussian highpass filters.

where is the cutoff frequency and D is given by Eq. (4.8-2). This ex-
pression follows directly from Eqs. (4.8-1) and (4.9-1). As intended, the IHPF
is the opposite of the ILPF in the sense that it sets to zero all frequencies inside
a circle of radius while passing, without attenuation, all frequencies outside
the circle.As in the case of the ILPF, the IHPF is not physically realizable. How-
ever, we consider it here for completeness and, as before, because its proper-
ties can be used to explain phenomena such as ringing in the spatial domain.
The discussion will be brief.

Because of the way in which they are related [Eq. (4.9-1)], we can expect
IHPFs to have the same ringing properties as ILPFs. This is demonstrated

D0

(u, v)D0
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~ ~ ~

FIGURE 4.53 Spatial representation of typical (a) ideal, (b) Butterworth, and (c) Gaussian frequency domain
highpass filters, and corresponding intensity profiles through their centers.

FIGURE 4.54 Results of highpass filtering the image in Fig. 4.41(a) using an IHPF with 60, and 160.D0 = 30,

clearly in Fig. 4.54, which consists of various IHPF results using the original
image in Fig. 4.41(a) with set to 30, 60, and 160 pixels, respectively. The ring-
ing in Fig. 4.54(a) is so severe that it produced distorted, thickened object
boundaries (e.g., look at the large letter “a”). Edges of the top three circles do
not show well because they are not as strong as the other edges in the image
(the intensity of these three objects is much closer to the background intensity,

D0

a b c

a b c
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giving discontinuities of smaller magnitude). Looking at the “spot” size of the
spatial representation of the IHPF in Fig. 4.53(a) and keeping in mind that fil-
tering in the spatial domain is convolution of the spatial filter with the image
helps explain why the smaller objects and lines appear almost solid white.
Look in particular at the three small squares in the top row and the thin, ver-
tical bars in Fig. 4.54(a). The situation improved somewhat with 
Edge distortion is quite evident still, but now we begin to see filtering on the
smaller objects. Due to the now familiar inverse relationship between the fre-
quency and spatial domains, we know that the spot size of this filter is smaller
than the spot of the filter with The result for is closer to
what a highpass-filtered image should look like. Here, the edges are much
cleaner and less distorted, and the smaller objects have been filtered prop-
erly. Of course, the constant background in all images is zero in these
highpass-filtered images because highpass filtering is analogous to differ-
entiation in the spatial domain.

4.9.2 Butterworth Highpass Filters
A 2-D Butterworth highpass filter (BHPF) of order n and cutoff frequency 
is defined as

(4.9-3)

where D is given by Eq. (4.8-2). This expression follows directly from
Eqs. (4.8-5) and (4.9-1). The middle row of Fig. 4.52 shows an image and cross
section of the BHPF function.

As with lowpass filters, we can expect Butterworth highpass filters to be-
have smoother than IHPFs. Figure 4.55 shows the performance of a BHPF, of

(u, v)

H(u, v) =
1

1 + [D0>D(u, v)]2n

D0

D0 = 160D0 = 30.

D0 = 60.

FIGURE 4.55 Results of highpass filtering the image in Fig. 4.41(a) using a BHPF of order 2 with 60,
and 160, corresponding to the circles in Fig. 4.41(b). These results are much smoother than those obtained
with an IHPF.

D0 = 30,

a b c
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order 2 and with set to the same values as in Fig. 4.54. The boundaries are
much less distorted than in Fig. 4.54, even for the smallest value of cutoff fre-
quency. Because the spot sizes in the center areas of the IHPF and the BHPF
are similar [see Figs. 4.53(a) and (b)], the performance of the two filters on the
smaller objects is comparable. The transition into higher values of cutoff fre-
quencies is much smoother with the BHPF.

4.9.3 Gaussian Highpass Filters
The transfer function of the Gaussian highpass filter (GHPF) with cutoff fre-
quency locus at a distance from the center of the frequency rectangle is
given by

(4.9-4)

where D is given by Eq. (4.8-2). This expression follows directly from
Eqs. (4.8-7) and (4.9-1). The third row in Fig. 4.52 shows a perspective plot,
image, and cross section of the GHPF function. Following the same format as
for the BHPF, we show in Fig. 4.56 comparable results using GHPFs. As ex-
pected, the results obtained are more gradual than with the previous two fil-
ters. Even the filtering of the smaller objects and thin bars is cleaner with the
Gaussian filter. Table 4.5 contains a summary of the highpass filters discussed
in this section.

(u, v)

H(u, v) = 1 - e-D2(u,v)>2D0
2

D0

D0

FIGURE 4.56 Results of highpass filtering the image in Fig. 4.41(a) using a GHPF with and 160,
corresponding to the circles in Fig. 4.41(b). Compare with Figs. 4.54 and 4.55.

D0 = 30, 60,

a b c

Ideal Butterworth Gaussian

H(u, v) = 1 - e-D2(u,v)>2D0
2

H(u, v) =
1

1 + [D0>D(u, v)]2nH(u, v) = b1 if D(u, v) … D0

0 if D(u, v) 7 D0

TABLE 4.5
Highpass filters. is the cutoff frequency and n is the order of the Butterworth filter.D0
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FIGURE 4.57 (a) Thumb print. (b) Result of highpass filtering (a). (c) Result of
thresholding (b). (Original image courtesy of the U.S. National Institute of Standards
and Technology.)

■ Figure 4.57(a) is a image of a thumb print in which smudges
(a typical problem) are evident. A key step in automated fingerprint recog-
nition is enhancement of print ridges and the reduction of smudges. En-
hancement is useful also in human interpretation of prints. In this example,
we use highpass filtering to enhance the ridges and reduce the effects of
smudging. Enhancement of the ridges is accomplished by the fact that they
contain high frequencies, which are unchanged by a highpass filter. On the
other hand, the filter reduces low frequency components, which correspond
to slowly varying intensities in the image, such as the background and
smudges. Thus, enhancement is achieved by reducing the effect of all fea-
tures except those with high frequencies, which are the features of interest
in this case.

Figure 4.57(b) is the result of using a Butterworth highpass filter of order 4
with a cutoff frequency of 50. As expected, the highpass-filtered image lost its
gray tones because the dc term was reduced to 0. The net result is that dark
tones typically predominate in highpass-filtered images, thus requiring addi-
tional processing to enhance details of interest.A simple approach is to thresh-
old the filtered image. Figure 4.57(c) shows the result of setting to black all
negative values and to white all positive values in the filtered image. Note how
the ridges are clear and the effect of the smudges has been reduced consider-
ably. In fact, ridges that are barely visible in the top, right section of the image
in Fig. 4.57(a) are nicely enhanced in Fig. 4.57(c). ■

4.9.4 The Laplacian in the Frequency Domain
In Section 3.6.2, we used the Laplacian for image enhancement in the spatial
domain. In this section, we revisit the Laplacian and show that it yields equiv-
alent results using frequency domain techniques. It can be shown (Problem
4.26) that the Laplacian can be implemented in the frequency domain using
the filter

(4.9-5)H(u, v) = -4p2(u2 + v2)

1026 * 962

The value is ap-
proximately 2.5% of the
short dimension of the
padded image. The idea
is for to be close to
the origin so low fre-
quencies are attenuated,
but not completely elimi-
nated. A range of 2% to
5% of the short dimen-
sion is a good starting
point.

D0

D0 = 50

EXAMPLE 4.19:
Using highpass
filtering and
thresholding for
image
enhancement.

a b c
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or, with respect to the center of the frequency rectangle, using the filter

(4.9-6)

where is the distance function given in Eq. (4.8-2).Then, the Laplacian
image is obtained as:

(4.9-7)

where is the DFT of . As explained in Section 3.6.2, enhance-
ment is achieved using the equation:

(4.9-8)

Here, because is negative. In Chapter 3, and 
had comparable values. However, computing with Eq. (4.9-7) intro-
duces DFT scaling factors that can be several orders of magnitude larger than
the maximum value of f. Thus, the differences between f and its Laplacian
must be brought into comparable ranges. The easiest way to handle this prob-
lem is to normalize the values of to the range [0, 1] (before computing
its DFT) and divide by its maximum value, which will bring it to the
approximate range (recall that the Laplacian has negative values).
Equation (4.9-8) can then be applied.

In the frequency domain, Eq. (4.9-8) is written as

(4.9-9)

Although this result is elegant, it has the same scaling issues just mentioned,
compounded by the fact that the normalizing factor is not as easily computed.
For this reason, Eq. (4.9-8) is the preferred implementation in the frequency
domain, with computed using Eq. (4.9-7) and scaled using the ap-
proach mentioned in the previous paragraph.

§2f(x, y)

= �-1E C1 + 4p2D2(u, v) DF(u, v)F
= �-1E C1 - H(u, v) DF(u, v)F

g(x, y) = �-1EF(u, v) - H(u, v)F(u, v)F

[-1, 1]
§2f(x, y)

(x, y)f

§2f(x, y)
§2f(x, y)(x, y)f(u, v)Hc = -1

g(x, y) = f(x, y) + c§2f(x, y)

(x, y)f(u, v)F

§2f(x, y) = �-1EH(u, v)F(u, v)F

(u, v)D

= -4p2D2(u, v)

H(u, v) = -4p2 C(u - P>2)2 + (v - Q>2)2 D

EXAMPLE 4.20:
Image sharpening
in the frequency
domain using the
Laplacian.

■ Figure 4.58(a) is the same as Fig. 3.38(a), and Fig. 4.58(b) shows the result of
using Eq. (4.9-8), in which the Laplacian was computed in the frequency do-
main using Eq. (4.9-7). Scaling was done as described in connection with that
equation.We see by comparing Figs. 4.58(b) and 3.38(e) that the frequency do-
main and spatial results are identical visually. Observe that the results in these
two figures correspond to the Laplacian mask in Fig. 3.37(b), which has a in
the center (Problem 4.26). ■

-8
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4.9.5 Unsharp Masking, Highboost Filtering, 
and High-Frequency-Emphasis Filtering

In this section, we discuss frequency domain formulations of the unsharp
masking and high-boost filtering image sharpening techniques introduced in
Section 3.6.3. Using frequency domain methods, the mask defined in Eq. (3.6-8)
is given by

(4.9-10)

with

(4.9-11)

where is a lowpass filter and is the Fourier transform of 
. Here, is a smoothed image analogous to in Eq. (3.6-8).

Then, as in Eq. (3.6-9),

(4.9-12)

This expression defines unsharp masking when and highboost filter-
ing when Using the preceding results, we can express Eq. (4.9-12)
entirely in terms of frequency domain computations involving a lowpass
filter:

(4.9-13)

Using Eq. (4.9-1), we can express this result in terms of a highpass filter:

(4.9-14)g(x, y) = �-1E [1 + k*HHP(u, v)]F(u, v)F

g(x, y) = �-1E C1 + k* [1 - HLP(u, v)] DF(u, v)F

k 7 1.
k = 1

g(x, y) = f(x, y) + k*gmask(x, y)

f(x, y)fLP(x, y)(x, y)f
(u, v)FHLP(u, v)

fLP(x, y) = �-1 CHLP(u, v)F(u, v) D

gmask(x, y) = f(x, y) - fLP(x, y)

FIGURE 4.58
(a) Original,
blurry image.
(b) Image
enhanced using
the Laplacian in
the frequency
domain. Compare
with Fig. 3.38(e).

a b



4.9 ■ Image Sharpening Using Frequency Domain Filters 289

EXAMPLE 4.21:
Image
enhancement
using high-
frequency-
emphasis filtering.

■ Figure 4.59(a) shows a chest X-ray with a narrow range of inten-
sity levels. The objective of this example is to enhance the image using high-
frequency-emphasis filtering. X-rays cannot be focused in the same manner
that optical lenses are focused, and the resulting images generally tend to be
slightly blurred. Because the intensities in this particular image are biased
toward the dark end of the gray scale, we also take this opportunity to give
an example of how spatial domain processing can be used to complement
frequency-domain filtering.

Figure 4.59(b) shows the result of highpass filtering using a Gaussian filter
with (approximately 5% of the short dimension of the padded
image). As expected, the filtered result is rather featureless, but it shows faint-
ly the principal edges in the image. Figure 4.59(c) shows the advantage of high-
emphasis filtering, where we used Eq. (4.9-15) with and 
Although the image is still dark, the gray-level tonality due to the low-frequency
components was not lost.

As discussed in Section 3.3.1, an image characterized by intensity levels in a
narrow range of the gray scale is an ideal candidate for histogram equaliza-
tion. As Fig. 4.59(d) shows, this was indeed an appropriate method to further
enhance the image. Note the clarity of the bone structure and other details
that simply are not visible in any of the other three images.The final enhanced
image is a little noisy, but this is typical of X-ray images when their gray scale
is expanded. The result obtained using a combination of high-frequency em-
phasis and histogram equalization is superior to the result that would be ob-
tained by using either method alone. ■

4.9.6 Homomorphic Filtering
The illumination-reflectance model introduced in Section 2.3.4 can be used to
develop a frequency domain procedure for improving the appearance of an
image by simultaneous intensity range compression and contrast enhance-
ment. From the discussion in that section, an image can be expressed as
the product of its illumination, , and reflectance, , components:

(4.9-16)f(x, y) = i(x, y)r(x, y)

(x, y)r(x, y)i
(x, y)f

k2 = 0.75.k1 = 0.5

D0 = 40

416 * 596

Artifacts such as ringing
are unacceptable in med-
ical imaging. Thus, it is
good practice to avoid
using filters that have the
potential for introducing
artifacts in the processed
image. Because spatial
and frequency domain
Gaussian filters are
Fourier transform pairs,
these filters produce
smooth results that are
void of artifacts.

The expression contained within the square brackets is called a high-frequency-
emphasis filter. As noted earlier, highpass filters set the dc term to zero, thus
reducing the average intensity in the filtered image to 0. The high-frequency-
emphasis filter does not have this problem because of the 1 that is added to the
highpass filter. The constant, k, gives control over the proportion of high fre-
quencies that influence the final result. A slightly more general formulation of
high-frequency-emphasis filtering is the expression

(4.9-15)

where gives controls of the offset from the origin [see Fig. 4.31(c)] and
controls the contribution of high frequencies.k2 Ú 0

k1 Ú 0

g(x, y) = �-1E [k1 + k2 *HHP(u, v)]F(u, v)F
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This equation cannot be used directly to operate on the frequency compo-
nents of illumination and reflectance because the Fourier transform of a prod-
uct is not the product of the transforms:

(4.9-17)

However, suppose that we define

(4.9-18)

Then,

(4.9-19)

or

(4.9-20)Z(u, v) = Fi(u, v) + Fr(u, v)

= �E ln i(x, y)F + �E ln r(x, y)F
�Ez(x, y)F = �E ln f(x, y)F

= ln i(x, y) + ln r(x, y)

z(x, y) = ln f(x, y)

�[f(x, y)] Z �[i(x, y)]�[r(x, y)]

If an image with
intensities in the range

has any 0 val-
ues, a 1 must be added to
every element of the
image to avoid having to
deal with ln(0). The 1 is
then subtracted at the
end of the filtering
process.

[0, L - 1]

(x, y)f

FIGURE 4.59 (a) A chest X-ray image. (b) Result of highpass filtering with a Gaussian
filter. (c) Result of high-frequency-emphasis filtering using the same filter. (d) Result of
performing histogram equalization on (c). (Original image courtesy of Dr. Thomas R.
Gest, Division of Anatomical Sciences, University of Michigan Medical School.)

a b
c d
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where and are the Fourier transforms of and 
ln , respectively.

We can filter using a filter so that

(4.9-21)

The filtered image in the spatial domain is

(4.9-22)

By defining

(4.9-23)

and

(4.9-24)

we can express Eq. (4.9-23) in the form

(4.9-25)

Finally, because was formed by taking the natural logarithm of the
input image, we reverse the process by taking the exponential of the filtered
result to form the output image:

(4.9-26)

where

(4.9-27)

and

(4.9-28)

are the illumination and reflectance components of the output (processed)
image.

r0(x, y) = e r¿(x,y)

i0(x, y) = e i¿(x,y)

= i0(x, y)r0(x, y)

= e i¿(x,y)e r¿(x,y)

g(x, y) = e s(x,y)

(x, y)z

s(x, y) = i¿(x, y) + r¿(x, y)

r¿(x, y) = �-1EH(u, v)Fr(u, v)F

i¿(x, y) = �-1EH(u, v)Fi(u, v)F

= �-1EH(u, v)Fi(u, v)F + �-1EH(u, v)Fr(u, v)F
s(x, y) = �-1ES(u, v)F

= H(u, v)Fi(u, v) + H(u, v)Fr(u, v)

S(u, v) = H(u, v)Z(u, v)

(u, v)H(u, v)Z
(x, y)r

ln i(x, y)Fr(u, v)Fi(u, v)
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H(u, v)

D(u, v)

gH

gL

FIGURE 4.61
Radial cross
section of a
circularly
symmetric
homomorphic
filter function.
The vertical axis is
at the center of
the frequency
rectangle and
D is the
distance from the
center.

(u, v)

The filtering approach just derived is summarized in Fig. 4.60. This method
is based on a special case of a class of systems known as homomorphic systems.
In this particular application, the key to the approach is the separation of the
illumination and reflectance components achieved in the form shown in 
Eq. (4.9-20). The homomorphic filter function then can operate on
these components separately, as indicated by Eq. (4.9-21).

The illumination component of an image generally is characterized by slow
spatial variations, while the reflectance component tends to vary abruptly, par-
ticularly at the junctions of dissimilar objects. These characteristics lead to as-
sociating the low frequencies of the Fourier transform of the logarithm of an
image with illumination and the high frequencies with reflectance. Although
these associations are rough approximations, they can be used to advantage in
image filtering, as illustrated in Example 4.22.

A good deal of control can be gained over the illumination and reflectance
components with a homomorphic filter. This control requires specification of
a filter function that affects the low- and high-frequency components
of the Fourier transform in different, controllable ways. Figure 4.61 shows a
cross section of such a filter. If the parameters and are chosen so that

and the filter function in Fig. 4.61 tends to attenuate the con-
tribution made by the low frequencies (illumination) and amplify the contri-
bution made by high frequencies (reflectance). The net result is simultaneous
dynamic range compression and contrast enhancement.

The shape of the function in Fig. 4.61 can be approximated using the basic
form of a highpass filter. For example, using a slightly modified form of the
Gaussian highpass filter yields the function

(4.9-29)H(u, v) = (gH - gL) C1 - e-c[D2(u, v)>D0
2 ] D + gL

gH 7 1,gL 6 1
gHgL

(u, v)H

(u, v)H

ln expDFT (DFT)�1H(u, v) g(x, y)f(x, y)

FIGURE 4.60
Summary of steps
in homomorphic
filtering.
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FIGURE 4.62
(a) Full body PET
scan. (b) Image
enhanced using
homomorphic
filtering. (Original
image courtesy of
Dr. Michael 
E. Casey, CTI
PET Systems.)

EXAMPLE 4.22:
Image
enhancement
using
homomorphic
filtering.

■ Figure 4.62(a) shows a full body PET (Positron Emission Tomography)
scan of size pixels. The image is slightly blurry and many of its
low-intensity features are obscured by the high intensity of the “hot spots”
dominating the dynamic range of the display. (These hot spots were caused by
a tumor in the brain and one in the lungs.) Figure 4.62(b) was obtained by ho-
momorphic filtering Fig. 4.62(a) using the filter in Eq. (4.9-29) with

and A cross section of this filter looks
just like Fig. 4.61, with a slightly steeper slope.

Note in Fig. 4.62(b) how much sharper the hot spots, the brain, and the
skeleton are in the processed image, and how much more detail is visible in
this image. By reducing the effects of the dominant illumination components
(the hot spots), it became possible for the dynamic range of the display to
allow lower intensities to become much more visible. Similarly, because the
high frequencies are enhanced by homomorphic filtering, the reflectance
components of the image (edge information) were sharpened considerably.
The enhanced image in Fig. 4.62(b) is a significant improvement over the
original. ■

D0 = 80.gH = 2, c = 1,gL = 0.25,

1162 * 746

Recall that filtering uses
image padding, so the fil-
ter is of size P * Q.

where D is defined in Eq. (4.8-2) and the constant c controls the
sharpness of the slope of the function as it transitions between and 
This filter is similar to the high-emphasis filter discussed in the previous
section.

gH.gL

(u, v)

a b
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4.10 Selective Filtering

The filters discussed in the previous two sections operate over the entire fre-
quency rectangle. There are applications in which it is of interest to process
specific bands of frequencies or small regions of the frequency rectangle. Fil-
ters in the first category are called bandreject or bandpass filters, respectively.
Filters in the second category are called notch filters.

4.10.1 Bandreject and Bandpass Filters
These types of filters are easy to construct using the concepts from the previ-
ous two sections. Table 4.6 shows expressions for ideal, Butterworth, and
Gaussian bandreject filters, where D is the distance from the center of
the frequency rectangle, as given in Eq. (4.8-2), is the radial center of the
band, and W is the width of the band. Figure 4.63(a) shows a Gaussian band-
reject filter in image form, where black is 0 and white is 1.

A bandpass filter is obtained from a bandreject filter in the same manner
that we obtained a highpass filter from a lowpass filter:

(4.10-1)

Figure 4.63(b) shows a Gaussian bandpass filter in image form.

4.10.2 Notch Filters
Notch filters are the most useful of the selective filters. A notch filter rejects
(or passes) frequencies in a predefined neighborhood about the center of the
frequency rectangle. Zero-phase-shift filters must be symmetric about the ori-
gin, so a notch with center at must have a corresponding notch at loca-
tion Notch reject filters are constructed as products of highpass
filters whose centers have been translated to the centers of the notches. The
general form is:

(4.10-2)

where and are highpass filters whose centers are at 
and respectively. These centers are specified with respect to the(-uk, -vk),

(uk, vk)H-k(u, v)Hk(u, v)

HNR(u, v) = q
Q

k = 1
Hk(u, v)H-k(u, v)

(-u0, -v0).
(u0, v0)

HBP(u, v) = 1 - HBR(u, v)

D0

(u, v)

TABLE 4.6
Bandreject filters. W is the width of the band, D is the distance D from the center of the filter, is the
cutoff frequency, and n is the order of the Butterworth filter. We show D instead of D to simplify the
notation in the table.

(u, v)
D0(u, v)

Ideal Butterworth Gaussian

H(u, v) = c 0 if D0 -
W

2
… D … D0 +

W

2
1 otherwise

H(u, v) =
1

1 + B DW

D2 - D0
2 R2n

H(u, v) = 1 - e- CD2 - D
0
2

DW D 2
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FIGURE 4.63
(a) Bandreject
Gaussian filter.
(b) Corresponding
bandpass filter.
The thin black
border in (a) was
added for clarity; it
is not part of the
data.

center of the frequency rectangle, (M/2, N/2). The distance computations for
each filter are thus carried out using the expressions

(4.10-3)

and

(4.10-4)

For example, the following is a Butterworth notch reject filter of order n, con-
taining three notch pairs:

(4.10-5)

where and are given by Eqs. (4.10-3) and (4.10-4). The constant is
the same for each pair of notches, but it can be different for different pairs.
Other notch reject filters are constructed in the same manner, depending on
the highpass filter chosen. As with the filters discussed earlier, a notch pass fil-
ter is obtained from a notch reject filter using the expression

(4.10-6)

As the next three examples show, one of the principal applications of notch
filtering is for selectively modifying local regions of the DFT.This type of pro-
cessing typically is done interactively, working directly on DFTs obtained
without padding. The advantages of working interactively with actual DFTs
(as opposed to having to “translate” from padded to actual frequency values)
outweigh any wraparound errors that may result from not using padding in
the filtering process. Also, as we show in Section 5.4.4, even more powerful
notch filtering techniques than those discussed here are based on unpadded
DFTs. To get an idea of how DFT values change as a function of padding, see
Problem 4.22.

HNP(u, v) = 1 - HNR(u, v)

D0kD-kDk

HNR(u, v) = q
3

k = 1
B 1

1 + [D0k>Dk(u, v)]2n R B 1

1 + [D0k>D-k(u, v)]2n R
D-k(u, v) = C(u - M>2 + uk)2 + (v - N>2 + vk)2 D1/2

Dk(u, v) = C(u - M>2 - uk)2 + (v - N>2 - vk)2 D1/2

a b
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FIGURE 4.64
(a) Sampled
newspaper image
showing a 
moiré pattern.
(b) Spectrum.
(c) Butterworth
notch reject filter
multiplied by the
Fourier
transform.
(d) Filtered
image.

■ Figure 4.64(a) is the scanned newspaper image from Fig. 4.21, showing a
prominent moiré pattern, and Fig. 4.64(b) is its spectrum. We know from
Table 4.3 that the Fourier transform of a pure sine, which is a periodic func-
tion, is a pair of conjugate symmetric impulses. The symmetric “impulse-like”
bursts in Fig. 4.64(b) are a result of the near periodicity of the moiré pattern.
We can attenuate these bursts by using notch filtering.

EXAMPLE 4.23:
Reduction of
moiré patterns
using notch
filtering.

a b
c d
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FIGURE 4.65
(a)
image of the
Saturn rings
showing nearly
periodic
interference.
(b) Spectrum: The
bursts of energy
in the vertical axis
near the origin
correspond to the
interference
pattern. (c) A
vertical notch
reject filter.
(d) Result of
filtering. The thin
black border in
(c) was added for
clarity; it is not
part of the data.
(Original image
courtesy
of Dr. Robert 
A. West,
NASA/JPL.)

674 * 674

Figure 4.64(c) shows the result of multiplying the DFT of Fig. 4.64(a) by a
Butterworth notch reject filter with and for all notch pairs. The
value of the radius was selected (by visual inspection of the spectrum) to en-
compass the energy bursts completely, and the value of n was selected to give
notches with mildly sharp transitions. The locations of the center of the notch-
es were determined interactively from the spectrum. Figure 4.64(d) shows the
result obtained with this filter using the procedure outlined in Section 4.7.3.
The improvement is significant, considering the low resolution and degrada-
tion of the original image. ■

n = 4D0 = 3

EXAMPLE 4.24:
Enhancement of
corrupted Cassini
Saturn image by
notch filtering.

■ Figure 4.65(a) shows an image of part of the rings surrounding the planet
Saturn. This image was captured by Cassini, the first spacecraft to enter the
planet’s orbit. The vertical sinusoidal pattern was caused by an AC signal su-
perimposed on the camera video signal just prior to digitizing the image. This
was an unexpected problem that corrupted some images from the mission.
Fortunately, this type of interference is fairly easy to correct by postprocessing.
One approach is to use notch filtering.

Figure 4.65(b) shows the DFT spectrum. Careful analysis of the vertical axis
reveals a series of small bursts of energy which correspond to the nearly sinusoidal

a b
c d



298 Chapter 4 ■ Filtering in the Frequency Domain

interference. A simple approach is to use a narrow notch rectangle filter starting
with the lowest frequency burst and extending for the remaining of the vertical
axis. Figure 4.65(c) shows such a filter (white represents 1 and black 0). Figure
4.65(d) shows the result of filtering the corrupted image with this filter.This result
is a significant improvement over the original image.

We isolated the frequencies in the vertical axis using a notch pass version of
the same filter [Fig. 4.66(a)].Then, as Fig. 4.66(b) shows, the IDFT of these fre-
quencies yielded the spatial interference pattern itself. ■

4.11 Implementation

We have focused attention thus far on theoretical concepts and on examples of
filtering in the frequency domain. One thing that should be clear by now is that
computational requirements in this area of image processing are not trivial.
Thus, it is important to develop a basic understanding of methods by which
Fourier transform computations can be simplified and speeded up. This sec-
tion deals with these issues.

4.11.1 Separability of the 2-D DFT
As mentioned in Table 4.2, the 2-D DFT is separable into 1-D transforms. We
can write Eq. (4.5-15) as

(4.11-1)

where

(4.11-2)F(x, v) = a
N - 1

y = 0
f(x, y)e-j2pvy>N

= a
M - 1

x = 0

F(x, v)e-j2pux>M

F(u, v) = a
M - 1

x = 0

e-j2pux>M a
N - 1

y = 0

f(x, y)e-j2pvy>N

FIGURE 4.66
(a) Result
(spectrum) of
applying a notch
pass filter to 
the DFT of 
Fig. 4.65(a).
(b) Spatial
pattern obtained
by computing the
IDFT of (a).

a b



4.11 ■ Implementation 299

We could have expressed
Eq. (4.11-1) and (4.11-2)
in the form of 1-D col-
umn transforms followed
by row transforms. The
final result would have
been the same.

For each value of x and for we see that is sim-
ply the 1-D DFT of a row of . By varying x from 0 to in Eq.
(4.11-2), we compute a set of 1-D DFTs for all rows of . The computa-
tions in Eq. (4.11-1) similarly are 1-D transforms of the columns of .

Thus, we conclude that the 2-D DFT of can be obtained by comput-
ing the 1-D transform of each row of and then computing the 1-D
transform along each column of the result. This is an important simplification
because we have to deal only with one variable at a time. A similar develop-
ment applies to computing the 2-D IDFT using the 1-D IDFT. However, as we
show in the following section, we can compute the IDFT using an algorithm
designed to compute the DFT.

4.11.2 Computing the IDFT Using a DFT Algorithm
Taking the complex conjugate of both sides of Eq. (4.5-16) and multiplying the
results by MN yields

(4.11-3)

But, we recognize the form of the right side of this result as the DFT of
Therefore, Eq. (4.11-3) indicates that if we substitute into an

algorithm designed to compute the 2-D forward Fourier transform, the result
will be Taking the complex conjugate and multiplying this result
by MN yields , which is the inverse of .

Computing the 2-D inverse from a 2-D forward DFT algorithm that is based
on successive passes of 1-D transforms (as in the previous section) is a frequent
source of confusion involving the complex conjugates and multiplication by a
constant, neither of which is done in the 1-D algorithms. The key concept to
keep in mind is that we simply input into whatever forward algorithm
we have. The result will be All we have to do with this result to
obtain is to take its complex conjugate and multiply it by the constant
MN. Of course, when is real, as typically is the case,

4.11.3 The Fast Fourier Transform (FFT)
Work in the frequency domain would not be practical if we had to implement
Eqs. (4.5-15) and (4.5-16) directly. Brute-force implementation of these equations
requires on the order of summations and additions. For images of moder-
ate size (say, pixels), this means on the order of a trillion multiplica-
tions and additions for just one DFT, excluding the exponentials, which could be
computed once and stored in a look-up table.This would be a challenge even for
super computers. Without the discovery of the fast Fourier transform (FFT),
which reduces computations to the order of multiplications and ad-
ditions, it is safe to say that the material presented in this chapter would be of lit-
tle practical value. The computational reductions afforded by the FFT are
impressive indeed. For example, computing the 2-D FFT of a image
would require on the order of 20 million multiplication and additions, which is a
significant reduction from the one trillion computations mentioned above.

1024 * 1024

MN log2MN

1024 * 1024
(MN)2

f*(x, y) = f(x, y).(x, y)f
(x, y)f

MNf*(x, y).
F*(u, v)

F(u, v)(x, y)f
MNf*(x, y).

F*(u, v)F*(u, v).

MNf*(x, y) = a
M - 1

u = 0
a

N - 1

v = 0
F*(u, v)e-j2p(ux>M + vy>N)

(x, y)f
(x, y)f

F(x, v)
(x, y)f

M - 1(x, y)f
F(x, v)v = 0, 1, 2, Á , N - 1,

Multiplication by MN in
this development as-
sumes the forms in Eqs.
(4.5-15) and (4.5-16). A
different constant multi-
plication scheme is re-
quired if the constants
are distributed different-
ly between the forward
and inverse transforms.
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Although the FFT is a topic covered extensively in the literature on signal
processing, this subject matter is of such significance in our work that this
chapter would be incomplete if we did not provide at least an introduction ex-
plaining why the FFT works as it does. The algorithm we selected to accom-
plish this objective is the so-called successive-doubling method, which was the
original algorithm that led to the birth of an entire industry. This particular al-
gorithm assumes that the number of samples is an integer power of 2, but this
is not a general requirement of other approaches (Brigham [1988]). We know
from Section 4.11.1 that 2-D DFTs can be implemented by successive passes
of the 1-D transform, so we need to focus only on the FFT of one variable.

When dealing with derivations of the FFT, it is customary to express Eq.
(4.4-6) in the form

(4.11-4)

where

(4.11-5)

and M is assumed to be of the form

(4.11-6)

with n being a positive integer. Hence, M can be expressed as

(4.11-7)

with K being a positive integer also. Substituting Eq. (4.11-7) into Eq. (4.11-4)
yields

(4.11-8)

However, it can be shown using Eq. (4.11-5) that so Eq. (4.11-8)
can be expressed as

(4.11-9)

Defining

(4.11-10)

for andu = 0, 1, 2, Á , K - 1,

Feven(u) = a
K - 1

x = 0
f(2x)WK

ux

F(u) = a
K - 1

x = 0
f(2x)WK

ux + a
K - 1

x = 0
f(2x + 1)WK

uxW2K
u

W2K
2ux = WK

ux,

= a
K - 1

x = 0
f(2x)W2K

u (2x) + a
K - 1

x = 0
f(2x + 1)W2K

u (2x + 1)

F(u) = a
2K - 1

x = 0
f(x)W2K

ux

M = 2K

M = 2n

WM = e-j2p/M

u = 0, 1, Á , M - 1,

F(u) = a
M - 1

x = 0

f(x)WM
ux
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(4.11-11)

for reduces Eq. (4.11-9) to

(4.11-12)

Also, because and Eqs. (4.11-10) through
(4.11-12) give

(4.11-13)

Analysis of Eqs. (4.11-10) through (4.11-13) reveals some interesting prop-
erties of these expressions. An M-point transform can be computed by divid-
ing the original expression into two parts, as indicated in Eqs. (4.11-12) and
(4.11-13). Computing the first half of (u) requires evaluation of the two 
(M 2)-point transforms given in Eqs. (4.11-10) and (4.11-11). The resulting
values of and are then substituted into Eq. (4.11-12) to obtain 

(u) for . The other half then follows directly from
Eq. (4.11-13) without additional transform evaluations.

In order to examine the computational implications of this procedure, let m(n)
and a(n) represent the number of complex multiplications and additions, respec-
tively, required to implement it. As before, the number of samples is with n a
positive integer. Suppose first that A two-point transform requires the
evaluation of (0); then (1) follows from Eq. (4.11-13).To obtain (0) requires
computing and In this case and Eqs. (4.11-10) and (4.11-11)
are one-point transforms. However, because the DFT of a single sample point is
the sample itself, no multiplications or additions are required to obtain 
and One multiplication of by and one addition yield (0)
from Eq. (4.11-12). Then (1) follows from (4.11-13) with one more addition
(subtraction is considered to be the same as addition). Because has al-
ready been computed, the total number of operations required for a two-point
transform consists of multiplication and additions.

The next allowed value for n is 2. According to the above development, a
four-point transform can be divided into two parts. The first half of (u) re-
quires evaluation of two, two-point transforms, as given in Eqs. (4.11-10) and
(4.11-11) for As noted in the preceding paragraph, a two-point trans-
form requires multiplications and additions, so evaluation of these
two equations requires a total of 2 multiplications and 2 additions.
Two further multiplications and additions are necessary to obtain (0) and 

(1) from Eq. (4.11-12). Because already has been computed for
two more additions give (2) and (3). The total is then

and
When n is equal to 3, two four-point transforms are considered in the eval-

uation of and They require 2 multiplications and 2
additions. Four more multiplications and eight more additions yield the com-
plete transform. The total then is and a(3) = 2a(2) + 8.m(3) = 2m(2) + 4

a(2)m(2)Fodd(u).Feven(u)

a(2) = 2a(1) + 4.m(2) = 2m(1) + 2
FFu = 50, 16, Fodd(u)W2K

uF
F

a(1)m(1)
a(1)m(1)

K = 2.

F

a(1) = 2m(1) = 1

Fodd(0)W2
0

F
FW2

0Fodd(0)Fodd(0).
Feven(0)

K = 1Fodd(0).Feven(0)
FFF

n = 1.
2n

u = 0, 1, 2, Á , (M>2 - 1)F
Fodd(u)Feven(u)

> F

F(u + K) = Feven(u) - Fodd(u)W2K
u

W2M
u + M = -W2M

u ,WM
u + M = WM

u

F(u) = Feven(u) + Fodd(u)W2K
u

u = 0, 1, 2, Á , K - 1,

Fodd(u) = a
K - 1

x = 0
f(2x + 1)WK

ux
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Continuing this argument for any positive integer value of n leads to recur-
sive expressions for the number of multiplications and additions required to
implement the FFT:

(4.11-14)

and

(4.11-15)

where and because the transform of a single point does not
require any additions or multiplications.

Implementation of Eqs. (4.11-10) through (4.11-13) constitutes the succes-
sive doubling FFT algorithm.This name comes from the method of computing
a two-point transform from two one-point transforms, a four-point transform
from two two-point transforms, and so on, for any M equal to an integer power
of 2. It is left as an exercise (Problem 4.41) to show that

(4.11-16)

and

(4.11-17)

The computational advantage of the FFT over a direct implementation of the
1-D DFT is defined as

(4.11-18)

Because it is assumed that we can write Eq. (4.11-18) in terms of n:

(4.11-19)

Figure 4.67 shows a plot of this function. It is evident that the computational
advantage increases rapidly as a function of n. For instance, when 
(32,768 points), the FFT has nearly a 2,200 to 1 advantage over the DFT. Thus,
we would expect that the FFT can be computed nearly 2,200 times faster than
the DFT on the same machine.

There are so many excellent sources that cover details of the FFT that we will
not dwell on this topic further (see, for example, Brigham [1988]). Virtually all
comprehensive signal and image processing software packages have generalized
implementations of the FFT that handle cases in which the number of points is
not an integer power of 2 (at the expense of less efficient computation). Free
FFT programs also are readily available, principally over the Internet.

n = 15

c(n) =
2n

n

M = 2n,

=
M

log2 M

c(M) =
M2

M log2 M

a(n) = M log2 M

m(n) =
1
2

M log2 M

a(0) = 0m(0) = 0

a(n) = 2a(n - 1) + 2n n Ú 1

m(n) = 2m(n - 1) + 2n - 1 n Ú 1
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FIGURE 4.67
Computational
advantage of the
FFT over a direct
implementation
of the 1-D DFT.
Note that the
advantage
increases rapidly
as a function of n.

4.11.4 Some Comments on Filter Design
The approach to filtering discussed in this chapter is based strictly on funda-
mentals, the focus being specifically to explain the effects of filtering in the fre-
quency domain as clearly as possible. We know of no better way to do that
than to treat filtering the way we did here. One can view this development as
the basis for “prototyping” a filter. In other words, given a problem for which
we want to find a filter, the frequency domain approach is an ideal tool for ex-
perimenting, quickly and with full control over filter parameters.

Once a filter for a specific application has been found, it often is of interest to im-
plement the filter directly in the spatial domain, using firmware and/or hardware.
This topic is outside the scope of this book. Petrou and Bosdogianni [1999] present
a nice tie between two-dimensional frequency domain filters and the correspond-
ing digital filters. On the design of 2-D digital filters, see Lu and Antoniou [1992].

Summary
The material in this chapter is a progression from sampling to the Fourier transform,
and then to filtering in the frequency domain. Some of the concepts, such as the sam-
pling theorem, make very little sense if not explained in the context of the frequency
domain. The same is true of effects such as aliasing. Thus, the material developed in the
preceding sections is a solid foundation for understanding the fundamentals of digital
signal processing. We took special care to develop the material starting with basic prin-
ciples, so that any reader with a modest mathematical background would be in a posi-
tion not only to absorb the material, but also to apply it.

A second major objective of this chapter was the development of the discrete Fouri-
er transform and its use for filtering in the frequency domain.To get there, we had to in-
troduce the convolution theorem. This result is the foundation of linear systems, and
underlies many of the restoration techniques developed in Chapter 5. The types of fil-
ters we discussed are representative of what one finds in practice. The key point in pre-
senting these filters, however, was to show how simple it is to formulate and implement
filters in the frequency domain. While final implementation of a solution typically is
based on spatial filters, the insight gained by working in the frequency domain as a
guide in the selection of spatial filters cannot be overstated.

Although most filtering examples in this chapter are in the area of image enhancement,
the procedures themselves are general and are utilized extensively in subsequent chapters.
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Detailed solutions to the
problems marked with a
star can be found in the
book Web site. The site
also contains suggested
projects based on the ma-
terial in this chapter.
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ing tool. Our presentation of the FFT in Section 4.11.3 is based on a paper by Cooley and
Tuckey [1965] and on the book by Brigham [1988], who also discusses several implemen-
tations of the FFT, including bases other than 2. Formulation of the fast Fourier transform
is often credited to Cooley and Tukey [1965]. However, the FFT has an interesting histo-
ry worth sketching here. In response to the Cooley–Tukey paper, Rudnick [1966] report-
ed that he was using a similar technique, whose number of operations also was
proportional to and which was based on a method published by Danielson and
Lanczos [1942]. These authors, in turn, referenced Runge [1903, 1905] as the source of
their technique. The latter two papers, together with the lecture notes of Runge and
König [1924], contain the essential computational advantages of present FFT algorithms.
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The FFT algorithm in Section 4.11.3 is from the original paper by Cooley and Tukey
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For software implementation of many of the approaches discussed in Sections 4.7
through 4.11, see Gonzalez, Woods, and Eddins [2004].

Problems
4.1 Repeat Example 4.1, but using the function for and

for all other values of t. Explain the reason for any differences between
your results and the results in the example.

4.2 Show that in Eq. (4.4-2) is infinitely periodic in both directions, with pe-
riod

4.3 It can be shown (Bracewell [2000]) that and . Use the first of
these properties and the translation property from Table 4.3 to show that the
Fourier transform of the continuous function where n is a real
number, is F(m) = (j>2)[d(m + n) - d(m - n)].

f(t) = sin(2pnt),

d(t) 3 11 3 d(m)

1>¢T.
F
~

(m)

f(t) = 0
0 … t … Wf(t) = A

Nlog2N

�

�



4.4 Consider the continuous function 

(a) What is the period of (t)?

(b) What is the frequency of (t)?
The Fourier transform, of (t) is purely imaginary (Problem 4.3), and be-
cause the transform of the sampled data consists of periodic copies of the
transform of the sampled data, will also be purely imaginary. Draw a
diagram similar to Fig. 4.6, and answer the following questions based on your dia-
gram (assume that sampling starts at ).

(c) What would the sampled function and its Fourier transform look like in
general if (t) is sampled at a rate higher than the Nyquist rate?

(d) What would the sampled function look like in general if (t) is sampled at a
rate lower than the Nyquist rate?

(e) What would the sampled function look like if (t) is sampled at the Nyquist
rate with samples taken at 

4.5 Prove the validity of the 1-D convolution theorem of a continuous variable, as
given in Eqs. (4.2-21) and (4.2-22).

4.6 Complete the steps that led from Eq. (4.3-11) to Eq. (4.3-12).

4.7 As the figure below shows, the Fourier transform of a “tent” function (on the left) is
a squared sinc function (on the right). Advance an argument that shows that the
Fourier transform of a tent function can be obtained from the Fourier transform of a
box function. (Hint: The tent itself can be generated by convolving two equal boxes.)

t = 0, ¢T, 2 ¢T, Á ?
f

f

f

t = 0

F
~

(m),
F(m),

fF(m),
f

f

f(t) = sin(2pnt).

4.8 (a) Show that Eqs. (4.4-4) and (4.4-5) constitute a Fourier transform pair.

(b) Repeat (a) for Eqs. (4.4-6) and (4.4-7). You will need the following orthogo-
nality property of exponentials in both parts of this problem:

4.9 Prove the validity of Eqs. (4.4-8) and (4.4-9).

4.10 Prove the validity of the discrete convolution theorem of one variable [see Eqs.
(4.2-21), (4.2-22), and (4.4-10)]. You will need to use the translation properties

and conversely,

4.11 Write an expression for 2-D continuous convolution.

4.12 Consider a checkerboard image in which each square is Assuming
that the image extends infinitely in both coordinate directions, what is the mini-
mum sampling rate (in samples/mm) required to avoid aliasing?

4.13 We know from the discussion in Section 4.5.4 that shrinking an image can cause
aliasing. Is this true also of zooming? Explain.

4.14 Prove that both the 2-D continuous and discrete Fourier transforms are linear
operations (see Section 2.6.2 for a definition of linearity).

4.15 You are given a “canned” program that computes the 2-D, DFT pair. However,
it is not known in which of the two equations the 1/MN term is included or if it

1 * 1 mm.

f(x - x0) 3 F(u)e-j2px0u>M.f(x)e j2pu0x>M 3 F(u - u0)

a
M - 1

x = 0
e j2prx/Me-j2pux/M = bM if r = u

0 otherwise
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was split as two constants in front of both the forward and inverse
transforms. How can you find where the term(s) is (are) included if this infor-
mation is not available in the documentation?

4.16 (a) Prove the validity of the translation property in Eq. (4.6-3).
(b) Prove the validity of Eq. (4.6-4).

4.17 You can infer from Problem 4.3 that and . Use the first of
these properties and the translation property in Table 4.3 to show that the Fouri-
er transform of the continuous function is

4.18 Show that the DFT of the discrete function is

4.19 Show that the DFT of the discrete function is

4.20 The following problems are related to the properties in Table 4.1.
(a) Prove the validity of property 2.
(b) Prove the validity of property 4.
(c) Prove the validity of property 5.
(d) Prove the validity of property 7.
(e) Prove the validity of property 9.
(f) Prove the validity of property 10.
(g) Prove the validity of property 11.
(h) Prove the validity of property 12.
(i) Prove the validity of property 13.

4.21 The need for image padding when filtering in the frequency domain was dis-
cussed in Section 4.6.6. We showed in that section that images needed to be
padded by appending zeros to the ends of rows and columns in the image (see
the following image on the left). Do you think it would make a difference if we

F(u, v) =
j

2
Cd(u + Mu0, v + Nv0) - d(u - Mu0, v - Nv0) D

f(x, y) = sin(2pu0x + 2pv0y)

�516 = d(u, v) = b1 if u = v = 0
0 otherwise

f(x, y) = 1

- m0, n - n0) DF(m, n) =
j

2
Cd(m + m0, n + n0) - d(m

f(t, z) = A sin(2pm0 t + 2pn0 z)

d(t, z) 3 11 3 d(m, v)

1>1MN

306 Chapter 4 ■ Filtering in the Frequency Domain

�

�

�

�

�

�



4.23 You know from Table 4.2 that the dc term, (0, 0), of a DFT is proportional to
the average value of its corresponding spatial image.Assume that the image is of
size Suppose that you pad the image with zeros to size where P
and Q are given in Eqs. (4.6-31) and (4.6-32). Let denote the dc term of
the DFT of the padded function.

(a) What is the ratio of the average values of the original and padded images?

(b) Is Support your answer mathematically.

4.24 Prove the periodicity properties (entry 8) in Table 4.2.

4.25 The following problems are related to the entries in Table 4.3.

(a) Prove the validity of the discrete convolution theorem (entry 6) for the 1-D
case.

(b) Repeat (a) for 2-D.

(c) Prove the validity of entry 7.

(d) Prove the validity of entry 12.

(Note: Problems 4.18, 4.19, and 4.31 are related to Table 4.3 also.)

4.26 (a) Show that the Laplacian of a continuous function (t, z) of continuous vari-
ables t and z satisfies the following Fourier transform pair [see Eq. (3.6-3)
for a definition of the Laplacian]:

[Hint: Study entry 12 in Table 4.3 and see Problem 4.25(d).]

(b) The preceding closed form expression is valid only for continuous variables.
However, it can be the basis for implementing the Laplacian in the discrete
frequency domain using the filter

H(u, v) = -4p2(u2 + v2)

M * N

§2f(t, z) 3 -4p2(m2 + n2)F(m, n)

f

Fp(0, 0) = F(0, 0)?

Fp(0, 0)
P * Q,M * N.

F
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centered the image and surrounded it by a border of zeros instead (see image on
the right), but without changing the total number of zeros used? Explain.

4.22 The two Fourier spectra shown are of the same image. The spectrum on the left
corresponds to the original image, and the spectrum on the right was obtained
after the image was padded with zeros. Explain the significant increase in signal
strength along the vertical and horizontal axes of the spectrum shown on the
right.

�

�

�

�

�

�
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�

for and Explain how you
would implement this filter.

(c) As you saw in Example 4.20, the Laplacian result in the frequency domain
was similar to the result of using a spatial mask with a center coefficient
equal to Explain the reason why the frequency domain result was not
similar instead to the result of using a spatial mask with a center coefficient
of See Section 3.6.2 regarding the Laplacian in the spatial domain.

4.27 Consider a spatial mask that averages the four closest neighbors of a
point (x, y), but excludes the point itself from the average.
(a) Find the equivalent filter, , in the frequency domain.
(b) Show that your result is a lowpass filter.

4.28 Based on Eq. (3.6-1), one approach for approximating a discrete derivative in
2-D is based on computing differences of the form and

.
(a) Find the equivalent filter, , in the frequency domain.
(b) Show that your result is a highpass filter.

4.29 Find the equivalent filter, , that implements in the frequency domain the
spatial operation performed by the Laplacian mask in Fig. 3.37(a).

4.30 Can you think of a way to use the Fourier transform to compute (or partially com-
pute) the magnitude of the gradient [Eq. (3.6-11)] for use in image differentiation?
If your answer is yes, give a method to do it. If your answer is no, explain why.

4.31 A continuous Gaussian lowpass filter in the continuous frequency domain has
the transfer function

Show that the corresponding filter in the spatial domain is

4.32 As explained in Eq. (4.9-1), it is possible to obtain the transfer function, of
a highpass filter from the transfer function of a lowpass filter as

Using the information given in Problem 4.31, what is the form of the spatial do-
main Gaussian highpass filter?

4.33 Consider the images shown. The image on the right was obtained by: (a) multi-
plying the image on the left by (b) computing the DFT; (c) taking the
complex conjugate of the transform; (d) computing the inverse DFT; and 
(e) multiplying the real part of the result by Explain (mathematically)
why the image on the right appears as it does.

(-1)x + y.

(-1)x + y;

HHP = 1 - HLP

HHP,
h(t, z) = A2ps2e-2p2s2(t2 + z2)

H(m, n) = Ae-(m2 +n2)>2s2

(u, v)H

(u, v)H
f(x, y + 1) - f(x, y)

f(x + 1, y) - f(x, y)

(u, v)H

3 * 3
-4.

-8.

v = 0, 1, 2, Á , N - 1.u = 0, 1, 2, Á , M - 1

�

�



4.37 Given an image of size you are asked to perform an experiment that
consists of repeatedly lowpass filtering the image using a Gaussian lowpass filter
with a given cutoff frequency You may ignore computational round-off er-
rors. Let denote the smallest positive number representable in the machine
in which the proposed experiment will be conducted.

(a) Let K denote the number of applications of the filter. Can you predict (with-
out doing the experiment) what the result (image) will be for a sufficiently
large value of K? If so, what is that result?

(b) Derive an expression for the minimum value of K that will guarantee the re-
sult that you predicted.

4.38 Consider the sequence of images shown.The image on the left is a segment of an
X-ray image of a commercial printed circuit board. The images following it are,
respectively, the results of subjecting the image to 1, 10, and 100 passes of a
Gaussian highpass filter with The images are of size pixels,
with each pixel being represented by 8 bits of gray. The images were scaled for
display, but this has no effect on the problem statement.

330 * 334D0 = 30.

cmin

D0.

M * N,
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(Original image courtesy of Dr. Thomas R. Gest,
Division of Anatomical Sciences, University of Michigan
Medical School.)

4.34 What is the source of the nearly periodic bright points in the horizontal axis of
Fig. 4.41(b)?

4.35 Each filter in Fig. 4.53 has a strong spike in its center. Explain the source of these
spikes.

4.36 Consider the images shown. The image on the right was obtained by lowpass fil-
tering the image on the left with a Gaussian lowpass filter and then highpass fil-
tering the result with a Gaussian highpass filter. The dimension of the images is

and was used for both filters.

(a) Explain why the center part of the finger ring in the figure on the right ap-
pears so bright and solid, considering that the dominant characteristic of the
filtered image consists of edges on the outer boundary of objects (e.g., fin-
gers, wrist bones) with a darker area in between. In other words, would you
not expect the highpass filter to render the constant area inside the ring
dark, since a highpass filter eliminates the dc term?

(b) Do you think the result would have been different if the order of the filter-
ing process had been reversed?

D0 = 25420 * 344,

�

�
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(a) It appears from the images that changes will cease to take place after some
finite number of passes. Show whether or not this in fact is the case. You
may ignore computational round-off errors. Let denote the smallest
positive number representable in the machine in which the proposed exper-
iment will be conducted.

(b) If you determined in (a) that changes would cease after a finite number of
iterations, determine the minimum value of that number.

cmin

Original image courtesy of Mr. Joseph E. Pascente, Lixi, Inc.

4.39 As illustrated in Fig. 4.59, combining high-frequency emphasis and histogram
equalization is an effective method for achieving edge sharpening and contrast
enhancement.

(a) Show whether or not it matters which process is applied first.

(b) If the order does matter, give a rationale for using one or the other method first.

4.40 Use a Butterworth highpass filter to construct a homomorphic filter that has the
same general shape as the filter in Fig. 4.61.

4.41 Show the validity of Eqs. (4.11-16) and (4.11-17). (Hint: Use proof by induction.)

4.42 Suppose that you are given a set of images generated by an experiment dealing
with the analysis of stellar events. Each image contains a set of bright, widely
scattered dots corresponding to stars in a sparsely occupied section of the uni-
verse. The problem is that the stars are barely visible, due to superimposed illu-
mination resulting from atmospheric dispersion. If these images are modeled as
the product of a constant illumination component with a set of impulses, give an
enhancement procedure based on homomorphic filtering designed to bring out
the image components due to the stars themselves.

4.43 A skilled medical technician is assigned the job of inspecting a certain class of im-
ages generated by an electron microscope. In order to simplify the inspection
task, the technician decides to use digital image enhancement and, to this end, ex-
amines a set of representative images and finds the following problems:
(1) bright, isolated dots that are of no interest; (2) lack of sharpness; (3) not
enough contrast in some images; and (4) shifts in the average intensity, when this
value should be V to perform correctly certain intensity measurements.The tech-
nician wants to correct these problems and then display in white all intensities in
a band between and while keeping normal tonality in the remaining inten-
sities. Propose a sequence of processing steps that the technician can follow to
achieve the desired goal. You may use techniques from both Chapters 3 and 4.

I2,I1

�
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Preview
As in image enhancement, the principal goal of restoration techniques is to im-
prove an image in some predefined sense. Although there are areas of overlap,
image enhancement is largely a subjective process, while image restoration is for
the most part an objective process. Restoration attempts to recover an image
that has been degraded by using a priori knowledge of the degradation phe-
nomenon.Thus, restoration techniques are oriented toward modeling the degra-
dation and applying the inverse process in order to recover the original image.

This approach usually involves formulating a criterion of goodness that will
yield an optimal estimate of the desired result. By contrast, enhancement tech-
niques basically are heuristic procedures designed to manipulate an image in
order to take advantage of the psychophysical aspects of the human visual sys-
tem. For example, contrast stretching is considered an enhancement technique
because it is based primarily on the pleasing aspects it might present to the
viewer, whereas removal of image blur by applying a deblurring function is
considered a restoration technique.

The material developed in this chapter is strictly introductory. We consider
the restoration problem only from the point where a degraded, digital image
is given; thus we consider topics dealing with sensor, digitizer, and display
degradations only superficially. These subjects, although of importance in the
overall treatment of image restoration applications, are beyond the scope of
the present discussion.
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Things which we see are not by themselves what we see.
It remains completely unknown to us what the objects may be by
themselves and apart from the receptivity of our senses. We know
nothing but our manner of perceiving them.

Immanuel Kant

Á

Image Restoration
and Reconstruction
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As discussed in Chapters 3 and 4, some restoration techniques are best for-
mulated in the spatial domain, while others are better suited for the frequency
domain. For example, spatial processing is applicable when the only degrada-
tion is additive noise. On the other hand, degradations such as image blur are
difficult to approach in the spatial domain using small filter masks. In this
case, frequency domain filters based on various criteria of optimality are the
approaches of choice. These filters also take into account the presence of
noise. As in Chapter 4, a restoration filter that solves a given application in
the frequency domain often is used as the basis for generating a digital filter
that will be more suitable for routine operation using a hardware/firmware
implementation.

Section 5.1 introduces a linear model of the image degradation/restoration
process. Section 5.2 deals with various noise models encountered frequently in
practice. In Section 5.3, we develop several spatial filtering techniques for re-
ducing the noise content of an image, a process often referred to as image
denoising. Section 5.4 is devoted to techniques for noise reduction using
frequency-domain techniques. Section 5.5 introduces linear, position-invariant
models of image degradation, and Section 5.6 deals with methods for estimat-
ing degradation functions. Sections 5.7 through 5.10 include the development
of fundamental image-restoration approaches.We conclude the chapter (Section
5.11) with an introduction to image reconstruction from projections. The prin-
cipal application of this concept is computed tomography (CT), one of the
most important commercial applications of image processing, especially in
health care.

5.1 A Model of the Image Degradation/Restoration Process

As Fig. 5.1 shows, the degradation process is modeled in this chapter as a degrada-
tion function that, together with an additive noise term, operates on an input
image to produce a degraded image . Given , some knowl-
edge about the degradation function H, and some knowledge about the addi-
tive noise term the objective of restoration is to obtain an estimate

of the original image.We want the estimate to be as close as possible to the
original input image and, in general, the more we know about H and the closer

will be to . The restoration approach used throughout most of
this chapter is based on various types of image restoration filters.

f(x, y)fN(x, y)
h,

fN(x, y)
h(x, y),

g(x, y)g(x, y)f(x, y)

Degradation
function

H

DEGRADATION RESTORATION

Restoration
filter(s)

f(x, y)

g(x, y)

f(x, y)ˆ

Noise
h(x, y)

�

FIGURE 5.1
A model of the
image
degradation/
restoration
process.
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It is shown in Section 5.5 that if H is a linear, position-invariant process,
then the degraded image is given in the spatial domain by

(5.1-1)

where is the spatial representation of the degradation function and, as in
Chapter 4, the symbol indicates convolution. We know from the discussion
in Section 4.6.6 that convolution in the spatial domain is analogous to multipli-
cation in the frequency domain, so we may write the model in Eq. (5.1-1) in an
equivalent frequency domain representation:

(5.1-2)

where the terms in capital letters are the Fourier transforms of the corre-
sponding terms in Eq. (5.1-1). These two equations are the bases for most of
the restoration material in this chapter.

In the following three sections, we assume that H is the identity operator,
and we deal only with degradations due to noise. Beginning in Section 5.6 we
consider a number of important image degradations functions and look at sev-
eral methods for image restoration in the presence of both H and

5.2 Noise Models

The principal sources of noise in digital images arise during image acquisi-
tion and/or transmission.The performance of imaging sensors is affected by a
variety of factors, such as environmental conditions during image acquisition,
and by the quality of the sensing elements themselves. For instance, in ac-
quiring images with a CCD camera, light levels and sensor temperature are
major factors affecting the amount of noise in the resulting image. Images are
corrupted during transmission principally due to interference in the channel
used for transmission. For example, an image transmitted using a wireless
network might be corrupted as a result of lightning or other atmospheric
disturbance.

5.2.1 Spatial and Frequency Properties of Noise
Relevant to our discussion are parameters that define the spatial characteris-
tics of noise, and whether the noise is correlated with the image. Frequency
properties refer to the frequency content of noise in the Fourier sense (i.e., as
opposed to frequencies of the electromagnetic spectrum). For example, when
the Fourier spectrum of noise is constant, the noise usually is called white
noise. This terminology is a carryover from the physical properties of white
light, which contains nearly all frequencies in the visible spectrum in equal
proportions. From the discussion in Chapter 4, it is not difficult to show that
the Fourier spectrum of a function containing all frequencies in equal propor-
tions is a constant.

With the exception of spatially periodic noise (Section 5.2.3), we assume
in this chapter that noise is independent of spatial coordinates, and that it is

h.

G(u, v) = H(u, v)F(u, v) + N(u, v)

“�”
h(x, y)

g(x, y) = h(x, y)�f(x, y) + h(x, y)
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†We use instead of m to denote the mean in this section to avoid confusion when we use m and n later
to denote neighborhood size.

z

uncorrelated with respect to the image itself (that is, there is no correlation
between pixel values and the values of noise components). Although these
assumptions are at least partially invalid in some applications (quantum-
limited imaging, such as in X-ray and nuclear-medicine imaging, is a good ex-
ample), the complexities of dealing with spatially dependent and correlated
noise are beyond the scope of our discussion.

5.2.2 Some Important Noise Probability Density Functions
Based on the assumptions in the previous section, the spatial noise descriptor
with which we shall be concerned is the statistical behavior of the intensity
values in the noise component of the model in Fig. 5.1. These may be consid-
ered random variables, characterized by a probability density function
(PDF).The following are among the most common PDFs found in image pro-
cessing applications.

Gaussian noise

Because of its mathematical tractability in both the spatial and frequency
domains, Gaussian (also called normal) noise models are used frequently in
practice. In fact, this tractability is so convenient that it often results in
Gaussian models being used in situations in which they are marginally ap-
plicable at best.

The PDF of a Gaussian random variable, , is given by

(5.2-1)

where represents intensity, is the mean† (average) value of z, and is its stan-
dard deviation.The standard deviation squared, is called the variance of z.A
plot of this function is shown in Fig. 5.2(a). When is described by Eq. (5.2-1),
approximately 70% of its values will be in the range and
about 95% will be in the range 

Rayleigh noise

The PDF of Rayleigh noise is given by

(5.2-2)

The mean and variance of this density are given by

(5.2-3)z = a + 2pb>4

p(z) = c 2
b

(z - a)e-(z - a)2>b for z Ú a

0 for z 6 a

[(z - 2s), (z + 2s)].
[(z - s), (z + s)],

z
s2,

szz

p(z) =
1

22ps
e-(z - zq )2>2s2

z

Consult the book Web site
for a brief review of prob-
ability theory.
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z

Rayleigh

p(z)

K
Gamma

z(b � 1)/a

za b

p(z)

z

a Exponential

p(z)

Pb

Pa

Impulse

p(z)

1
2ps

0.607
2ps

_
z � s

_
z � s

_
z

p(z)

2
b

0.607

za b
2

a �

a(b � 1)b�1

(b � 1)!
K � e�(b�1)

Uniform

za b

p(z)

1
b � a

Gaussian

FIGURE 5.2 Some important probability density functions.

and

(5.2-4)

Figure 5.2(b) shows a plot of the Rayleigh density. Note the displacement from
the origin and the fact that the basic shape of this density is skewed to the right.
The Rayleigh density can be quite useful for approximating skewed histograms.

Erlang (gamma) noise
The PDF of Erlang noise is given by

(5.2-5)

where the parameters are such that is a positive integer, and “!” indi-
cates factorial. The mean and variance of this density are given by

(5.2-6)

and

(5.2-7)s2 =
b

a2

z =
b
a

a 7 0, b

p(z) = c abzb - 1

(b - 1)!
e-az for z Ú 0

0 for z 6 0

s2 =
b(4 - p)

4

a b c
d e f
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Figure 5.2(c) shows a plot of this density.Although Eq. (5.2-5) often is referred
to as the gamma density, strictly speaking this is correct only when the denom-
inator is the gamma function, When the denominator is as shown, the
density is more appropriately called the Erlang density.

Exponential noise
The PDF of exponential noise is given by

(5.2-8)

where The mean and variance of this density function are

(5.2-9)
and

(5.2-10)

Note that this PDF is a special case of the Erlang PDF, with Figure 5.2(d)
shows a plot of this density function.

Uniform noise

The PDF of uniform noise is given by

(5.2-11)

The mean of this density function is given by

(5.2-12)

and its variance by

(5.2-13)

Figure 5.2(e) shows a plot of the uniform density.

Impulse (salt-and-pepper) noise

The PDF of (bipolar) impulse noise is given by

(5.2-14)

If intensity b will appear as a light dot in the image. Conversely, level a will
appear like a dark dot. If either or is zero, the impulse noise is called
unipolar. If neither probability is zero, and especially if they are approximately
equal, impulse noise values will resemble salt-and-pepper granules randomly dis-
tributed over the image. For this reason, bipolar impulse noise also is called salt-
and-pepper noise.Data-drop-out and spike noise also are terms used to refer to this
type of noise. We use the terms impulse or salt-and-pepper noise interchangeably.

PbPa

b 7 a,

p(z) = c Pa for z = a

Pb for z = b

0 otherwise

s2 =
(b - a)2

12

z =
a + b

2

p(z) = c 1
b - a

if a … z … b

0 otherwise

b = 1.

s2 =
1

a2

z =
1
a

a 7 0.

p(z) = bae-az for z Ú 0
0 for z 6 0

≠(b).
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Noise impulses can be negative or positive. Scaling usually is part of the image
digitizing process. Because impulse corruption usually is large compared with the
strength of the image signal, impulse noise generally is digitized as extreme (pure
black or white) values in an image. Thus, the assumption usually is that a and b
are “saturated” values, in the sense that they are equal to the minimum and max-
imum allowed values in the digitized image.As a result, negative impulses appear
as black (pepper) points in an image. For the same reason, positive impulses ap-
pear as white (salt) noise. For an 8-bit image this means typically that 
(black) and (white). Figure 5.2(f) shows the PDF of impulse noise.

As a group, the preceding PDFs provide useful tools for modeling a broad
range of noise corruption situations found in practice. For example, Gaussian
noise arises in an image due to factors such as electronic circuit noise and sensor
noise due to poor illumination and/or high temperature.The Rayleigh density is
helpful in characterizing noise phenomena in range imaging. The exponential
and gamma densities find application in laser imaging. Impulse noise is found in
situations where quick transients, such as faulty switching, take place during
imaging, as mentioned in the previous paragraph. The uniform density is per-
haps the least descriptive of practical situations. However, the uniform density is
quite useful as the basis for numerous random number generators that are used
in simulations (Peebles [1993] and Gonzalez,Woods, and Eddins [2004]).

b = 255
a = 0

EXAMPLE 5.1:
Noisy images and
their histograms.

■ Figure 5.3 shows a test pattern well suited for illustrating the noise models
just discussed. This is a suitable pattern to use because it is composed of sim-
ple, constant areas that span the gray scale from black to near white in only
three increments. This facilitates visual analysis of the characteristics of the
various noise components added to the image.

Figure 5.4 shows the test pattern after addition of the six types of noise dis-
cussed thus far in this section. Shown below each image is the histogram com-
puted directly from that image. The parameters of the noise were chosen in
each case so that the histogram corresponding to the three intensity levels in
the test pattern would start to merge.This made the noise quite visible, without
obscuring the basic structure of the underlying image.

FIGURE 5.3 Test
pattern used to
illustrate the
characteristics of
the noise PDFs
shown in Fig. 5.2.
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Gaussian Rayleigh Gamma

FIGURE 5.4 Images and histograms resulting from adding Gaussian, Rayleigh, and gamma noise to the image
in Fig. 5.3.

We see a close correspondence in comparing the histograms in Fig. 5.4 with
the PDFs in Fig. 5.2. The histogram for the salt-and-pepper example has an
extra peak at the white end of the intensity scale because the noise compo-
nents were pure black and white, and the lightest component of the test pat-
tern (the circle) is light gray. With the exception of slightly different overall
intensity, it is difficult to differentiate visually between the first five images in
Fig. 5.4, even though their histograms are significantly different. The salt-and-
pepper appearance of the image corrupted by impulse noise is the only one
that is visually indicative of the type of noise causing the degradation. ■

5.2.3 Periodic Noise
Periodic noise in an image arises typically from electrical or electromechanical
interference during image acquisition. This is the only type of spatially depen-
dent noise that will be considered in this chapter.As discussed in Section 5.4, pe-
riodic noise can be reduced significantly via frequency domain filtering. For
example, consider the image in Fig. 5.5(a). This image is severely corrupted by
(spatial) sinusoidal noise of various frequencies.The Fourier transform of a pure

a b c
d e f
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Exponential Uniform Salt & Pepper

FIGURE 5.4 (Continued) Images and histograms resulting from adding exponential, uniform, and salt-and-
pepper noise to the image in Fig. 5.3.

g h i
j k l

sinusoid is a pair of conjugate impulses† located at the conjugate frequencies of
the sine wave (Table 4.3).Thus, if the amplitude of a sine wave in the spatial do-
main is strong enough, we would expect to see in the spectrum of the image a
pair of impulses for each sine wave in the image. As shown in Fig. 5.5(b), this is
indeed the case, with the impulses appearing in an approximate circle because
the frequency values in this particular case are so arranged. We will have much
more to say in Section 5.4 about this and other examples of periodic noise.

5.2.4 Estimation of Noise Parameters
The parameters of periodic noise typically are estimated by inspection of the
Fourier spectrum of the image.As noted in the previous section, periodic noise
tends to produce frequency spikes that often can be detected even by visual
analysis. Another approach is to attempt to infer the periodicity of noise com-
ponents directly from the image, but this is possible only in simplistic cases.

†Be careful not to confuse the term impulse in the frequency domain with the use of the same term in
impulse noise.



320 Chapter 5 ■ Image Restoration and Reconstruction

FIGURE 5.5
(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum
(each pair of
conjugate
impulses
corresponds to
one sine wave).
(Original image
courtesy of
NASA.)

a
b

Automated analysis is possible in situations in which the noise spikes are ei-
ther exceptionally pronounced, or when knowledge is available about the gen-
eral location of the frequency components of the interference.

The parameters of noise PDFs may be known partially from sensor specifi-
cations, but it is often necessary to estimate them for a particular imaging
arrangement. If the imaging system is available, one simple way to study the
characteristics of system noise is to capture a set of images of “flat” environ-
ments. For example, in the case of an optical sensor, this is as simple as imaging
a solid gray board that is illuminated uniformly. The resulting images typically
are good indicators of system noise.

When only images already generated by a sensor are available, frequently it
is possible to estimate the parameters of the PDF from small patches of rea-
sonably constant background intensity. For example, the vertical strips (of

pixels) shown in Fig. 5.6 were cropped from the Gaussian, Rayleigh,
and uniform images in Fig. 5.4. The histograms shown were calculated using
image data from these small strips. The histograms in Fig. 5.4 that correspond
to the histograms in Fig. 5.6 are the ones in the middle of the group of three in

150 * 20
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FIGURE 5.6 Histograms computed using small strips (shown as inserts) from (a) the Gaussian, (b) the
Rayleigh, and (c) the uniform noisy images in Fig. 5.4.

Figs. 5.4(d), (e), and (k).We see that the shapes of these histograms correspond
quite closely to the shapes of the histograms in Fig. 5.6. Their heights are dif-
ferent due to scaling, but the shapes are unmistakably similar.

The simplest use of the data from the image strips is for calculating the mean
and variance of intensity levels. Consider a strip (subimage) denoted by S, and
let denote the probability estimates (normalized
histogram values) of the intensities of the pixels in S, where L is the number of
possible intensities in the entire image (e.g., 256 for an 8-bit image). As in
Chapter 3, we estimate the mean and variance of the pixels in S as follows:

(5.2-15)

and

(5.2-16)

The shape of the histogram identifies the closest PDF match. If the shape
is approximately Gaussian, then the mean and variance are all we need be-
cause the Gaussian PDF is completely specified by these two parameters.
For the other shapes discussed in Section 5.2.2, we use the mean and vari-
ance to solve for the parameters a and b. Impulse noise is handled differently
because the estimate needed is of the actual probability of occurrence of
white and black pixels. Obtaining this estimate requires that both black and
white pixels be visible, so a midgray, relatively constant area is needed in the
image in order to be able to compute a histogram. The heights of the peaks
corresponding to black and white pixels are the estimates of and in
Eq. (5.2-14).

PbPa

s2 = a
L - 1

i = 0
(zi - z)2pS(zi)

z = a
L - 1

i = 0
zipS(zi)

pS(zi), i = 0, 1, 2, Á , L - 1,

a b c
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5.3 Restoration in the Presence of Noise 
Only—Spatial Filtering

When the only degradation present in an image is noise, Eqs. (5.1-1) and (5.1-2)
become

(5.3-1)

and

(5.3-2)

The noise terms are unknown, so subtracting them from or is not a
realistic option. In the case of periodic noise, it usually is possible to estimate 

from the spectrum of ,as noted in Section 5.2.3. In this case 
can be subtracted from to obtain an estimate of the original image. In gen-
eral, however, this type of knowledge is the exception, rather than the rule.

Spatial filtering is the method of choice in situations when only additive
random noise is present. Spatial filtering is discussed in detail in Chapter 3.
With the exception of the nature of the computation performed by a specific
filter, the mechanics for implementing all the filters that follow are exactly as
discussed in Sections 3.4 through 3.6.

5.3.1 Mean Filters
In this section we discuss briefly the noise-reduction capabilities of the spatial
filters introduced in Section 3.5 and develop several other filters whose per-
formance is in many cases superior to the filters discussed in that section.

Arithmetic mean filter

This is the simplest of the mean filters. Let represent the set of coordinates in
a rectangular subimage window (neighborhood) of size centered at point
(x, y). The arithmetic mean filter computes the average value of the corrupted
image in the area defined by The value of the restored image at
point (x, y) is simply the arithmetic mean computed using the pixels in the region
defined by In other words,

(5.3-3)

This operation can be implemented using a spatial filter of size in
which all coefficients have value . A mean filter smooths local variations
in an image, and noise is reduced as a result of blurring.

1>mn
m * n

fN(x, y) =
1

mn a
(s, t)HSxy

g(s, t)

Sxy.

fNSxy.g(x, y)

m * n,
Sxy

G(u, v)
N(u, v)G(u, v)N(u, v)

G(u, v)g(x, y)

G(u, v) = F(u, v) + N(u, v)

g(x, y) = f(x, y) + h(x, y)

We assume that m and n
are odd integers.
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Geometric mean filter

An image restored using a geometric mean filter is given by the expression

(5.3-4)

Here, each restored pixel is given by the product of the pixels in the subimage
window, raised to the power 1/mn.As shown in Example 5.2, a geometric mean
filter achieves smoothing comparable to the arithmetic mean filter, but it tends
to lose less image detail in the process.

Harmonic mean filter

The harmonic mean filtering operation is given by the expression

(5.3-5)

The harmonic mean filter works well for salt noise, but fails for pepper noise.
It does well also with other types of noise like Gaussian noise.

Contraharmonic mean filter

The contraharmonic mean filter yields a restored image based on the expression

(5.3-6)

where Q is called the order of the filter. This filter is well suited for reducing or
virtually eliminating the effects of salt-and-pepper noise. For positive values of Q,
the filter eliminates pepper noise. For negative values of Q it eliminates salt noise.
It cannot do both simultaneously. Note that the contraharmonic filter reduces to
the arithmetic mean filter if and to the harmonic mean filter if Q = -1.Q = 0,

fN(x, y) =
a

(s, t)HSxy

g(s, t)Q + 1

a
(s, t)HSxy

g(s, t)Q

fN(x, y) =
mn

a
(s, t)HSxy

1
g(s, t)

1
mn

fN(x, y) = B q
(s, t)HSxy

g(s, t)R

■ Figure 5.7(a) shows an 8-bit X-ray image of a circuit board, and Fig. 5.7(b)
shows the same image, but corrupted with additive Gaussian noise of zero
mean and variance of 400. For this type of image this is a significant level of
noise. Figures 5.7(c) and (d) show, respectively, the result of filtering the noisy

EXAMPLE 5.2:
Illustration of
mean filters.
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FIGURE 5.7
(a) X-ray image.
(b) Image
corrupted by
additive Gaussian
noise. (c) Result
of filtering with
an arithmetic
mean filter of size
3 3. (d) Result
of filtering with a
geometric mean
filter of the same
size.
(Original image
courtesy of Mr.
Joseph E.
Pascente, Lixi,
Inc.)

*

a b
c d

image with an arithmetic mean filter of size and a geometric mean filter
of the same size. Although both filters did a reasonable job of attenuating the
contribution due to noise, the geometric mean filter did not blur the image as
much as the arithmetic filter. For instance, the connector fingers at the top of
the image are sharper in Fig. 5.7(d) than in (c). The same is true in other parts
of the image.

Figure 5.8(a) shows the same circuit image, but corrupted now by pepper
noise with probability of 0.1. Similarly, Fig. 5.8(b) shows the image corrupt-
ed by salt noise with the same probability. Figure 5.8(c) shows the result of
filtering Fig. 5.8(a) using a contraharmonic mean filter with and
Fig. 5.8(d) shows the result of filtering Fig. 5.8(b) with Both fil-
ters did a good job in reducing the effect of the noise. The positive-order fil-
ter did a better job of cleaning the background, at the expense of slightly
thinning and blurring the dark areas. The opposite was true of the negative-
order filter.

Q = -1.5.
Q = 1.5,

3 * 3
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FIGURE 5.8
(a) Image
corrupted by
pepper noise with
a probability of
0.1. (b) Image
corrupted by salt
noise with the
same probability.
(c) Result of
filtering (a) with a

contra-
harmonic filter of
order 1.5.
(d) Result of
filtering (b) with
Q = -1.5.

3 * 3

In general, the arithmetic and geometric mean filters (particularly the lat-
ter) are well suited for random noise like Gaussian or uniform noise. The con-
traharmonic filter is well suited for impulse noise, but it has the disadvantage
that it must be known whether the noise is dark or light in order to select the
proper sign for Q. The results of choosing the wrong sign for Q can be disas-
trous, as Fig. 5.9 shows. Some of the filters discussed in the following sections
eliminate this shortcoming. ■

5.3.2 Order-Statistic Filters
Order-statistic filters were introduced in Section 3.5.2. We now expand the
discussion in that section and introduce some additional order-statistic filters.
As noted in Section 3.5.2, order-statistic filters are spatial filters whose re-
sponse is based on ordering (ranking) the values of the pixels contained in
the image area encompassed by the filter. The ranking result determines the
response of the filter.

a b
c d
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Median filter

The best-known order-statistic filter is the median filter, which, as its name im-
plies, replaces the value of a pixel by the median of the intensity levels in the
neighborhood of that pixel:

(5.3-7)

The value of the pixel at (x, y) is included in the computation of the median.
Median filters are quite popular because, for certain types of random noise,
they provide excellent noise-reduction capabilities, with considerably less
blurring than linear smoothing filters of similar size. Median filters are partic-
ularly effective in the presence of both bipolar and unipolar impulse noise. In
fact, as Example 5.3 below shows, the median filter yields excellent results for
images corrupted by this type of noise. Computation of the median and imple-
mentation of this filter are discussed in Section 3.5.2.

Max and min filters

Although the median filter is by far the order-statistic filter most used in image
processing, it is by no means the only one.The median represents the 50th per-
centile of a ranked set of numbers, but you will recall from basic statistics that
ranking lends itself to many other possibilities. For example, using the 100th
percentile results in the so-called max filter, given by

(5.3-8)

This filter is useful for finding the brightest points in an image. Also, because
pepper noise has very low values, it is reduced by this filter as a result of the
max selection process in the subimage area Sxy.

fN(x, y) = max
(s, t)HSxy

5g(s, t)6

fN(x, y) = median
(s, t)HSxy

5g(s, t)6

FIGURE 5.9
Results of select-
ing the wrong sign
in contraharmonic
filtering.
(a) Result of
filtering
Fig. 5.8(a) with a
contraharmonic
filter of size 
and
(b) Result of
filtering 5.8(b)
with Q = 1.5.

Q = -1.5.
3 * 3

a b

See the second margin
note in Section 10.3.5 re-
garding percentiles.
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The 0th percentile filter is the min filter:

(5.3-9)

This filter is useful for finding the darkest points in an image. Also, it reduces
salt noise as a result of the min operation.

Midpoint filter

The midpoint filter simply computes the midpoint between the maximum and
minimum values in the area encompassed by the filter:

(5.3-10)

Note that this filter combines order statistics and averaging. It works best for
randomly distributed noise, like Gaussian or uniform noise.

Alpha-trimmed mean filter

Suppose that we delete the lowest and the highest intensity values of
in the neighborhood Let represent the remaining 

pixels. A filter formed by averaging these remaining pixels is called an alpha-
trimmed mean filter:

(5.3-11)

where the value of d can range from 0 to When the alpha-
trimmed filter reduces to the arithmetic mean filter discussed in the previous
section. If we choose the filter becomes a median filter. For other
values of d, the alpha-trimmed filter is useful in situations involving multiple
types of noise, such as a combination of salt-and-pepper and Gaussian noise.

d = mn - 1,

d = 0,mn - 1.

fN(x, y) =
1

mn - d a
(s, t)HSxy

gr(s, t)

mn - dgr(s, t)Sxy.g(s, t)
d>2d>2

fN(x, y) =
1
2
c max

(s, t)HSxy

5g(s, t)6 + min
(s, t)HSxy

5g(s, t)6 d

fN(x, y) = min
(s, t)HSxy

5g(s, t)6

EXAMPLE 5.3:
Illustration of
order-statistic
filters.

■ Figure 5.10(a) shows the circuit board image corrupted by salt-and-pepper
noise with probabilities Figure 5.10(b) shows the result of median
filtering with a filter of size The improvement over Fig. 5.10(a) is signifi-
cant, but several noise points still are visible. A second pass [on the image in 
Fig. 5.10(b)] with the median filter removed most of these points, leaving only few,
barely visible noise points. These were removed with a third pass of the filter.
These results are good examples of the power of median filtering in handling 
impulse-like additive noise. Keep in mind that repeated passes of a median filter
will blur the image, so it is desirable to keep the number of passes as low as possible.

Figure 5.11(a) shows the result of applying the max filter to the pepper noise
image of Fig. 5.8(a).The filter did a reasonable job of removing the pepper noise,
but we note that it also removed (set to a light intensity level) some dark pixels
from the borders of the dark objects. Figure 5.11(b) shows the result of applying
the min filter to the image in Fig. 5.8(b). In this case, the min filter did a better
job than the max filter on noise removal, but it removed some white points
around the border of light objects. These made the light objects smaller and

3 * 3.
Pa = Pb = 0.1.
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FIGURE 5.10
(a) Image
corrupted by salt-
and-pepper noise
with probabilities

(b) Result of one
pass with a
median filter of
size
(c) Result of
processing (b)
with this filter.
(d) Result of
processing (c)
with the same
filter.

3 * 3.

Pa = Pb = 0.1.

FIGURE 5.11
(a) Result of
filtering
Fig. 5.8(a) with a
max filter of size

(b) Result
of filtering 5.8(b)
with a min filter
of the same size.

3 * 3.

a b

a b
c d
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FIGURE 5.12
(a) Image
corrupted
by additive
uniform noise.
(b) Image
additionally
corrupted by
additive salt-and-
pepper noise.
Image (b) filtered
with a 
(c) arithmetic
mean filter;
(d) geometric
mean filter;
(e) median filter;
and (f) alpha-
trimmed mean
filter with d = 5.

5 * 5:

some of the dark objects larger (like the connector fingers in the top of the
image) because white points around these objects were set to a dark level.

The alpha-trimmed filter is illustrated next. Figure 5.12(a) shows the circuit
board image corrupted this time by additive, uniform noise of variance 800 and

a
c
e

b
d
f
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zero mean.This is a high level of noise corruption that is made worse by further
addition of salt-and-pepper noise with as Fig. 5.12(b) shows.The
high level of noise in this image warrants use of larger filters. Figures 5.12(c)
through (f) show the results obtained using arithmetic mean, geometric mean,
median, and alpha-trimmed mean (with ) filters of size As expect-
ed, the arithmetic and geometric mean filters (especially the latter) did not do
well because of the presence of impulse noise. The median and alpha-trimmed
filters performed much better, with the alpha-trimmed filter giving slightly bet-
ter noise reduction. Note, for example, that the fourth connector finger from the
top left is slightly smoother in the alpha-trimmed result. This is not unexpected
because, for a high value of d, the alpha-trimmed filter approaches the perfor-
mance of the median filter, but still retains some smoothing capabilities. ■

5.3.3 Adaptive Filters
Once selected, the filters discussed thus far are applied to an image without re-
gard for how image characteristics vary from one point to another. In this sec-
tion we take a look at two adaptive filters whose behavior changes based on
statistical characteristics of the image inside the filter region defined by the

rectangular window As the following discussion shows, adaptive
filters are capable of performance superior to that of the filters discussed thus
far. The price paid for improved filtering power is an increase in filter com-
plexity. Keep in mind that we still are dealing with the case in which the de-
graded image is equal to the original image plus noise. No other types of
degradations are being considered yet.

Adaptive, local noise reduction filter

The simplest statistical measures of a random variable are its mean and vari-
ance. These are reasonable parameters on which to base an adaptive filter be-
cause they are quantities closely related to the appearance of an image. The
mean gives a measure of average intensity in the region over which the mean
is computed, and the variance gives a measure of contrast in that region.

Our filter is to operate on a local region, The response of the filter at
any point (x, y) on which the region is centered is to be based on four quanti-
ties: (a) , the value of the noisy image at (x, y); (b) the variance of
the noise corrupting to form ; (c) the local mean of the pix-
els in and (d) the local variance of the pixels in We want the be-
havior of the filter to be as follows:

1. If is zero, the filter should return simply the value of . This is the
trivial, zero-noise case in which is equal to .

2. If the local variance is high relative to the filter should return a value
close to g(x, y).A high local variance typically is associated with edges, and
these should be preserved.

3. If the two variances are equal, we want the filter to return the arithmetic
mean value of the pixels in This condition occurs when the local area
has the same properties as the overall image, and local noise is to be re-
duced simply by averaging.

Sxy.

sh
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f(x, y)g(x, y)
g(x, y)sh
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Sxy.sL
2 ,Sxy;
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An adaptive expression for obtaining based on these assumptions may
be written as

(5.3-12)

The only quantity that needs to be known or estimated is the variance of
the overall noise, The other parameters are computed from the pixels in

at each location (x, y) on which the filter window is centered. A tacit as-
sumption in Eq. (5.3-12) is that The noise in our model is additive
and position independent, so this is a reasonable assumption to make because

is a subset of . However, we seldom have exact knowledge of 
Therefore, it is possible for this condition to be violated in practice. For that
reason, a test should be built into an implementation of Eq. (5.3-12) so that the
ratio is set to 1 if the condition occurs. This makes this filter nonlin-
ear. However, it prevents nonsensical results (i.e., negative intensity levels, de-
pending on the value of ) due to a potential lack of knowledge about the
variance of the image noise. Another approach is to allow the negative values
to occur, and then rescale the intensity values at the end.The result then would
be a loss of dynamic range in the image.
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sh
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EXAMPLE 5.4:
Illustration of
adaptive, local
noise-reduction
filtering.

■ Figure 5.13(a) shows the circuit-board image, corrupted this time by addi-
tive Gaussian noise of zero mean and a variance of 1000. This is a significant
level of noise corruption, but it makes an ideal test bed on which to compare
relative filter performance. Figure 5.13(b) is the result of processing the noisy
image with an arithmetic mean filter of size The noise was smoothed
out, but at the cost of significant blurring in the image. Similar comments are
applicable to Fig. 5.13(c), which shows the result of processing the noisy image
with a geometric mean filter, also of size The differences between these
two filtered images are analogous to those we discussed in Example 5.2; only
the degree of blurring is different.

Figure 5.13(d) shows the result of using the adaptive filter of Eq. (5.3-12) with
The improvements in this result compared with the two previous fil-

ters are significant. In terms of overall noise reduction, the adaptive filter
achieved results similar to the arithmetic and geometric mean filters. However,
the image filtered with the adaptive filter is much sharper. For example, the con-
nector fingers at the top of the image are significantly sharper in Fig. 5.13(d).
Other features, such as holes and the eight legs of the dark component on the
lower left-hand side of the image, are much clearer in Fig. 5.13(d). These results
are typical of what can be achieved with an adaptive filter.As mentioned earlier,
the price paid for the improved performance is additional filter complexity.

The preceding results used a value for that matched the variance of the
noise exactly. If this quantity is not known and an estimate is used that is too low,
the algorithm will return an image that closely resembles the original because
the corrections will be smaller than they should be. Estimates that are too high

sh
2

sh
2 = 1000.

7 * 7.

7 * 7.
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will cause the ratio of the variances to be clipped at 1.0, and the algorithm will
subtract the mean from the image more frequently than it would normally. If
negative values are allowed and the image is rescaled at the end, the result will
be a loss of dynamic range, as mentioned previously. ■

Adaptive median filter

The median filter discussed in Section 5.3.2 performs well if the spatial density
of the impulse noise is not large (as a rule of thumb, and less than 0.2). It
is shown in this section that adaptive median filtering can handle impulse
noise with probabilities larger than these. An additional benefit of the adap-
tive median filter is that it seeks to preserve detail while smoothing nonim-
pulse noise, something that the “traditional” median filter does not do. As in
all the filters discussed in the preceding sections, the adaptive median filter
also works in a rectangular window area Unlike those filters, however, the
adaptive median filter changes (increases) the size of during filter opera-
tion, depending on certain conditions listed in this section. Keep in mind that
the output of the filter is a single value used to replace the value of the pixel at
(x, y), the point on which the window is centered at a given time.Sxy

Sxy

Sxy.

PbPa

FIGURE 5.13
(a) Image
corrupted by
additive Gaussian
noise of zero
mean and
variance 1000.
(b) Result of
arithmetic mean
filtering.
(c) Result of
geometric mean
filtering.
(d) Result of
adaptive noise
reduction
filtering. All filters
were of size
7 * 7.

a b
c d
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Consider the following notation:

The adaptive median-filtering algorithm works in two stages, denoted stage A
and stage B, as follows:

Stage A:

If AND go to stage B
Else increase the window size
If window size repeat stage A
Else output 

Stage B:

If AND output 
Else output 

The key to understanding the mechanics of this algorithm is to keep in mind that
it has three main purposes: to remove salt-and-pepper (impulse) noise, to provide
smoothing of other noise that may not be impulsive, and to reduce distortion, such
as excessive thinning or thickening of object boundaries. The values and 
are considered statistically by the algorithm to be “impulse-like”noise components,
even if these are not the lowest and highest possible pixel values in the image.

With these observations in mind, we see that the purpose of stage A is to de-
termine if the median filter output, is an impulse (black or white) or not. If
the condition holds, then cannot be an impulse for the
reason mentioned in the previous paragraph. In this case, we go to stage B and
test to see if the point in the center of the window, is itself an impulse (recall
that is the point being processed). If the condition AND is
true, then and cannot be an impulse for the same reason
that was not. In this case, the algorithm outputs the unchanged pixel value,

By not changing these “intermediate-level” points, distortion is reduced in
the image. If the condition AND is false, then either 
or In either case, the value of the pixel is an extreme value and the
algorithm outputs the median value which we know from stage A is not a
noise impulse.The last step is what the standard median filter does.The problem
is that the standard median filter replaces every point in the image by the medi-
an of the corresponding neighborhood. This causes unnecessary loss of detail.

Continuing with the explanation, suppose that stage A does find an impulse
(i.e., it fails the test that would cause it to branch to stage B). The algorithm then
increases the size of the window and repeats stage A.This looping continues until

zmed,
zxy = zmax.

zxy = zminB2 6 0B1 7 0
zxy.

zmed

zxyzmin 6 zxy 6 zmax,
B2 6 0B1 7 0zxy

zxy,

zmedzmin 6 zmed 6 zmax

zmed,

zmaxzmin

zmed

zxyB2 6 0,B1 7 0
B2 = zxy - zmax

B1 = zxy - zmin

zmed

… Smax

A2 6 0,A1 7 0
A2 = zmed - zmax

A1 = zmed - zmin

Smax = maximum allowed size of Sxy

zxy = intensity value at coordinates (x, y)

zmed = median of intensity values in Sxy

zmax = maximum intensity value in Sxy

zmin = minimum intensity value in Sxy
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the algorithm either finds a median value that is not an impulse (and branches to
stage B), or the maximum window size is reached. If the maximum window size is
reached, the algorithm returns the value of Note that there is no guarantee
that this value is not an impulse. The smaller the noise probabilities and or 
are,or the larger is allowed to be, the less likely it is that a premature exit con-
dition will occur.This is plausible.As the density of the impulses increases, it stands
to reason that we would need a larger window to “clean up” the noise spikes.

Every time the algorithm outputs a value, the window is moved to the next
location in the image.The algorithm then is reinitialized and applied to the pixels
in the new location. As indicated in Problem 3.18, the median value can be up-
dated iteratively using only the new pixels, thus reducing computational load.

Sxy

Smax

Pb>Pa

zmed.

EXAMPLE 5.5:
Illustration of
adaptive median
filtering.

■ Figure 5.14(a) shows the circuit-board image corrupted by salt-and-pepper
noise with probabilities which is 2.5 times the noise level used
in Fig. 5.10(a). Here the noise level is high enough to obscure most of the de-
tail in the image. As a basis for comparison, the image was filtered first using
the smallest median filter required to remove most visible traces of impulse
noise. A median filter was required to do this, and the result is shown in
Fig. 5.14(b). Although the noise was effectively removed, the filter caused sig-
nificant loss of detail in the image. For instance, some of the connector fingers
at the top of the image appear distorted or broken. Other image details are
similarly distorted.

Figure 5.14(c) shows the result of using the adaptive median filter with
Noise removal performance was similar to the median filter. How-

ever, the adaptive filter did a better job of preserving sharpness and detail.The
connector fingers are less distorted, and some other features that were either
obscured or distorted beyond recognition by the median filter appear sharper
and better defined in Fig. 5.14(c). Two notable examples are the feed-through
small white holes throughout the board, and the dark component with eight
legs in the bottom, left quadrant of the image.

Smax = 7.

7 * 7

Pa = Pb = 0.25,

FIGURE 5.14 (a) Image corrupted by salt-and-pepper noise with probabilities (b) Result of
filtering with a median filter. (c) Result of adaptive median filtering with Smax = 7.7 * 7

Pa = Pb = 0.25.

a b c
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Considering the high level of noise in Fig. 5.14(a), the adaptive algorithm per-
formed quite well. The choice of maximum allowed window size depends on the
application, but a reasonable starting value can be estimated by experimenting
with various sizes of the standard median filter first. This will establish a visual
baseline regarding expectations on the performance of the adaptive algorithm. ■

5.4 Periodic Noise Reduction by Frequency 
Domain Filtering

Periodic noise can be analyzed and filtered quite effectively using frequency
domain techniques.The basic idea is that periodic noise appears as concentrated
bursts of energy in the Fourier transform, at locations corresponding to the
frequencies of the periodic interference. The approach is to use a selective fil-
ter (see Section 4.10) to isolate the noise. The three types of selective filters
(bandreject, bandpass, and notch, introduced in Section 4.10) are used in
Sections 5.4.1 through 5.4.3 for basic periodic noise reduction.We also develop
an optimum notch filtering approach in Section 5.4.4.

5.4.1 Bandreject Filters
The transfer functions of ideal, Butterworth, and Gaussian bandreject filters,
introduced in Section 4.10.1, are summarized in Table 4.6. Figure 5.15 shows
perspective plots of these filters, and the following example illustrates using a
bandreject filter for reducing the effects of periodic noise.

u v v vu u

FIGURE 5.15 From left to right, perspective plots of ideal, Butterworth (of order 1), and Gaussian bandreject
filters.

EXAMPLE 5.6:
Use of bandreject
filtering for
periodic noise
removal.

■ One of the principal applications of bandreject filtering is for noise removal in
applications where the general location of the noise component(s) in the fre-
quency domain is approximately known. A good example is an image corrupted
by additive periodic noise that can be approximated as two-dimensional sinu-
soidal functions. It is not difficult to show that the Fourier transform of a sine con-
sists of two impulses that are mirror images of each other about the origin of the
transform.Their locations are given in Table 4.3.The impulses are both imaginary
(the real part of the Fourier transform of a sine is zero) and are complex conju-
gates of each other.We will have more to say about this topic in Sections 5.4.3 and
5.4.4. Our purpose at the moment is to illustrate bandreject filtering.

a b c
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FIGURE 5.16
(a) Image
corrupted by
sinusoidal noise.
(b) Spectrum of (a).
(c) Butterworth
bandreject filter
(white represents
1). (d) Result of
filtering.
(Original image
courtesy of
NASA.)

Figure 5.16(a), which is the same as Fig. 5.5(a), shows an image heavily cor-
rupted by sinusoidal noise of various frequencies.The noise components are eas-
ily seen as symmetric pairs of bright dots in the Fourier spectrum shown in
Fig. 5.16(b). In this example, the components lie on an approximate circle about
the origin of the transform, so a circularly symmetric bandreject filter is a good
choice. Figure 5.16(c) shows a Butterworth bandreject filter of order 4, with the
appropriate radius and width to enclose completely the noise impulses. Since it is
desirable in general to remove as little as possible from the transform, sharp, nar-
row filters are common in bandreject filtering. The result of filtering Fig. 5.16(a)
with this filter is shown in Fig. 5.16(d). The improvement is quite evident. Even
small details and textures were restored effectively by this simple filtering ap-
proach. It is worth noting also that it would not be possible to get equivalent results
by a direct spatial domain filtering approach using small convolution masks. ■

5.4.2 Bandpass Filters
A bandpass filter performs the opposite operation of a bandreject filter. We
showed in Section 4.10.1 how the transfer function of a bandpass fil-
ter is obtained from a corresponding bandreject filter with transfer function

by using the equation

(5.4-1)

It is left as an exercise (Problem 5.12) to derive expressions for the bandpass
filters corresponding to the bandreject equations in Table 4.6.

HBP(u, v) = 1 - HBR(u, v)

HBR(u, v)

HBP(u, v)

a b
c d
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EXAMPLE 5.7:
Bandpass filtering
for extracting
noise patterns.

■ Performing straight bandpass filtering on an image is not a common proce-
dure because it generally removes too much image detail. However, bandpass
filtering is quite useful in isolating the effects on an image caused by selected
frequency bands. This is illustrated in Fig. 5.17. This image was generated by
(1) using Eq. (5.4-1) to obtain the bandpass filter corresponding to the band-
reject filter used in Fig. 5.16; and (2) taking the inverse transform of the
bandpass-filtered transform. Most image detail was lost, but the information
that remains is most useful, as it is clear that the noise pattern recovered using
this method is quite close to the noise that corrupted the image in Fig. 5.16(a).
In other words, bandpass filtering helped isolate the noise pattern. This is a
useful result because it simplifies analysis of the noise, reasonably indepen-
dently of image content. ■

5.4.3 Notch Filters
A notch filter rejects (or passes) frequencies in predefined neighborhoods
about a center frequency. Equations for notch filtering are detailed in Section
4.10.2. Figure 5.18 shows 3-D plots of ideal, Butterworth, and Gaussian notch
(reject) filters. Due to the symmetry of the Fourier transform, notch filters must
appear in symmetric pairs about the origin in order to obtain meaningful re-
sults. The one exception to this rule is if the notch filter is located at the origin,
in which case it appears by itself. Although we show only one pair for illustra-
tive purposes, the number of pairs of notch filters that can be implemented is
arbitrary. The shape of the notch areas also can be arbitrary (e.g., rectangular).

As explained in Section 4.10.2, we can obtain notch filters that pass, rather
than suppress, the frequencies contained in the notch areas. Since these filters
perform exactly the opposite function as the notch reject filters, their transfer
functions are given by

(5.4-2)

where is the transfer function of the notch pass filter corresponding
to the notch reject filter with transfer function HNR(u, v).

HNP(u, v)

HNP(u, v) = 1 - HNR(u, v)

FIGURE 5.17
Noise pattern of
the image in 
Fig. 5.16(a)
obtained by
bandpass filtering.
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EXAMPLE 5.8:
Removal of
periodic noise by
notch filtering.

u

H(u, v)

H(u, v) H(u, v)

v

u v
u v

FIGURE 5.18
Perspective plots
of (a) ideal,
(b) Butterworth
(of order 2), and
(c) Gaussian
notch (reject)
filters.

■ Figure 5.19(a) shows the same image as Fig. 4.51(a). The notch filtering ap-
proach that follows reduces the noise in this image, without introducing the
appreciable blurring we saw in Section 4.8.4. Unless blurring is desirable for
reasons we discussed in that section, notch filtering is preferable if a suitable
filter can be found.

Just by looking at the nearly horizontal lines of the noise pattern in Fig. 5.19(a),
we expect its contribution in the frequency domain to be concentrated along the
vertical axis. However, the noise is not dominant enough to have a clear pattern
along this axis, as is evident from the spectrum shown in Fig. 5.19(b). We can get
an idea of what the noise contribution looks like by constructing a simple ideal
notch pass filter along the vertical axis of the Fourier transform, as shown in Fig.
5.19(c). The spatial representation of the noise pattern (inverse transform of the
notch-pass–filtered result) is shown in Fig. 5.19(d).This noise pattern corresponds
closely to the pattern in Fig. 5.19(a). Having thus constructed a suitable notch
pass filter that isolates the noise to a reasonable degree, we can obtain the corre-
sponding notch reject filter from Eq. (5.4-2). The result of processing the image
with the notch reject filter is shown in Fig. 5.19(e). This image contains signifi-
cantly fewer visible noise scan lines than Fig. 5.19(a). ■

5.4.4 Optimum Notch Filtering
Figure 5.20(a), another example of periodic image degradation, shows a digital
image of the Martian terrain taken by the Mariner 6 spacecraft. The interfer-
ence pattern is somewhat similar to the one in Fig. 5.16(a), but the former pat-
tern is considerably more subtle and, consequently, harder to detect in the
frequency plane. Figure 5.20(b) shows the Fourier spectrum of the image in

b c
a
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FIGURE 5.19
(a) Satellite image
of Florida and the
Gulf of Mexico
showing horizontal
scan lines.
(b) Spectrum.
(c) Notch 
pass filter
superimposed on
(b). (d) Spatial
noise pattern.
(e) Result of notch
reject filtering.
(Original image
courtesy of
NOAA.)

question. The starlike components were caused by the interference, and sever-
al pairs of components are present, indicating that the pattern contains more
than just one sinusoidal component.

When several interference components are present, the methods discussed
in the preceding sections are not always acceptable because they may remove
too much image information in the filtering process (a highly undesirable fea-
ture when images are unique and/or expensive to acquire). In addition, the in-
terference components generally are not single-frequency bursts. Instead,
they tend to have broad skirts that carry information about the interference
pattern. These skirts are not always easily detectable from the normal trans-
form background. Alternative filtering methods that reduce the effect of

a b

e
c
d
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these degradations are quite useful in many applications. The method dis-
cussed here is optimum, in the sense that it minimizes local variances of the
restored estimate 

The procedure consists of first isolating the principal contributions of the
interference pattern and then subtracting a variable, weighted portion of the
pattern from the corrupted image. Although we develop the procedure in
the context of a specific application, the basic approach is quite general and
can be applied to other restoration tasks in which multiple periodic interfer-
ence is a problem.

The first step is to extract the principal frequency components of the inter-
ference pattern. As before, this can be done by placing a notch pass filter,

at the location of each spike. If the filter is constructed to pass only
components associated with the interference pattern, then the Fourier trans-
form of the interference noise pattern is given by the expression

(5.4-3)

where, as usual, , denotes the Fourier transform of the corrupted image.
Formation of requires considerable judgment about what is or is

not an interference spike. For this reason, the notch pass filter generally is con-
structed interactively by observing the spectrum of on a display. After
a particular filter has been selected, the corresponding pattern in the spatial
domain is obtained from the expression

(5.4-4)

Because the corrupted image is assumed to be formed by the addition of the
uncorrupted image and the interference, if were known com-
pletely, subtracting the pattern from to obtain would be a sim-
ple matter. The problem, of course, is that this filtering procedure usually
yields only an approximation of the true pattern. The effect of components

(x, y)f(x, y)g
h(x, y)(x, y)f

h(x, y) = �-15HNP(u, v)G(u, v)6

(u, v)G

HNP(u, v)
(u, v)G

N(u, v) = HNP(u, v)G(u, v)

HNP(u, v),

fN(x, y).

FIGURE 5.20
(a) Image of the
Martian terrain
taken by Mariner 6.
(b) Fourier
spectrum showing
periodic
interference.
(Courtesy of
NASA.)

a b
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not present in the estimate of can be minimized instead by subtract-
ing from a weighted portion of to obtain an estimate of :

(5.4-5)

where, as before, is the estimate of and is to be deter-
mined. The function is called a weighting or modulation function, and
the objective of the procedure is to select this function so that the result is op-
timized in some meaningful way. One approach is to select so that the
variance of the estimate is minimized over a specified neighborhood
of every point (x, y).

Consider a neighborhood of size by about a point (x, y).
The “local” variance of at coordinates (x, y) can be estimated from the
samples, as follows:

(5.4-6)

where is the average value of in the neighborhood; that is,

(5.4-7)

Points on or near the edge of the image can be treated by considering partial
neighborhoods or by padding the border with 0s.

Substituting Eq. (5.4-5) into Eq. (5.4-6) yields

(5.4-8)

Assuming that remains essentially constant over the neighborhood
gives the approximation

(5.4-9)

for and This assumption also results in the expression

(5.4-10)

in the neighborhood. With these approximations, Eq. (5.4-8) becomes

(5.4-11)

- 3g(x, y) - w(x, y)h(x, y)4F2
- w(x, y)h(x + s, y + t)4

s2(x, y) =
1

(2a + 1)(2b + 1) a
a

s = -a
a
b

t = -b
E3g(x + s, y + t)

w(x, y)h(x, y) = w(x, y)h(x, y)

-b … t … b.-a … s … a

w(x + s, y + t) = w(x, y)

(x, y)w

- 3g(x, y) - w(x, y)h(x, y)4F2
- w(x + s, y + t)h(x + s, y + t)4

s2(x, y) =
1

(2a + 1)(2b + 1) a
a

s = -a
a
b

t = -b
E3g(x + s, y + t)

fN(x, y) =
1

(2a + 1)(2b + 1) a
a

s = -a
a
b

t = -b
fN(x + s, y + t)

fNfN(x, y)

s2(x, y) =
1

(2a + 1)(2b + 1) a
a

s = -a
a
b

t = -b
cfN(x + s, y + t) - fN(x, y) d2

fN(x, y)
(2b + 1)(2a + 1)

fN(x, y)
(x, y)w

(x, y)w
(x, y)w(x, y)ffN(x, y)

fN(x, y) = g(x, y) - w(x, y)h(x, y)

(x, y)fh(x, y)(x, y)g
h(x, y)
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To minimize we solve

(5.4-12)

for . The result is

(5.4-13)

To obtain the restored image we compute from Eq. (5.4-13)
and then use Eq. (5.4-5). As is assumed to be constant in a neighbor-
hood, computing this function for every value of x and y in the image is unnec-
essary. Instead, is computed for one point in each nonoverlapping
neighborhood (preferably the center point) and then used to process all the
image points contained in that neighborhood.

(x, y)w

(x, y)w
(x, y)wfN(x, y),

w(x, y) =
g(x, y)h(x, y) - g(x, y)h(x, y)

h2(x, y) - h2(x, y)

(x, y)w

0s2(x, y)
0w(x, y)

= 0

s2(x, y),

EXAMPLE 5.9:
Illustration of
optimum notch
filtering.

FIGURE 5.21
Fourier spectrum
(without shifting)
of the image
shown in Fig.
5.20(a).
(Courtesy of
NASA.)

■ Figures 5.21 through 5.23 show the result of applying the preceding technique
to the image in Fig. 5.20(a). This image is of size pixels, and a neigh-
borhood with was selected. Figure 5.21 shows the Fourier spectrum
of the corrupted image.The origin was not shifted to the center of the frequency
plane in this particular case, so is at the top left corner of the trans-
form image in Fig. 5.21. Figure 5.22(a) shows the spectrum of N(u, v), where only
the noise spikes are present. Figure 5.22(b) shows the interference pattern

obtained by taking the inverse Fourier transform of N(u, v). Note the sim-
ilarity between this pattern and the structure of the noise present in Fig. 5.20(a).
Finally, Fig. 5.23 shows the processed image obtained by using Eq. (5.4-5).The pe-
riodic interference was removed for all practical purposes. ■

h(x, y)

u = v = 0

a = b = 15
512 * 512
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FIGURE 5.22
(a) Fourier
spectrum of
N(u, v), and
(b) corresponding
noise interference
pattern
(Courtesy of
NASA.)

h(x, y).

5.5 Linear, Position-Invariant Degradations

The input-output relationship in Fig. 5.1 before the restoration stage is ex-
pressed as

(5.5-1)

For the moment, let us assume that so that 
Based on the discussion in Section 2.6.2, H is linear if

(5.5-2)

where a and b are scalars and and are any two input images.
If Eq. (5.5-2) becomesa = b = 1,

f2(x, y)f1(x, y)

H[af1(x, y) + bf2(x, y)] = aH[f1(x, y)] + bH[f2(x, y)]

g(x, y) = H[ f(x, y)].h(x, y) = 0

g(x, y) = H[f(x, y)] + h(x, y)

FIGURE 5.23
Processed image.
(Courtesy of
NASA.)

Consult the book Web site
for a brief review of linear
system theory.

a b
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(5.5-3)

which is called the property of additivity. This property simply says that, if H is
a linear operator, the response to a sum of two inputs is equal to the sum of the
two responses.

With Eq. (5.5-2) becomes

(5.5-4)

which is called the property of homogeneity. It says that the response to a con-
stant multiple of any input is equal to the response to that input multiplied by
the same constant. Thus a linear operator possesses both the property of addi-
tivity and the property of homogeneity.

An operator having the input-output relationship is
said to be position (or space) invariant if

(5.5-5)

for any and any and This definition indicates that the response at
any point in the image depends only on the value of the input at that point, not
on its position.

With a slight (but equivalent) change in notation in the definition of the im-
pulse in Eq. (4.5-3), can be expressed as:

(5.5-6)

Assume again for a moment that Then, substitution of Eq. (5.5-6)
into Eq. (5.5-1) results in the expression

(5.5-7)

If H is a linear operator and we extend the additivity property to integrals, then

(5.5-8)

Because is independent of x and y, and using the homogeneity property,
it follows that

(5.5-9)

The term

(5.5-10)

is called the impulse response of H. In other words, if in Eq. (5.5-1),
then is the response of H to an impulse at coordinates (x, y). Inh(x, a, y, b)

h(x, y) = 0

h(x, a, y, b) = H[d(x - a, y - b)]

g(x, y) = L
q

- q L
q

- q
f(a, b)H[d(x - a, y - b)] da db

f(a, b)

g(x, y) = L
q

- q L
q

- q
H[f(a, b)d(x - a, y - b)] da db

g(x, y) = H[f(x, y)] = HBLq

- q L
q

- q
f(a, b)d(x - a, y - b) da dbR

h(x, y) = 0.

f(x, y) = L
q

- q L
q

- q
f(a, b)d(x - a, y - b) da db

(x, y)f

b.a(x, y)f

H[f(x - a, y - b)] = g(x - a, y - b)

g(x, y) = H[f(x, y)]

H[af1(x, y)] = aH[f1(x, y)]

f2(x, y) = 0,

H[f1(x, y) + f2(x, y)] = H[f1(x, y)] + H[f2(x, y)]

See the footnote in page
369 regarding continuous
and discrete variables.
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optics, the impulse becomes a point of light and is commonly re-
ferred to as the point spread function (PSF). This name arises from the fact
that all physical optical systems blur (spread) a point of light to some degree,
with the amount of blurring being determined by the quality of the optical
components.

Substituting Eq. (5.5-10) into Eq. (5.5-9) yields the expression

(5.5-11)

which is called the superposition (or Fredholm) integral of the first kind. This
expression is a fundamental result that is at the core of linear system theory. It
states that if the response of H to an impulse is known, the response to any
input can be calculated by means of Eq. (5.5-11). In other words, a lin-
ear system H is completely characterized by its impulse response.

If H is position invariant, then, from Eq. (5.5-5),

(5.5-12)

Equation (5.5-11) reduces in this case to

(5.5-13)

This expression is the convolution integral introduced for one variable in
Eq. (4.2-20) and extended to 2-D in Problem 4.11. This integral tells us that
knowing the impulse response of a linear system allows us to compute its
response, g, to any input f. The result is simply the convolution of the im-
pulse response and the input function.

In the presence of additive noise, the expression of the linear degradation
model [Eq. (5.5-11)] becomes

(5.5-14)

If H is position invariant, Eq. (5.5-14) becomes

(5.5-15)

The values of the noise term are random, and are assumed to be inde-
pendent of position. Using the familiar notation for convolution, we can write
Eq. (5.5-15) as

(5.5-16)

or, based on the convolution theorem (see Section 4.6.6), we can express it in
the frequency domain as

(5.5-17)G(u, v) = H(u, v)F(u, v) + N(u, v)

g(x, y) = h(x, y)�f(x, y) + h(x, y)

h(x, y)

g(x, y) = L
q

- q L
q

- q
f(a, b)h(x - a, y - b) da db + h(x, y)

g(x, y) = L
q

- q L
q

- q
f(a, b)h(x, a, y, b) da db + h(x, y)

g(x, y) = L
q

- q L
q

- q
f(a, b)h(x - a, y - b) da db

H[d(x - a, y - b)] = h(x - a, y - b)

f(a, b)

g(x, y) = L
q

- q L
q

- q
f(a, b)h(x, a, y, b) da db

h(x, a, y, b)
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These two expressions agree with Eqs. (5.1-1) and (5.1-2). Keep in mind that,
for discrete quantities, all products are term by term. For example, term ij of
H(u, v)F(u, v) is the product of term ij of H(u, v) and term ij of F(u, v).

In summary, the preceding discussion indicates that a linear, spatially-
invariant degradation system with additive noise can be modeled in the spatial
domain as the convolution of the degradation (point spread) function with an
image, followed by the addition of noise. Based on the convolution theorem,
the same process can be expressed in the frequency domain as the product of
the transforms of the image and degradation, followed by the addition of the
transform of the noise. When working in the frequency domain, we make use
of an FFT algorithm, as discussed in Section 4.11. Keep in mind also the need
for function padding in the implementation of discrete Fourier transforms, as
outlined in Section 4.6.6.

Many types of degradations can be approximated by linear, position-invariant
processes. The advantage of this approach is that the extensive tools of linear
system theory then become available for the solution of image restoration
problems. Nonlinear and position-dependent techniques, although more gen-
eral (and usually more accurate), introduce difficulties that often have no
known solution or are very difficult to solve computationally. This chapter fo-
cuses on linear, space-invariant restoration techniques. Because degradations
are modeled as being the result of convolution, and restoration seeks to find
filters that apply the process in reverse, the term image deconvolution is used
frequently to signify linear image restoration. Similarly, the filters used in the
restoration process often are called deconvolution filters.

5.6 Estimating the Degradation Function

There are three principal ways to estimate the degradation function for use in
image restoration: (1) observation, (2) experimentation, and (3) mathematical
modeling. These methods are discussed in the following sections. The process
of restoring an image by using a degradation function that has been estimated
in some way sometimes is called blind deconvolution, due to the fact that the
true degradation function is seldom known completely.

5.6.1 Estimation by Image Observation
Suppose that we are given a degraded image without any knowledge about the
degradation function H. Based on the assumption that the image was degraded
by a linear, position-invariant process, one way to estimate H is to gather in-
formation from the image itself. For example, if the image is blurred, we can
look at a small rectangular section of the image containing sample structures,
like part of an object and the background. In order to reduce the effect of
noise, we would look for an area in which the signal content is strong (e.g., an
area of high contrast). The next step would be to process the subimage to ar-
rive at a result that is as unblurred as possible. For example, we can do this by
sharpening the subimage with a sharpening filter and even by processing small
areas by hand.
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Let the observed subimage be denoted by and let the processed
subimage (which in reality is our estimate of the original image in that area) be
denoted by Then, assuming that the effect of noise is negligible be-
cause of our choice of a strong-signal area, it follows from Eq. (5.5-17) that

(5.6-1)

From the characteristics of this function, we then deduce the complete degra-
dation function H(u, v) based on our assumption of position invariance. For ex-
ample, suppose that a radial plot of has the approximate shape of a
Gaussian curve.We can use that information to construct a function  on
a larger scale, but having the same basic shape. We then use in one of
the restoration approaches to be discussed in the following sections. Clearly,
this is a laborious process used only in very specific circumstances such as, for
example, restoring an old photograph of historical value.

5.6.2 Estimation by Experimentation
If equipment similar to the equipment used to acquire the degraded image is avail-
able, it is possible in principle to obtain an accurate estimate of the degradation.
Images similar to the degraded image can be acquired with various system settings
until they are degraded as closely as possible to the image we wish to restore.Then
the idea is to obtain the impulse response of the degradation by imaging an im-
pulse (small dot of light) using the same system settings.As noted in Section 5.5, a
linear, space-invariant system is characterized completely by its impulse response.

An impulse is simulated by a bright dot of light, as bright as possible to re-
duce the effect of noise to negligible values. Then, recalling that the Fourier
transform of an impulse is a constant, it follows from Eq. (5.5-17) that

(5.6-2)

where, as before, G(u, v) is the Fourier transform of the observed image and A is
a constant describing the strength of the impulse. Figure 5.24 shows an example.

5.6.3 Estimation by Modeling
Degradation modeling has been used for many years because of the insight it
affords into the image restoration problem. In some cases, the model can even
take into account environmental conditions that cause degradations. For example,
a degradation model proposed by Hufnagel and Stanley [1964] is based on the
physical characteristics of atmospheric turbulence.This model has a familiar form:

(5.6-3)

where k is a constant that depends on the nature of the turbulence.With the ex-
ception of the 5 6 power on the exponent, this equation has the same form as
the Gaussian lowpass filter discussed in Section 4.8.3. In fact, the Gaussian LPF
is used sometimes to model mild, uniform blurring. Figure 5.25 shows examples

>
H(u, v) = e-k(u2 + v2)5>6

H(u, v) =
G(u, v)

A

(u, v)H
(u, v)H

Hs(u, v)

Hs(u, v) =
Gs(u, v)

FNs(u, v)

fNs(x, y).

gs(x, y),
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FIGURE 5.24
Degradation
estimation by
impulse
characterization.
(a) An impulse of
light (shown
magnified).
(b) Imaged
(degraded)
impulse.

FIGURE 5.25
Illustration of the
atmospheric
turbulence model.
(a) Negligible
turbulence.
(b) Severe
turbulence,

(c) Mild
turbulence,

(d) Low
turbulence,

(Original image
courtesy of
NASA.)

k = 0.00025.

k = 0.001.

k = 0.0025.

a b

a b
c d
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obtained by simulating blurring an image using Eq. (5.6-3) with values
(severe turbulence), (mild turbulence), and 

(low turbulence). All images are of size pixels.
Another major approach in modeling is to derive a mathematical model

starting from basic principles. We illustrate this procedure by treating in some
detail the case in which an image has been blurred by uniform linear motion
between the image and the sensor during image acquisition. Suppose that an
image undergoes planar motion and that and are the time-
varying components of motion in the x- and y-directions, respectively. The
total exposure at any point of the recording medium (say, film or digital mem-
ory) is obtained by integrating the instantaneous exposure over the time inter-
val during which the imaging system shutter is open.

Assuming that shutter opening and closing takes place instantaneously, and
that the optical imaging process is perfect, isolates the effect of image motion.
Then, if T is the duration of the exposure, it follows that

(5.6-4)

where is the blurred image.
From Eq. (4.5-7), the Fourier transform of Eq. (5.6-4) is

(5.6-5)

Reversing the order of integration allows Eq. (5.6-5) to be expressed in the form

(5.6-6)

The term inside the outer brackets is the Fourier transform of the displaced
function Using Eq. (4.6-4) then yields the expression

(5.6-7)

where the last step follows from the fact that is independent of t.
By defining

(5.6-8)H(u, v) = L
T

0
e-j2p[ux0(t) + vy0(t)] dt

(u, v)F

= F(u, v)L
T

0
e-j2p[ux0(t) + vy0(t)] dt

G(u, v) = L
T

0
F(u, v)e-j2p[ux0(t) + vy0(t)] dt

f [x - x0(t), y - y0(t)].
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T

0
BLq

- q L
q

- q
f [x - x0(t), y - y0(t)]e-j2p(ux + vy) dx dyR dt

= L
q

- q L
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- q
BLT

0
f [x - x0(t), y - y0(t)] dtRe-j2p(ux + vy) dx dy
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q

- q L
q

- q
g(x, y)e-j2p(ux + vy) dx dy

(x, y)g

g(x, y) = L
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0
f [x - x0(t), y - y0(t)] dt

y0(t)x0(t)(x, y)f

480 * 480
k = 0.00025k = 0.001k = 0.0025
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Eq. (5.6-7) can be expressed in the familiar form

(5.6-9)

If the motion variables and are known, the transfer function 
can be obtained directly from Eq. (5.6-8). As an illustration, suppose that the
image in question undergoes uniform linear motion in the x-direction only, at
a rate given by When the image has been displaced by a
total distance a. With Eq. (5.6-8) yields

(5.6-10)

Observe that H vanishes at values of u given by where n is an integer.
If we allow the y-component to vary as well, with the motion given by

then the degradation function becomes

(5.6-11)H(u, v) =
T

p(ua + vb)
 sin[p(ua + vb)]e-jp(ua + vb)

y0 = bt>T,

u = n>a,

=
T
pua

 sin(pua)e-jpua

= L
T

0
e-j2puat/T dt

H(u, v) = L
T

0
e-j2pux0(t) dt

y0(t) = 0,
t = T,x0(t) = at>T.

(u, v)Hy0(t)x0(t)

G(u, v) = H(u, v)F(u, v)

EXAMPLE 5.10:
Image blurring
due to motion.

FIGURE 5.26
(a) Original image.
(b) Result of
blurring using the
function in Eq.
(5.6-11) with

and
T = 1.
a = b = 0.1

■ Figure 5.26(b) is an image blurred by computing the Fourier transform of the
image in Fig. 5.26(a), multiplying the transform by from Eq. (5.6-11),
and taking the inverse transform. The images are of size pixels, and
the parameters used in Eq. (5.6-11) were and As discussed
in Sections 5.8 and 5.9, recovery of the original image from its blurred counter-
part presents some interesting challenges, particularly when noise is present in
the degraded image. ■

T = 1.a = b = 0.1
688 * 688

(u, v)H

a b

As explained at the end
of Table 4.3, we sample
Eg (5.6-11) in and to
generate a discrete filter.

vu
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5.7 Inverse Filtering

The material in this section is our first step in studying restoration of images
degraded by a degradation function H, which is given or obtained by a method
such as those discussed in the previous section. The simplest approach to
restoration is direct inverse filtering, where we compute an estimate,
of the transform of the original image simply by dividing the transform of the
degraded image, , by the degradation function:

(5.7-1)

The division is an array operation, as defined in Section 2.6.1 and in connec-
tion with Eq. (5.5-17). Substituting the right side of Eq. (5.1-2) for in
Eq. (5.7-1) yields

(5.7-2)

This is an interesting expression. It tells us that even if we know the degrada-
tion function we cannot recover the undegraded image [the inverse Fourier
transform of ] exactly because is not known. There is more bad
news. If the degradation function has zero or very small values, then the ratio

could easily dominate the estimate This, in fact, is fre-
quently the case, as will be demonstrated shortly.

One approach to get around the zero or small-value problem is to limit the
filter frequencies to values near the origin. From the discussion of Eq. (4.6-21)
we know that is usually the highest value of in the frequency
domain.Thus, by limiting the analysis to frequencies near the origin, we reduce
the probability of encountering zero values. This approach is illustrated in the
following example.

(u, v)HH(0, 0)

FN (u, v).H(u, v)>N(u, v)

N(u, v)F(u, v)

FN (u, v) = F(u, v) +
N(u, v)
H(u, v)

(u, v)G

FN (u, v) =
G(u, v)
H(u, v)

(u, v)G

FN (u, v),

■ The image in Fig. 5.25(b) was inverse filtered with Eq. (5.7-1) using the
exact inverse of the degradation function that generated that image. That is,
the degradation function used was

with The M 2 and N 2 constants are offset values; they center the
function so that it will correspond with the centered Fourier transform, as dis-
cussed on numerous occasions in the previous chapter. In this case,

We know that a Gaussian-shape function has no zeros, so that
will not be a concern here. However, in spite of this, the degradation values be-
came so small that the result of full inverse filtering [Fig. 5.27(a)] is useless.The
reasons for this poor result are as discussed in connection with Eq. (5.7-2).

Figures 5.27(b) through (d) show the results of cutting off values of the
ratio outside a radius of 40, 70, and 85, respectively. The
cut off was implemented by applying to the ratio a Butterworth lowpass
function of order 10. This provided a sharp (but smooth) transition at the

(u, v)H>(u, v)G

M = N = 480.

>>k = 0.0025.

H(u, v) = e-k[(u - M>2)2 + (v - N>2)2]5>6

EXAMPLE 5.11:
Inverse filtering.
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FIGURE 5.27
Restoring
Fig. 5.25(b) with
Eq. (5.7-1).
(a) Result of
using the full
filter. (b) Result
with H cut off
outside a radius of
40; (c) outside a
radius of 70; and
(d) outside a
radius of 85.

desired radius. Radii near 70 yielded the best visual results [Fig. 5.27(c)].
Radius values below that tended toward blurred images, as illustrated in
Fig. 5.27(b), which was obtained using a radius of 40. Values above 70 started
to produce degraded images, as illustrated in Fig. 5.27(d), which was ob-
tained using a radius of 85. The image content is almost visible in this image
behind a “curtain” of noise, but the noise definitely dominates the result.
Further increases in radius values produced images that looked more and
more like Fig. 5.27(a). ■

The results in the preceding example are illustrative of the poor perfor-
mance of direct inverse filtering in general. The basic theme of the three sec-
tions that follow is how to improve on direct inverse filtering.

5.8 Minimum Mean Square Error (Wiener) Filtering

The inverse filtering approach discussed in the previous section makes no ex-
plicit provision for handling noise. In this section, we discuss an approach that
incorporates both the degradation function and statistical characteristics of

a b
c d
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noise into the restoration process.The method is founded on considering images
and noise as random variables, and the objective is to find an estimate of the
uncorrupted image f such that the mean square error between them is mini-
mized.This error measure is given by

(5.8-1)

where is the expected value of the argument. It is assumed that the
noise and the image are uncorrelated; that one or the other has zero mean; and
that the intensity levels in the estimate are a linear function of the levels in the
degraded image. Based on these conditions, the minimum of the error function
in Eq. (5.8-1) is given in the frequency domain by the expression

(5.8-2)

where we used the fact that the product of a complex quantity with its conju-
gate is equal to the magnitude of the complex quantity squared. This result is
known as the Wiener filter, after N. Wiener [1942], who first proposed the con-
cept in the year shown. The filter, which consists of the terms inside the brack-
ets, also is commonly referred to as the minimum mean square error filter or
the least square error filter. We include references at the end of the chapter to
sources containing detailed derivations of the Wiener filter. Note from the first
line in Eq. (5.8-2) that the Wiener filter does not have the same problem as the
inverse filter with zeros in the degradation function, unless the entire denomi-
nator is zero for the same value(s) of u and v.

The terms in Eq. (5.8-2) are as follows:

†

Sf(u, v) = ƒ F(u, v) ƒ 2 = power spectrum of the undegraded image

Sh (u, v) = ƒ N(u, v) ƒ 2 = power spectrum of the noise [see Eq. (4.6–18)]

ƒ H(u, v) ƒ 2 = H*(u, v)H(u, v)

H*(u, v) = complex conjugate of H(u, v)

H(u, v) = degradation function

= B 1
H(u, v)

ƒ H(u, v) ƒ 2

ƒ H(u, v) ƒ 2 + Sh (u, v)>Sf (u, v)
RG(u, v)

= B H*(u, v)

ƒ H(u, v) ƒ 2 + Sh (u, v)>Sf (u, v)
RG(u, v)

FN (u, v) = B H*(u, v)Sf(u, v)

Sf(u, v) ƒ H(u, v) ƒ 2 + Sh (u, v)
RG(u, v)

E5 # 6
e2 = E5(f - fN )26

fN Note that entire images
are being considered ran-
dom variables, as dis-
cussed at the end of
Section 2.6.8.

†The term also is referred to as the autocorrelation of the noise. This terminology comes from
the correlation theorem (first line of entry 7 in Table 4.3). When the two functions are the same, corre-
lation becomes autocorrelation and the right side of that entry becomes which is equal
to Similar comments apply to which is the autocorrelation of the image. We dis-
cuss correlation in more detail in Chapter 12.

ƒ F(u, v) ƒ 2,ƒ N(u, v) ƒ 2.
N*(u, v)N(u, v),

ƒ N(u, v) ƒ 2
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As before, is the transform of the degradation function and G(u, v) is
the transform of the degraded image.The restored image in the spatial domain
is given by the inverse Fourier transform of the frequency-domain estimate

Note that if the noise is zero, then the noise power spectrum vanishes
and the Wiener filter reduces to the inverse filter.

A number of useful measures are based on the power spectra of noise and
of the undegraded image. One of the most important is the signal-to-noise
ratio, approximated using frequency domain quantities such as

(5.8-3)

This ratio gives a measure of the level of information bearing signal power
(i.e., of the original, undegraded image) to the level of noise power. Images
with low noise tend to have a high SNR and, conversely, the same image with
a higher level of noise has a lower SNR. This ratio by itself is of limited value,
but it is an important metric used in characterizing the performance of
restoration algorithms.

The mean square error given in statistical form in Eq. (5.8-1) can be approxi-
mated also in terms a summation involving the original and restored images:

(5.8-4)

In fact, if one considers the restored image to be “signal” and the difference
between this image and the original to be noise, we can define a signal-to-noise
ratio in the spatial domain as

(5.8-5)

The closer f and are, the larger this ratio will be. Sometimes the square root
of these measures is used instead, in which case they are referred to as the
root-mean-square-signal-to-noise ratio and the root-mean-square-error, re-
spectively. As we have mentioned several times before, keep in mind that
quantitative metrics do not necessarily relate well to perceived image quality.

When we are dealing with spectrally white noise, the spectrum is
a constant, which simplifies things considerably. However, the power spectrum
of the undegraded image seldom is known.An approach used frequently when
these quantities are not known or cannot be estimated is to approximate 
Eq. (5.8-2) by the expression

ƒ N(u, v) ƒ 2

fN

SNR =
a

M - 1

x = 0
a

N - 1

y = 0
fN(x, y)2

a
M - 1

x = 0
a

N - 1

y = 0
[f(x, y) - fN(x, y)]2

MSE =
1

MN a
M - 1

x = 0
a

N - 1

y = 0
[f(x, y) - fN(x, y)]2

SNR =
a

M - 1

u = 0
a

N - 1

v = 0
ƒ F(u, v) ƒ 2

a
M - 1

u = 0
a
N - 1

v = 0
ƒ N(u, v) ƒ 2

FN (u, v).

H(u, v)
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(5.8-6)

where K is a specified constant that is added to all terms of . The
following examples illustrate the use of this expression.

ƒ H(u, v) ƒ 2

FN (u, v) = B 1
H(u, v)

ƒ H(u, v) ƒ 2

ƒ H(u, v) ƒ 2 + K
RG(u, v)

EXAMPLE 5.12:
Comparison of
inverse and
Wiener filtering.

■ Figure 5.28 illustrates the advantage of Wiener filtering over direct inverse fil-
tering. Figure 5.28(a) is the full inverse-filtered result from Fig. 5.27(a). Similarly,
Fig. 5.28(b) is the radially limited inverse filter result of Fig, 5.27(c). These im-
ages are duplicated here for convenience in making comparisons. Figure 5.28(c)
shows the result obtained using Eq. (5.8-6) with the degradation function used in
Example 5.11.The value of K was chosen interactively to yield the best visual re-
sults. The advantage of Wiener filtering over the direct inverse approach is evi-
dent in this example. By comparing Figs. 5.25(a) and 5.28(c), we see that the
Wiener filter yielded a result very close in appearance to the original image. ■

FIGURE 5.28 Comparison of inverse and Wiener filtering. (a) Result of full inverse filtering of Fig. 5.25(b).
(b) Radially limited inverse filter result. (c) Wiener filter result.

■ The first row of Fig. 5.29 shows, from left to right, the blurred image of Fig.
5.26(b) heavily corrupted by additive Gaussian noise of zero mean and vari-
ance of 650; the result of direct inverse filtering; and the result of Wiener fil-
tering. The Wiener filter of Eq. (5.8-6) was used, with from Example
5.10, and with K chosen interactively to give the best possible visual result. As
expected, the inverse filter produced an unusable image. Note that the noise in
the inverse filtered image is so strong that its structure is in the direction of the
deblurring filter. The Wiener filter result is by no means perfect, but it does
give us a hint as to image content. With some difficulty, the text is readable.

The second row of Fig. 5.29 shows the same sequence, but with the level of
noise variance reduced by one order of magnitude.This reduction had little effect
on the inverse filter, but the Wiener results are considerably improved. The text

H(u, v)

EXAMPLE 5.13:
Further
comparisons of
Wiener filtering.

a b c
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FIGURE 5.29 (a) 8-bit image corrupted by motion blur and additive noise. (b) Result of inverse filtering.
(c) Result of Wiener filtering. (d)–(f) Same sequence, but with noise variance one order of magnitude less.
(g)–(i) Same sequence, but noise variance reduced by five orders of magnitude from (a). Note in (h) how
the deblurred image is quite visible through a “curtain” of noise.

a b c
d e f
g h i
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now is much easier to read. In the third row of Fig. 5.29, the noise variance has de-
creased more than five orders of magnitude from the first row. In fact, image
5.29(g) has no visible noise.The inverse filter result is interesting in this case.The
noise is still quite visible, but the text can be seen through a “curtain” of noise.
This is a good example of the comments made regarding Eq. (5.7-2). In other
words, as is evident in Fig. 5.29(h), the inverse filter was quite capable of essen-
tially eliminating the blur in the image. However, the noise still dominates the re-
sult. If we could “look” behind the noise in Figs. 5.29(b) and (e), the characters
also would show little blurring.The Wiener filter result in Fig. 5.29(i) is excellent,
being quite close visually to the original image in Fig. 5.26(a). These types of re-
sults are representative of what is possible with Wiener filtering, as long as a rea-
sonable estimate of the degradation function is available. ■

5.9 Constrained Least Squares Filtering

The problem of having to know something about the degradation function H
is common to all methods discussed in this chapter. However, the Wiener filter
presents an additional difficulty: The power spectra of the undegraded image
and noise must be known.We showed in the previous section that it is possible
to achieve excellent results using the approximation given in Eq. (5.8-6). How-
ever, a constant estimate of the ratio of the power spectra is not always a suit-
able solution.

The method discussed in this section requires knowledge of only the mean
and variance of the noise. As discussed in Section 5.2.4, these parameters usu-
ally can be calculated from a given degraded image, so this is an important ad-
vantage. Another difference is that the Wiener filter is based on minimizing a
statistical criterion and, as such, it is optimal in an average sense. The algo-
rithm presented in this section has the notable feature that it yields an optimal
result for each image to which it is applied. Of course, it is important to keep in
mind that these optimality criteria, while satisfying from a theoretical point of
view, are not related to the dynamics of visual perception. As a result, the
choice of one algorithm over the other will almost always be determined (at
least partially) by the perceived visual quality of the resulting images.

By using the definition of convolution given in Eq. (4.6-23), and as ex-
plained in Section 2.6.6, we can express Eq. (5.5-16) in vector-matrix form:

(5.9-1)

For example, suppose that is of size Then we can form the first N
elements of the vector g by using the image elements in first row of , the
next N elements from the second row, and so on.The resulting vector will have di-
mensions These are also the dimensions of f and as these vectors are
formed in the same manner. The matrix H then has dimensions Its
elements are given by the elements of the convolution given in Eq. (4.6-23).

It would be reasonable to arrive at the conclusion that the restoration prob-
lem can now be reduced to simple matrix manipulations. Unfortunately, this is
not the case. For instance, suppose that we are working with images of medium
size; say Then the vectors in Eq. (5.9-1) would be of dimensionM = N = 512.

MN * MN.
H,MN * 1.

(x, y)g
M * N.(x, y)g

g = Hf + H
Consult the book Web
site for a brief review of
vectors and matrices.
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†Recall that, for a vector w with n components, where is the kth component of w.wkwTw = a
n

k = 1

w2
k ,

and matrix H would be of dimensions Ma-
nipulating vectors and matrices of such sizes is not a trivial task. The problem
is complicated further by the fact H is highly sensitive to noise (after the expe-
riences we had with the effect of noise in the previous two sections, this should
not be a surprise). However, formulating the restoration problem in matrix
form does facilitate derivation of restoration techniques.

Although we do not fully derive the method of constrained least squares
that we are about to present, this method has its roots in a matrix formulation.
We give references at the end of the chapter to sources where derivations are
covered in detail. Central to the method is the issue of the sensitivity of H to
noise. One way to alleviate the noise sensitivity problem is to base optimality
of restoration on a measure of smoothness, such as the second derivative of an
image (our old friend the Laplacian). To be meaningful, the restoration must
be constrained by the parameters of the problems at hand. Thus, what is de-
sired is to find the minimum of a criterion function, C, defined as

(5.9-2)

subject to the constraint

(5.9-3)

where is the Euclidean vector norm,† and is the estimate of the
undegraded image. The Laplacian operator is defined in Eq. (3.6-3).

The frequency domain solution to this optimization problem is given by the
expression

(5.9-4)

where is a parameter that must be adjusted so that the constraint in Eq. (5.9-3)
is satisfied, and P(u, v) is the Fourier transform of the function

(5.9-5)

We recognize this function as the Laplacian operator introduced in Section
3.6.2.As noted earlier, it is important to keep in mind that , as well as all
other relevant spatial domain functions, must be properly padded with zeros
prior to computing their Fourier transforms for use in Eq. (5.9-4), as discussed
in Section 4.6.6. Note that Eq. (5.9-4) reduces to inverse filtering if is zero.g

(x, y)p

p(x, y) = C 0 -1 0
-1 4 -1
0 -1 0

S
g

FN (u, v) = B H*(u, v)

ƒH(u, v) ƒ2 + g ƒP(u, v) ƒ2
RG(u, v)

§2
fN7w 72 ! wTw

7g - HfN 72 = 7H 72

C = a
M - 1

x = 0
a

N - 1

y = 0
[§2f(x, y)]2

262,144 * 262,144.262,144 * 1,

Consult the Tutorials sec-
tion in the book Web site
for an entire chapter de-
voted to the topic of alge-
braic techniques for image
restoration.
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EXAMPLE 5.14:
Comparison of
Wiener and
constrained least
squares filtering.

■ Figure 5.30 shows the result of processing Figs. 5.29(a), (d), and (g) with con-
strained least squares filters, in which the values of were selected manually
to yield the best visual results. This is the same procedure we used to generate
the Wiener filtered results in Fig. 5.29(c), (f), and (i). By comparing the con-
strained least squares and Wiener results, it is noted that the former yielded
slightly better results for the high- and medium-noise cases, with both filters
generating essentially equal results for the low-noise case. It is not unexpected
that the constrained least squares filter would outperform the Wiener filter
when selecting the parameters manually for better visual results. The parame-
ter in Eq. (5.9-4) is a scalar, while the value of K in Eq. (5.8-6) is an approxi-
mation to the ratio of two unknown frequency domain functions; this ratio
seldom is constant.Thus, it stands to reason that a result based on manually se-
lecting would be a more accurate estimate of the undegraded image. ■

As shown in the preceding example, it is possible to adjust the parameter 
interactively until acceptable results are achieved. If we are interested in opti-
mality, however, then the parameter must be adjusted so that the constraint in
Eq. (5.9-3) is satisfied. A procedure for computing by iteration is as follows.

Define a “residual” vector r as

(5.9-6)

Since, from the solution in Eq. (5.9-4), (and by implication ) is a function
of then r also is a function of this parameter. It can be shown (Hunt [1973]) that

(5.9-7)= 7r 72
f(g) = rTr

g,
fNFN (u, v)

r = g - HfN

g

g

g

g

g

g

FIGURE 5.30 Results of constrained least squares filtering. Compare (a), (b), and (c) with the Wiener filtering
results in Figs. 5.29(c), (f), and (i), respectively.

a b c
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is a monotonically increasing function of What we want to do is adjust so
that

(5.9-8)

where a is an accuracy factor. In view of Eq. (5.9-6), if the con-
straint in Eq. (5.9-3) will be strictly satisfied.

Because is monotonic, finding the desired value of is not difficult.
One approach is to

1. Specify an initial value of 
2. Compute
3. Stop if Eq. (5.9-8) is satisfied; otherwise return to step 2 after increasing 

if or decreasing if Use the new value
of in Eq. (5.9-4) to recompute the optimum estimate 

Other procedures, such as a Newton–Raphson algorithm, can be used to im-
prove the speed of convergence.

In order to use this algorithm, we need the quantities and To com-
pute we note from Eq. (5.9-6) that

(5.9-9)

from which we obtain r(x, y) by computing the inverse transform of R(u, v).Then

(5.9-10)

Computation of leads to an interesting result. First, consider the variance
of the noise over the entire image, which we estimate by the sample-average
method, as discussed in Section 3.3.4:

(5.9-11)

where

(5.9-12)

is the sample mean. With reference to the form of Eq. (5.9-10), we note that
the double summation in Eq. (5.9-11) is equal to This gives us the 
expression

(5.9-13)

This is a most useful result. It tells us that we can implement an optimum
restoration algorithm by having knowledge of only the mean and variance of
the noise. These quantities are not difficult to estimate (Section 5.2.4), assum-
ing that the noise and image intensity values are not correlated. This is a basic
assumption of all the methods discussed in this chapter.

7H 72 = MN [sh
2 + mh

2]

7H 72.

mh =
1

MN a
M - 1

x = 0
a

N - 1

y = 0

h(x, y)

sh
2 =

1
MN a

M - 1

x = 0
a

N - 1

y = 0

[h(x, y) - mh]
2

7H 72
7r 72 = a

M - 1

x = 0
a

N - 1

y = 0
r2(x, y)

R(u, v) = G(u, v) - H(u, v)FN (u, v)

7r 72,
7H 72.7r 72

FN (u, v).g

7r 72 7 7H 72 + a.g7r 72 6 7H 72 - a
g

7r 72. g.

gf(g)

7r 72 = 7H 72,
7r 72 = 7H 72 ; a

gg.
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EXAMPLE 5.15:
Iterative
estimation of the
optimum
constrained least
squares filter.

■ Figure 5.31(a) shows the result obtained by using the algorithm just de-
scribed to estimate the optimum filter for restoring Fig. 5.25(b). The initial
value used for was the correction factor for adjusting was and
the value for a was 0.25. The noise parameters specified were the same used to
generate Fig. 5.25(a): a noise variance of and zero mean. The restored re-
sult is almost as good as Fig. 5.28(c), which was obtained by Wiener filtering
with K manually specified for best visual results. Figure 5.31(b) shows what
can happen if the wrong estimate of noise parameters are used. In this case,
the noise variance specified was and the mean was left at a value of 0.The
result in this case is considerably more blurred. ■

As stated at the beginning of this section, it is important to keep in mind that
optimum restoration in the sense of constrained least squares does not necessar-
ily imply “best” in the visual sense. Depending on the nature and magnitude of
the degradation and noise, the other parameters in the algorithm for iteratively
determining the optimum estimate also play a role in the final result. In general,
automatically determined restoration filters yield inferior results to manual ad-
justment of filter parameters. This is particularly true of the constrained least
squares filter, which is completely specified by a single, scalar parameter.

5.10 Geometric Mean Filter

It is possible to generalize slightly the Wiener filter discussed in Section 5.8.
The generalization is in the form of the so-called geometric mean filter:

(5.10-1)

with and being positive, real constants.The geometric mean filter consists of
the two expressions in brackets raised to the powers and respectively.1 - a,a

ba

FN (u, v) = c H*(u, v)

ƒ H(u, v) ƒ 2
daC H*(u, v)

ƒ H(u, v) ƒ 2 + bBSh (u, v)

Sf(u, v)
R S1 -a

G(u, v)

10-2

10-5,

10-6,g10-5,g

FIGURE 5.31
(a) Iteratively
determined
constrained least
squares
restoration of
Fig. 5.16(b), using
correct noise
parameters.
(b) Result
obtained with
wrong noise
parameters.

a b
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When this filter reduces to the inverse filter. With the filter be-
comes the so-called parametric Wiener filter, which reduces to the standard
Wiener filter when If the filter becomes a product of the two
quantities raised to the same power, which is the definition of the geometric
mean, thus giving the filter its name.With as decreases below 1 2, the fil-
ter performance will tend more toward the inverse filter. Similarly, when in-
creases above 1 2, the filter will behave more like the Wiener filter.When 
and the filter also is commonly referred to as the spectrum equalization fil-
ter. Equation (5.10-1) is quite useful when implementing restoration filters be-
cause it represents a family of filters combined into a single expression.

5.11 Image Reconstruction from Projections

In the previous sections of this chapter, we dealt with techniques for restoring
a degraded version of an image. In this section, we examine the problem of
reconstructing an image from a series of projections, with a focus on X-ray
computed tomography (CT). This is the earliest and still the most widely used
type of CT and is currently one of the principal applications of digital image
processing in medicine.

5.11.1 Introduction
The reconstruction problem is simple in principle and can be explained quali-
tatively in a straightforward, intuitive manner. To begin, consider Fig. 5.32(a),
which consists of a single object on a uniform background. To bring physical

b = 1,
a = 1>2> a

>ab = 1,

a = 1>2,b = 1.

a = 0a = 1

As noted in Chapter 1,
the term computerized
axial tomography (CAT)
is used interchangeably
to denote CT.

Absorption profile

Beam

Ray Detector strip

FIGURE 5.32
(a) Flat region
showing a simple
object, an input
parallel beam, and 
a detector strip.
(b) Result of back-
projecting the
sensed strip data
(i.e., the 1-D absorp-
tion profile). (c) The
beam and detectors
rotated by 90°.
(d) Back-projection.
(e) The sum of (b)
and (d).The inten-
sity where the back-
projections intersect
is twice the intensity
of the individual
back-projections.
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†A treatment of the physics of X-ray sources and detectors is beyond the scope of our discussion, which
focuses on the image processing aspects of CT. See Prince and Links [2006] for an excellent introduction
to the physics of X-ray image formation.

meaning to the following explanation, suppose that this image is a cross sec-
tion of a 3-D region of a human body. Assume also that the background in the
image represents soft, uniform tissue, while the round object is a tumor, also
uniform, but with higher absorption characteristics.

Suppose next that we pass a thin, flat beam of X-rays from left to right
(though the plane of the image), as Fig. 5.32(a) shows, and assume that the en-
ergy of the beam is absorbed more by the object than by the background, as
typically is the case. Using a strip of X-ray absorption detectors on the other
side of the region will yield the signal (absorption profile) shown, whose am-
plitude (intensity) is proportional to absorption.† We may view any point in
the signal as the sum of the absorption values across the single ray in the beam
corresponding spatially to that point (such a sum often is referred to as a
raysum). At this juncture, all the information we have about the object is this
1-D absorption signal.

We have no way of determining from a single projection whether we are
dealing with a single object or a multitude of objects along the path of the
beam, but we begin the reconstruction by creating an image based on just this
information. The approach is to project the 1-D signal back across the direc-
tion from which the beam came, as Fig. 5.32(b) shows. The process of back-
projecting a 1-D signal across a 2-D area sometimes is referred to as smearing
the projection back across the area. In terms of digital images, this means du-
plicating the same 1-D signal across the image perpendicularly to the direction
of the beam. For example, Fig. 5.32(b) was created by duplicating the 1-D sig-
nal in all columns of the reconstructed image. For obvious reasons, the ap-
proach just described is called backprojection.

Next, suppose that we rotate the position of the source-detector pair by
90°, as in Fig. 5.32(c). Repeating the procedure explained in the previous
paragraph yields a backprojection image in the vertical direction, as Fig.
5.32(d) shows. We continue the reconstruction by adding this result to the
previous backprojection, resulting in Fig. 5.32(e). Now, we can tell that the
object of interest is contained in the square shown, whose amplitude is twice
the amplitude of the individual backprojections. A little thought will reveal
that we should be able to learn more about the shape of the object in ques-
tion by taking more views in the manner just described. In fact, this is exactly
what happens, as Fig. 5.33 shows. As the number of projections increases, the
strength of non-intersecting backprojections decreases relative to the
strength of regions in which multiple backprojections intersect. The net ef-
fect is that brighter regions will dominate the result, and backprojections
with few or no intersections will fade into the background as the image is
scaled for display.

Figure 5.33(f), formed from 32 projections, illustrates this concept. Note,
however, that while this reconstructed image is a reasonably good approxima-
tion to the shape of the original object, the image is blurred by a “halo” effect,
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the formation of which can be seen in progressive stages in Fig. 5.33. For exam-
ple, the halo in Fig. 5.33(e) appears as a “star” whose intensity is lower than that
of the object, but higher than the background. As the number of views increas-
es, the shape of the halo becomes circular, as in Fig. 5.33(f). Blurring in CT re-
construction is an important issue, whose solution is addressed in Section
5.11.5. Finally, we conclude from the discussion of Figs. 5.32 and 5.33 that pro-
jections 180° apart are mirror images of each other, so we only have to consider
angle increments halfway around a circle in order to generate all the projec-
tions required for reconstruction.

FIGURE 5.33
(a) Same as Fig.
5.32(a).
(b)–(e) Reconstruc-
tion using 1, 2, 3,
and 4 backprojec-
tions 45° apart.
(f) Reconstruction
with 32 backprojec-
tions 5.625° apart
(note the blurring).

EXAMPLE 5.16:
Backprojection of
a simple planar
region containing
two objects.

■ Figure 5.34 illustrates reconstruction using backprojections on a slightly
more complicated region that contains two objects with different absorption
properties. Figure 5.34(b) shows the result of using one backprojection. We
note three principal features in this figure, from bottom to top: a thin hori-
zontal gray band corresponding to the unconcluded portion of the small ob-
ject, a brighter (more absorption) band above it corresponding to the area
shared by both objects, and an upper band corresponding to the rest of the el-
liptical object. Figures 5.34(c) and (d) show reconstruction using two projec-
tions 90° apart and four projections 45° apart, respectively.The explanation of
these figures is similar to the discussion of Figs. 5.33(c) through (e). Figures
5.34(e) and (f) show more accurate reconstructions using 32 and 64 backpro-
jections, respectively. These two results are quite close visually, and they both
show the blurring problem mentioned earlier, whose solution we address in
Section 5.11.5. ■

a b c
d e f



5.11 ■ Image Reconstruction from Projections 365

FIGURE 5.34 (a) A region with two objects. (b)–(d) Reconstruction using 1, 2, and 4
backprojections 45° apart. (e) Reconstruction with 32 backprojections 5.625° apart.
(f) Reconstruction with 64 backprojections 2.8125° apart.

5.11.2 Principles of Computed Tomography (CT)
The goal of X-ray computed tomography is to obtain a 3-D representation of the
internal structure of an object by X-raying the object from many different direc-
tions. Imagine a traditional chest X-ray, obtained by placing the subject against an
X-ray sensitive plate and “illuminating” the individual with an X-ray beam in the
form of a cone. The X-ray plate produces an image whose intensity at a point is
proportional to the X-ray energy impinging on that point after it has passed
through the subject. This image is the 2-D equivalent of the projections we dis-
cussed in the previous section.We could back-project this entire image and create
a 3-D volume. Repeating this process through many angles and adding the back-
projections would result in 3-D rendition of the structure of the chest cavity.
Computed tomography attempts to get that same information (or localized parts
of it) by generating slices through the body.A 3-D representation then can be ob-
tained by stacking the slices.A CT implementation is much more economical, be-
cause the number of detectors required to obtain a high resolution slice is much
smaller than the number of detectors needed to generate a complete 2-D projec-
tion of the same resolution. Computational burden and X-ray dosages are simi-
larly reduced, making the 1-D projection CT a more practical approach.

As with the Fourier transform discussed in the last chapter, the basic mathe-
matical concepts required for CT were in place years before the availability of

a b c
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digital computers made them practical. The theoretical foundation of CT dates
back to Johann Radon, a mathematician from Vienna who derived a method in
1917 for projecting a 2-D object along parallel rays as part of his work on line in-
tegrals.The method now is referred to commonly as the Radon transform, a topic
we discuss in the following section. Forty-five years later, Allan M. Cormack, a
physicist at Tufts University, partially “rediscovered” these concepts and applied
them to CT. Cormack published his initial findings in 1963 and 1964 and showed
how they could be used to reconstruct cross-sectional images of the body from 
X-ray images taken at different angular directions. He gave the mathematical
formulae needed for the reconstruction and built a CT prototype to show the
practicality of his ideas. Working independently, electrical engineer Godfrey N.
Hounsfield and his colleagues at EMI in London formulated a similar solution
and built the first medical CT machine. Cormack and Hounsfield shared the 1979
Nobel Prize in Medicine for their contributions to medical tomography.

First-generation (G1) CT scanners employ a “pencil” X-ray beam and a single
detector, as Fig. 5.35(a) shows. For a given angle of rotation, the source/detector

Detector

Subject

Source

FIGURE 5.35 Four
generations of CT
scanners. The
dotted arrow
lines indicate
incremental
linear motion.
The dotted arrow
arcs indicate
incremental
rotation. The
cross-mark on
the subject’s head
indicates linear
motion
perpendicular to
the plane of the
paper. The
double arrows in
(a) and (b)
indicate that the
source/detector
unit is translated
and then brought
back into its
original position.

a b
c d
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pair is translated incrementally along the linear direction shown. A projection
(like the ones in Fig. 5.32), is generated by measuring the output of the detector
at each increment of translation. After a complete linear translation, the
source/detector assembly is rotated and the procedure is repeated to generate
another projection at a different angle.The procedure is repeated for all desired
angles in the range [0°, 180°] to generate a complete set of projections, from
which one image is generated by backprojection, as explained in the previous
section. The cross-mark on the head of the subject indicates motion in a direc-
tion perpendicular to the plane of the source/detector pair. A set of cross sec-
tional images (slices) is generated by incrementally moving the subject (after
each complete scan) past the source/detector plane. Stacking these images com-
putationally produces a 3-D volume of a section of the body. G1 scanners are no
longer manufactured for medical imaging but, because they produce a parallel-
ray beam (as in Fig. 5.32), their geometry is the one used predominantly for in-
troducing the fundamentals of CT imaging. As discussed in the following
section, this geometry is the starting point for deriving the equations necessary
to implement image reconstruction from projections.

Second-generation (G2) CT scanners [Fig. 5.35(b)] operate on the same
principle as G1 scanners, but the beam used is in the shape of a fan.This allows
the use of multiple detectors, thus requiring fewer translations of the
source/detector pair. Third-generation (G3) scanners are a significant im-
provement over the earlier two generations of CT geometries. As Fig. 5.35(c)
shows, G3 scanners employ a bank of detectors long enough (on the order of
1000 individual detectors) to cover the entire field of view of a wider beam.
Consequently, each increment of angle produces an entire projection, elimi-
nating the need to translate the source/detector pair, as in the geometry of G1
and G2 scanners. Fourth-generation (G4) scanners go a step further. By em-
ploying a circular ring of detectors (on the order of 5000 individual detectors),
only the source has to rotate. The key advantage of G3 and G4 scanners is
speed. Key disadvantages are cost and greater X-ray scatter, which requires
higher doses than G1 and G2 scanners to achieve comparable signal-to-noise
characteristics.

Newer scanning modalities are beginning to be adopted. For example, fifth-
generation (G5) CT scanners, also known as electron beam computed tomogra-
phy (EBCT) scanners, eliminate all mechanical motion by employing electron
beams controlled electromagnetically. By striking tungsten anodes that encir-
cle the patient, these beams generate X-rays that are then shaped into a fan
beam that passes through the patient and excites a ring of detectors, as in G4
scanners.

The conventional manner in which CT images are obtained is to keep the pa-
tient stationary during the scanning time required to generate one image. Scan-
ning is then halted while the position of the patient is incremented in the
direction perpendicular to the imaging plane using a motorized table. The next
image is then obtained and the procedure is repeated for the number of incre-
ments required to cover a specified section of the body.Although an image may
be obtained in less than one second, there are procedures (e.g., abdominal and



368 Chapter 5 ■ Image Restoration and Reconstruction

chest scans) that require the patient to hold his/her breath during image acquisi-
tion. Completing these procedures for, say, 30 images, may require several min-
utes.An approach whose use is increasing is helical CT, sometimes referred to as
sixth-generation (G6) CT. In this approach, a G3 or G4 scanner is configured
using so-called slip rings that eliminate the need for electrical and signal cabling
between the source/detectors and the processing unit. The source/detector pair
then rotates continuously through 360° while the patient is moved at a constant
speed along the axis perpendicular to the scan.The result is a continuous helical
volume of data that is then processed to obtain individual slice images.

Seventh-generation (G7) scanners (also called multislice CT scanners) are
emerging in which “thick” fan beams are used in conjunction with parallel
banks of detectors to collect volumetric CT data simultaneously. That is, 3-D
cross-sectional “slabs,” rather than single cross-sectional images are generated
per X-ray burst. In addition to a significant increase in detail, this approach has
the advantage that it utilizes X-ray tubes more economically, thus reducing
cost and potentially reducing dosage.

Beginning in the next section, we develop the mathematical tools necessary
for formulating image projection and reconstruction algorithms. Our focus is on
the image-processing fundamentals that underpin all the CT approaches just
discussed. Information regarding the mechanical and source/detector character-
istics of CT systems is provided in the references cited at the end of the chapter.

5.11.3 Projections and the Radon Transform
In what follows, we develop in detail the mathematics needed for image re-
construction in the context of X-ray computed tomography, but the same basic
principles are applicable in other CT imaging modalities, such as SPECT (sin-
gle photon emission tomography), PET (positron emission tomography), MRI
(magnetic resonance imaging), and some modalities of ultrasound imaging.

A straight line in Cartesian coordinates can be described either by its slope-
intercept form, or, as in Fig. 5.36, by its normal representation:

(5.11-1)x cos u + y sin u = r

y = ax + b,

Throughout this section,
we follow CT convention
and place the origin of
the xy-plane in the cen-
ter, instead of at our cus-
tomary top left corner
(see Section 2.4.2). Note,
however, that both are
right-handed coordinate
systems, the only differ-
ence being that our
image coordinate system
has no negative axes. We
can account for the dif-
ference with a simple
translation of the origin,
so both representations
are interchangeable.

y

x
u

r

FIGURE 5.36 Normal representation of a straight line.
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†In Chapter 4, we exercised great care in denoting continuous image coordinates by (t, z) and discrete co-
ordinates by (x, y). At that time, the distinction was important because we were developing basic con-
cepts to take us from continuous to sampled quantities. In the present discussion, we go back and forth
so many times between continuous and discrete coordinates that adhering to this convention is likely to
generate unnecessary confusion. For this reason, and also to follow the published literature in this field
(e.g., see Prince and Links [2006]), we let the context determine whether coordinates (x, y) are continu-
ous or discrete. When they are continuous, you will see integrals; otherwise you will see summations.

The projection of a parallel-ray beam may be modeled by a set of such lines, as
Fig. 5.37 shows. An arbitrary point in the projection signal is given by the ray-
sum along the line Working with continuous quanti-
ties† for the moment, the raysum is a line integral, given by

(5.11-2)

where we used the properties of the impulse, discussed in Section 4.5.1. In other
words, the right side of Eq. (5.11-2) is zero unless the argument of is zero, indi-
cating that the integral is computed only along the line 
If we consider all values of and the preceding equation generalizes to

(5.11-3)

This equation,which gives the projection (line integral) of along an arbitrary
line in the xy-plane, is the Radon transform mentioned in the previous section.The
notation or is used sometimes in place of in Eq. (5.11-3)
to denote the Radon transform of f, but the type of notation used in Eq. (5.11-3) is
more customary. As will become evident in the discussion that follows, the Radon
transform is the cornerstone of reconstruction from projections, with computed to-
mography being its principal application in the field of image processing.
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Complete projection, g(r, uk),
for a fixed angle

A point g(rj, uk) in
the projection

uk

FIGURE 5.37
Geometry of a
parallel-ray beam.
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In the discrete case, Eq. (5.11-3) becomes

(5.11-4)

where x, y, and are now discrete variables. If we fix and allow to vary,
we see that (5.11-4) simply sums the pixels of along the line defined by
the specified values of these two parameters. Incrementing through all values
of required to span the image (with fixed) yields one projection. Changing 

and repeating the foregoing procedure yields another projection, and so
forth. This is precisely how the projections in Section 5.11.1 were generated.
u

ur

(x, y)f
ruur,

g(r, u) = a
M - 1

x = 0
a

N - 1

y = 0
f(x, y)d(x cos u + y sin u - r)

EXAMPLE 5.17:
Using the Radon
transform to
obtain the
projection of a
circular region.

■ Before proceeding, we illustrate how to use the Radon transform to obtain
an analytical expression for the projection of the circular object in Fig. 5.38(a):

where A is a constant and r is the radius of the object. We assume that the cir-
cle is centered on the origin of the xy-plane. Because the object is circularly
symmetric, its projections are the same for all angles, so all we have to do is ob-
tain the projection for Equation (5.11-3) then becomes

= L
q

- q
f(r, y) dy

g(r, u) = L
q

- q L
q

- q
f(x, y)d(x - r) dx dy

u = 0°.

f(x, y) = bA x2 + y2 … r2

0 otherwise

y

0 r
r

g(r)

x

FIGURE 5.38 (a) A
disk and (b) a plot of
its Radon transform,
derived analytically.
Here we were able to
plot the transform
because it depends
only on one variable.
When g depends on
both and the
Radon transform
becomes an image
whose axes are and

and the intensity
of a pixel is
proportional to the
value of g at the
location of that pixel.

u,
r

u,r

a
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where the second line follows from Eq. (4.2-10). As noted earlier, this is a line
integral (along the line in this case). Also, note that when

When the integral is evaluated from to

Therefore,

Carrying out the integration yields

where we used the fact mentioned above that when 
Figure 5.38(b) shows the result, which agrees with the projections illustrated in
Figs. 5.32 and 5.33. Note that that is, g is independent of be-
cause the object is symmetric about the origin. ■

When the Radon transform, is displayed as an image with and as
rectilinear coordinates, the result is called a sinogram, similar in concept to dis-
playing the Fourier spectrum (unlike the Fourier transform, however, is
always a real function). Like the Fourier transform, a sinogram contains the
data necessary to reconstruct . As is the case with displays of the Fouri-
er spectrum, sinograms can be readily interpreted for simple regions, but be-
come increasingly difficult to “read” as the region being projected becomes
more complex. For example, Fig. 5.39(b) is the sinogram of the rectangle on
the left. The vertical and horizontal axes correspond to and respectively.
Thus, the bottom row is the projection of the rectangle in the horizontal direc-
tion (i.e., ), and the middle row is the projection in the vertical direction

The fact that the nonzero portion of the bottom row is smaller than
the nonzero portion of the middle row tells us that the object is narrower in
the horizontal direction. The fact that the sinogram is symmetric in both direc-
tions about the center of the image tells us that we are dealing with an object
that is symmetric and parallel to the x and y axes. Finally, the sinogram is
smooth, indicating that the object has a uniform intensity. Other than these
types of general observations, we cannot say much more about this sinogram.

Figure 5.39(c) shows an image of the Shepp-Logan phantom, a widely used
synthetic image designed to simulate the absorption of major areas of the
brain, including small tumors. The sinogram of this image is considerably more
difficult to interpret, as Fig. 5.39(d) shows. We still can infer some symmetry
properties, but that is about all we can say.Visual analysis of sinograms is of lim-
ited practical use, but sometimes it is helpful in algorithm development.
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minimum dimension of
the in sinograms
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The key objective of CT is to obtain a 3-D representation of a volume from
its projections. As introduced intuitively in Section 5.11.1, the approach is to
back-project each projection and then sum all the backprojections to generate
one image (slice). Stacking all the resulting images produces a 3-D rendition of
the volume.To obtain a formal expression for a back-projected image from the
Radon transform, let us begin with a single point, of the complete
projection, for a fixed value of rotation, (see Fig. 5.37). Forming
part of an image by back-projecting this single point is nothing more than
copying the line onto the image, where the value of each point in that
line is Repeating this process of all values of in the projected signal
(but keeping the value of fixed at ) results in the following expression:

for the image due to back-projecting the projection obtained with a fixed
angle, as in Fig. 5.32(b). This equation holds for an arbitrary value of souk,uk,

= g(x cos uk + y sin uk, uk)

fuk
(x, y) = g(r, uk)

uku

rjg(rj, uk).
L(rj, uk)

ukg(r, uk),
g(rj, uk),

180
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90u

u

45

0
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135

90

45
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r
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FIGURE 5.39 Two images and their sinograms (Radon transforms). Each row of a sinogram
is a projection along the corresponding angle on the vertical axis. Image (c) is called the
Shepp-Logan phantom. In its original form, the contrast of the phantom is quite low. It is
shown enhanced here to facilitate viewing.
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we may write in general that the image formed from a single backprojection
obtained at an angle is given by

(5.11-5)

We form the final image by integrating over all the back-projected images:

(5.11-6)

In the discrete case, the integral becomes a sum of all the back-projected images:

(5.11-7)

where, x, y, and are now discrete quantities. Recall from the discussion in
Section 5.11.1 that the projections at 0° and 180° are mirror images of each other,
so the summations are carried out to the last angle increment before 180°. For ex-
ample, if 0.5° increments are being used, the summation is from 0 to 179.5 in half-
degree increments.A back-projected image formed in the manner just described
sometimes is referred to as a laminogram. It is understood implicitly that a
laminogram is only an approximation to the image from which the projections
were generated, a fact that is illustrated clearly in the following example.

u

f(x, y) = a
p

u= 0
fu(x, y)

f(x, y) = L
p

0
fu (x, y) du

fu (x, y) = g(x cos u + y sin u, u)

u

■ Equation (5.11-7) was used to generate the back-projected images in Figs.
5.32 through 5.34, from projections obtained with Eq. (5.11-4). Similarly,
these equations were used to generate Figs. 5.40(a) and (b), which show the
back-projected images corresponding to the sinograms in Fig. 5.39(b) and
(d), respectively. As with the earlier figures, we note a significant amount of
blurring, so it is obvious that a straight use of Eqs. (5.11-4) and (5.11-7) will
not yield acceptable results. Early, experimental CT systems were based on
these equations. However, as you will see in Section 5.11.5, significant im-
provements in reconstruction are possible by reformulating the backprojec-
tion approach. ■

EXAMPLE 5.18:
Obtaining back-
projected images
from sinograms.

FIGURE 5.40
Backprojections
of the sinograms
in Fig. 5.39.

a b
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5.11.4 The Fourier-Slice Theorem
In this section, we derive a fundamental result relating the 1-D Fourier trans-
form of a projection and the 2-D Fourier transform of the region from which
the projection was obtained. This relationship is the basis for reconstruction
methods capable of dealing with the blurring problem just discussed.

The 1-D Fourier transform of a projection with respect to is

(5.11-8)

where, as in Eq. (4.2-16), is the frequency variable, and it is understood that
this expression is for a given value of Substituting Eq. (5.11-3) for re-
sults in the expression

(5.11-9)

where the last step follows from the property of the impulse mentioned earli-
er in this section. By letting and Eq. (5.11-9) becomes

(5.11-10)

We recognize this expression as the 2-D Fourier transform of [see
Eq. (4.5-7)] evaluated at the values of u and v indicated. That is,

(5.11-11)

where, as usual, denotes the 2-D Fourier transform of .
Equation (5.11-11) is known as the Fourier-slice theorem (or the

projection-slice theorem). It states that the Fourier transform of a projec-
tion is a slice of the 2-D Fourier transform of the region from which the
projection was obtained. The reason for this terminology can be explained
with the aid of Fig. 5.41. As this figure shows, the 1-D Fourier transform of
an arbitrary projection is obtained by extracting the values of along
a line oriented at the same angle as the angle used in generating the pro-
jection. In principle, we could obtain simply by obtaining the inverse(x, y)f
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†Keep in mind that blurring will still be present in an image recovered using the inverse Fourier
transform, because the result is equivalent to the result obtained using the approach discussed in the
previous section.

Fourier transform of .† However, this is expensive computationally,
as it involves inverting a 2-D transform. The approach discussed in the fol-
lowing section is much more efficient.

5.11.5 Reconstruction Using Parallel-Beam Filtered
Backprojections

As we saw in Section 5.11.1 and in Example 5.18, obtaining backprojections
directly yields unacceptably blurred results. Fortunately, there is a straightfor-
ward solution to this problem based simply on filtering the projections before
computing the backprojections. From Eq. (4.5-8), the 2-D inverse Fourier
transform of is

(5.11-12)

If, as in Eqs. (5.11-10) and (5.11-11), we let and then
the differentials become and we can express Eq. (5.11-12) in
polar coordinates:

(5.11-13)

Then, using the Fourier-slice theorem,

(5.11-14)f(x, y) = L
2p

0 L
q

0
G(v, u)e j2pv(x cos u+ y sin u)vdvdu

f(x, y) = L
2p

0 L
q

0
F(v cos u, v sin u)e j2pv(x cos u+ y sin u)vdvdu

du dv = v dv du,
v = v sin u,u = v cos u

f(x, y) = L
q

- q L
q

- q
F(u, v)e j2p(ux + vy) du dv

(u, v)F

(u, v)F

2-D Fourier
transform

1-D Fourier
transform

F(u, v)

f(x, y)

v

uu

ux

y

Projection

FIGURE 5.41
Illustration of the
Fourier-slice theo-
rem. The 1-D
Fourier transform
of a projection is
a slice of the 2-D
Fourier transform
of the region from
which the projec-
tion was obtained.
Note the corre-
spondence of the
angle u.

The relationship
is from

basic integral calculus,
where the Jacobian is
used as the basis for a
change of variables.

du dv = v dv du
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By splitting this integral into two expressions, one for in the range 0° to
180° and the other in the range 180° to 360°, and using the fact that

(see Problem 5.32), we can express Eq. (5.11-14) as

(5.11-15)

In terms of integration with respect to the term is a con-
stant, which we recognize as from Eq. (5.11-1). Thus, Eq. (5.11-15) can be
written as:

(5.11-16)

The inner expression is in the form of an inverse 1-D Fourier transform [see
Eq. (4.2-17)], with the added term which, based on the discussion in
Section 4.7, we recognize as a one-dimensional filter function. Observe that 
is a ramp filter [see Fig. 5.42(a)].† This function is not integrable because its
amplitude extends to in both directions, so the inverse Fourier transform
is undefined. Theoretically, this is handled by methods such as using so-called
generalized delta functions. In practice, the approach is to window the ramp so
it becomes zero outside of a defined frequency interval. That is, a window
band-limits the ramp filter.

+ q

ƒv ƒ
ƒv ƒ

f(x, y) = L
p

0
BLq

- q
ƒv ƒ G(v, u)e j2pvr dvR

r= x cos u+ y sin r
du

r

x cos u + y sin uv,

f(x, y) = L
p

0 L
q

- q
ƒv ƒ G(v, u)e j2pv(x cos u+ y sin u) dv du

G(v, u + 180°) = G(-v, u)

u

†The ramp filter often is referred to as the Ram-Lak filter, after Ramachandran and Lakshminarayanan
[1971] who generally are credited with having been first to suggest it.

Frequency
domain

Frequency
domain

Frequency
domain

Spatial
domain

Spatial
domain

FIGURE 5.42
(a) Frequency
domain plot of the
filter after band-
limiting it with a 
box filter. (b) Spatial
domain
representation.
(c) Hamming
windowing function.
(d) Windowed ramp
filter, formed as the
product of (a) and
(c). (e) Spatial
representation of the
product (note the
decrease in ringing).

ƒv ƒ

a b
c d e
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The simplest approach to band-limit a function is to use a box in the fre-
quency domain. However, as we saw in Fig. 4.4, a box has undesirable ringing
properties, so a smooth window is used instead. Figure 5.42(a) shows a plot of
the ramp filter after it was band-limited by a box window, and Fig. 5.42(b)
shows its spatial domain representation, obtained by computing its inverse
Fourier transform. As expected, the resulting windowed filter exhibits notice-
able ringing in the spatial domain. We know from Chapter 4 that filtering in
the frequency domain is equivalent to convolution in the spatial domain, so
spatial filtering with a function that exhibits ringing will produce a result cor-
rupted by ringing also. Windowing with a smooth function helps this situation.
An M-point discrete window function used frequently for implementation
with the 1-D FFT is given by

(5.11-17)

When this function is called the Hamming window (named after
Richard Hamming) and, when it is called the Hann window (named
after Julius von Hann).† The key difference between the Hamming and Hann
windows is that in the latter the end points are zero. The difference between
the two generally is imperceptible in image processing applications.

Figure 5.42(c) is a plot of the Hamming window, and Fig. 5.42(d) shows the
product of this window and the band-limited ramp filter in Fig. 5.42(a). Figure
5.42(e) shows the representation of the product in the spatial domain, ob-
tained as usual by computing the inverse FFT. It is evident by comparing this
figure and Fig. 5.42(b) that ringing was reduced in the windowed ramp (the ra-
tios of the peak to trough in Figs. 5.42(b) and (e) are 2.5 and 3.4, respectively).
On the other hand, because the width of the central lobe in Fig. 5.42(e) is
slightly wider than in Fig. 5.42(b), we would expect backprojections based on
using a Hamming window to have less ringing but be slightly more blurred. As
Example 5.19 shows, this indeed is the case.

Recall from Eq. (5.11-8) that is the 1-D Fourier transform of
which is a single projection obtained at a fixed angle, Equation

(5.11-16) states that the complete, back-projected image is obtained as
follows:

1. Compute the 1-D Fourier transform of each projection.
2. Multiply each Fourier transform by the filter function which, as explained

above, has been multiplied by a suitable (e.g., Hamming) window.
3. Obtain the inverse 1-D Fourier transform of each resulting filtered

transform.
4. Integrate (sum) all the 1-D inverse transforms from step 3.

ƒv ƒ

(x,y)f
u.g(r, u),

G(v, u)

c = 0.5,
c = 0.54,

h(v) = c c + (c - 1) cos
2pv

M - 1
0 … v … (M - 1)

0 otherwise

†Sometimes the Hann window is referred to as the Hanning window in analogy to the Hamming window.
However, this terminology is incorrect and is a frequent source of confusion.
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Because a filter function is used, this image reconstruction approach is appro-
priately called filtered backprojection. In practice, the data are discrete, so all
frequency domain computations are carried out using a 1-D FFT algorithm,
and filtering is implemented using the same basic procedure explained in
Chapter 4 for 2-D functions. Alternatively, we can implement filtering in the
spatial domain using convolution, as explained later in this section.

The preceding discussion addresses the windowing aspects of filtered back-
projections. As with any sampled data system, we also need to be concerned
about sampling rates. We know from Chapter 4 that the selection of sampling
rates has a profound influence on image processing results. In the present dis-
cussion, there are two sampling considerations. The first is the number of rays
used, which determines the number of samples in each projection. The second
is the number of rotation angle increments, which determines the number of
reconstructed images (whose sum yields the final image). Under-sampling re-
sults in aliasing which, as we saw in Chapter 4, can manifest itself as artifacts in
the image, such as streaks. We discuss CT sampling issues in more detail in
Section 5.11.6.

EXAMPLE 5.19:
Image reconstruc-
tion using filtered
backprojections.

■ The focus of this example is to show reconstruction using filtered backpro-
jections, first with a ramp filter and then using a ramp filter modified by a
Hamming window. These filtered backprojections are compared against the
results of “raw” backprojections in Fig. 5.40. In order to focus on the difference
due only to filtering, the results in this example were generated with 0.5°
increments of rotation, which is the increment we used to generate Fig. 5.40.
The separation between rays was one pixel in both cases. The images in both
examples are of size pixels, so the length of the diagonal is

Consequently, 849 rays were used to provide coverage of
the entire region when the angle of rotation was 45° and 135°.

Figure 5.43(a) shows the rectangle reconstructed using a ramp filter. The
most vivid feature of this result is the absence of any visually detectable blur-
ring. As expected, however, ringing is present, visible as faint lines, especially
around the corners of the rectangle.These lines are more visible in the zoomed
section in Fig. 5.43(c). Using a Hamming window on the ramp filter helped
considerably with the ringing problem, at the expense of slight blurring, as
Figs. 5.43(b) and (d) show. The improvements (even with the ramp filter with-
out windowing) over Fig. 5.40(a) are evident. The phantom image does not
have transitions that are as sharp and prominent as the rectangle so ringing,
even with the un-windowed ramp filter, is imperceptible in this case, as you can
see in Fig. 5.44(a). Using a Hamming window resulted in a slightly smoother
image, as Fig. 5.44(b) shows. Both of these results are considerable improve-
ments over Fig. 5.40(b), illustrating again the significant advantage inherent in
the filtered-backprojection approach.

In most applications of CT (especially in medicine), artifacts such as ring-
ing are a serious concern, so significant effort is devoted to minimizing
them. Tuning the filtering algorithms and, as explained in Section 5.11.2,

22 * 600 L 849.
600 * 600
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FIGURE 5.43
Filtered back-
projections of the
rectangle using 
(a) a ramp filter,
and (b) a
Hamming-
windowed ramp
filter. The second
row shows
zoomed details of
the images in the
first row. Compare
with Fig. 5.40(a).

using a large number of detectors are among the design considerations that
help reduce these effects. ■

The preceding discussion is based on obtaining filtered backprojections via
an FFT implementation. However, we know from the convolution theorem in
Chapter 4 that equivalent results can be obtained using spatial convolution.
In particular, note that the term inside the brackets in Eq. (5.11-16) is the in-
verse Fourier transform of the product of two frequency domain functions

FIGURE 5.44
Filtered
backprojections
of the head
phantom using 
(a) a ramp filter,
and (b) a
Hamming-
windowed ramp
filter. Compare
with Fig. 5.40(b).

a b
c d

a b
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†If a windowing function, such as a Hamming window, is used, then the inverse Fourier transform is per-
formed on the windowed ramp. Also, we again ignore the issue mentioned earlier regarding the exis-
tence of the continuous inverse Fourier transform because all implementations are carried out using
discrete quantities of finite length.

which, according to the convolution theorem, we know to be equal to the con-
volution of the spatial representations (inverse Fourier transforms) of these
two functions. In other words, letting denote the inverse Fourier trans-
form of † we write Eq. (5.11-16) as

(5.11-18)

where, as in Chapter 4, denotes convolution.The second line follows from
the first for the reasons explained in the previous paragraph.The third line fol-
lows from the actual definition of convolution given in Eq. (4.2-20).

The last two lines of Eq. (5.11-18) say the same thing: Individual backpro-
jections at an angle can be obtained by convolving the corresponding projec-
tion, and the inverse Fourier transform of the ramp filter, As
before, the complete back-projected image is obtained by integrating (sum-
ming) all the individual back-projected images. With the exception of round-
off differences in computation, the results of using convolution will be
identical to the results using the FFT. In practical CT implementations, convo-
lution generally turns out to be more efficient computationally, so most mod-
ern CT systems use this approach. The Fourier transform does play a central
role in theoretical formulations and algorithm development (for example, CT
image processing in MATLAB is based on the FFT). Also, we note that there
is no need to store all the back-projected images during reconstruction. In-
stead, a single running sum is updated with the latest back-projected image.At
the end of the procedure, the running sum will equal the sum total of all the
backprojections.

Finally, we point out that, because the ramp filter (even when it is win-
dowed) zeros the dc term in the frequency domain, each backprojection image
will have a zero average value (see Fig. 4.30). This means that each backpro-
jection image will have negative and positive pixels. When all the backprojec-
tions are added to form the final image, some negative locations may become
positive and the average value may not be zero, but typically, the final image
will still have negative pixels.

There are several ways to handle this problem. The simplest approach,
when there is no knowledge regarding what the average values should be, is to
accept the fact that negative values are inherent in the approach and scale the
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result using the procedure described in Eqs. (2.6-10) and (2.6-11). This is the
approach followed in this section. When knowledge about what a “typical” av-
erage value should be is available, that value can be added to the filter in the
frequency domain, thus offsetting the ramp and preventing zeroing the dc
term [see Fig. 4.31(c)]. When working in the spatial domain with convolution,
the very act of truncating the length of the spatial filter (inverse Fourier trans-
form of the ramp) prevents it from having a zero average value, thus avoiding
the zeroing problem altogether.

5.11.6 Reconstruction Using Fan-Beam Filtered Backprojections
The discussion thus far has centered on parallel beams. Because of its sim-
plicity and intuitiveness, this is the imaging geometry used traditionally to
introduce computed tomography. However, modern CT systems use a fan-
beam geometry (see Fig. 5.35), the topic of discussion for the remainder of
this section.

Figure 5.45 shows a basic fan-beam imaging geometry in which the detectors
are arranged on a circular arc and the angular increments of the source are as-
sumed to be equal. Let denote a fan-beam projection, where is the
angular position of a particular detector measured with respect to the center
ray, and is the angular displacement of the source, measured with respect to
the y-axis, as shown in the figure. We also note in Fig. 5.45 that a ray in the fan
beam can be represented as a line, in normal form, which is the ap-
proach we used to represent a ray in the parallel-beam imaging geometry dis-
cussed in the previous sections.This allows us to utilize parallel-beam results as

L(r, u),

b

ap(a, b)

x

y

D

Source

Center ray

L(r, u)

r u

b

a

FIGURE 5.45
Basic fan-beam
geometry. The line
passing through
the center of the
source and the
origin (assumed
here to be the
center of rotation
of the source) is
called the center
ray.
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†The Fourier-slice theorem was derived for a parallel-beam geometry and is not directly applicable to fan
beams. However, Eqs. (5.11-19) and (5.11-20) provide the basis for converting a fan-beam geometry to a
parallel-beam geometry, thus allowing us to use the filtered parallel backprojection approach developed
in the previous section, for which the slice theorem is applicable. We discuss this in more detail at the
end of this section.

the starting point for deriving the corresponding equations for the fan-beam
geometry. We proceed to show this by deriving the fan-beam filtered backpro-
jection based on convolution.†

We begin by noticing in Fig. 5.45 that the parameters of line are re-
lated to the parameters of a fan-beam ray by

(5.11-19)

and

(5.11-20)

where D is the distance from the center of the source to the origin of the xy-
plane.

The convolution backprojection formula for the parallel-beam imaging geom-
etry is given by Eq. (5.11-18).Without loss of generality, suppose that we focus at-
tention on objects that are encompassed within a circular area of radius T about
the origin of the plane. Then for and Eq. (5.11-18) becomes

(5.11-21)

where we used the fact stated in Section 5.11.1 that projections 180° apart are
mirror images of each other. In this way, the limits of the outer integral in Eq.
(5.11-21) are made to span a full circle, as required by a fan-beam arrangement
in which the detectors are arranged in a circle.

We are interested in integrating with respect to and To do this, we start
by changing to polar coordinates That is, we let and

from which it follows that

(5.11-22)

Using this result, we can express Eq. (5.11-21) as

This expression is nothing more than the parallel-beam reconstruction formu-
la written in polar coordinates. However, integration still is with respect to 
and To integrate with respect to and requires a transformation of coor-
dinates using Eqs. (5.11-19) and (5.11-20):
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(5.11-23)

where we used [see the explanation of Eq. (5.11-13)].
This equation can be simplified further. First, note that the limits to

for span the entire range of 360°. Because all functions of are pe-
riodic, with period the limits of the outer integral can be replaced by 0 and

respectively. The term has a maximum value, correspond-
ing to beyond which (see Fig. 5.46), so we can replace the lim-
its of the inner integral by and respectively. Finally, consider the line

in Fig. 5.45. A raysum of a fan beam along this line must equal the ray-
sum of a parallel beam along the same line (a raysum is a sum of all values
along a line, so the result must be the same for a given ray, regardless of the co-
ordinate system is which it is expressed). This is true of any raysum for corre-
sponding values of and Thus, letting denote a fan-beam
projection, it follows that and, from Eqs. (5.11-19) and (5.11-20),
that Incorporating these observations into Eq.
(5.11-23) results in the expression

(5.11-24)
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This is the fundamental fan-beam reconstruction formula based on filtered
backprojections.

Equation (5.11-24) can be manipulated further to put it in a more familiar con-
volution form.With reference to Fig. 5.47, it can be shown (Problem 5.33) that

(5.11-25)

where R is the distance from the source to an arbitrary point in a fan ray, and
is the angle between this ray and the center ray. Note that R and are de-

termined by the values of r, and Substituting Eq. (5.11-25) into Eq.
(5.11-24) yields

(5.11-26)

It can be shown (Problem 5.34) that

(5.11-27)

Using this expression, we can write Eq. (5.11-26) as
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FIGURE 5.47
Polar represen-
tation of an arbi-
trary point on a
ray of a fan beam.
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where

(5.11-29)

and

(5.11-30)

We recognize the inner integral in Eq. (5.11-28) as a convolution expres-
sion, thus showing that the image reconstruction formula in Eq. (5.11-24)
can be implemented as the convolution of functions and Un-
like the reconstruction formula for parallel projections, reconstruction
based on fan-beam projections involves a term which is a weighting
factor inversely proportional to the distance from the source. The computa-
tional details of implementing Eq. (5.11-28) are beyond the scope of the
present discussion (see Kak and Slaney [2001] for a detailed treatment of
this subject).

Instead of implementing Eq. (5.11-28) directly, an approach used often, par-
ticularly in software simulations, is (1) to convert a fan-beam geometry to a
parallel-beam geometry using Eqs. (5.11-19) and (5.11-20), and (2) use the
parallel-beam reconstruction approach developed in Section 5.11.5. We con-
clude this section with an example of how this is done. As noted earlier, a fan-
beam projection, p, taken at angle has a corresponding parallel-beam
projection, g, taken at a corresponding angle and, therefore,

(5.11-31)

where the second line follows from Eqs. (5.11-19) and (5.11-20).
Let denote the angular increment between successive fan-beam

projections and let be the angular increment between rays, which de-
termines the number of samples in each projection. We impose the restric-
tion that

(5.11-32)

Then, and for some integer values of m and n, and we can
write Eq. (5.11-31) as

(5.11-33)

This equation indicates that the nth ray in the mth radial projection is equal to
the nth ray in the parallel projection. The term on the right
side of (5.11-33) implies that parallel projections converted from fan-beam
projections are not sampled uniformly, an issue that can lead to blurring, ring-
ing, and aliasing artifacts if the sampling intervals and are too coarse,
as the following example illustrates.
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EXAMPLE 5.20:
Image
reconstruction
using filtered fan
backprojections.

■ Figure 5.48(a) shows the results of (1) generating fan projections of the rec-
tangle image with (2) converting each fan ray to the corre-
sponding parallel ray using Eq. (5.11-33), and (3) using the filtered
backprojection approach developed in Section 5.11.5 for parallel rays. Figures
5.48(b) through (d) show the results using 0.5°, 0.25°, and 0.125° increments. A
Hamming window was used in all cases. This variety of angle increments was
used to illustrate the effects of under-sampling.

The result in Fig. 5.48(a) is a clear indication that 1° increments are too
coarse, as blurring and ringing are quite evident.The result in (b) is interesting,
in the sense that it compares poorly with Fig. 5.43(b), which was generated
using the same angle increment of 0.5°. In fact, as Fig. 5.48(c) shows, even with
angle increments of 0.25° the reconstruction still is not as good as in Fig.
5.43(b).We have to use angle increments on the order of 0.125° before the two
results become comparable, as Fig. 5.48(d) shows. This angle increment results
in projections with samples, which is close to the 849
rays used in the parallel projections of Example 5.19. Thus, it is not unexpect-
ed that the results are close in appearance when using

Similar results were obtained with the head phantom, except that aliasing is
much more visible as sinusoidal interference. We see in Fig. 5.49(c) that even
with significant distortion still is present, especially in the pe-
riphery of the ellipse. As with the rectangle, using increments of 0.125° finally

¢a = ¢b = 0.25

¢a = 0.125°.

180 * (1>0.25) = 720

¢a = ¢b = 1°,

FIGURE 5.48
Reconstruction of
the rectangle
image from
filtered fan
backprojections.
(a) 1° increments
of and (b) 0.5°
increments.
(c) 0.25° incre-
ments. (d) 0.125°
increments.
Compare (d) with
Fig. 5.43(b).

b.a

a b
c d
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FIGURE 5.49
Reconstruction of
the head phantom
image from
filtered fan
backprojections.
(a) 1° increments
of and 
(b) 0.5° increments.
(c) 0.25° incre-
ments. (d) 0.125°
increments.
Compare (d) with
Fig. 5.44(b).

b.a

produced results that are comparable with the back-projected image of the head
phantom in Fig. 5.44(b).These results illustrate one of the principal reasons why
thousands of detectors have to be used in the fan-beam geometry of modern CT
systems in order to reduce aliasing artifacts. ■

Summary
The restoration results in this chapter are based on the assumption that image degradation
can be modeled as a linear, position invariant process followed by additive noise that is not
correlated with image values. Even when these assumptions are not entirely valid, it often is
possible to obtain useful results by using the methods developed in the preceding sections.

Some of the restoration techniques derived in this chapter are based on various cri-
teria of optimality. Use of the word “optimal” in this context refers strictly to a mathe-
matical concept, not to optimal response of the human visual system. In fact, the
present lack of knowledge about visual perception precludes a general formulation of
the image restoration problem that takes into account observer preferences and capa-
bilities. In view of these limitations, the advantage of the concepts introduced in this
chapter is the development of fundamental approaches that have reasonably pre-
dictable behavior and are supported by a solid body of knowledge.

As in Chapters 3 and 4, certain restoration tasks, such as random-noise reduction, are
carried out in the spatial domain using convolution masks. The frequency domain was
found ideal for reducing periodic noise and for modeling some important degradations,
such as blur caused by motion during image acquisition. We also found the frequency

a b
c d
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domain to be a useful tool for formulating restoration filters, such as the Wiener and
constrained least-squares filters.

As mentioned in Chapter 4, the frequency domain offers an intuitive, solid base for
experimentation. Once an approach (filter) has been found to perform satisfactorily
for a given application, implementation usually is carried out via the design of a digital
filter that approximates the frequency domain solution, but runs much faster in a com-
puter or in a dedicated hardware/firmware system, as indicated at the end of Chapter 4.

Our treatment of image reconstruction from projections, though introductory, is the
foundation for the image-processing aspects of this field.As noted in Section 5.11, com-
puted tomography (CT) is the main application area of image reconstruction from pro-
jections. Although we focused on X-ray tomography, the principles established in
Section 5.11 are applicable in other CT imaging modalities, such as SPECT (single pho-
ton emission tomography), PET (positron emission tomography), MRI (magnetic reso-
nance imaging), and some modalities of ultrasound imaging.

References and Further Reading
For additional reading on the linear model of degradation in Section 5.1, see Castleman
[1996] and Pratt [1991].The book by Peebles [1993] provides an intermediate-level cover-
age of noise probability density functions and their properties (Section 5.2). The book by
Papoulis [1991] is more advanced and covers these concepts in more detail. References for
Section 5.3 are Umbaugh [2005], Boie and Cox [1992], Hwang and Haddad [1995], and
Wilburn [1998]. See Eng and Ma [2001, 2006] regarding adaptive median filtering. The
general area of adaptive filter design is good background for the adaptive filters discussed
in Section 5.3.The book by Haykin [1996] is a good introduction to this topic.The filters in
Section 5.4 are direct extensions of the material in Chapter 4. For additional reading on
the material of Section 5.5, see Rosenfeld and Kak [1982] and Pratt [1991].

The topic of estimating the degradation function (Section 5.6) is an area of consider-
able current interest. Some of the early techniques for estimating the degradation func-
tion are given in Andrews and Hunt [1977], Rosenfeld and Kak [1982], Bates and
McDonnell [1986], and Stark [1987]. Since the degradation function seldom is known ex-
actly, a number of techniques have been proposed over the years, in which specific as-
pects of restoration are emphasized. For example, Geman and Reynolds [1992] and Hurn
and Jennison [1996] deal with issues of preserving sharp intensity transitions in an attempt
to emphasize sharpness, while Boyd and Meloche [1998] are concerned with restoring
thin objects in degraded images. Examples of techniques that deal with image blur are
Yitzhaky et al. [1998], Harikumar and Bresler [1999], Mesarovic [2000], and Giannakis
and Heath [2000]. Restoration of sequences of images also is of considerable interest.The
book by Kokaram [1998] provides a good foundation in this area.

The filtering approaches discussed in Sections 5.7 through 5.10 have been explained
in various ways over the years in numerous books and articles on image processing.
There are two major approaches underpinning the development of these filters. One is
based on a general formulation using matrix theory, as introduced by Andrews and
Hunt [1977]. This approach is elegant and general, but it is difficult for newcomers to
the field because it lacks intuitiveness.Approaches based directly on frequency domain
filtering (the approach we followed in this chapter) usually are easier to follow by those
who first encounter restoration, but lack the unifying mathematical rigor of the matrix
approach. Both approaches arrive at the same results, but our experience in teaching
this material in a variety of settings indicates that students first entering this field favor
the latter approach by a significant margin. Complementary readings for our coverage
of the filtering concepts presented in Sections 5.7 through 5.10 are Castleman [1996],
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Umbaugh [2005], and Petrou and Bosdogianni [1999]. This last reference also presents
a nice tie between two-dimensional frequency domain filters and the corresponding
digital filters. On the design of 2-D digital filters, see Lu and Antoniou [1992].

Basic references for computed tomography are Rosenfeld and Kak [1982], Kak and
Slaney [2001], and Prince and Links [2006]. For further reading on the Shepp-Logan
phantom see Shepp and Logan [1974], and for additional details on the origin of the
Ram-Lak filter see Ramachandran and Lakshminarayanan [1971]. The paper by 
O’Connor and Fessler [2006] is representative of current research in the signal and
image processing aspects of computed tomography.

For software techniques to implement most of the material discussed in this chapter
see Gonzalez, Woods, and Eddins [2004].

Problems
5.1 The white bars in the test pattern shown are 7 pixels wide and 210 pixels high.

The separation between bars is 17 pixels. What would this image look like after
application of

(a) A arithmetic mean filter?

(b) A arithmetic mean filter?

(c) A arithmetic mean filter?9 * 9

7 * 7

3 * 3

�

�

Note: This problem and the ones that follow it, related to filtering this image,
may seem a bit tedious. However, they are worth the effort, as they help develop
a real understanding of how these filters work. After you understand how a par-
ticular filter affects the image, your answer can be a brief verbal description of
the result. For example, “the resulting image will consist of vertical bars 3 pixels
wide and 206 pixels high.” Be sure to describe any deformation of the bars, such
as rounded corners. You may ignore image border effects, in which the masks
only partially contain image pixels.

5.2 Repeat Problem 5.1 using a geometric mean filter.

5.3 Repeat Problem 5.1 using a harmonic mean filter.

5.4 Repeat Problem 5.1 using a contraharmonic mean filter with 

5.5 Repeat Problem 5.1 using a contraharmonic mean filter with 

5.6 Repeat Problem 5.1 using a median filter.

5.7 Repeat Problem 5.1 using a max filter.

Q = -1.

Q = 1.

�

�



5.8 Repeat Problem 5.1 using a min filter.

5.9 Repeat Problem 5.1 using a midpoint filter.

5.10 The two subimages shown were extracted from the top right corners of Figs.
5.7(c) and (d), respectively. Thus, the subimage on the left is the result of using
an arithmetic mean filter of size the other subimage is the result of using
a geometric mean filter of the same size.

(a) Explain why the subimage obtained with geometric mean filtering is less
blurred. (Hint: Start your analysis by examining a 1-D step transition in
intensity.)

(b) Explain why the black components in the right image are thicker.

3 * 3;
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�

�

�
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5.11 Refer to the contraharmonic filter given in Eq. (5.3-6).

(a) Explain why the filter is effective in elimination pepper noise when Q is
positive.

(b) Explain why the filter is effective in eliminating salt noise when Q is
negative.

(c) Explain why the filter gives poor results (such as the results shown in Fig.
5.9) when the wrong polarity is chosen for Q.

(d) Discuss the behavior of the filter when 

(e) Discuss (for positive and negative Q) the behavior of the filter in areas of
constant intensity levels.

5.12 Obtain equations for the bandpass filters corresponding to the bandreject filters
in Table 4.6.

5.13 Obtain equations for Gaussian and ideal notch reject filters in the form of
Eq. (4.10-5).

5.14 Show that the Fourier transform of the 2-D continuous sine function

is the pair of conjugate impulses

F(u, v) = -j
A

2
Bd¢u -

u0

2p
, v -

v0

2p
≤ - d¢u +

u0

2p
, v +

v0

2p
≤ R

f(x, y) = A sin(u0x + v0y)

Q = -1.
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[Hint: Use the continuous version of the Fourier transform in Eq. (4.5-7), and
express the sine in terms of exponentials.]

5.15 Start with Eq. (5.4-11) and derive Eq. (5.4-13).

5.16 Consider a linear, position-invariant image degradation system with impulse
response

Suppose that the input to the system is an image consisting of a line of infinites-
imal width located at and modeled by where is an
impulse. Assuming no noise, what is the output image g(x, y)?

5.17 During acquisition, an image undergoes uniform linear motion in the vertical di-
rection for a time The direction of motion then switches to the horizontal di-
rection for a time interval Assuming that the time it takes the image to
change directions is negligible, and that shutter opening and closing times are
negligible also, give an expression for the blurring function, .

5.18 Consider the problem of image blurring caused by uniform acceleration in the
x-direction. If the image is at rest at time and accelerates with a uniform
acceleration for a time T, find the blurring function . You
may assume that shutter opening and closing times are negligible.

5.19 A space probe is designed to transmit images from a planet as it approaches it for
landing. During the last stages of landing, one of the control thrusters fails, result-
ing in rapid rotation of the craft about its vertical axis.The images sent during the
last two seconds prior to landing are blurred as a consequence of this circular mo-
tion. The camera is located in the bottom of the probe, along its vertical axis, and
pointing down. Fortunately, the rotation of the craft is also about its vertical axis,
so the images are blurred by uniform rotational motion. During the acquisition
time of each image the craft rotation was limited to radians.The image acqui-
sition process can be modeled as an ideal shutter that is open only during the time
the craft rotated the radians. You may assume that vertical motion was negli-
gible during image acquisition. Formulate a solution for restoring the images.

5.20 The image shown is a blurred, 2-D projection of a volumetric rendition of a
heart. It is known that each of the cross hairs on the right bottom part of the
image was 3 pixels wide, 30 pixels long, and had an intensity value of 255 before
blurring. Provide a step-by-step procedure indicating how you would use the in-
formation just given to obtain the blurring function .H(u, v)

p>8
p>8

H(u, v)x0(t) = at2>2
t = 0

H(u, v)

T2.
T1.

df(x, y) = d(x - a),x = a,

h(x - a, y - b) = e-[(x -a)2 + (y -b)2]

�

(Original image courtesy of G.E. Medical Systems.)



5.21 A certain X-ray imaging geometry produces a blurring degradation that can be
modeled as the convolution of the sensed image with the spatial, circularly sym-
metric function

Assuming continuous variables, show that the degradation in the frequency do-
main is given by the expression

(Hint: Refer to Section 4.9.4, entry 13 in Table 4.3, and Problem 4.26.)

5.22 Using the transfer function in Problem 5.21, give the expression for a Wiener fil-
ter, assuming that the ratio of power spectra of the noise and undegraded signal
is a constant.

5.23 Using the transfer function in Problem 5.21, give the resulting expression for the
constrained least squares filter.

5.24 Assume that the model in Fig. 5.1 is linear and position invariant and that the
noise and image are uncorrelated. Show that the power spectrum of the output is

Refer to Eqs. (5.5-17) and (4.6-18).

5.25 Cannon [1974] suggested a restoration filter R(u, v) satisfying the condition

and based on the premise of forcing the power spectrum of the restored image,
to equal the power spectrum of the original image, Assume

that the image and noise are uncorrelated.
(a) Find R(u, v) in terms of and [Hint: Refer

to Fig. 5.1, Eq. (5.5-17), and Problem 5.24.]

(b) Use your result in (a) to state a result in the form of Eq. (5.8-2).

5.26 An astronomer working with a large-scale telescope observes that her images
are a little blurry. The manufacturer tells the astronomer that the unit is operat-
ing within specifications. The telescope lenses focus images onto a high-resolu-
tion, CCD imaging array, and the images are then converted by the telescope
electronics into digital images. Trying to improve the situation by conducting
controlled lab experiments with the lenses and imaging sensors is not possible
due to the size and weight of the telescope components. The astronomer, having
heard about your success as an image processing expert, calls you to help her
formulate a digital image processing solution for sharpening the images a little
more. How would you go about solving this problem, given that the only images
you can obtain are images of stellar bodies?

5.27 A professor of archeology doing research on currency exchange practices dur-
ing the Roman Empire recently became aware that four Roman coins crucial to
his research are listed in the holdings of the British Museum in London. Unfor-
tunately, he was told after arriving there that the coins recently had been stolen.
Further research on his part revealed that the museum keeps photographs of

ƒ N(u, v) ƒ 2.ƒ F(u, v) ƒ 2, ƒ H(u, v) ƒ 2,

ƒ F(u, v) ƒ 2.ƒ NF(u, v) ƒ 2,

Nƒ F(u, v) ƒ 2 = ƒ R(u, v) ƒ 2 ƒ G(u, v) ƒ 2

ƒ G(u, v) ƒ 2 = ƒ H(u, v) ƒ 2 ƒ F(u, v) ƒ 2 + ƒ N(u, v) ƒ 2

H(u, v) = -8p2s2(u2 + v2)e-2p2s2(u2 + v2)

h1x, y2 =
x2 + y2 - 2s2

s4 e- x2 + y2

2s2
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5.29 Show that the Radon transform [Eq. (5.11-3)] of the Gaussian shape
is (Hint: Refer to

Example 5.17, where we used symmetry to simplify integration.)

5.30 (a) Show that the Radon transform [Eq. (5.11-3)] of the unit impulse is a
straight vertical line in the passing through the origin.

(b) Show that the radon transform of the impulse is a sinu-
soidal curve in the 

5.31 Prove the validity of the following properties of the Radon transform [Eq. (5.11-3)]:

(a) Linearity: The Radon transform is a linear operator. (See Section 2.6.2
regarding the definition of linear operators.)

(b) Translation property: The radon transform of is

(c) Convolution property: Show that the Radon transform of the convolution
of two functions is equal to the convolution of the Radon transforms of the
two functions.

5.32 Provide the steps leading from Eq. (5.11-14) to (5.11-15). You will need to use
the property 

5.33 Prove the validity of Eq. (5.11-25).

5.34 Prove the validity of Eq. (5.11-27).

G(v, u + 180°) = G(-v, u).

g(r - x0 cosu - y0 sinu, u).
f(x - x0, y - y0)

ru-plane.
d(x - x0, y - y0)

ru-plane
d(x, y)

g(r, u) = A1p exp(-r2).f(x, y) = A exp(-x2 - y2)

■ Problems 393

�

�

every item for which it is responsible. Unfortunately, the photos of the coins in
question are blurred to the point where the date and other small markings are
not readable. The cause of the blurring was the camera being out of focus when
the pictures were taken.As an image processing expert and friend of the profes-
sor, you are asked as a favor to determine whether computer processing can be
utilized to restore the images to the point where the professor can read the
markings. You are told that the original camera used to take the photos is still
available, as are other representative coins of the same era. Propose a step-by-
step solution to this problem.

5.28 Sketch the Radon transform of the following square images. Label quantitatively
all the important features of your sketches. Figure (a) consists of one dot in the
center, and (b) has two dots along the diagonal. Describe your solution to (c) by
an intensity profile. Assume a parallel-beam geometry.

�

(a) (b) (c)

�
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Color Image Processing

Preview
The use of color in image processing is motivated by two principal factors.
First, color is a powerful descriptor that often simplifies object identification
and extraction from a scene. Second, humans can discern thousands of color
shades and intensities, compared to about only two dozen shades of gray. This
second factor is particularly important in manual (i.e., when performed by hu-
mans) image analysis.

Color image processing is divided into two major areas: full-color and
pseudocolor processing. In the first category, the images in question typically
are acquired with a full-color sensor, such as a color TV camera or color scan-
ner. In the second category, the problem is one of assigning a color to a partic-
ular monochrome intensity or range of intensities. Until relatively recently,
most digital color image processing was done at the pseudocolor level. How-
ever, in the past decade, color sensors and hardware for processing color im-
ages have become available at reasonable prices. The result is that full-color
image processing techniques are now used in a broad range of applications, in-
cluding publishing, visualization, and the Internet.

It will become evident in the discussions that follow that some of the gray-scale
methods covered in previous chapters are directly applicable to color images.

It is only after years of preparation that the young artist should touch
color—not color used descriptively, that is, but as a means of 
personal expression. Henri Matisse

For a long time I limited myself to one color—as a form of discipline.
Pablo Picasso

6
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Others require reformulation to be consistent with the properties of the color
spaces developed in this chapter. The techniques described here are far from ex-
haustive; they illustrate the range of methods available for color image processing.

6.1 Color Fundamentals

Although the process followed by the human brain in perceiving and inter-
preting color is a physiopsychological phenomenon that is not fully under-
stood, the physical nature of color can be expressed on a formal basis
supported by experimental and theoretical results.

In 1666, Sir Isaac Newton discovered that when a beam of sunlight passes
through a glass prism, the emerging beam of light is not white but consists in-
stead of a continuous spectrum of colors ranging from violet at one end to red
at the other. As Fig. 6.1 shows, the color spectrum may be divided into six
broad regions: violet, blue, green, yellow, orange, and red. When viewed in full
color (Fig. 6.2), no color in the spectrum ends abruptly, but rather each color
blends smoothly into the next.

Basically, the colors that humans and some other animals perceive in an object
are determined by the nature of the light reflected from the object.As illustrated
in Fig. 6.2, visible light is composed of a relatively narrow band of frequencies in
the electromagnetic spectrum.A body that reflects light that is balanced in all vis-
ible wavelengths appears white to the observer. However, a body that favors re-
flectance in a limited range of the visible spectrum exhibits some shades of color.
For example, green objects reflect light with wavelengths primarily in the 500 to
570 nm range while absorbing most of the energy at other wavelengths.

FIGURE 6.1 Color
spectrum seen by
passing white
light through a
prism. (Courtesy
of the General
Electric Co.,
Lamp Business
Division.)

FIGURE 6.2 Wavelengths comprising the visible range of the electromagnetic spectrum.
(Courtesy of the General Electric Co., Lamp Business Division.)
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Characterization of light is central to the science of color. If the light is
achromatic (void of color), its only attribute is its intensity, or amount. Achro-
matic light is what viewers see on a black and white television set, and it has
been an implicit component of our discussion of image processing thus far.As
defined in Chapter 2, and used numerous times since, the term gray level
refers to a scalar measure of intensity that ranges from black, to grays, and fi-
nally to white.

Chromatic light spans the electromagnetic spectrum from approximately
400 to 700 nm. Three basic quantities are used to describe the quality of a
chromatic light source: radiance, luminance, and brightness. Radiance is the
total amount of energy that flows from the light source, and it is usually mea-
sured in watts (W). Luminance, measured in lumens (lm), gives a measure of
the amount of energy an observer perceives from a light source. For example,
light emitted from a source operating in the far infrared region of the spec-
trum could have significant energy (radiance), but an observer would hardly
perceive it; its luminance would be almost zero. Finally, brightness is a subjec-
tive descriptor that is practically impossible to measure. It embodies the
achromatic notion of intensity and is one of the key factors in describing
color sensation.

As noted in Section 2.1.1, cones are the sensors in the eye responsible for
color vision. Detailed experimental evidence has established that the 6 to 7 mil-
lion cones in the human eye can be divided into three principal sensing cate-
gories, corresponding roughly to red, green, and blue.Approximately 65% of all
cones are sensitive to red light, 33% are sensitive to green light, and only about
2% are sensitive to blue (but the blue cones are the most sensitive). Figure 6.3
shows average experimental curves detailing the absorption of light by the red,
green, and blue cones in the eye. Due to these absorption characteristics of the
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Absorption of
light by the red,
green, and blue
cones in the
human eye as a
function of
wavelength.
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human eye, colors are seen as variable combinations of the so-called primary
colors red (R), green (G), and blue (B). For the purpose of standardization, the
CIE (Commission Internationale de l’Eclairage—the International Commis-
sion on Illumination) designated in 1931 the following specific wavelength val-
ues to the three primary colors: and

This standard was set before the detailed experimental curves
shown in Fig. 6.3 became available in 1965.Thus, the CIE standards correspond
only approximately with experimental data. We note from Figs. 6.2 and 6.3 that
no single color may be called red, green, or blue.Also, it is important to keep in
mind that having three specific primary color wavelengths for the purpose of
standardization does not mean that these three fixed RGB components acting
alone can generate all spectrum colors. Use of the word primary has been widely
misinterpreted to mean that the three standard primaries, when mixed in vari-
ous intensity proportions, can produce all visible colors. As you will see shortly,
this interpretation is not correct unless the wavelength also is allowed to vary,
in which case we would no longer have three fixed, standard primary colors.

The primary colors can be added to produce the secondary colors of light—
magenta (red plus blue), cyan (green plus blue), and yellow (red plus green).
Mixing the three primaries, or a secondary with its opposite primary color, in
the right intensities produces white light. This result is shown in Fig. 6.4(a),
which also illustrates the three primary colors and their combinations to pro-
duce the secondary colors.

red = 700 nm.
blue = 435.8 nm, green = 546.1 nm,

MIXTURES OF LIGHT
(Additive primaries)

MIXTURES OF PIGMENTS
(Subtractive primaries)

PRIMARY AND SECONDARY COLORS
OF LIGHT AND PIGMENT

GREEN

YELLOW CYAN

WHITE

RED BLUE
MAGENTA

GREEN

YELLOW

CYAN

BLACK

RED

BLUE
MAGENTA

FIGURE 6.4
Primary and
secondary colors
of light and
pigments.
(Courtesy of the
General Electric
Co., Lamp
Business
Division.)

a
b
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Differentiating between the primary colors of light and the primary colors
of pigments or colorants is important. In the latter, a primary color is defined
as one that subtracts or absorbs a primary color of light and reflects or trans-
mits the other two. Therefore, the primary colors of pigments are magenta,
cyan, and yellow, and the secondary colors are red, green, and blue. These col-
ors are shown in Fig. 6.4(b). A proper combination of the three pigment pri-
maries, or a secondary with its opposite primary, produces black.

Color television reception is an example of the additive nature of light col-
ors. The interior of CRT (cathode ray tube) color TV screens is composed of a
large array of triangular dot patterns of electron-sensitive phosphor.When ex-
cited, each dot in a triad produces light in one of the primary colors.The inten-
sity of the red-emitting phosphor dots is modulated by an electron gun inside
the tube, which generates pulses corresponding to the “red energy” seen by
the TV camera.The green and blue phosphor dots in each triad are modulated
in the same manner. The effect, viewed on the television receiver, is that the
three primary colors from each phosphor triad are “added” together and re-
ceived by the color-sensitive cones in the eye as a full-color image. Thirty suc-
cessive image changes per second in all three colors complete the illusion of a
continuous image display on the screen.

CRT displays are being replaced by “flat panel” digital technologies, such as
liquid crystal displays (LCDs) and plasma devices. Although they are funda-
mentally different from CRTs, these and similar technologies use the same
principle in the sense that they all require three subpixels (red, green, and
blue) to generate a single color pixel. LCDs use properties of polarized light to
block or pass light through the LCD screen and, in the case of active matrix
display technology, thin film transistors (TFTs) are used to provide the proper
signals to address each pixel on the screen. Light filters are used to produce
the three primary colors of light at each pixel triad location. In plasma units,
pixels are tiny gas cells coated with phosphor to produce one of the three pri-
mary colors. The individual cells are addressed in a manner analogous to
LCDs. This individual pixel triad coordinate addressing capability is the foun-
dation of digital displays.

The characteristics generally used to distinguish one color from another are
brightness, hue, and saturation. As indicated earlier in this section, brightness
embodies the achromatic notion of intensity. Hue is an attribute associated
with the dominant wavelength in a mixture of light waves. Hue represents
dominant color as perceived by an observer. Thus, when we call an object red,
orange, or yellow, we are referring to its hue. Saturation refers to the relative
purity or the amount of white light mixed with a hue.The pure spectrum colors
are fully saturated. Colors such as pink (red and white) and lavender (violet
and white) are less saturated, with the degree of saturation being inversely
proportional to the amount of white light added.

Hue and saturation taken together are called chromaticity, and, therefore, a
color may be characterized by its brightness and chromaticity. The amounts of
red, green, and blue needed to form any particular color are called the
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†The use of x, y, z in this context follows notational convention. These should not be confused with the
use of (x, y) to denote spatial coordinates in other sections of the book.

tristimulus values and are denoted, X, Y, and Z, respectively. A color is then
specified by its trichromatic coefficients, defined as

(6.1-1)

(6.1-2)

and

(6.1-3)

It is noted from these equations that†

(6.1-4)

For any wavelength of light in the visible spectrum, the tristimulus values
needed to produce the color corresponding to that wavelength can be ob-
tained directly from curves or tables that have been compiled from extensive
experimental results (Poynton [1996]. See also the early references by Walsh
[1958] and by Kiver [1965]).

Another approach for specifying colors is to use the CIE chromaticity dia-
gram (Fig. 6.5), which shows color composition as a function of x (red) and y
(green). For any value of x and y, the corresponding value of z (blue) is ob-
tained from Eq. (6.1-4) by noting that The point marked
green in Fig. 6.5, for example, has approximately 62% green and 25% red con-
tent. From Eq. (6.1-4), the composition of blue is approximately 13%.

The positions of the various spectrum colors—from violet at 380 nm to red
at 780 nm—are indicated around the boundary of the tongue-shaped chro-
maticity diagram. These are the pure colors shown in the spectrum of Fig. 6.2.
Any point not actually on the boundary but within the diagram represents
some mixture of spectrum colors. The point of equal energy shown in Fig. 6.5
corresponds to equal fractions of the three primary colors; it represents the
CIE standard for white light. Any point located on the boundary of the chro-
maticity chart is fully saturated. As a point leaves the boundary and approach-
es the point of equal energy, more white light is added to the color and it
becomes less saturated. The saturation at the point of equal energy is zero.

The chromaticity diagram is useful for color mixing because a straight-line
segment joining any two points in the diagram defines all the different color
variations that can be obtained by combining these two colors additively. Con-
sider, for example, a straight line drawn from the red to the green points shown
in Fig. 6.5. If there is more red light than green light, the exact point represent-
ing the new color will be on the line segment, but it will be closer to the red
point than to the green point. Similarly, a line drawn from the point of equal

z = 1 - (x + y).

x + y + z = 1

z =
Z

X + Y + Z

y =
Y

X + Y + Z

x =
X

X + Y + Z
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FIGURE 6.5
Chromaticity
diagram.
(Courtesy of the
General Electric
Co., Lamp
Business
Division.)

energy to any point on the boundary of the chart will define all the shades of
that particular spectrum color.

Extension of this procedure to three colors is straightforward.To determine
the range of colors that can be obtained from any three given colors in the
chromaticity diagram, we simply draw connecting lines to each of the three
color points. The result is a triangle, and any color on the boundary or inside
the triangle can be produced by various combinations of the three initial col-
ors. A triangle with vertices at any three fixed colors cannot enclose the entire
color region in Fig. 6.5.This observation supports graphically the remark made
earlier that not all colors can be obtained with three single, fixed primaries.

The triangle in Figure 6.6 shows a typical range of colors (called the color
gamut) produced by RGB monitors. The irregular region inside the triangle
is representative of the color gamut of today’s high-quality color printing
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devices. The boundary of the color printing gamut is irregular because color
printing is a combination of additive and subtractive color mixing, a process
that is much more difficult to control than that of displaying colors on a
monitor, which is based on the addition of three highly controllable light
primaries.

6.2 Color Models

The purpose of a color model (also called color space or color system) is to fa-
cilitate the specification of colors in some standard, generally accepted way. In
essence, a color model is a specification of a coordinate system and a subspace
within that system where each color is represented by a single point.

Most color models in use today are oriented either toward hardware (such
as for color monitors and printers) or toward applications where color manip-
ulation is a goal (such as in the creation of color graphics for animation). In
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terms of digital image processing, the hardware-oriented models most com-
monly used in practice are the RGB (red, green, blue) model for color moni-
tors and a broad class of color video cameras; the CMY (cyan, magenta,
yellow) and CMYK (cyan, magenta, yellow, black) models for color printing;
and the HSI (hue, saturation, intensity) model, which corresponds closely with
the way humans describe and interpret color. The HSI model also has the ad-
vantage that it decouples the color and gray-scale information in an image,
making it suitable for many of the gray-scale techniques developed in this
book. There are numerous color models in use today due to the fact that color
science is a broad field that encompasses many areas of application. It is
tempting to dwell on some of these models here simply because they are inter-
esting and informative. However, keeping to the task at hand, the models dis-
cussed in this chapter are leading models for image processing. Having
mastered the material in this chapter, you will have no difficulty in under-
standing additional color models in use today.

6.2.1 The RGB Color Model
In the RGB model, each color appears in its primary spectral components of
red, green, and blue. This model is based on a Cartesian coordinate system.
The color subspace of interest is the cube shown in Fig. 6.7, in which RGB pri-
mary values are at three corners; the secondary colors cyan, magenta, and yel-
low are at three other corners; black is at the origin; and white is at the corner
farthest from the origin. In this model, the gray scale (points of equal RGB
values) extends from black to white along the line joining these two points.
The different colors in this model are points on or inside the cube, and are de-
fined by vectors extending from the origin. For convenience, the assumption
is that all color values have been normalized so that the cube shown in Fig. 6.7
is the unit cube. That is, all values of R, G, and B are assumed to be in the
range [0, 1].

(1, 0, 0)
Red Yellow

Green
Black Gray scale

White
Magenta

(0, 1, 0)

CyanBlue (0, 0, 1)

R

G

BFIGURE 6.7
Schematic of the
RGB color cube.
Points along the
main diagonal
have gray values,
from black at the
origin to white at
point (1, 1, 1).
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Images represented in the RGB color model consist of three component
images, one for each primary color. When fed into an RGB monitor, these
three images combine on the screen to produce a composite color image, as
explained in Section 6.1. The number of bits used to represent each pixel in
RGB space is called the pixel depth. Consider an RGB image in which each of
the red, green, and blue images is an 8-bit image. Under these conditions each
RGB color pixel [that is, a triplet of values (R, G, B)] is said to have a depth of
24 bits (3 image planes times the number of bits per plane).The term full-color
image is used often to denote a 24-bit RGB color image. The total number of
colors in a 24-bit RGB image is Figure 6.8 shows the 24-bit
RGB color cube corresponding to the diagram in Fig. 6.7.

(28)3 = 16,777,216.

EXAMPLE 6.1:
Generating the
hidden face
planes and a cross
section of the
RGB color cube.

■ The cube shown in Fig. 6.8 is a solid, composed of the 
colors mentioned in the preceding paragraph. A convenient way to view these
colors is to generate color planes (faces or cross sections of the cube). This is
accomplished simply by fixing one of the three colors and allowing the other
two to vary. For instance, a cross-sectional plane through the center of the cube
and parallel to the GB-plane in Fig. 6.8 is the plane (127, G, B) for

Here we used the actual pixel values rather than the
mathematically convenient normalized values in the range [0, 1] because the
former values are the ones actually used in a computer to generate colors.
Figure 6.9(a) shows that an image of the cross-sectional plane is viewed simply
by feeding the three individual component images into a color monitor. In the
component images, 0 represents black and 255 represents white (note that
these are gray-scale images). Finally, Fig. 6.9(b) shows the three hidden surface
planes of the cube in Fig. 6.8, generated in the same manner.

It is of interest to note that acquiring a color image is basically the process
shown in Fig. 6.9 in reverse. A color image can be acquired by using three fil-
ters, sensitive to red, green, and blue, respectively. When we view a color scene
with a monochrome camera equipped with one of these filters, the result is a
monochrome image whose intensity is proportional to the response of that fil-
ter. Repeating this process with each filter produces three monochrome im-
ages that are the RGB component images of the color scene. (In practice,
RGB color image sensors usually integrate this process into a single device.)
Clearly, displaying these three RGB component images in the form shown in
Fig. 6.9(a) would yield an RGB color rendition of the original color scene. ■

G, B = 0, 1, 2, Á , 255.

(28)3 = 16,777,216

FIGURE 6.8 RGB
24-bit color cube.
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FIGURE 6.9
(a) Generating
the RGB image of
the cross-sectional
color plane (127,
G, B). (b) The
three hidden
surface planes in
the color cube of
Fig. 6.8.

While high-end display cards and monitors provide a reasonable rendition
of the colors in a 24-bit RGB image, many systems in use today are limited to
256 colors. Also, there are numerous applications in which it simply makes no
sense to use more than a few hundred, and sometimes fewer, colors. A good
example of this is provided by the pseudocolor image processing techniques
discussed in Section 6.3. Given the variety of systems in current use, it is of
considerable interest to have a subset of colors that are likely to be repro-
duced faithfully, reasonably independently of viewer hardware capabilities.
This subset of colors is called the set of safe RGB colors, or the set of all-
systems-safe colors. In Internet applications, they are called safe Web colors or
safe browser colors.

On the assumption that 256 colors is the minimum number of colors that
can be reproduced faithfully by any system in which a desired result is likely to
be displayed, it is useful to have an accepted standard notation to refer to
these colors. Forty of these 256 colors are known to be processed differently by
various operating systems, leaving only 216 colors that are common to most
systems. These 216 colors have become the de facto standard for safe colors,
especially in Internet applications. They are used whenever it is desired that
the colors viewed by most people appear the same.

a
b
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Each of the 216 safe colors is formed from three RGB values as before, but
each value can only be 0, 51, 102, 153, 204, or 255. Thus, RGB triplets of these
values give us possible values (note that all values are divisible by
3). It is customary to express these values in the hexagonal number system, as
shown in Table 6.1. Recall that hex numbers 
correspond to decimal numbers Recall 
also that and Thus, for example,

and we see that a grouping of two hex num-
bers forms an 8-bit byte.

Since it takes three numbers to form an RGB color, each safe color is
formed from three of the two digit hex numbers in Table 6.1. For example, the
purest red is FF0000. The values 000000 and FFFFFF represent black and
white, respectively. Keep in mind that the same result is obtained by using the
more familiar decimal notation. For instance, the brightest red in decimal no-
tation has (FF) and 

Figure 6.10(a) shows the 216 safe colors, organized in descending RGB val-
ues. The square in the top left array has value FFFFFF (white), the second
square to its right has value FFFFCC, the third square has value FFFF99, and

G = B = 0.R = 255

(FF)16 = (255)10 = (11111111)2

(F)16 = (1111)2.(0)16 = (0000)2

0, 1, 2, Á , 9, 10, 11, 12, 13, 14, 15.
0, 1, 2, Á , 9, A, B, C, D, E, F

(6)3 = 216

TABLE 6.1
Valid values of
each RGB
component in a
safe color.

Number System Color Equivalents

Hex 00 33 66 99 CC FF
Decimal 0 51 102 153 204 255
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B
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B
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D
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FIGURE 6.10
(a) The 216 safe
RGB colors.
(b) All the grays
in the 256-color
RGB system
(grays that are
part of the safe
color group are
shown
underlined).
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so on for the first row. The second row of that same array has values FFCCFF,
FFCCCC, FFCC99, and so on. The final square of that array has value FF0000
(the brightest possible red). The second array to the right of the one just ex-
amined starts with value CCFFFF and proceeds in the same manner, as do the
other remaining four arrays. The final (bottom right) square of the last array
has value 000000 (black). It is important to note that not all possible 8-bit gray
colors are included in the 216 safe colors. Figure 6.10(b) shows the hex codes
for all the possible gray colors in a 256-color RGB system. Some of these val-
ues are outside of the safe color set but are represented properly (in terms of
their relative intensities) by most display systems. The grays from the safe
color group, for 3, 6, 9, C, F, are shown underlined in
Fig. 6.10(b).

Figure 6.11 shows the RGB safe-color cube. Unlike the full-color cube in
Fig. 6.8, which is solid, the cube in Fig. 6.11 has valid colors only on the sur-
face planes. As shown in Fig. 6.10(a), each plane has a total of 36 colors, so
the entire surface of the safe-color cube is covered by 216 different colors, as
expected.

6.2.2 The CMY and CMYK Color Models
As indicated in Section 6.1, cyan, magenta, and yellow are the secondary colors
of light or, alternatively, the primary colors of pigments. For example, when a
surface coated with cyan pigment is illuminated with white light, no red light is
reflected from the surface.That is, cyan subtracts red light from reflected white
light, which itself is composed of equal amounts of red, green, and blue light.

Most devices that deposit colored pigments on paper, such as color printers
and copiers, require CMY data input or perform an RGB to CMY conversion
internally. This conversion is performed using the simple operation

(6.2-1)

where, again, the assumption is that all color values have been normalized to
the range [0, 1]. Equation (6.2-1) demonstrates that light reflected from a

C C

M

Y

S = C1
1
1
S - CR

G

B

S

K = 0,(KKKKKK)16,

FIGURE 6.11
The RGB safe-
color cube.
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surface coated with pure cyan does not contain red (that is, in the
equation). Similarly, pure magenta does not reflect green, and pure yellow
does not reflect blue. Equation (6.2-1) also reveals that RGB values can be
obtained easily from a set of CMY values by subtracting the individual CMY
values from 1. As indicated earlier, in image processing this color model is
used in connection with generating hardcopy output, so the inverse opera-
tion from CMY to RGB generally is of little practical interest.

According to Fig. 6.4, equal amounts of the pigment primaries, cyan, ma-
genta, and yellow should produce black. In practice, combining these colors
for printing produces a muddy-looking black. So, in order to produce true
black (which is the predominant color in printing), a fourth color, black, is
added, giving rise to the CMYK color model.Thus, when publishers talk about
“four-color printing,” they are referring to the three colors of the CMY color
model plus black.

6.2.3 The HSI Color Model
As we have seen, creating colors in the RGB and CMY models and changing
from one model to the other is a straightforward process. As noted earlier,
these color systems are ideally suited for hardware implementations. In addi-
tion, the RGB system matches nicely with the fact that the human eye is
strongly perceptive to red, green, and blue primaries. Unfortunately, the
RGB, CMY, and other similar color models are not well suited for describing
colors in terms that are practical for human interpretation. For example, one
does not refer to the color of an automobile by giving the percentage of each
of the primaries composing its color. Furthermore, we do not think of color
images as being composed of three primary images that combine to form that
single image.

When humans view a color object, we describe it by its hue, saturation, and
brightness. Recall from the discussion in Section 6.1 that hue is a color at-
tribute that describes a pure color (pure yellow, orange, or red), whereas satu-
ration gives a measure of the degree to which a pure color is diluted by white
light. Brightness is a subjective descriptor that is practically impossible to mea-
sure. It embodies the achromatic notion of intensity and is one of the key fac-
tors in describing color sensation. We do know that intensity (gray level) is a
most useful descriptor of monochromatic images. This quantity definitely is
measurable and easily interpretable.The model we are about to present, called
the HSI (hue, saturation, intensity) color model, decouples the intensity com-
ponent from the color-carrying information (hue and saturation) in a color
image. As a result, the HSI model is an ideal tool for developing image pro-
cessing algorithms based on color descriptions that are natural and intuitive to
humans, who, after all, are the developers and users of these algorithms. We
can summarize by saying that RGB is ideal for image color generation (as in
image capture by a color camera or image display in a monitor screen), but its
use for color description is much more limited. The material that follows pro-
vides an effective way to do this.

C = 1 - R
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As discussed in Example 6.1, an RGB color image can be viewed as three
monochrome intensity images (representing red, green, and blue), so it should
come as no surprise that we should be able to extract intensity from an RGB
image.This becomes rather clear if we take the color cube from Fig. 6.7 and stand
it on the black (0, 0, 0) vertex, with the white vertex (1, 1, 1) directly above it, as
shown in Fig. 6.12(a). As noted in connection with Fig. 6.7, the intensity (gray
scale) is along the line joining these two vertices. In the arrangement shown in
Fig. 6.12, the line (intensity axis) joining the black and white vertices is vertical.
Thus, if we wanted to determine the intensity component of any color point in
Fig. 6.12, we would simply pass a plane perpendicular to the intensity axis and
containing the color point. The intersection of the plane with the intensity axis
would give us a point with intensity value in the range [0, 1]. We also note with a
little thought that the saturation (purity) of a color increases as a function of dis-
tance from the intensity axis. In fact, the saturation of points on the intensity axis
is zero, as evidenced by the fact that all points along this axis are gray.

In order to see how hue can be determined also from a given RGB point,
consider Fig. 6.12(b), which shows a plane defined by three points (black,
white, and cyan). The fact that the black and white points are contained in the
plane tells us that the intensity axis also is contained in the plane. Further-
more, we see that all points contained in the plane segment defined by the in-
tensity axis and the boundaries of the cube have the same hue (cyan in this
case). We would arrive at the same conclusion by recalling from Section 6.1
that all colors generated by three colors lie in the triangle defined by those col-
ors. If two of those points are black and white and the third is a color point, all
points on the triangle would have the same hue because the black and white
components cannot change the hue (of course, the intensity and saturation of
points in this triangle would be different). By rotating the shaded plane about
the vertical intensity axis, we would obtain different hues. From these concepts
we arrive at the conclusion that the hue, saturation, and intensity values re-
quired to form the HSI space can be obtained from the RGB color cube. That
is, we can convert any RGB point to a corresponding point in the HSI color
model by working out the geometrical formulas describing the reasoning out-
lined in the preceding discussion.

Blue
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White

Magenta

Yellow

Red

Green

Black

Blue

Cyan

White

Magenta

Yellow

Red

Green

Black

FIGURE 6.12
Conceptual
relationships
between the RGB
and HSI color
models.
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The key point to keep in mind regarding the cube arrangement in Fig. 6.12
and its corresponding HSI color space is that the HSI space is represented by a
vertical intensity axis and the locus of color points that lie on planes
perpendicular to this axis. As the planes move up and down the intensity axis,
the boundaries defined by the intersection of each plane with the faces of the
cube have either a triangular or hexagonal shape. This can be visualized much
more readily by looking at the cube down its gray-scale axis, as shown in
Fig. 6.13(a). In this plane we see that the primary colors are separated by 120°.
The secondary colors are 60° from the primaries, which means that the angle
between secondaries also is 120°. Figure 6.13(b) shows the same hexagonal
shape and an arbitrary color point (shown as a dot). The hue of the point is de-
termined by an angle from some reference point. Usually (but not always) an
angle of 0° from the red axis designates 0 hue, and the hue increases counter-
clockwise from there. The saturation (distance from the vertical axis) is the
length of the vector from the origin to the point. Note that the origin is defined
by the intersection of the color plane with the vertical intensity axis.The impor-
tant components of the HSI color space are the vertical intensity axis, the
length of the vector to a color point, and the angle this vector makes with the
red axis. Therefore, it is not unusual to see the HSI planes defined is terms of
the hexagon just discussed, a triangle, or even a circle, as Figs. 6.13(c) and (d)
show. The shape chosen does not matter because any one of these shapes can
be warped into one of the other two by a geometric transformation. Figure 6.14
shows the HSI model based on color triangles and also on circles.
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FIGURE 6.13 Hue and saturation in the HSI color model. The dot is an arbitrary color
point. The angle from the red axis gives the hue, and the length of the vector is the
saturation. The intensity of all colors in any of these planes is given by the position of
the plane on the vertical intensity axis.
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Converting colors from RGB to HSI

Given an image in RGB color format, the H component of each RGB pixel is
obtained using the equation

(6.2-2)H = b u if B … G

360 - u if B 7 G

Computations from RGB
to HSI and back are 
carried out on a per-pixel
basis. We omitted the 
dependence on (x, y) of
the conversion equations
for notational clarity.
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with†

The saturation component is given by

(6.2-3)

Finally, the intensity component is given by

(6.2-4)

It is assumed that the RGB values have been normalized to the range [0, 1]
and that angle is measured with respect to the red axis of the HSI space, as
indicated in Fig. 6.13. Hue can be normalized to the range [0, 1] by dividing by
360° all values resulting from Eq. (6.2-2). The other two HSI components al-
ready are in this range if the given RGB values are in the interval [0, 1].

The results in Eqs. (6.2-2) through (6.2-4) can be derived from the geometry
shown in Figs. 6.12 and 6.13. The derivation is tedious and would not add sig-
nificantly to the present discussion. The interested reader can consult the
book’s references or Web site for a proof of these equations, as well as for the
following HSI to RGB conversion results.

Converting colors from HSI to RGB

Given values of HSI in the interval [0, 1], we now want to find the correspond-
ing RGB values in the same range. The applicable equations depend on the
values of H. There are three sectors of interest, corresponding to the 120° in-
tervals in the separation of primaries (see Fig. 6.13). We begin by multiplying
H by 360°, which returns the hue to its original range of [0°, 360°].

RG sector When H is in this sector, the RGB components
are given by the equations

(6.2-5)

(6.2-6)

and

(6.2-7)

GB sector If the given value of H is in this sector, we first
subtract 120° from it:

(6.2-8)H = H - 120°

(120° … H 6 240°):

G = 3I - (R + B)

R = I c1 +
S cos H

cos(60° - H)
d

B = I(1 - S)

(0° … H 6 120°):

u

I =
1
3

(R + G + B)

S = 1 -
3

(R + G + B)
[min(R, G, B)]

u = cos-1b 1
2[(R - G) + (R - B)]

[(R - G)2 + (R - B)(G - B)]1>2 r

Consult the Tutorials sec-
tion of the book Web site
for a detailed derivation
of the conversion equa-
tions between RGB and
HSI, and vice versa.

†It is good practice to add a small number in the denominator of this expression to avoid dividing by 0
when in which case will be 90°. Note that when all RGB components are equal, Eq. (6.2-3)
gives In addition, the conversion from HSI back to RGB in Eqs. (6.2-5) through (6.2-7) will give

as expected, because when we are dealing with a gray-scale image.R = G = B,R = G = B = I,
S = 0.

uR = G = B,



412 Chapter 6 ■ Color Image Processing

Then the RGB components are

(6.2-9)

(6.2-10)

and

(6.2-11)

BR sector Finally, if H is in this range, we subtract 240°
from it:

(6.2-12)

Then the RGB components are

(6.2-13)

(6.2-14)

and

(6.2-15)

Uses of these equations for image processing are discussed in several of the
following sections.

R = 3I - (G + B)

B = I c1 +
S cos H

cos(60° - H)
d

G = I(1 - S)

H = H - 240°

(240° … H … 360°):

B = 3I - (R + G)

G = I c1 +
S cos H

cos(60° - H)
d

R = I(1 - S)

EXAMPLE 6.2:
The HSI values
corresponding to
the image of the
RGB color cube.

■ Figure 6.15 shows the hue, saturation, and intensity images for the RGB
values shown in Fig. 6.8. Figure 6.15(a) is the hue image. Its most distinguishing
feature is the discontinuity in value along a 45° line in the front (red) plane of
the cube. To understand the reason for this discontinuity, refer to Fig. 6.8, draw
a line from the red to the white vertices of the cube, and select a point in the
middle of this line. Starting at that point, draw a path to the right, following the
cube around until you return to the starting point. The major colors encoun-
tered in this path are yellow, green, cyan, blue, magenta, and back to red. Ac-
cording to Fig. 6.13, the values of hue along this path should increase from 0°

FIGURE 6.15 HSI components of the image in Fig. 6.8. (a) Hue, (b) saturation, and (c) intensity images.

a b c
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to 360° (i.e., from the lowest to highest possible values of hue). This is precise-
ly what Fig. 6.15(a) shows because the lowest value is represented as black and
the highest value as white in the gray scale. In fact, the hue image was original-
ly normalized to the range [0, 1] and then scaled to 8 bits; that is, it was con-
verted to the range [0, 255], for display.

The saturation image in Fig. 6.15(b) shows progressively darker values to-
ward the white vertex of the RGB cube, indicating that colors become less and
less saturated as they approach white. Finally, every pixel in the intensity
image shown in Fig. 6.15(c) is the average of the RGB values at the corre-
sponding pixel in Fig. 6.8. ■

Manipulating HSI component images

In the following discussion, we take a look at some simple techniques for ma-
nipulating HSI component images. This will help you develop familiarity with
these components and also help you deepen your understanding of the HSI color
model. Figure 6.16(a) shows an image composed of the primary and secondary
RGB colors. Figures 6.16(b) through (d) show the H, S, and I components of
this image, generated using Eqs. (6.2-2) through (6.2-4). Recall from the dis-
cussion earlier in this section that the gray-level values in Fig. 6.16(b) corre-
spond to angles; thus, for example, because red corresponds to 0°, the red
region in Fig. 6.16(a) is mapped to a black region in the hue image. Similarly,
the gray levels in Fig. 6.16(c) correspond to saturation (they were scaled to
[0, 255] for display), and the gray levels in Fig. 6.16(d) are average intensities.

FIGURE 6.16
(a) RGB image
and the com-
ponents of its
corresponding
HSI image:
(b) hue,
(c) saturation, and
(d) intensity.

a b
c d
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FIGURE 6.17
(a)–(c) Modified
HSI component
images.
(d) Resulting
RGB image. (See
Fig. 6.16 for the
original HSI
images.)

To change the individual color of any region in the RGB image, we change
the values of the corresponding region in the hue image of Fig. 6.16(b). Then
we convert the new H image, along with the unchanged S and I images, back to
RGB using the procedure explained in connection with Eqs. (6.2-5) through
(6.2-15).To change the saturation (purity) of the color in any region, we follow
the same procedure, except that we make the changes in the saturation image
in HSI space. Similar comments apply to changing the average intensity of any
region. Of course, these changes can be made simultaneously. For example, the
image in Fig. 6.17(a) was obtained by changing to 0 the pixels corresponding to
the blue and green regions in Fig. 6.16(b). In Fig. 6.17(b) we reduced by half
the saturation of the cyan region in component image S from Fig. 6.16(c). In
Fig. 6.17(c) we reduced by half the intensity of the central white region in the
intensity image of Fig. 6.16(d). The result of converting this modified HSI
image back to RGB is shown in Fig. 6.17(d). As expected, we see in this figure
that the outer portions of all circles are now red; the purity of the cyan region
was diminished, and the central region became gray rather than white. Al-
though these results are simple, they illustrate clearly the power of the HSI
color model in allowing independent control over hue, saturation, and intensi-
ty, quantities with which we are quite familiar when describing colors.

6.3 Pseudocolor Image Processing

Pseudocolor (also called false color) image processing consists of assigning col-
ors to gray values based on a specified criterion. The term pseudo or false color
is used to differentiate the process of assigning colors to monochrome images

a b
c d
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FIGURE 6.18
Geometric
interpretation of
the intensity-
slicing technique.

from the processes associated with true color images, a topic discussed starting
in Section 6.4. The principal use of pseudocolor is for human visualization and
interpretation of gray-scale events in an image or sequence of images.As noted
at the beginning of this chapter, one of the principal motivations for using color
is the fact that humans can discern thousands of color shades and intensities,
compared to only two dozen or so shades of gray.

6.3.1 Intensity Slicing
The technique of intensity (sometimes called density) slicing and color coding is
one of the simplest examples of pseudocolor image processing. If an image is in-
terpreted as a 3-D function [see Fig. 2.18(a)], the method can be viewed as one
of placing planes parallel to the coordinate plane of the image; each plane then
“slices” the function in the area of intersection. Figure 6.18 shows an example of
using a plane at to slice the image function into two levels.

If a different color is assigned to each side of the plane shown in Fig. 6.18,
any pixel whose intensity level is above the plane will be coded with one color,
and any pixel below the plane will be coded with the other. Levels that lie on
the plane itself may be arbitrarily assigned one of the two colors. The result is
a two-color image whose relative appearance can be controlled by moving the
slicing plane up and down the intensity axis.

In general, the technique may be summarized as follows. Let 
represent the gray scale, let level represent black and level

represent white Suppose that P planes perpendicular
to the intensity axis are defined at levels Then, assuming that

the P planes partition the gray scale into intervals,
Intensity to color assignments are made according to the re-

lation

(6.3-1)f(x, y) = ck if f(x, y) H Vk

V1, V2, Á , VP + 1.
P + 10 6 P 6 L - 1,

l1, l2, Á , lP.
[f(x, y) = L - 1].lL - 1

[f(x, y) = 0],l0

[0, L - 1]

f(x, y) = li
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FIGURE 6.19 An
alternative
representation of
the intensity-
slicing technique.

EXAMPLE 6.3:
Intensity slicing.

■ A simple, but practical, use of intensity slicing is shown in Fig. 6.20. Figure
6.20(a) is a monochrome image of the Picker Thyroid Phantom (a radiation
test pattern), and Fig. 6.20(b) is the result of intensity slicing this image into
eight color regions. Regions that appear of constant intensity in the mono-
chrome image are really quite variable, as shown by the various colors in the
sliced image. The left lobe, for instance, is a dull gray in the monochrome
image, and picking out variations in intensity is difficult. By contrast, the color
image clearly shows eight different regions of constant intensity, one for each
of the colors used. ■

FIGURE 6.20
(a) Monochrome
image of the Picker
Thyroid Phantom.
(b) Result of
density slicing into
eight colors.
(Courtesy of Dr.
J. L. Blankenship,
Instrumentation
and Controls
Division, Oak
Ridge National
Laboratory.)

a b

where is the color associated with the kth intensity interval defined by
the partitioning planes at and 

The idea of planes is useful primarily for a geometric interpretation of the
intensity-slicing technique. Figure 6.19 shows an alternative representation
that defines the same mapping as in Fig. 6.18. According to the mapping func-
tion shown in Fig. 6.19, any input intensity level is assigned one of two colors,
depending on whether it is above or below the value of When more levels
are used, the mapping function takes on a staircase form.

li.

l = k.l = k - 1
Vkck
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In the preceding simple example, the gray scale was divided into intervals and
a different color was assigned to each region, without regard for the meaning of
the gray levels in the image. Interest in that case was simply to view the different
gray levels constituting the image. Intensity slicing assumes a much more mean-
ingful and useful role when subdivision of the gray scale is based on physical
characteristics of the image. For instance, Fig. 6.21(a) shows an X-ray image of a
weld (the horizontal dark region) containing several cracks and porosities (the
bright, white streaks running horizontally through the middle of the image). It
is known that when there is a porosity or crack in a weld, the full strength of the
X-rays going through the object saturates the imaging sensor on the other side of
the object.Thus, intensity values of 255 in an 8-bit image coming from such a sys-
tem automatically imply a problem with the weld. If a human were to be the ulti-
mate judge of the analysis, and manual processes were employed to inspect welds
(still a common procedure today), a simple color coding that assigns one color to

FIGURE 6.21
(a) Monochrome
X-ray image of a
weld. (b) Result
of color coding.
(Original image
courtesy of 
X-TEK Systems,
Ltd.)

a
b
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level 255 and another to all other intensity levels would simplify the inspector’s
job considerably. Figure 6.21(b) shows the result. No explanation is required to
arrive at the conclusion that human error rates would be lower if images were
displayed in the form of Fig. 6.21(b), instead of the form shown in Fig. 6.21(a). In
other words, if the exact intensity value or range of values one is looking for is
known, intensity slicing is a simple but powerful aid in visualization, especially if
numerous images are involved.The following is a more complex example.

EXAMPLE 6.4:
Use of color to
highlight rainfall
levels.

■ Measurement of rainfall levels, especially in the tropical regions of the
Earth, is of interest in diverse applications dealing with the environment.Accu-
rate measurements using ground-based sensors are difficult and expensive to
acquire, and total rainfall figures are even more difficult to obtain because a
significant portion of precipitation occurs over the ocean. One approach for ob-
taining rainfall figures is to use a satellite. The TRMM (Tropical Rainfall Mea-
suring Mission) satellite utilizes, among others, three sensors specially designed
to detect rain: a precipitation radar, a microwave imager, and a visible and in-
frared scanner (see Sections 1.3 and 2.3 regarding image sensing modalities).

The results from the various rain sensors are processed, resulting in esti-
mates of average rainfall over a given time period in the area monitored by the
sensors. From these estimates, it is not difficult to generate gray-scale images
whose intensity values correspond directly to rainfall, with each pixel repre-
senting a physical land area whose size depends on the resolution of the sen-
sors. Such an intensity image is shown in Fig. 6.22(a), where the area monitored
by the satellite is the slightly lighter horizontal band in the middle one-third of
the picture (these are the tropical regions). In this particular example, the rain-
fall values are average monthly values (in inches) over a three-year period.

Visual examination of this picture for rainfall patterns is quite difficult, if
not impossible. However, suppose that we code intensity levels from 0 to 255
using the colors shown in Fig. 6.22(b). Values toward the blues signify low val-
ues of rainfall, with the opposite being true for red. Note that the scale tops out
at pure red for values of rainfall greater than 20 inches. Figure 6.22(c) shows
the result of color coding the gray image with the color map just discussed.The
results are much easier to interpret, as shown in this figure and in the zoomed
area of Fig. 6.22(d). In addition to providing global coverage, this type of data
allows meteorologists to calibrate ground-based rain monitoring systems with
greater precision than ever before. ■

6.3.2 Intensity to Color Transformations
Other types of transformations are more general and thus are capable of
achieving a wider range of pseudocolor enhancement results than the simple
slicing technique discussed in the preceding section.An approach that is partic-
ularly attractive is shown in Fig. 6.23. Basically, the idea underlying this ap-
proach is to perform three independent transformations on the intensity of any
input pixel. The three results are then fed separately into the red, green, and
blue channels of a color television monitor. This method produces a composite
image whose color content is modulated by the nature of the transformation
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FIGURE 6.22 (a) Gray-scale image in which intensity (in the lighter horizontal band shown) corresponds to
average monthly rainfall. (b) Colors assigned to intensity values. (c) Color-coded image. (d) Zoom of the
South American region. (Courtesy of NASA.)

Red
transformation

Green
transformation

Blue
transformation

fR(x, y)

fG(x, y)

fB(x, y)

f(x, y)

FIGURE 6.23
Functional block
diagram for
pseudocolor
image processing.

and are
fed into the
corresponding
red, green, and
blue inputs of an
RGB color
monitor.

fBfR, fG,
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c d



420 Chapter 6 ■ Color Image Processing

functions. Note that these are transformations on the intensity values of an
image and are not functions of position.

The method discussed in the previous section is a special case of the tech-
nique just described. There, piecewise linear functions of the intensity levels
(Fig. 6.19) are used to generate colors.The method discussed in this section, on
the other hand, can be based on smooth, nonlinear functions, which, as might
be expected, gives the technique considerable flexibility.

EXAMPLE 6.5:
Use of 
pseudocolor for
highlighting
explosives
contained in
luggage.

■ Figure 6.24(a) shows two monochrome images of luggage obtained from an
airport X-ray scanning system. The image on the left contains ordinary articles.
The image on the right contains the same articles, as well as a block of simulated
plastic explosives. The purpose of this example is to illustrate the use of intensi-
ty level to color transformations to obtain various degrees of enhancement.

Figure 6.25 shows the transformation functions used.These sinusoidal func-
tions contain regions of relatively constant value around the peaks as well as
regions that change rapidly near the valleys. Changing the phase and frequen-
cy of each sinusoid can emphasize (in color) ranges in the gray scale. For in-
stance, if all three transformations have the same phase and frequency, the
output image will be monochrome. A small change in the phase between the
three transformations produces little change in pixels whose intensities corre-
spond to peaks in the sinusoids, especially if the sinusoids have broad profiles
(low frequencies). Pixels with intensity values in the steep section of the sinu-
soids are assigned a much stronger color content as a result of significant dif-
ferences between the amplitudes of the three sinusoids caused by the phase
displacement between them.

FIGURE 6.24
Pseudocolor
enhancement by
using the gray
level to color
transformations in
Fig. 6.25.
(Original image
courtesy of 
Dr. Mike Hurwitz,
Westinghouse.)

a
b c
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FIGURE 6.25
Transformation
functions used to
obtain the images
in Fig. 6.24.

The image shown in Fig. 6.24(b) was obtained with the transformation
functions in Fig. 6.25(a), which shows the gray-level bands corresponding to
the explosive, garment bag, and background, respectively. Note that the ex-
plosive and background have quite different intensity levels, but they were
both coded with approximately the same color as a result of the periodicity of
the sine waves. The image shown in Fig. 6.24(c) was obtained with the trans-
formation functions in Fig. 6.25(b). In this case the explosives and garment
bag intensity bands were mapped by similar transformations and thus re-
ceived essentially the same color assignments. Note that this mapping allows
an observer to “see” through the explosives. The background mappings were
about the same as those used for Fig. 6.24(b), producing almost identical color
assignments. ■

a
b
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The approach shown in Fig. 6.23 is based on a single monochrome image.
Often, it is of interest to combine several monochrome images into a single
color composite, as shown in Fig. 6.26. A frequent use of this approach (illus-
trated in Example 6.6) is in multispectral image processing, where different
sensors produce individual monochrome images, each in a different spectral
band. The types of additional processes shown in Fig. 6.26 can be techniques
such as color balancing (see Section 6.5.4), combining images, and selecting
the three images for display based on knowledge about response characteris-
tics of the sensors used to generate the images.

EXAMPLE 6.6:
Color coding of
multispectral
images.

■ Figures 6.27(a) through (d) show four spectral satellite images of Washing-
ton, D.C., including part of the Potomac River.The first three images are in the
visible red, green, and blue, and the fourth is in the near infrared (see Table 1.1
and Fig. 1.10). Figure 6.27(e) is the full-color image obtained by combining the
first three images into an RGB image. Full-color images of dense areas are dif-
ficult to interpret, but one notable feature of this image is the difference in
color in various parts of the Potomac River. Figure 6.27(f) is a little more in-
teresting.This image was formed by replacing the red component of Fig. 6.27(e)
with the near-infrared image. From Table 1.1, we know that this band is strong-
ly responsive to the biomass components of a scene. Figure 6.27(f) shows quite
clearly the difference between biomass (in red) and the human-made features
in the scene, composed primarily of concrete and asphalt, which appear bluish
in the image.

The type of processing just illustrated is quite powerful in helping visualize
events of interest in complex images, especially when those events are beyond
our normal sensing capabilities. Figure 6.28 is an excellent illustration of this.
These are images of the Jupiter moon Io, shown in pseudocolor by combining
several of the sensor images from the Galileo spacecraft, some of which are in
spectral regions not visible to the eye. However, by understanding the physical
and chemical processes likely to affect sensor response, it is possible to combine
the sensed images into a meaningful pseudocolor map. One way to combine the
sensed image data is by how they show either differences in surface chemical
composition or changes in the way the surface reflects sunlight. For example, in
the pseudocolor image in Fig. 6.28(b), bright red depicts material newly ejected

Transformation T1

Additional
processing

Transformation T2

Transformation TKfK(x, y)

f1(x, y)

f2(x, y)

gK(x, y)

g1(x, y)

g2(x, y)

hR(x, y)

hG(x, y)

hB(x, y)

FIGURE 6.26 A
pseudocolor
coding approach
used when several
monochrome
images are
available.
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FIGURE 6.27 (a)–(d) Images in bands 1–4 in Fig. 1.10 (see Table 1.1). (e) Color
composite image obtained by treating (a), (b), and (c) as the red, green, blue com-
ponents of an RGB image. (f) Image obtained in the same manner, but using in the
red channel the near-infrared image in (d). (Original multispectral images courtesy
of NASA.)

a b
c d
e f
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FIGURE 6.28
(a) Pseudocolor
rendition of
Jupiter Moon Io.
(b) A close-up.
(Courtesy of
NASA.)

from an active volcano on Io, and the surrounding yellow materials are older
sulfur deposits. This image conveys these characteristics much more readily
than would be possible by analyzing the component images individually. ■

6.4 Basics of Full-Color Image Processing

In this section, we begin the study of processing techniques applicable to full-
color images. Although they are far from being exhaustive, the techniques de-
veloped in the sections that follow are illustrative of how full-color images are
handled for a variety of image processing tasks. Full-color image processing
approaches fall into two major categories. In the first category, we process
each component image individually and then form a composite processed
color image from the individually processed components. In the second category,
we work with color pixels directly. Because full-color images have at least

a
b
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three components, color pixels are vectors. For example, in the RGB system,
each color point can be interpreted as a vector extending from the origin to
that point in the RGB coordinate system (see Fig. 6.7).

Let c represent an arbitrary vector in RGB color space:

(6.4-1)

This equation indicates that the components of c are simply the RGB compo-
nents of a color image at a point. We take into account the fact that the color
components are a function of coordinates (x, y) by using the notation

(6.4-2)

For an image of size there are MN such vectors, c(x, y), for

It is important to keep in mind that Eq. (6.4-2) depicts a vector whose com-
ponents are spatial variables in x and y. This is a frequent source of confusion
that can be avoided by focusing on the fact that our interest lies in spatial
processes. That is, we are interested in image processing techniques formulat-
ed in x and y. The fact that the pixels are now color pixels introduces a factor
that, in its easiest formulation, allows us to process a color image by processing
each of its component images separately, using standard gray-scale image pro-
cessing methods. However, the results of individual color component process-
ing are not always equivalent to direct processing in color vector space, in
which case we must formulate new approaches.

In order for per-color-component and vector-based processing to be equiv-
alent, two conditions have to be satisfied: First, the process has to be applicable
to both vectors and scalars. Second, the operation on each component of a vec-
tor must be independent of the other components. As an illustration, Fig. 6.29
shows neighborhood spatial processing of gray-scale and full-color images.

x = 0, 1, 2, Á , M - 1; y = 0, 1, 2, Á , N - 1.
M * N,

c(x, y) = C cR(x, y)
cG(x, y)
cB(x, y)

S = CR(x, y)
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B(x, y)
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FIGURE 6.29
Spatial masks for
gray-scale and
RGB color
images.
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Suppose that the process is neighborhood averaging. In Fig. 6.29(a), averaging
would be accomplished by summing the intensities of all the pixels in the
neighborhood and dividing by the total number of pixels in the neighborhood.
In Fig. 6.29(b), averaging would be done by summing all the vectors in the
neighborhood and dividing each component by the total number of vectors in
the neighborhood. But each component of the average vector is the sum of the
pixels in the image corresponding to that component, which is the same as the
result that would be obtained if the averaging were done on a per-color-
component basis and then the vector was formed. We show this in more detail
in the following sections.We also show methods in which the results of the two
approaches are not the same.

6.5 Color Transformations

The techniques described in this section, collectively called color transforma-
tions, deal with processing the components of a color image within the context
of a single color model, as opposed to the conversion of those components be-
tween models (like the RGB-to-HSI and HSI-to-RGB conversion transforma-
tions of Section 6.2.3).

6.5.1 Formulation
As with the intensity transformation techniques of Chapter 3, we model color
transformations using the expression

(6.5-1)

where is a color input image, is the transformed or processed
color output image, and T is an operator on f over a spatial neighborhood of
(x, y). The principal difference between this equation and Eq. (3.1-1) is in its
interpretation. The pixel values here are triplets or quartets (i.e., groups of
three or four values) from the color space chosen to represent the images, as il-
lustrated in Fig. 6.29(b).

Analogous to the approach we used to introduce the basic intensity trans-
formations in Section 3.2, we will restrict attention in this section to color
transformations of the form

(6.5-2)

where, for notational simplicity, and are variables denoting the color com-
ponents of and at any point (x, y), n is the number of color com-
ponents, and is a set of transformation or color mapping
functions that operate on to produce Note that n transformations, com-
bine to implement the single transformation function, T, in Eq. (6.5-1). The
color space chosen to describe the pixels of f and g determines the value of n.
If the RGB color space is selected, for example, and and denote
the red, green, and blue components of the input image, respectively. If the
CMYK or HSI color spaces are chosen, or n = 3.n = 4

r3r1, r2,n = 3

Ti,si.ri

5T1, T2, Á , Tn6
(x, y)g(x, y)f

siri

si = Ti (r1, r2, Á , rn), i = 1, 2, Á , n

(x, y)g(x, y)f

g(x, y) = T[f(x, y)]
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The full-color image in Fig. 6.30 shows a high-resolution color image of a
bowl of strawberries and a cup of coffee that was digitized from a large format

color negative.The second row of the figure contains the components(4– * 5–)

Full color

Cyan

Red

Hue

Magenta

Green

Saturation

Yellow

Blue

Intensity

Black

FIGURE 6.30 A full-color image and its various color-space components. (Original image courtesy of MedData
Interactive.)
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of the initial CMYK scan. In these images, black represents 0 and white repre-
sents 1 in each CMYK color component. Thus, we see that the strawberries
are composed of large amounts of magenta and yellow because the images
corresponding to these two CMYK components are the brightest. Black is
used sparingly and is generally confined to the coffee and shadows within the
bowl of strawberries. When the CMYK image is converted to RGB, as shown
in the third row of the figure, the strawberries are seen to contain a large
amount of red and very little (although some) green and blue. The last row of
Fig. 6.30 shows the HSI components of the full-color image—computed using
Eqs. (6.2-2) through (6.2-4). As expected, the intensity component is a mono-
chrome rendition of the full-color original. In addition, the strawberries are
relatively pure in color; they possess the highest saturation or least dilution by
white light of any of the hues in the image. Finally, we note some difficulty in
interpreting the hue component. The problem is compounded by the fact
that (1) there is a discontinuity in the HSI model where 0° and 360° meet (see
Fig. 6.15), and (2) hue is undefined for a saturation of 0 (i.e., for white, black,
and pure grays). The discontinuity of the model is most apparent around the
strawberries, which are depicted in gray level values near both black (0) and
white (1). The result is an unexpected mixture of highly contrasting gray lev-
els to represent a single color—red.

Any of the color-space components in Fig. 6.30 can be used in conjunction
with Eq. (6.5-2). In theory, any transformation can be performed in any color
model. In practice, however, some operations are better suited to specific mod-
els. For a given transformation, the cost of converting between representations
must be factored into the decision regarding the color space in which to imple-
ment it. Suppose, for example, that we wish to modify the intensity of the full-
color image in Fig. 6.30 using

(6.5-3)

where In the HSI color space, this can be done with the simple
transformation

(6.5-4)

where and Only HSI intensity component is modified. In
the RGB color space, three components must be transformed:

(6.5-5)

The CMY space requires a similar set of linear transformations:

(6.5-6)

Although the HSI transformation involves the fewest number of opera-
tions, the computations required to convert an RGB or CMY(K) image to the
HSI space more than offsets (in this case) the advantages of the simpler
transformation—the conversion calculations are more computationally in-
tense than the intensity transformation itself. Regardless of the color space

si = kri + (1 - k) i = 1, 2, 3

si = kri i = 1, 2, 3

r3s2 = r2.s1 = r1

s3 = kr3

0 6 k 6 1.

g(x, y) = kf(x, y)



6.5 ■ Color Transformations 429

R,G,B

1

0 1

k

C,M,Y

1

0 1

1 � k

I

1

0 1

k

H,S
0 1

selected, however, the output is the same. Figure 6.31(b) shows the result of
applying any of the transformations in Eqs. (6.5-4) through (6.5-6) to the full-
color image of Fig. 6.30 using The mapping functions themselves are
depicted graphically in Figs. 6.31(c) through (e).

It is important to note that each transformation defined in Eqs. (6.5-4)
through (6.5-6) depends only on one component within its color space. For
example, the red output component, in Eq. (6.5-5) is independent of the
green and blue inputs; it depends only on the red input. Trans-
formations of this type are among the simplest and most used color process-
ing tools and can be carried out on a per-color-component basis, as
mentioned at the beginning of our discussion. In the remainder of this sec-
tion we examine several such transformations and discuss a case in which the
component transformation functions are dependent on all the color compo-
nents of the input image and, therefore, cannot be done on an individual
color-component basis.

(r1)(r3)(r2)
s1,

k = 0.7.

a b
c d e

FIGURE 6.31 Adjusting the intensity of an image using color transformations.
(a) Original image. (b) Result of decreasing its intensity by 30% (i.e., letting ).
(c)–(e) The required RGB, CMY, and HSI transformation functions. (Original image
courtesy of MedData Interactive.)

k = 0.7
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FIGURE 6.32
Complements on
the color circle.

6.5.2 Color Complements
The hues directly opposite one another on the color circle† of Fig. 6.32 are called
complements. Our interest in complements stems from the fact that they are
analogous to the gray-scale negatives of Section 3.2.1. As in the gray-scale case,
color complements are useful for enhancing detail that is embedded in dark re-
gions of a color image—particularly when the regions are dominant in size.

EXAMPLE 6.7:
Computing color
image
complements.

■ Figures 6.33(a) and (c) show the full-color image from Fig. 6.30 and its color
complement. The RGB transformations used to compute the complement are
plotted in Fig. 6.33(b). They are identical to the gray-scale negative transfor-
mation defined in Section 3.2.1. Note that the computed complement is remi-
niscent of conventional photographic color film negatives. Reds of the original
image are replaced by cyans in the complement. When the original image is
black, the complement is white, and so on. Each of the hues in the complement
image can be predicted from the original image using the color circle of
Fig. 6.32, and each of the RGB component transforms involved in the compu-
tation of the complement is a function of only the corresponding input color
component.

Unlike the intensity transformations of Fig. 6.31, the RGB complement
transformation functions used in this example do not have a straightforward
HSI space equivalent. It is left as an exercise for the reader (see Problem 6.18)
to show that the saturation component of the complement cannot be comput-
ed from the saturation component of the input image alone. Figure 6.33(d)
provides an approximation of the complement using the hue, saturation, and
intensity transformations given in Fig. 6.33(b). Note that the saturation com-
ponent of the input image is unaltered; it is responsible for the visual differ-
ences between Figs. 6.33(c) and (d). ■

†The color circle originated with Sir Isaac Newton, who in the seventeenth century joined the ends of the
color spectrum to form the first color circle.
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Color
complement
transformations.
(a) Original
image.
(b) Complement
transformation
functions.
(c) Complement
of (a) based on
the RGB mapping
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approximation
of the RGB
complement
using HSI
transformations.

6.5.3 Color Slicing
Highlighting a specific range of colors in an image is useful for separating ob-
jects from their surroundings. The basic idea is either to (1) display the colors
of interest so that they stand out from the background or (2) use the region de-
fined by the colors as a mask for further processing. The most straightforward
approach is to extend the intensity slicing techniques of Section 3.2.4. Because
a color pixel is an n-dimensional quantity, however, the resulting color trans-
formation functions are more complicated than their gray-scale counterparts
in Fig. 3.11. In fact, the required transformations are more complex than the
color component transforms considered thus far. This is because all practical
color-slicing approaches require each pixel’s transformed color components to
be a function of all n original pixel’s color components.

One of the simplest ways to “slice” a color image is to map the colors outside
some range of interest to a nonprominent neutral color. If the colors of interest
are enclosed by a cube (or hypercube for ) of width W and centered at an 7 3

a b
c d
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prototypical (e.g., average) color with components the neces-
sary set of transformations is

(6.5-7)

These transformations highlight the colors around the prototype by forcing all
other colors to the midpoint of the reference color space (an arbitrarily chosen
neutral point). For the RGB color space, for example, a suitable neutral point
is middle gray or color (0.5, 0.5, 0.5).

If a sphere is used to specify the colors of interest, Eq. (6.5-7) becomes

(6.5-8)

Here, is the radius of the enclosing sphere (or hypersphere for ) and
are the components of its center (i.e., the prototypical color).

Other useful variations of Eqs. (6.5-7) and (6.5-8) include implementing multi-
ple color prototypes and reducing the intensity of the colors outside the region
of interest—rather than setting them to a neutral constant.

(a1, a2, Á , an)
n 7 3R0

si = c 0.5 if a
n

j = 1
(rj - aj)

2 7 R0
2

ri otherwise
i = 1, 2, Á , n

si = c 0.5 if c ƒ rj - aj ƒ 7
W

2
d

any 1 … j … n

ri otherwise
i = 1, 2, Á , n

(a1, a2, Á , an),

EXAMPLE 6.8:
An illustration of
color slicing.

FIGURE 6.34 Color-slicing transformations that detect (a) reds within an RGB cube of
width centered at (0.6863, 0.1608, 0.1922), and (b) reds within an RGB
sphere of radius 0.1765 centered at the same point. Pixels outside the cube and sphere
were replaced by color (0.5, 0.5, 0.5).

W = 0.2549

■ Equations (6.5-7) and (6.5-8) can be used to separate the edible part of the
strawberries in Fig. 6.31(a) from the background cups, bowl, coffee, and table.
Figures 6.34(a) and (b) show the results of applying both transformations. In

a b
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each case, a prototype red with RGB color coordinate (0.6863, 0.1608, 0.1922)
was selected from the most prominent strawberry; W and were chosen so
that the highlighted region would not expand to undesirable portions of the
image. The actual values, and were determined in-
teractively. Note that the sphere-based transformation of Eq. (6.5-8) is slightly
better, in the sense that it includes more of the strawberries’ red areas. A
sphere of radius 0.1765 does not completely enclose a cube of width 0.2549 but
is itself not completely enclosed by the cube. ■

6.5.4 Tone and Color Corrections
Color transformations can be performed on most desktop computers. In con-
junction with digital cameras, flatbed scanners, and inkjet printers, they turn a
personal computer into a digital darkroom—allowing tonal adjustments and
color corrections, the mainstays of high-end color reproduction systems, to be
performed without the need for traditionally outfitted wet processing (i.e.,
darkroom) facilities. Although tone and color corrections are useful in other
areas of imaging, the focus of the current discussion is on the most common
uses—photo enhancement and color reproduction.

The effectiveness of the transformations examined in this section is
judged ultimately in print. Because these transformations are developed, re-
fined, and evaluated on monitors, it is necessary to maintain a high degree of
color consistency between the monitors used and the eventual output de-
vices. In fact, the colors of the monitor should represent accurately any digi-
tally scanned source images, as well as the final printed output. This is best
accomplished with a device-independent color model that relates the color
gamuts (see Section 6.1) of the monitors and output devices, as well as any
other devices being used, to one another. The success of this approach is a
function of the quality of the color profiles used to map each device to the
model and the model itself. The model of choice for many color management
systems (CMS) is the CIE model, also called CIELAB (CIE [1978],
Robertson [1977]). The color components are given by the follow-
ing equations:

(6.5-9)

(6.5-10)

(6.5-11)b* = 200 Bh¢ Y

YW
≤ - h¢ Z

ZW
≤ R

a* = 500 Bh¢ X

XW
≤ - h¢ Y

YW
≤ R

L* = 116 # h¢ Y

YW
≤ - 16

L*a*b*
L*a*b*

R0 = 0.1765,W = 0.2549

R0
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where

(6.5-12)

and and are reference white tristimulus values—typically the
white of a perfectly reflecting diffuser under CIE standard D65 illumination
(defined by and in the CIE chromaticity diagram of
Fig. 6.5). The color space is colorimetric (i.e., colors perceived as
matching are encoded identically), perceptually uniform (i.e., color differences
among various hues are perceived uniformly—see the classic paper by
MacAdams [1942]), and device independent. While not a directly displayable
format (conversion to another color space is required), its gamut encompasses
the entire visible spectrum and can represent accurately the colors of any dis-
play, print, or input device. Like the HSI system, the system is an ex-
cellent decoupler of intensity (represented by lightness ) and color
(represented by for red minus green and for green minus blue), making
it useful in both image manipulation (tone and contrast editing) and image
compression applications.†

The principal benefit of calibrated imaging systems is that they allow tonal
and color imbalances to be corrected interactively and independently—that is,
in two sequential operations. Before color irregularities, like over- and under-
saturated colors, are resolved, problems involving the image’s tonal range are
corrected.The tonal range of an image, also called its key type, refers to its gen-
eral distribution of color intensities. Most of the information in high-key im-
ages is concentrated at high (or light) intensities; the colors of low-key images
are located predominantly at low intensities; middle-key images lie in be-
tween. As in the monochrome case, it is often desirable to distribute the inten-
sities of a color image equally between the highlights and the shadows. The
following examples demonstrate a variety of color transformations for the cor-
rection of tonal and color imbalances.

b*a*
L*

L*a*b*

L*a*b*
y = 0.3290x = 0.3127

ZWXW, YW,

h(q) = b23 q q 7 0.008856
7.787q + 16>116 q … 0.008856

EXAMPLE 6.9:
Tonal
transformations.

†Studies indicate that the degree to which the luminance (lightness) information is separated from the
color information in is greater than in other color models—such as CIELUV, YIQ, YUV,
YCC, and XYZ (Kasson and Plouffe [1992]).

L*a* b*

■ Transformations for modifying image tones normally are selected interac-
tively. The idea is to adjust experimentally the image’s brightness and con-
trast to provide maximum detail over a suitable range of intensities. The
colors themselves are not changed. In the RGB and CMY(K) spaces, this
means mapping all three (or four) color components with the same transfor-
mation function; in the HSI color space, only the intensity component is
modified.

Figure 6.35 shows typical transformations used for correcting three com-
mon tonal imbalances—flat, light, and dark images. The S-shaped curve in the
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R,G,B

1

0 1

R,G,B

1

0 1

R,G,B

1

0 1

Flat

Light

Dark

Corrected

Corrected

Corrected

FIGURE 6.35 Tonal corrections for flat, light (high key), and dark (low key) color images. Adjusting the red,
green, and blue components equally does not always alter the image hues significantly.
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EXAMPLE 6.10:
Color balancing.

■ After the tonal characteristics of an image have been properly established,
any color imbalances can be addressed.Although color imbalances can be de-
termined objectively by analyzing—with a color spectrometer—a known
color in an image, accurate visual assessments are possible when white areas,
where the RGB or CMY(K) components should be equal, are present.As can
be seen in Fig. 6.36, skin tones also are excellent subjects for visual color as-
sessments because humans are highly perceptive of proper skin color. Vivid
colors, such as bright red objects, are of little value when it comes to visual
color assessment.

When a color imbalance is noted, there are a variety of ways to correct
it. When adjusting the color components of an image, it is important to re-
alize that every action affects the overall color balance of the image. That
is, the perception of one color is affected by its surrounding colors. Never-
theless, the color wheel of Fig. 6.32 can be used to predict how one color
component will affect others. Based on the color wheel, for example, the
proportion of any color can be increased by decreasing the amount of the
opposite (or complementary) color in the image. Similarly, it can be in-
creased by raising the proportion of the two immediately adjacent colors
or decreasing the percentage of the two colors adjacent to the comple-
ment. Suppose, for instance, that there is an abundance of magenta in an
RGB image. It can be decreased by (1) removing both red and blue or (2) adding
green.

Figure 6.36 shows the transformations used to correct simple CMYK out-
put imbalances. Note that the transformations depicted are the functions re-
quired for correcting the images; the inverses of these functions were used
to generate the associated color imbalances. Together, the images are analo-
gous to a color ring-around print of a darkroom environment and are useful
as a reference tool for identifying color printing problems. Note, for exam-
ple, that too much red can be due to excessive magenta (per the bottom left
image) or too little cyan (as shown in the rightmost image of the second
row). ■

first row of the figure is ideal for boosting contrast [see Fig. 3.2(a)]. Its mid-
point is anchored so that highlight and shadow areas can be lightened and
darkened, respectively. (The inverse of this curve can be used to correct ex-
cessive contrast.) The transformations in the second and third rows of the fig-
ure correct light and dark images and are reminiscent of the power-law
transformations in Fig. 3.6. Although the color components are discrete, as
are the actual transformation functions, the transformation functions them-
selves are displayed and manipulated as continuous quantities—typically
constructed from piecewise linear or higher order (for smoother mappings)
polynomials. Note that the keys of the images in Fig. 6.35 are directly observ-
able; they could also be determined using the histograms of the images’ color
components. ■
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FIGURE 6.36 Color balancing corrections for CMYK color images.
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6.5.5 Histogram Processing
Unlike the interactive enhancement approaches of the previous section, the
gray-level histogram processing transformations of Section 3.3 can be applied
to color images in an automated way. Recall that histogram equalization auto-
matically determines a transformation that seeks to produce an image with a
uniform histogram of intensity values. In the case of monochrome images, it
was shown (see Fig. 3.20) to be reasonably successful at handling low-, high-,
and middle-key images. Since color images are composed of multiple compo-
nents, however, consideration must be given to adapting the gray-scale tech-
nique to more than one component and/or histogram.As might be expected, it
is generally unwise to histogram equalize the components of a color image in-
dependently. This results in erroneous color. A more logical approach is to
spread the color intensities uniformly, leaving the colors themselves (e.g.,
hues) unchanged. The following example shows that the HSI color space is
ideally suited to this type of approach.

H

1

0 1

I

1

0 0.36

0.5

1

S

1

0 1

Histogram before processing
(median � 0.36)

Histogram after processing
(median � 0.5)

FIGURE 6.37
Histogram
equalization
(followed by
saturation
adjustment) in the
HSI color space.

a b
c d
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EXAMPLE 6.11:
Histogram
equalization in the
HSI color space.

■ Figure 6.37(a) shows a color image of a caster stand containing cruets and
shakers whose intensity component spans the entire (normalized) range of
possible values, [0, 1]. As can be seen in the histogram of its intensity compo-
nent prior to processing [Fig. 6.37(b)], the image contains a large number of
dark colors that reduce the median intensity to 0.36. Histogram equalizing the
intensity component, without altering the hue and saturation, resulted in the
image shown in Fig. 6.37(c). Note that the overall image is significantly
brighter and that several moldings and the grain of the wooden table on which
the caster is sitting are now visible. Figure 6.37(b) shows the intensity his-
togram of the new image, as well as the intensity transformation used to equal-
ize the intensity component [see Eq. (3.3-8)].

Although the intensity equalization process did not alter the values of hue
and saturation of the image, it did impact the overall color perception. Note, in
particular, the loss of vibrancy in the oil and vinegar in the cruets. Figure
6.37(d) shows the result of correcting this partially by increasing the image’s
saturation component, subsequent to histogram equalization, using the trans-
formation in Fig. 6.37(b). This type of adjustment is common when working
with the intensity component in HSI space because changes in intensity usual-
ly affect the relative appearance of colors in an image. ■

6.6 Smoothing and Sharpening

The next step beyond transforming each pixel of a color image without regard
to its neighbors (as in the previous section) is to modify its value based on the
characteristics of the surrounding pixels. In this section, the basics of this type
of neighborhood processing are illustrated within the context of color image
smoothing and sharpening.

6.6.1 Color Image Smoothing
With reference to Fig. 6.29(a) and the discussion in Sections 3.4 and 3.5, gray-
scale image smoothing can be viewed as a spatial filtering operation in which
the coefficients of the filtering mask have the same value. As the mask is slid
across the image to be smoothed, each pixel is replaced by the average of the
pixels in the neighborhood defined by the mask.As can be seen in Fig. 6.29(b),
this concept is easily extended to the processing of full-color images. The prin-
cipal difference is that instead of scalar intensity values we must deal with
component vectors of the form given in Eq. (6.4-2).

Let denote the set of coordinates defining a neighborhood centered at
(x, y) in an RGB color image. The average of the RGB component vectors in
this neighborhood is

(6.6-1)c (x, y) =
1
K a

(s, t)HSxy

c(s, t)

Sxy
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EXAMPLE 6.12:
Color image
smoothing by
neighborhood
averaging.

■ Consider the RGB color image in Fig. 6.38(a). Its red, green, and blue com-
ponent images are shown in Figs. 6.38(b) through (d). Figures 6.39(a) through
(c) show the HSI components of the image. Based on the discussion in the pre-
vious paragraph, we smoothed each component image of the RGB image in
Fig. 6.38 independently using a spatial averaging mask. We then com-
bined the individually smoothed images to form the smoothed, full-color RGB
result shown in Fig. 6.40(a). Note that this image appears as we would expect
from performing a spatial smoothing operation, as in the examples given in
Section 3.5.

In Section 6.2, we noted that an important advantage of the HSI color
model is that it decouples intensity and color information. This makes it
suitable for many gray-scale processing techniques and suggests that it
might be more efficient to smooth only the intensity component of the HSI
representation in Fig. 6.39. To illustrate the merits and/or consequences of
this approach, we next smooth only the intensity component (leaving the
hue and saturation components unmodified) and convert the processed re-
sult to an RGB image for display. The smoothed color image is shown in
Fig. 6.40(b). Note that it is similar to Fig. 6.40(a), but, as you can see from
the difference image in Fig. 6.40(c), the two smoothed images are not iden-
tical. This is because in Fig. 6.40(a) the color of each pixel is the average
color of the pixels in the neighborhood. On the other hand, by smoothing
only the intensity component image in Fig. 6.40(b), the hue and saturation
of each pixel was not affected and, therefore, the pixel colors did not
change. It follows from this observation that the difference between the
two smoothing approaches would become more pronounced as a function
of increasing filter size. ■

5 * 5

Consult the book Web site
for a brief review of vec-
tors and matrices.

It follows from Eq. (6.4-2) and the properties of vector addition that

(6.6-2)

We recognize the components of this vector as the scalar images that would be
obtained by independently smoothing each plane of the starting RGB image
using conventional gray-scale neighborhood processing. Thus, we conclude
that smoothing by neighborhood averaging can be carried out on a per-color-
plane basis. The result is the same as when the averaging is performed using
RGB color vectors.

c (x, y) = F
1
K a

(s, t)HSxy

R(s, t)

1
K a  

(s, t)HSxy

G(s, t)

1
K a

(s, t)HSxy

B(s, t)

V
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FIGURE 6.39 HSI components of the RGB color image in Fig. 6.38(a). (a) Hue. (b) Saturation. (c) Intensity.

FIGURE 6.38
(a) RGB image.
(b) Red
component image.
(c) Green compo-
nent. (d) Blue
component.

a b
c d

a b c
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FIGURE 6.41 Image sharpening with the Laplacian. (a) Result of processing each RGB channel. (b) Result of
processing the HSI intensity component and converting to RGB. (c) Difference between the two results.

FIGURE 6.40 Image smoothing with a averaging mask. (a) Result of processing each RGB
component image. (b) Result of processing the intensity component of the HSI image and converting to
RGB. (c) Difference between the two results.

5 * 5

6.6.2 Color Image Sharpening
In this section we consider image sharpening using the Laplacian (see Section
3.6.2). From vector analysis, we know that the Laplacian of a vector is defined
as a vector whose components are equal to the Laplacian of the individual
scalar components of the input vector. In the RGB color system, the Laplacian
of vector c in Eq. (6.4-2) is

(6.6-3)

which, as in the previous section, tells us that we can compute the Laplacian of a
full-color image by computing the Laplacian of each component image separately.

§2[c(x, y)] = C §2R(x, y)
§2G(x, y)
§2B(x, y)

S

a b c

a b c
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EXAMPLE 6.13:
Sharpening with
the Laplacian.

■ Figure 6.41(a) was obtained using Eq. (3.6-7) and the mask in Fig. 3.37(c) to
compute the Laplacians of the RGB component images in Fig. 6.38. These re-
sults were combined to produce the sharpened full-color result. Figure 6.41(b)
shows a similarly sharpened image based on the HSI components in Fig. 6.39.
This result was generated by combining the Laplacian of the intensity compo-
nent with the unchanged hue and saturation components. The difference be-
tween the RGB and HSI sharpened images is shown in Fig. 6.41(c).The reason
for the discrepancies between the two images is as in Example 6.12. ■

6.7 Image Segmentation Based on Color

Segmentation is a process that partitions an image into regions. Although
segmentation is the topic of Chapter 10, we consider color segmentation
briefly here for the sake of continuity. You will have no difficulty following
the discussion.

6.7.1 Segmentation in HSI Color Space
If we wish to segment an image based on color, and, in addition, we want to
carry out the process on individual planes, it is natural to think first of the HSI
space because color is conveniently represented in the hue image. Typically,
saturation is used as a masking image in order to isolate further regions of in-
terest in the hue image.The intensity image is used less frequently for segmen-
tation of color images because it carries no color information. The following
example is typical of how segmentation is performed in the HSI color space.

EXAMPLE 6.14:
Segmentation in
HSI space.

■ Suppose that it is of interest to segment the reddish region in the lower left
of the image in Fig. 6.42(a). Although it was generated by pseudocolor meth-
ods, this image can be processed (segmented) as a full-color image without loss
of generality. Figures 6.42(b) through (d) are its HSI component images. Note
by comparing Figs. 6.42(a) and (b) that the region in which we are interested
has relatively high values of hue, indicating that the colors are on the blue-
magenta side of red (see Fig. 6.13). Figure 6.42(e) shows a binary mask gener-
ated by thresholding the saturation image with a threshold equal to 10% of the
maximum value in that image. Any pixel value greater than the threshold was
set to 1 (white). All others were set to 0 (black).

Figure 6.42(f) is the product of the mask with the hue image, and Fig.
6.42(g) is the histogram of the product image (note that the gray scale is in the
range [0, 1]). We see in the histogram that high values (which are the values of
interest) are grouped at the very high end of the gray scale, near 1.0.The result
of thresholding the product image with threshold value of 0.9 resulted in the
binary image shown in Fig. 6.42(h). The spatial location of the white points in
this image identifies the points in the original image that have the reddish hue
of interest. This was far from a perfect segmentation because there are points
in the original image that we certainly would say have a reddish hue, but that
were not identified by this segmentation method. However, it can be determined
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FIGURE 6.42 Image segmentation in HSI space. (a) Original. (b) Hue. (c) Saturation.
(d) Intensity. (e) Binary saturation mask (f) Product of (b) and (e).
(g) Histogram of (f). (h) Segmentation of red components in (a).

(black = 0).
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FIGURE 6.43
Three approaches
for enclosing data
regions for RGB
vector
segmentation.

by experimentation that the regions shown in white in Fig. 6.42(h) are about
the best this method can do in identifying the reddish components of the orig-
inal image. The segmentation method discussed in the following section is ca-
pable of yielding considerably better results. ■

6.7.2 Segmentation in RGB Vector Space
Although, as mentioned numerous times in this chapter, working in HSI space
is more intuitive, segmentation is one area in which better results generally are
obtained by using RGB color vectors. The approach is straightforward. Sup-
pose that the objective is to segment objects of a specified color range in an
RGB image. Given a set of sample color points representative of the colors of
interest, we obtain an estimate of the “average” color that we wish to segment.
Let this average color be denoted by the RGB vector a. The objective of seg-
mentation is to classify each RGB pixel in a given image as having a color in
the specified range or not. In order to perform this comparison, it is necessary
to have a measure of similarity. One of the simplest measures is the Euclidean
distance. Let z denote an arbitrary point in RGB space. We say that z is similar
to a if the distance between them is less than a specified threshold, The Eu-
clidean distance between z and a is given by

(6.7-1)

where the subscripts R, G, and B denote the RGB components of vectors a and
z.The locus of points such that is a solid sphere of radius as il-
lustrated in Fig. 6.43(a). Points contained within the sphere satisfy the specified
color criterion; points outside the sphere do not. Coding these two sets of points
in the image with, say, black and white, produces a binary segmented image.

A useful generalization of Eq. (6.7-1) is a distance measure of the form

(6.7-2)D(z, a) = [(z - a)TC-1(z - a)]
1
2

D0,D(z, a) … D0

= [(zR - aR)2 + (zG - aG)2 + (zB - aB)2]
1
2

= [(z - a)T(z - a)]
1
2

D(z, a) = 7z - a 7

D0.

a b c
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where C is the covariance matrix† of the samples representative of the color
we wish to segment. The locus of points such that describes a
solid 3-D elliptical body [Fig. 6.43(b)] with the important property that its
principal axes are oriented in the direction of maximum data spread. When

the identity matrix, Eq. (6.7-2) reduces to Eq. (6.7-1). Segmenta-
tion is as described in the preceding paragraph.

Because distances are positive and monotonic, we can work with the dis-
tance squared instead, thus avoiding square root computations. However,
implementing Eq. (6.7-1) or (6.7-2) is computationally expensive for images
of practical size, even if the square roots are not computed. A compromise is
to use a bounding box, as illustrated in Fig. 6.43(c). In this approach, the box
is centered on a, and its dimensions along each of the color axes is chosen
proportional to the standard deviation of the samples along each of the axis.
Computation of the standard deviations is done only once using sample
color data.

Given an arbitrary color point, we segment it by determining whether or
not it is on the surface or inside the box, as with the distance formulations.
However, determining whether a color point is inside or outside a box is much
simpler computationally when compared to a spherical or elliptical enclosure.
Note that the preceding discussion is a generalization of the method intro-
duced in Section 6.5.3 in connection with color slicing.

3 * 3C = I,

D(z, a) … D0

EXAMPLE 6.15:
Color image
segmentation in
RGB space.

■ The rectangular region shown Fig. 6.44(a) contains samples of reddish col-
ors we wish to segment out of the color image. This is the same problem we
considered in Example 6.14 using hue, but here we approach the problem
using RGB color vectors. The approach followed was to compute the mean
vector a using the color points contained within the rectangle in Fig. 6.44(a),
and then to compute the standard deviation of the red, green, and blue values
of those samples.A box was centered at a, and its dimensions along each of the
RGB axes were selected as 1.25 times the standard deviation of the data along
the corresponding axis. For example, let denote the standard deviation of
the red components of the sample points. Then the dimensions of the box
along the R-axis extended from to where de-
notes the red component of average vector a. The result of coding each point
in the entire color image as white if it was on the surface or inside the box, and
as black otherwise, is shown in Fig. 6.44(b). Note how the segmented region
was generalized from the color samples enclosed by the rectangle. In fact, by
comparing Figs. 6.44(b) and. 6.42(h), we see that segmentation in the RGB
vector space yielded results that are much more accurate, in the sense that
they correspond much more closely with what we would define as “reddish”
points in the original color image. ■

aR(aR + 1.25sR),(aR - 1.25sR)

sR

†Computation of the covariance matrix of a set of vector samples is discussed in Section 11.4.
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FIGURE 6.44
Segmentation in
RGB space.
(a) Original image
with colors of
interest shown
enclosed by a
rectangle.
(b) Result of
segmentation in
RGB vector
space. Compare
with Fig. 6.42(h).

6.7.3 Color Edge Detection
As discussed in Chapter 10, edge detection is an important tool for image seg-
mentation. In this section, we are interested in the issue of computing edges on
an individual-image basis versus computing edges directly in color vector
space. The details of edge-based segmentation are given in Section 10.2.

Edge detection by gradient operators was introduced in Section 3.6.4 in
connection with image sharpening. Unfortunately, the gradient discussed in
Section 3.6.4 is not defined for vector quantities. Thus, we know immediately
that computing the gradient on individual images and then using the results to
form a color image will lead to erroneous results. A simple example will help
illustrate the reason why.

a
b
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Consider the two color images (M odd) in Figs. 6.45(d) and (h),
composed of the three component images in Figs. 6.45(a) through (c) and (e)
through (g), respectively. If, for example, we compute the gradient image of
each of the component images [see Eq. (3.6-11)] and add the results to form
the two corresponding RGB gradient images, the value of the gradient at point

would be the same in both cases. Intuitively, we
would expect the gradient at that point to be stronger for the image in Fig.
6.45(d) because the edges of the R, G, and B images are in the same direction
in that image, as opposed to the image in Fig. 6.45(h), in which only two of the
edges are in the same direction. Thus we see from this simple example that
processing the three individual planes to form a composite gradient image can
yield erroneous results. If the problem is one of just detecting edges, then the
individual-component approach usually yields acceptable results. If accuracy
is an issue, however, then obviously we need a new definition of the gradi-
ent applicable to vector quantities. We discuss next a method proposed by
Di Zenzo [1986] for doing this.

The problem at hand is to define the gradient (magnitude and direction) of
the vector c in Eq. (6.4-2) at any point (x, y). As was just mentioned, the gradi-
ent we studied in Section 3.6.4 is applicable to a scalar function ; it is not
applicable to vector functions. The following is one of the various ways in
which we can extend the concept of a gradient to vector functions. Recall that
for a scalar function , the gradient is a vector pointing in the direction of
maximum rate of change of f at coordinates (x, y).

f(x, y)

f(x, y)

[(M + 1)>2, (M + 1)>2]

M * M

FIGURE 6.45 (a)–(c) R, G, and B component images and (d) resulting RGB color image. (e)–(g) R, G, and B
component images and (h) resulting RGB color image.

a b c d
he f g
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Let r, g, and b be unit vectors along the R, G, and B axis of RGB color space
(Fig. 6.7), and define the vectors

(6.7-3)

and

(6.7-4)

Let the quantities and be defined in terms of the dot product of
these vectors, as follows:

(6.7-5)

(6.7-6)

and

(6.7-7)

Keep in mind that R, G, and B, and consequently the g’s, are functions of x and
y. Using this notation, it can be shown (Di Zenzo [1986]) that the direction of
maximum rate of change of c(x, y) is given by the angle

(6.7-8)

and that the value of the rate of change at (x, y), in the direction of is
given by

(6.7-9)

Because if is a solution to Eq. (6.7-8), so is 
Furthermore, so F has to be computed only for values of in the
half-open interval The fact that Eq. (6.7-8) provides two values 90°
apart means that this equation associates with each point (x, y) a pair of or-
thogonal directions. Along one of those directions F is maximum, and it is
minimum along the other. The derivation of these results is rather lengthy,
and we would gain little in terms of the fundamental objective of our current
discussion by detailing it here. Consult the paper by Di Zenzo [1986] for
details. The partial derivatives required for implementing Eqs. (6.7-5)
through (6.7-7) can be computed using, for example, the Sobel operators dis-
cussed in Section 3.6.4.
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■ Figure 6.46(b) is the gradient of the image in Fig. 6.46(a), obtained using
the vector method just discussed. Figure 6.46(c) shows the image obtained by
computing the gradient of each RGB component image and forming a com-
posite gradient image by adding the corresponding values of the three com-
ponent images at each coordinate (x, y). The edge detail of the vector
gradient image is more complete than the detail in the individual-plane gradi-
ent image in Fig. 6.46(c); for example, see the detail around the subject’s right
eye. The image in Fig. 6.46(d) shows the difference between the two gradient
images at each point (x, y). It is important to note that both approaches yield-
ed reasonable results. Whether the extra detail in Fig. 6.46(b) is worth the
added computational burden (as opposed to implementation of the Sobel op-
erators, which were used to generate the gradient of the individual planes)
can only be determined by the requirements of a given problem. Figure 6.47
shows the three component gradient images, which, when added and scaled,
were used to obtain Fig. 6.46(c). ■

EXAMPLE 6.16:
Edge detection in
vector space.

FIGURE 6.46
(a) RGB image.
(b) Gradient
computed in RGB
color vector
space.
(c) Gradients
computed on a
per-image basis
and then added.
(d) Difference
between (b) 
and (c).

a b
c d
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FIGURE 6.47 Component gradient images of the color image in Fig. 6.46. (a) Red component, (b) green
component, and (c) blue component. These three images were added and scaled to produce the image in
Fig. 6.46(c).

6.8 Noise in Color Images

The noise models discussed in Section 5.2 are applicable to color images. Usu-
ally, the noise content of a color image has the same characteristics in each
color channel, but it is possible for color channels to be affected differently by
noise. One possibility is for the electronics of a particular channel to malfunc-
tion. However, different noise levels are more likely to be caused by differences
in the relative strength of illumination available to each of the color channels.
For example, use of a red (reject) filter in a CCD camera will reduce the
strength of illumination available to the red sensor. CCD sensors are noisier at
lower levels of illumination, so the resulting red component of an RGB image
would tend to be noisier than the other two component images in this situation.

EXAMPLE 6.17:
Illustration of the
effects of
converting noisy
RGB images to
HSI.

■ In this example we take a brief look at noise in color images and how noise
carries over when converting from one color model to another. Figures 6.48(a)
through (c) show the three color planes of an RGB image corrupted by Gauss-
ian noise, and Fig. 6.48(d) is the composite RGB image. Note that fine grain
noise such as this tends to be less visually noticeable in a color image than it is
in a monochrome image. Figures 6.49(a) through (c) show the result of con-
verting the RGB image in Fig. 6.48(d) to HSI. Compare these results with the
HSI components of the original image (Fig. 6.39) and note how significantly
degraded the hue and saturation components of the noisy image are. This is
due to the nonlinearity of the cos and min operations in Eqs. (6.2-2) and (6.2-3),
respectively. On the other hand, the intensity component in Fig. 6.49(c) is
slightly smoother than any of the three noisy RGB component images. This is
due to the fact that the intensity image is the average of the RGB images, as in-
dicated in Eq. (6.2-4). (Recall the discussion in Section 2.6.3 regarding the fact
that image averaging reduces random noise.)

a b c
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FIGURE 6.48
(a)–(c) Red,
green, and blue
component
images corrupted
by additive
Gaussian noise of
mean 0 and
variance 800.
(d) Resulting
RGB image.
[Compare (d)
with Fig. 6.46(a).]

FIGURE 6.49 HSI components of the noisy color image in Fig. 6.48(d). (a) Hue. (b) Saturation. (c) Intensity.

a b
c d

a b c
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FIGURE 6.50 (a) RGB image with green plane corrupted by salt-and-pepper noise.
(b) Hue component of HSI image. (c) Saturation component. (d) Intensity
component.

In cases when, say, only one RGB channel is affected by noise, conversion
to HSI spreads the noise to all HSI component images. Figure 6.50 shows an
example. Figure 6.50(a) shows an RGB image whose green image is corrupted
by salt-and-pepper noise, in which the probability of either salt or pepper is
0.05. The HSI component images in Figs. 6.50(b) through (d) show clearly how
the noise spread from the green RGB channel to all the HSI images. Of
course, this is not unexpected because computation of the HSI components
makes use of all RGB components, as shown in Section 6.2.3. ■

As is true of the processes we have discussed thus far, filtering of full-
color images can be carried out on a per-image basis or directly in color vector

a b
c d
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space, depending on the process. For example, noise reduction by using an
averaging filter is the process discussed in Section 6.6.1, which we know
gives the same result in vector space as it does if the component images are
processed independently. Other filters, however, cannot be formulated in
this manner. Examples include the class of order statistics filters discussed
in Section 5.3.2. For instance, to implement a median filter in color vector
space it is necessary to find a scheme for ordering vectors in a way that the
median makes sense. While this was a simple process when dealing with
scalars, the process is considerably more complex when dealing with vec-
tors. A discussion of vector ordering is beyond the scope of our discussion
here, but the book by Plataniotis and Venetsanopoulos [2000] is a good ref-
erence on vector ordering and some of the filters based on the ordering
concept.

6.9 Color Image Compression

Because the number of bits required to represent color is typically three to
four times greater than the number employed in the representation of gray
levels, data compression plays a central role in the storage and transmission
of color images. With respect to the RGB, CMY(K), and HSI images of the
previous sections, the data that are the object of any compression are the
components of each color pixel (e.g., the red, green, and blue components of
the pixels in an RGB image); they are the means by which the color infor-
mation is conveyed. Compression is the process of reducing or eliminating
redundant and/or irrelevant data. Although compression is the topic of
Chapter 8, we illustrate the concept briefly in the following example using a
color image.

EXAMPLE 6.18:
A color image
compression
example.

■ Figure 6.51(a) shows a 24-bit RGB full-color image of an iris in which 8 bits
each are used to represent the red, green, and blue components. Figure 6.51(b)
was reconstructed from a compressed version of the image in (a) and is, in fact,
a compressed and subsequently decompressed approximation of it. Although
the compressed image is not directly displayable—it must be decompressed
before input to a color monitor—the compressed image contains only 1 data
bit (and thus 1 storage bit) for every 230 bits of data in the original image. As-
suming that the compressed image could be transmitted over, say, the Internet,
in 1 minute, transmission of the original image would require almost 4 hours.
Of course, the transmitted data would have to be decompressed for viewing,
but the decompression can be done in a matter of seconds. The JPEG 2000
compression algorithm used to generate Fig. 6.51(b) is a recently introduced
standard that is described in detail in Section 8.2.10. Note that the reconstruct-
ed approximation image is slightly blurred. This is a characteristic of many
lossy compression techniques; it can be reduced or eliminated by altering the
level of compression. ■
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FIGURE 6.51
Color image
compression.
(a) Original RGB
image. (b) Result
of compressing
and decom-
pressing the
image in (a).

Summary
The material in this chapter is an introduction to color image processing and covers topics
selected to provide a solid background in the techniques used in this branch of image pro-
cessing.Our treatment of color fundamentals and color models was prepared as foundation
material for a field that is wide in technical scope and areas of application. In particular, we
focused on color models that we felt are not only useful in digital image processing but pro-
vide also the tools necessary for further study in this area of image processing. The discus-
sion of pseudocolor and full-color processing on an individual image basis provides a tie to
techniques that were covered in some detail in Chapters 3 through 5.

The material on color vector spaces is a departure from methods that we had stud-
ied before and highlights some important differences between gray-scale and full-color
processing. In terms of techniques, the areas of direct color vector processing are
numerous and include processes such as median and other order filters, adaptive and

a
b
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Detailed solutions to the
problems marked with a
star can be found in the
book Web site. The site
also contains suggested
projects based on the ma-
terial in this chapter.

morphological filters, image restoration, image compression, and many others. These
processes are not equivalent to color processing carried out on the individual compo-
nent images of a color image. The references in the following section provide a pointer
to further results in this field.

Our treatment of noise in color images also points out that the vector nature of the
problem, along with the fact that color images are routinely transformed from one
working space to another, has implications on the issue of how to reduce noise in these
images. In some cases, noise filtering can be done on a per-image basis, but others, such
as median filtering, require special treatment to reflect the fact that color pixels are
vector quantities, as mentioned in the previous paragraph.

Although segmentation is the topic of Chapter 10 and image data compression is
the topic of Chapter 8, we gained the advantage of continuity by introducing them here
in the context of color image processing. As will become evident in subsequent discus-
sions, many of the techniques developed in those chapters are applicable to the discus-
sion in this chapter.

References and Further Reading
For a comprehensive reference on the science of color, see Malacara [2001]. Regarding
the physiology of color, see Gegenfurtner and Sharpe [1999]. These two references,
along with the early books by Walsh [1958] and by Kiver [1965], provide ample supple-
mentary material for the discussion in Section 6.1. For further reading on color models
(Section 6.2), see Fortner and Meyer [1997], Poynton [1996], and Fairchild [1998]. For a
detailed derivation of the HSI model equations in Section 6.2.3 see the paper by Smith
[1978] or consult the book Web site. The topic of pseudocolor (Section 6.3) is closely
tied to the general area of data visualization. Wolff and Yaeger [1993] is a good basic
reference on the use of pseudocolor.The book by Thorell and Smith [1990] also is of in-
terest. For a discussion on the vector representation of color signals (Section 6.4), see
Plataniotis and Venetsanopoulos [2000].

References for Section 6.5 are Benson [1985], Robertson [1977], and CIE [1978]. See
also the classic paper by MacAdam [1942]. The material on color image filtering
(Section 6.6) is based on the vector formulation introduced in Section 6.4 and on our
discussion of spatial filtering in Chapter 3. Segmentation of color images (Section 6.7)
has been a topic of much attention during the past ten years.The papers by Liu and Yang
[1994] and by Shafarenko et al. [1998] are representative of work in this field. A special
issue of the IEEE Transactions on Image Processing [1997] also is of interest. The dis-
cussion on color edge detection (Section 6.7.3) is from Di Zenzo [1986]. The book by
Plataniotis and Venetsanopoulos [2000] does a good job of summarizing a variety of ap-
proaches to the segmentation of color images. The discussion in Section 6.8 is based on
the noise models introduced in Section 5.2. References on image compression (Section
6.9) are listed at the end of Chapter 8. For details of software implementation of many of
the techniques discussed in this chapter, see Gonzalez, Woods, and Eddins [2004].

Problems
6.1 Give the percentages of red (X), green (Y), and blue (Z) light required to gen-

erate the point labeled “warm white” in Fig. 6.5.

6.2 Consider any two valid colors and with coordinates and in
the chromaticity diagram of Fig. 6.5. Derive the necessary general expression(s)
for computing the relative percentages of colors and composing a given
color that is known to lie on the straight line joining these two colors.

c2c1

(x2, y2)(x1, y1)c2c1�
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6.3 Consider any three valid colors and with coordinates 
and in the chromaticity diagram of Fig. 6.5. Derive the necessary gener-
al expression(s) for computing the relative percentages of and compos-
ing a given color that is known to lie within the triangle whose vertices are at the
coordinates of and 

6.4 In an automated assembly application, three classes of parts are to be color
coded in order to simplify detection. However, only a monochrome TV camera
is available to acquire digital images. Propose a technique for using this camera
to detect the three different colors.

6.5 In a simple RGB image, the R, G, and B component images have the horizontal
intensity profiles shown in the following diagram. What color would a person
see in the middle column of this image?

c3.c1, c2,

c3c1, c2,
(x3, y3)

(x2, y2),(x1, y1),c3c1, c2,

�

6.6 Sketch the RGB components of the following image as they would appear on a
monochrome monitor. All colors are at maximum intensity and saturation. In
working this problem, consider the middle gray border as part of the image.

6.7 How many different shades of gray are there in a color RGB system in which
each RGB image is an 8-bit image?

6.8 Consider the RGB color cube shown in Fig 6.8, and answer each of the following:

(a) Describe how the gray levels vary in the R, G, and B primary images that
make up the front face of the color cube.

(b) Suppose that we replace every color in the RGB cube by its CMY color.
This new cube is displayed on an RGB monitor. Label with a color name the
eight vertices of the new cube that you would see on the screen.

�

�
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Red Green Blue

Magenta Cyan Yellow

White

Black

�

�

(c) What can you say about the colors on the edges of the RGB color cube re-
garding saturation?

6.9 (a) Sketch the CMY components of the image in Problem 6.6 as they would ap-
pear on a monochrome monitor.

(b) If the CMY components sketched in (a) are fed into the red, green, and blue
inputs of a color monitor, respectively, describe the resulting image.

6.10 Derive the CMY intensity mapping function of Eq. (6.5-6) from its RGB coun-
terpart in Eq. (6.5-5).

6.11 Consider the entire 216 safe-color array shown in Fig. 6.10(a). Label each cell by
its (row, column) designation, so that the top left cell is (1, 1) and the rightmost
bottom cell is (12, 18). At which cells will you find

(a) The purest green?

(b) The purest blue?

6.12 Sketch the HSI components of the image in Problem 6.6 as they would appear
on a monochrome monitor.

6.13 Propose a method for generating a color band similar to the one shown in the
zoomed section entitled Visible Spectrum in Fig. 6.2. Note that the band starts at
a dark purple on the left and proceeds toward pure red on the right. (Hint: Use
the HSI color model.)

6.14 Propose a method for generating a color version of the image shown diagram-
matically in Fig. 6.13(c). Give your answer in the form of a flow chart. Assume
that the intensity value is fixed and given. (Hint: Use the HSI color model.)

6.15 Consider the following image composed of solid color squares. For discussing
your answer, choose a gray scale consisting of eight shades of gray, 0 through 7,
where 0 is black and 7 is white. Suppose that the image is converted to HSI color
space. In answering the following questions, use specific numbers for the gray
shades if using numbers makes sense. Otherwise, the relationships “same as,”
“lighter than,” or “darker than” are sufficient. If you cannot assign a specific gray
level or one of these relationships to the image you are discussing, give the reason.

(a) Sketch the hue image.

(b) Sketch the saturation image.

(c) Sketch the intensity image.

�
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6.16 The following 8-bit images are (left to right) the H, S, and I component im-
ages from Fig. 6.16. The numbers indicate gray-level values. Answer the fol-
lowing questions, explaining the basis for your answer in each. If it is not
possible to answer a question based on the given information, state why you
cannot do so.

(a) Give the gray-level values of all regions in the hue image.

(b) Give the gray-level value of all regions in the saturation image.

(c) Give the gray-level values of all regions in the intensity image.

(a) (b) (c)

6.17 Refer to Fig. 6.27 in answering the following:

(a) Why does the image in Fig. 6.27(f) exhibit predominantly red tones?

(b) Suggest an automated procedure for coding the water in Fig. 6.27 in a
bright-blue color.

(c) Suggest an automated procedure for coding the predominantly man-made
components in a bright yellow color. [Hint: Work with Fig. 6.27(f).]

6.18 Show that the saturation component of the complement of a color image cannot
be computed from the saturation component of the input image alone.

6.19 Explain the shape of the hue transformation function for the complement ap-
proximation in Fig. 6.33(b) using the HSI color model.

6.20 Derive the CMY transformations to generate the complement of a color image.

6.21 Draw the general shape of the transformation functions used to correct exces-
sive contrast in the RGB color space.

6.22 Assume that the monitor and printer of an imaging system are imperfectly cali-
brated.An image that looks balanced on the monitor appears yellowish in print.
Describe general transformations that might correct the imbalance.

6.23 Compute the components of the image in Problem 6.6 assuming

This matrix equation defines the tristimulus values of the colors generated by
standard National Television System Committee (NTSC) color TV phosphors
viewed under D65 standard illumination (Benson [1985]).

6.24 How would you implement the color equivalent of gray scale histogram match-
ing (specification) from Section 3.3.2?

CX

Y

Z

S = C0.588 0.179 0.183
0.29 0.606 0.105

0 0.068 1.021
S CR
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RedGreen

GreenBlue

6.25 Consider the following image, in which the squares are fully
saturated red, green, and blue, and each of the colors is at maximum intensity
[e.g., (1, 0, 0) for the red square]. An HSI image is generated from this image.

(a) Describe the appearance of each HSI component image.

(b) The saturation component of the HSI image is smoothed using an averaging
mask of size Describe the appearance of the result (you may ig-
nore image border effects in the filtering operation).

(c) Repeat (b) for the hue image.

125 * 125.

500 * 500 RGB

6.26 Show that Eq. (6.7-2) reduces to Eq. (6.7-1) when the identity matrix.

6.27 (a) With reference to the discussion in Section 6.7.2, give a procedure (in flow
chart form) for determining whether a color vector (point) z is inside a cube
with sides W, centered at an average color vector a. Distance computations
are not allowed.

(b) This process also can be implemented on an image-by-image basis if the box
is lined up with the axes. Show how you would do it.

6.28 Sketch the surface in RGB space for the points that satisfy the equation

where is a specified nonzero constant. Assume that and that

6.29 Refer to Section 6.7.3. One might think that a logical approach for defining the
gradient of an RGB image at any point (x, y) would be to compute the gradient
vector (see Section 3.6.4) of each component image and then form a gradient
vector for the color image by summing the three individual gradient vectors.
Unfortunately, this method can at times yield erroneous results. Specifically, it is
possible for a color image with clearly defined edges to have a zero gradient if
this method were used. Give an example of such an image. (Hint: Set one of the
color planes to a constant value to simplify your analysis.)

C = C8 0 0
0 1 0
0 0 1

S
a = 0D0

D(z, a) = [(z - a)TC-1(z - a)]
1
2 = D0

C = I,

�



All this time, the guard was looking at her, first through
a telescope, then through a microscope, and then
through an opera glass.

Lewis Carrol, Through the Looking Glass
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Preview
Although the Fourier transform has been the mainstay of transform-based
image processing since the late 1950s, a more recent transformation, called the
wavelet transform, is now making it even easier to compress, transmit, and an-
alyze many images. Unlike the Fourier transform, whose basis functions are si-
nusoids, wavelet transforms are based on small waves, called wavelets, of
varying frequency and limited duration.This allows them to provide the equiv-
alent of a musical score for an image, revealing not only what notes (or fre-
quencies) to play but also when to play them. Fourier transforms, on the other
hand, provide only the notes or frequency information; temporal information
is lost in the transformation process.

In 1987, wavelets were first shown to be the foundation of a powerful new
approach to signal processing and analysis called multiresolution theory (Mallat
[1987]). Multiresolution theory incorporates and unifies techniques from a vari-
ety of disciplines, including subband coding from signal processing, quadrature
mirror filtering from digital speech recognition, and pyramidal image processing.
As its name implies, multiresolution theory is concerned with the representation
and analysis of signals (or images) at more than one resolution. The appeal of
such an approach is obvious—features that might go undetected at one resolu-
tion may be easy to detect at another. Although the imaging community’s inter-
est in multiresolution analysis was limited until the late 1980s, it is now difficult to
keep up with the number of papers, theses, and books devoted to the subject.

Wavelets and 
Multiresolution
Processing7
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FIGURE 7.1
An image and its
local histogram
variations.

In this chapter, we examine wavelet-based transformations from a multires-
olution point of view.Although such transformations can be presented in other
ways, this approach simplifies both their mathematical and physical interpreta-
tions.We begin with an overview of imaging techniques that influenced the for-
mulation of multiresolution theory. Our objective is to introduce the theory’s
fundamental concepts within the context of image processing and simultane-
ously provide a brief historical perspective of the method and its application.
The bulk of the chapter is focused on the development and use of the discrete
wavelet transform. To demonstrate the usefulness of the transform, examples
ranging from image coding to noise removal and edge detection are provided.
In the next chapter, wavelets will be used for image compression, an application
in which they have received considerable attention.

7.1 Background

When we look at images, generally we see connected regions of similar texture
and intensity levels that combine to form objects. If the objects are small in
size or low in contrast, we normally examine them at high resolutions; if they
are large in size or high in contrast, a coarse view is all that is required. If both
small and large objects—or low- and high-contrast objects—are present simul-
taneously, it can be advantageous to study them at several resolutions. This, of
course, is the fundamental motivation for multiresolution processing.

From a mathematical viewpoint, images are two-dimensional arrays of inten-
sity values with locally varying statistics that result from different combinations
of abrupt features like edges and contrasting homogeneous regions.As illustrated
in Fig. 7.1—an image that will be examined repeatedly in the remainder of the

Local histograms are 
histograms of the pixels
in a neighborhood (see
Section 3.3.3).
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FIGURE 7.2
(a) An image
pyramid. (b) A
simple system for
creating
approximation
and prediction
residual pyramids.

section—local histograms can vary significantly from one part of an image to
another, making statistical modeling over the span of an entire image a diffi-
cult, or impossible task.

7.1.1 Image Pyramids
A powerful, yet conceptually simple structure for representing images at more
than one resolution is the image pyramid (Burt and Adelson [1983]). Originally
devised for machine vision and image compression applications, an image
pyramid is a collection of decreasing resolution images arranged in the shape
of a pyramid. As can be seen in Fig. 7.2(a), the base of the pyramid contains a
high-resolution representation of the image being processed; the apex con-
tains a low-resolution approximation. As you move up the pyramid, both size
and resolution decrease. Base level is of size or where

apex level 0 is of size and general level is of size 
where Although the pyramid shown in Fig. 7.2(a) is composed of

resolution levels from to most image pyramids are trun-
cated to levels, where and 
That is, we normally limit ourselves to reduced resolution approximations of
the original image; a (i.e., single pixel) approximation of a 
image, for example, is of little value.The total number of pixels in a level
pyramid for is

Figure 7.2(b) shows a simple system for constructing two intimately related
image pyramids. The Level approximation output provides the imagesj - 1

N2 ¢1 +
1

(4)1 +
1

(4)2 + Á +
1

(4)P ≤ …
4
3

N2

P 7 0
P + 1
512 * 5121 * 1

P
j = J - P, Á , J - 2, J - 1, J.1 … P … JP + 1

20 * 20,2J * 2JJ + 1
0 … j … J.

2j * 2j,j1 * 1,J = log2 N,
N * N,2J * 2JJ

a
b
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In general, a prediction
residual can be defined
as the difference 
between an image and a
predicted version of the
image. As will be seen in
Section 8.2.9, prediction
residuals can often be
coded more efficiently
than 2-D intensity arrays.

needed to build an approximation pyramid (as described in the preceding
paragraph), while the Level prediction residual output is used to build a
complementary prediction residual pyramid. Unlike approximation pyramids,
prediction residual pyramids contain only one reduced-resolution approxi-
mation of the input image (at the top of the pyramid, level ). All other
levels contain prediction residuals, where the level prediction residual (for

) is defined as the difference between the level approxi-
mation (the input to the block diagram) and an estimate of the level approx-
imation based on the level approximation (the approximation output in
the block diagram).

As Fig. 7.2(b) suggests, both approximation and prediction residual pyra-
mids are computed in an iterative fashion. Before the first iteration, the image
to be represented in pyramidal form is placed in level of the approximation
pyramid. The following three-step procedure is then executed times—for

and (in that order):

Step 1. Compute a reduced-resolution approximation of the Level input
image [the input on the left side of the block diagram in Fig. 7.2(b)]. This is
done by filtering and downsampling the filtered result by a factor of 2. Both
of these operations are described in the next paragraph. Place the resulting
approximation at level of the approximation pyramid.
Step 2. Create an estimate of the Level input image from the reduced-
resolution approximation generated in step 1. This is done by upsampling
and filtering (see the next paragraph) the generated approximation.The re-
sulting prediction image will have the same dimensions as the Level input
image.
Step 3. Compute the difference between the prediction image of step 2
and the input to step 1. Place this result in level of the prediction residual
pyramid.

At the conclusion of iterations (i.e., following the iteration in which
), the level approximation output is placed in the pre-

diction residual pyramid at level If a prediction residual pyramid is not
needed, this operation—along with steps 2 and 3 and the upsampler, inter-
polation filter, and summer of Fig. 7.2(b)—can be omitted.

A variety of approximation and interpolation filters can be incorporated
into the system of Fig. 7.2(b). Typically, the filtering is performed in the spatial
domain (see Section 3.4). Useful approximation filtering techniques include
neighborhood averaging (see Section 3.5.1.), which produces mean pyramids;
lowpass Gaussian filtering (see Sections 4.7.4 and 4.8.3), which produces
Gaussian pyramids; and no filtering, which results in subsampling pyramids.
Any of the interpolation methods described in Section 2.4.4, including nearest
neighbor, bilinear, and bicubic, can be incorporated into the interpolation fil-
ter. Finally, we note that the upsampling and downsampling blocks of Fig.
7.2(b) are used to double and halve the spatial dimensions of the approxima-
tion and prediction images that are computed. Given an integer variable and
1-D sequence of samples upsampled sequence is defined asf2c (n)f(n),

n

J - P.
J - Pj = J - P + 1

P

j

j

j
j - 1

j

J - P + 1j = J, J - 1, Á ,
P

J

j - 1
j

jJ - P + 1 … j … J
j

J - P

j
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In this chapter, we will be
working with both 
continuous and discrete
functions and variables.
With the notable 
exception of 2-D image

and unless other-
wise noted, are
continuous variables;

are
discrete variables.
i, j, k, l, m, n, Á

x, y, z, Á
f(x, y)

(7.1-1)

where, as is indicated by the subscript, the upsampling is by a factor of 2. The
complementary operation of downsampling by 2 is defined as

(7.1-2)

Upsampling can be thought of as inserting a 0 after every sample in a sequence;
downsampling can be viewed as discarding every other sample. The upsampling
and downsampling blocks in Fig. 7.2(b), which are labeled and , respectively,
are annotated to indicate that both the rows and columns of the 2-D inputs on
which they operate are to be up- and downsampled. Like the separable 2-D DFT
in Section 4.11.1, 2-D upsampling and downsampling can be performed by suc-
cessive passes of the 1-D operations defined in Eqs. (7.1-1) and (7.1-2).

T2c2

f2T(n) = f(2n)

f2c (n) = bf(n>2) if n is even
0 otherwise

EXAMPLE 7.1:
Approximation
and prediction
residual pyramids.

■ Figure 7.3 shows both an approximation pyramid and a prediction residual
pyramid for the vase of Fig. 7.1. A lowpass Gaussian smoothing filter (see
Section 4.7.4) was used to produce the four-level approximation pyramid in
Fig. 7.3(a). As you can see, the resulting pyramid contains the original

resolution image (at its base) and three low-resolution approxima-
tions (of resolution and ).Thus, is 3 and levels
9, 8, 7, and 6 out of a possible or 10 levels are present. Note the
reduction in detail that accompanies the lower resolutions of the pyramid. The
level 6 (i.e., ) approximation image is suitable for locating the window
stiles (i.e., the window pane framing), for example, but not for finding the stems
of the plant. In general, the lower-resolution levels of a pyramid can be used for
the analysis of large structures or overall image context; the high-resolution im-
ages are appropriate for analyzing individual object characteristics. Such a
coarse-to-fine analysis strategy is particularly useful in pattern recognition.

A bilinear interpolation filter was used to produce the prediction residual
pyramid in Fig. 7.3(b). In the absence of quantization error, the resulting predic-
tion residual pyramid can be used to generate the complementary approxima-
tion pyramid in Fig. 7.3(a), including the original image, without error. To do so,
we begin with the level 6 approximation image (the only approxima-
tion image in the prediction residual pyramid), predict the level 7 res-
olution approximation (by upsampling and filtering), and add the level 7
prediction residual. This process is repeated using successively computed ap-
proximation images until the original image is generated. Note that
the prediction residual histogram in Fig. 7.3(b) is highly peaked around zero; the
approximation histogram in Fig. 7.3(a) is not. Unlike approximation images, pre-
diction residual images can be highly compressed by assigning fewer bits to the
more probable values (see the variable-length codes of Section 8.2.1). Finally, we
note that the prediction residuals in Fig. 7.3(b) are scaled to make small predic-
tion errors more visible; the prediction residual histogram, however, is based on
the original residual values, with level 128 representing zero error. ■

512 * 512

128 * 128
64 * 64

64 * 64

log2 (512) + 1
P64 * 64256 * 256, 128 * 128,

512 * 512
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FIGURE 7.3
Two image
pyramids and
their histograms:
(a) an
approximation
pyramid;
(b) a prediction
residual pyramid.

7.1.2 Subband Coding
Another important imaging technique with ties to multiresolution analysis is
subband coding. In subband coding, an image is decomposed into a set of
bandlimited components, called subbands. The decomposition is performed so
that the subbands can be reassembled to reconstruct the original image with-
out error. Because the decomposition and reconstruction are performed by
means of digital filters, we begin our discussion with a brief introduction to
digital signal processing (DSP) and digital signal filtering.

Consider the simple digital filter in Fig. 7.4(a) and note that it is constructed
from three basic components—unit delays, multipliers, and adders. Along the
top of the filter, unit delays are connected in series to create delayed
(i.e., right shifted) versions of the input sequence Delayed sequence

for example, isf(n - 2),
f(n).

K-  1

The approximation 
pyramid in (a) is called a
Gaussian pyramid 
because a Gaussian filter
was used to construct it.
The prediction residual
pyramid in (b) is often
called a Laplacian 
pyramid; note the 
similarity in appearance
with the Laplacian fil-
tered images in Chapter 3.

The term “delay” implies
a time-based input 
sequence and reflects the
fact that in digital signal
filtering, the input is 
usually a sampled analog
signal.

a
b
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FIGURE 7.4 (a) A digital filter; (b) a unit discrete impulse sequence; and (c) the impulse response of the filter.

As the grayed annotations in Fig. 7.4(a) indicate, input sequence 
and the delayed sequences at the outputs of the unit delays,

denoted are multiplied by constants
respectively, and summed to produce the filtered

output sequence

(7.1-3)

where denotes convolution. Note that—except for a change in variables—
Eq. (7.1-3) is equivalent to the discrete convolution defined in Eq. (4.4-10) of
Chapter 4. The multiplication constants in Fig. 7.4(a) and Eq. (7.1-3) areK

�

= f(n) � h(n)

fN(n) = a
q

k = -q
h(k)f(n - k)

h(0), h(1), Á , h(K - 1),
f(n - 1), f(n - 2), Á , f(n - K + 1),

K - 1f(n - 0)
f(n) =

f(n - 2) = d o
f(0) for n = 2
f(1) for n = 2 + 1 = 3

o

a
b c

If the coefficients of the
filter in Fig. 7.4(a) are 
indexed using values of 
between 0 and (as
we have done), the limits
on the sum in Eq. (7.1-3)
can be reduced to 0 to

[like Eq. (4.4-10)].K - 1

K - 1
n
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FIGURE 7.5 Six functionally related filter impulse responses: (a) reference response; (b) sign reversal;
(c) and (d) order reversal (differing by the delay introduced); (e) modulation; and (f) order reversal and
modulation.

In the remainder of the
chapter, “filter ” will
be used to refer to the 
filter whose impulse 
response is h(n).

h(n)

called filter coefficients. Each coefficient defines a filter tap, which can be
thought of as the components needed to compute one term of the sum in Eq.
(7.1-3), and the filter is said to be of order

If the input to the filter of Fig. 7.4(a) is the unit discrete impulse of 
Fig. 7.4(b) and Section 4.2.3, Eq. (7.1-3) becomes

(7.1-4)

That is, by substituting for input in Eq. (7.1-3) and making use of
the sifting property of the unit discrete impulse as defined in Eq. (4.2-13), we
find that the impulse response of the filter in Fig. 7.4(a) is the K-element se-
quence of filter coefficients that define the filter. Physically, the unit impulse
is shifted from left to right across the top of the filter (from one unit delay to
the next), producing an output that assumes the value of the coefficient at
the location of the delayed impulse. Because there are coefficients, the im-
pulse response is of length and the filter is called a finite impulse response
(FIR) filter.

Figure 7.5 shows the impulse responses of six functionally related filters. Fil-
ter in Fig. 7.5(b) is a sign-reversed (i.e., reflected about the horizontal
axis) version of in Fig. 7.5(a). That is,

(7.1-5)h2(n) = -h1(n)

h1(n)
h2(n)

K
K

f(n)d(n)

= h(n)

fN(n) = a
q

k = -q
h(k)d(n - k)

K.

d e f
a b c
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� h0(n) � g0(n)

Analysis filter bank Synthesis filter bank

Low band

0 ��/2
�

High band

�

� h1(n) � g1(n)

f(n)ˆf(n)

fhp(n)

flp(n)

H0(�) H1(�)

2c

2c

2T

2T

FIGURE 7.6
(a) A two-band
subband coding
and decoding
system, and (b) its
spectrum splitting
properties.

Order reversal is often
called time reversal when
the input sequence is a
sampled analog signal.

Filters and in Figs. 7.5(c) and (d) are order-reversed versions of

(7.1-6)

(7.1-7)

Filter is a reflection of about the vertical axis; filter is a re-
flected and translated (i.e., shifted) version of Neglecting translation,
the responses of the two filters are identical. Filter in Fig. 7.5(e), which is
defined as

(7.1-8)

is called a modulated version of Because modulation changes the signs
of all odd-indexed coefficients [i.e., the coefficients for which is odd in 
Fig. 7.5(e)], and while and

Finally, the sequence shown in Fig. 7.5(f) is an order-reversed
version of that is also modulated:

(7.1-9)

This sequence is included to illustrate the fact that sign reversal, order rever-
sal, and modulation are sometimes combined in the specification of the rela-
tionship between two filters.

With this brief introduction to digital signal filtering, consider the two-band
subband coding and decoding system in Fig. 7.6(a). As indicated in the figure,
the system is composed of two filter banks, each containing two FIR filters of
the type shown in Fig. 7.4(a). Note that each of the four FIR filters is depicted

h6(n) = (-1)nh1(K - 1 - n)

h1(n)
h5(2) = h1(2).

h5(0) = h1(0)h5(3) = -h1(3),h5(1) = -h1(1)
n

h1(n).

h5(n) = (-1)nh1(n)

h5(n)
h1(n).

h4(n)h1(n)h3(n)

h4(n) = h1(K - 1 - n)

h3(n) = h1(-n)

h1(n):
h4(n)h3(n)

b
a

A filter bank is a collec-
tion of two or more filters.
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†The vector inner product of sequences and is where the denotes

the complex conjugate operation. If and are real, 8f1, f29 = 8f2, f19.f2(n)f1(n)

*8f1, f29 = a
n

f1
*(n)f2(n),f2(n)f1(n)

By real-coefficient, we
mean that the filter 
coefficients are real (not
complex) numbers.

as a single block in Fig. 7.6(a), with the impulse response of each filter (and the
convolution symbol) written inside it. The analysis filter bank, which includes
filters and is used to break input sequence into two half-
length sequences and the subbands that represent the input. Note
that filters and are half-band filters whose idealized transfer char-
acteristics, and are shown in Fig. 7.6(b). Filter is a lowpass filter
whose output, subband is called an approximation of filter is
a highpass filter whose output, subband is called the high frequency or
detail part of Synthesis bank filters and combine and 

to produce The goal in subband coding is to select 
and so that That is, so that the input and output of the

subband coding and decoding system are identical. When this is accomplished,
the resulting system is said to employ perfect reconstruction filters.

There are many two-band, real-coefficient, FIR, perfect reconstruction fil-
ter banks described in the filter bank literature. In all of them, the synthesis fil-
ters are modulated versions of the analysis filters—with one (and only one)
synthesis filter being sign reversed as well. For perfect reconstruction, the im-
pulse responses of the synthesis and analysis filters must be related in one of
the following two ways:

(7.1-10)

or

(7.1-11)

Filters and in Eqs. (7.1-10) and (7.1-11) are said to be
cross-modulated because diagonally opposed filters in the block diagram of
Fig. 7.6(a) are related by modulation [and sign reversal when the modulation
factor is or ]. Moreover, they can be shown to satisfy the fol-
lowing biorthogonality condition:

(7.1-12)

Here, denotes the inner product of and †

When is not equal to the inner product is 0; when and are equal, the
product is the unit discrete impulse function, Biorthogonality will be con-
sidered again in Section 7.2.1.

Of special interest in subband coding—and in the development of the fast
wavelet transform of Section 7.4—are filters that move beyond biorthogonality
and require

d(n).
jij,i

gj(k).hi(2n - k)8hi(2n - k), gj(k)9
8hi(2n - k), gj(k)9 = d(i - j)d(n),  i, j = 50, 16

(-1)n + 1-(-1)n

g1(n)h0(n), h1(n), g0(n),

g1(n) = (-1)nh0(n)

g0(n) = (-1)n + 1h1(n)

g1(n) = (-1)n + 1h0(n)

g0(n) = (-1)nh1(n)

fN(n) = f(n).g1(n)g0(n),
h0(n), h1(n),fN(n).fhp(n)

flp(n)g1(n)g0(n)f(n).
fhp(n),

h1(n)f(n);flp(n),
h0(n)H1,H0

h1(n)h0(n)
fhp(n),flp(n)

f(n)h1(n),h0(n)

Equations (7.1-10)
through (7.1-14) are 
described in detail in the
filter bank literature (see,
for example, Vetterli and
Kovacevic [1995]).
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� h0(m)

f(m,n)

� h0(n)

� h1(n)

� h0(n)

� h1(n)

� h1(m)

Rows

Rows
(along m)

Columns
(along n)

Columns

Columns

Columns

a(m,n)

dV(m,n)

dH(m,n)

dD(m,n)

2T

2T

2T

2T

2T

2T

FIGURE 7.7
A two-
dimensional, four-
band filter bank
for subband
image coding.

(7.1-13)

which defines orthonormality for perfect reconstruction filter banks. In addi-
tion to Eq. (7.1-13), orthonormal filters can be shown to satisfy the following
two conditions:

(7.1-14)

where the subscript on is used to indicate that the number of filter coef-
ficients must be divisible by 2 (i.e., an even number). As Eq. (7.1-14) indicates,
synthesis filter is related to by order reversal and modulation. In addi-
tion, both and are order-reversed versions of synthesis filters, and 
respectively. Thus, an orthonormal filter bank can be developed around the
impulse response of a single filter, called the prototype; the remaining filters
can be computed from the specified prototype’s impulse response. For
biorthogonal filter banks, two prototypes are required; the remaining filters
can be computed via Eq. (7.1-10) or (7.1-11). The generation of useful proto-
type filters, whether orthonormal or biorthogonal, is beyond the scope of this
chapter. We simply use filters that have been presented in the literature and
provide references for further study.

Before concluding the section with a 2-D subband coding example, we note
that 1-D orthonormal and biorthogonal filters can be used as 2-D separable
filters for the processing of images. As can be seen in Fig. 7.7, the separable fil-
ters are first applied in one dimension (e.g., vertically) and then in the other
(e.g., horizontally) in the manner introduced in Section 2.6.7. Moreover, down-
sampling is performed in two stages—once before the second filtering opera-
tion to reduce the overall number of computations. The resulting filtered

g1,g0h1h0

g0g1

Keven

hi (n) = gi (Keven - 1 - n),  i = 50, 16
g1(n) = (-1)ng0(Keven - 1 - n)

8gi(n), gj(n + 2m)9 = d(i - j)d(m),  i, j = 50, 16
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FIGURE 7.8
The impulse
responses of four
8-tap Daubechies
orthonormal
filters. See 
Table 7.1 for the
values of for
0 … n … 7.

g0(n)

outputs, denoted and in Fig. 7.7, are
called the approximation, vertical detail, horizontal detail, and diagonal detail
subbands of the input image, respectively. These subbands can be split into
four smaller subbands, which can be split again, and so on—a property that
will be described in greater detail in Section 7.4.

dD(m, n)a(m, n), dV(m, n), dH(m, n),

EXAMPLE 7.2:
A four-band
subband coding of
the vase in Fig. 7.1.

■ Figure 7.8 shows the impulse responses of four 8-tap orthonormal filters.
The coefficients of prototype synthesis filter for [in Fig. 7.8(c)]
are defined in Table 7.1 (Daubechies [1992]). The coefficients of the remaining
orthonormal filters can be computed using Eq. (7.1-14). With the help of Fig.
7.5, note (by visual inspection) the cross modulation of the analysis and synthe-
sis filters in Fig. 7.8. It is relatively easy to show numerically that the filters are

0 … n … 7g0(n)

c d
a b

0 0.23037781
1 0.71484657
2 0.63088076
3
4
5 0.03084138
6 0.03288301
7 -0.01059740

-0.18703481
-0.02798376

g0(n)nTABLE 7.1 
Daubechies 8-tap
orthonormal filter
coefficients for

(Daubechies
[1992]).
g0(n)
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FIGURE 7.9
A four-band split
of the vase in 
Fig. 7.1 using the
subband coding
system of Fig. 7.7.
The four
subbands that
result are the 
(a) approximation,
(b) horizontal
detail, (c) vertical
detail, and 
(d) diagonal detail
subbands.

both biorthogonal (they satisfy Eq. 7.1-12) and orthonormal (they satisfy Eq. 7.1-
13).As a result, the Daubechies 8-tap filters in Fig. 7.8 support error-free recon-
struction of the decomposed input.

A four-band split of the image of a vase in Fig. 7.1, based on the
filters in Fig. 7.8, is shown in Fig. 7.9. Each quadrant of this image is a subband
of size Beginning with the upper-left corner and proceeding in a
clockwise manner, the four quadrants contain approximation subband hori-
zontal detail subband diagonal detail subband and vertical detail sub-
band respectively. All subbands, except the approximation subband in
Fig. 7.9(a), have been scaled to make their underlying structure more visible.
Note the visual effects of aliasing that are present in Figs. 7.9(b) and (c)—the 
and subbands. The wavy lines in the window area are due to the downsam-
pling of a barely discernable window screen in Fig. 7.1. Despite the aliasing, the
original image can be reconstructed from the subbands in Fig. 7.9 without
error. The required synthesis filters, and are determined from
Table 7.1 and Eq. (7.1-14), and incorporated into a filter bank that roughly
mirrors the system in Fig. 7.7. In the new filter bank, filters for 
are replaced by their counterparts, and upsamplers and summers are
added. ■

gi(n)
i = 50, 16hi(n)

g1(n),g0(n)

dV
dH

dV,
dD,dH,

a,
256 * 256.

512 * 512

c d
a b

See Section 4.5.4 for
more on aliasing.
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7.1.3 The Haar Transform
The third and final imaging-related operation with ties to multiresolution
analysis that we will look at is the Haar transform (Haar [1910]). Within
the context of this chapter, its importance stems from the fact that its basis
functions (defined below) are the oldest and simplest known orthonormal
wavelets. They will be used in a number of examples in the sections that
follow.

With reference to the discussion in Section 2.6.7, the Haar transform can be
expressed in the following matrix form

(7.1-15)

where F is an image matrix, H is an Haar transformation
matrix, and T is the resulting transform. The transpose is required
because H is not symmetric; in Eq. (2.6-38) of Section 2.6.7, the transforma-
tion matrix is assumed to be symmetric. For the Haar transform, H contains
the Haar basis functions, They are defined over the continuous, closed
interval for where To generate H,
we define the integer such that where 

or 1 for and for Then the Haar basis func-
tions are

(7.1-16)

and

(7.1-17)

The ith row of an Haar transformation matrix contains the elements
of for For instance, if the
first row of the Haar matrix is computed using with 
From Eq. (7.1-16), is equal to independent of so the first row of

has two identical elements.The second row is obtained by computing
for Because when and
Thus, from Eq. (7.1-17),

and the Haar matrix is

(7.1-18)H2 =
1
12
B1 1

1 -1
R2 * 2= -1>12,

h1(0) = 20>12 = 1>12, h1(1>2) = -20>12q = 1.
k = 1, p = 0k = 2p + q - 1,z = 0>2, 1>2.h1(z)

1>12H2

z,1>12,h0(z)
z = 0>2, 1>2.h0(z)2 * 2

N = 2,z = 0>N, 1>N, 2>N, Á , (N - 1)>N.hi (z)
N * N

hk(z) = hpq(z) =
1
1N

c 2p>2 (q - 1)>2p … z 6 (q - 0.5)>2p

-2p>2 (q - 0.5)>2p … z 6 q>2p

0 otherwise, z H [0, 1]

h0(z) = h00(z) =
1
1N

 ,  z H [0, 1]

p Z 0.1 … q … 2pp = 0,q = 0
0 … p … n - 1,k = 2p + q - 1,k

N = 2n.k = 0, 1, 2, Á , N - 1,z H [0, 1]
hk(z).

N * N
N * NN * N

T = HFHT
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0 0 0
1 0 1
2 1 1
3 1 2

qpk

If and assume the valuespN = 4, k, q,

EXAMPLE 7.3:
Haar functions in
a discrete wavelet
transform.

■ Figure 7.10(a) shows a decomposition of the image in Fig. 7.1
that combines the key features of pyramid coding, subband coding, and the
Haar transform (the three techniques we have discussed so far). Called the
discrete wavelet transform (and developed later in the chapter), the represen-
tation is characterized by the following important features:

1. With the exception of the subimage in the upper-left corner of Fig. 7.10(a),
the local histograms are very similar. Many of the pixels are close to zero.
Because the subimages (except for the subimage in the upper-left corner)
have been scaled to make their underlying structure more visible, the dis-
played histograms are peaked at intensity 128 (the zeroes have been
scaled to mid-gray). The large number of zeroes in the decomposition
makes the image an excellent candidate for compression (see Chapter 8).

2. In a manner that is similar to the way in which the levels of the prediction
residual pyramid of Fig. 7.3(b) were used to create approximation images
of differing resolutions, the subimages in Fig. 7.10(a) can be used to con-
struct both coarse and fine resolution approximations of the original
vase image in Fig. 7.1. Figures 7.10(b) through (d), which are of size

512 * 512

and the transformation matrix, is

(7.1-19)

Our principal interest in the Haar transform is that the rows of can be used
to define the analysis filters, and of a 2-tap perfect reconstruction
filter bank (see the previous section), as well as the scaling and wavelet vectors
(defined in Sections 7.2.2 and 7.2.3, respectively) of the simplest and oldest
wavelet transform (see Example 7.10 in Section 7.4). Rather than concluding
the section with the computation of a Haar transform, we close with an exam-
ple that illustrates the influence of the decomposition methods that have been
considered to this point on the methods that will be developed in the remainder
of the chapter.

h1(n),h0(n)
H2

H4 =
1
14
D 1 1 1 1

1 1 -1 -1
12 -12 0 0

0 0 12 -12

T
H4,4 * 4
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FIGURE 7.10
(a) A discrete
wavelet transform
using Haar 
basis functions. Its
local histogram
variations are also
shown. (b)–(d)
Several different
approximations
(

and
) that

can be obtained
from (a).

256 * 256
128 * 128,
64 * 64,

H2

and respectively, were generated from
the subimages in Fig. 7.10(a). A perfect reconstruction of the
original image is also possible.

3. Like the subband coding decomposition in Fig. 7.9, a simple real-coefficient,
FIR filter bank of the form given in Fig. 7.7 was used to produce Fig. 7.10(a).
After the generation of a four subband image like that of Fig. 7.9, the

approximation subband was decomposed and replaced by four
subbands (using the same filter bank), and the resulting approx-

imation subband was again decomposed and replaced by four sub-
bands. This process produced the unique arrangement of subimages that

64 * 64
128 * 128
256 * 256

512 * 512
256 * 256,64 * 64, 128 * 128,

b c d
a
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characterizes discrete wavelet transforms. The subimages in Fig. 7.10(a)
become smaller in size as you move from the lower-right-hand to upper-
left-hand corner of the image.

4. Figure 7.10(a) is not the Haar transform of the image in Fig. 7.1. Although
the filter bank coefficients that were used to produce this decomposition
were taken from Haar transformation matrix a variety of othronormal
and biorthogonal filter bank coefficients can be used in discrete wavelet
transforms.

5. As will be shown in Section 7.4, each subimage in Fig. 7.10(a) represents a
specific band of spatial frequencies in the original image. In addition,
many of the subimages demonstrate directional sensitivity [e.g., the
subimage in the upper-right corner of Fig. 7.10(a) captures horizontal edge
information in the original image].

Considering this impressive list of features, it is remarkable that the discrete
wavelet transform of Fig. 7.10(a) was generated using two 2-tap digital filters
with a total of four filter coefficients. ■

7.2 Multiresolution Expansions

The previous section introduced three well-known imaging techniques that
play an important role in a mathematical framework called multiresolution
analysis (MRA). In MRA, a scaling function is used to create a series of ap-
proximations of a function or image, each differing by a factor of 2 in resolu-
tion from its nearest neighboring approximations. Additional functions, called
wavelets, are then used to encode the difference in information between adja-
cent approximations.

7.2.1 Series Expansions
A signal or function can often be better analyzed as a linear combination
of expansion functions

(7.2-1)

where is an integer index of a finite or infinite sum, the are real-valued
expansion coefficients, and the are real-valued expansion functions. If
the expansion is unique—that is, there is only one set of for any given —
the are called basis functions, and the expansion set, , is called a
basis for the class of functions that can be so expressed. The expressible func-
tions form a function space that is referred to as the closed span of the expan-
sion set, denoted

(7.2-2)

To say that means that is in the closed span of and can
be written in the form of Eq. (7.2-1).

Ewk(x)Ff(x)f(x) H V

V = Span
k
Ewk(x)F

Ewk(x)Fwk(x)
f(x)ak

wk(x)
akk

f(x) = a
k
akwk(x)

f(x)

H2,
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‡The norm of denoted is defined as the square root of the absolute value of the inner prod-
uct of with itself.f(x)

7f(x) 7 ,f(x),

For any function space and corresponding expansion set there is a
set of dual functions denoted that can be used to compute the coeffi-
cients of Eq. (7.2-1) for any These coefficients are computed by taking
the integral inner products† of the dual and function That is,

(7.2-3)

where the denotes the complex conjugate operation. Depending on the or-
thogonality of the expansion set, this computation assumes one of three possi-
ble forms. Problem 7.10 at the end of the chapter illustrates the three cases
using vectors in two-dimensional Euclidean space.

Case 1: If the expansion functions form an orthonormal basis for 
meaning that

(7.2-4)

the basis and its dual are equivalent. That is, and Eq. (7.2-3)
becomes

(7.2-5)

The are computed as the inner products of the basis functions and 

Case 2: If the expansion functions are not orthonormal, but are an orthog-
onal basis for then

(7.2-6)

and the basis functions and their duals are called biorthogonal. The are
computed using Eq. (7.2-3), and the biorthogonal basis and its dual are
such that

(7.2-7)

Case 3: If the expansion set is not a basis for but supports the expan-
sion defined in Eq. (7.2-1), it is a spanning set in which there is more than
one set of for any The expansion functions and their duals are
said to be overcomplete or redundant. They form a frame in which‡

(7.2-8)A 7f(x) 72 … a
k

ƒ 8wk(x), f(x)9 ƒ 2 … B 7f(x) 72

f(x) H V.ak

V,

8wj(x), w
'

k(x)9 = djk = b0 j Z k

1 j = k

ak

8wj (x), wk(x)9 = 0 j Z k

V,

f(x).ak

ak = 8wk(x), f(x)9
wk(x) = w' k(x)

8wj (x), wk (x)9 = djk = b0 j Z k

1 j = k

V,

*

ak = 8w' k(x), f(x)9 = Lw
'

k
*(x)f(x) dx

f(x).w
'

k(x)
f(x) H V.

akEw' k(x)F
Ewk(x)F ,V

†The integral inner product of two real or complex-valued functions and is 

If is real, and 8f(x), g(x)9 =Lf(x)g(x) dx.f*(x) = f(x)f(x)Lf*(x)g(x) dx.

8f(x), g(x)9 =g(x)f(x)
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for some and all Dividing this equation by the
norm squared of we see that and “frame” the normalized inner
products of the expansion coefficients and the function. Equations similar
to (7.2-3) and (7.2-5) can be used to find the expansion coefficients for
frames. If the expansion set is called a tight frame and it can be
shown that (Daubechies [1992])

(7.2-9)

Except for the term, which is a measure of the frame’s redundancy,
this is identical to the expression obtained by substituting Eq. (7.2-5) (for
orthonormal bases) into Eqs. (7.2-1).

7.2.2 Scaling Functions
Consider the set of expansion functions composed of integer translations and
binary scalings of the real, square-integrable function this is the set

where

(7.2-10)

for all and † Here, determines the position of 
along the x-axis, and determines the width of —that is, how broad or
narrow it is along the x-axis. The term controls the amplitude of the func-
tion. Because the shape of changes with is called a scaling function.
By choosing properly, can be made to span which is the
set of all measurable, square-integrable functions.

If we restrict in Eq. (7.2-10) to a specific value, say , the resulting
expansion set, , is a subset of that spans a subspace of 
Using the notation of the previous section, we can define that subspace as

(7.2-11)

That is, is the span of over If we can write

(7.2-12)

More generally, we will denote the subspace spanned over for any as

(7.2-13)

As will be seen in the following example, increasing increases the size of 
allowing functions with smaller variations or finer detail to be included in the
subspace. This is a consequence of the fact that, as increases, the that
are used to represent the subspace functions become narrower and separated
by smaller changes in x.

wj,k(x)j

Vj,j

Vj = Span
k
Ewj,k(x)F

jk

f(x) = a
k

akwj0 ,k(x)

f(x) H Vj0
,k.wj0 , k(x)Vj0

Vj0
= Span

k
Ewj0 ,k(x)F

L2(R).Ewj,k(x)FEwj0,k(x)F
j = j0j

L2(R),Ewj,k(x)Fw(x)
j, w(x)wj,k(x)

2j>2
wj,k(x)j

wj, k(x)kw(x) H L2(R).j, k H Z

wj, k(x) = 2j>2w(2jx - k)

Ewj,k(x)F , w(x);

A-1

f(x) =
1
A ak 8wk(x), f(x)9wk(x)

A = B,

BAf(x),
f(x) H V.A 7 0, B 6 q ,

†The notation where R is the set of real numbers, denotes the set of measurable, square-integrable,
one-dimensional functions; Z is the set of integers.

L2(R),
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w1,1(x) �   2 w(2x � 1)

0

1

0 1 2 3

x x

w0,0(x) � w(x) w0,1(x) � w(x � 1)

w0,0 (x) H V1f(x) H V1

x x

0

1

0 1 2 3

0

1

0 1 2 3

0

1

0 1 2 3

x

0

1

0 1 2 3
x

0

1

0 1 2 3

�1,1

�0.25 �1,4

0.5 �1,0

w1,0(x) �   2 w(2x)

w1,0/

w1,1/ 2

2

FIGURE 7.11
Some Haar
scaling functions.

■ Consider the unit-height, unit-width scaling function (Haar [1910])

(7.2-14)

Figures 7.11(a) through (d) show four of the many expansion functions that
can be generated by substituting this pulse-shaped scaling function into
Eq. (7.2-10). Note that the expansion functions for in Figs. 7.11(c) and
(d) are half as wide as those for in Figs. 7.11(a) and (b). For a given in-
terval on we can define twice as many scaling functions as scaling func-
tions (e.g., and of versus of for the interval ).

Figure 7.11(e) shows a member of subspace This function does not be-
long to because the expansion functions in 7.11(a) and (b) are too
coarse to represent it. Higher-resolution functions like those in 7.11(c) and (d)

V0V0,
V1.

0 … x 6 1V0w0,0V1w1,1w1,0

V0V1x,
j = 0

j = 1

w(x) = b1 0 … x 6 1
0 otherwise

EXAMPLE 7.4:
The Haar scaling
function.

c d
e f

a b
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V0

V0 V1 V2 FIGURE 7.12
The nested
function spaces
spanned by a
scaling function.

are required. They can be used, as shown in (e), to represent the function by
the three-term expansion

To conclude the example, Fig. 7.11(f) illustrates the decomposition of
as a sum of expansion functions. In a similar manner, any expan-

sion function can be decomposed using

Thus, if is an element of it is also an element of This is because all
expansion functions are contained in Mathematically, we write that is

a subspace of  denoted  ■

The simple scaling function in the preceding example obeys the four funda-
mental requirements of multiresolution analysis (Mallat [1989a]):

MRA Requirement 1: The scaling function is orthogonal to its integer
translates.
This is easy to see in the case of the Haar function, because whenever it has a
value of 1, its integer translates are 0, so that the product of the two is 0.The
Haar scaling function is said to have compact support, which means that it is
0 everywhere outside a finite interval called the support. In fact, the width of
the support is 1; it is 0 outside the half open interval [0, 1). It should be noted
that the requirement for orthogonal integer translates becomes harder to
satisfy as the width of support of the scaling function becomes larger than 1.

MRA Requirement 2: The subspaces spanned by the scaling function at low
scales are nested within those spanned at higher scales.
As can be seen in Fig. 7.12, subspaces containing high-resolution functions
must also contain all lower resolution functions. That is,

(7.2-15)

Moreover, the subspaces satisfy the intuitive condition that if then
The fact that the Haar scaling function meets this requirementf(2x) H Vj + 1.

f(x) H Vj,

V-q ( Á ( V-1 ( V0 ( V1 ( V2 ( Á ( Vq

V0 ( V1.V1,
V0V1.V0

V1.V0,f(x)

w0,k(x) =
1
12
w1,2k(x) +

1
12
w1,2k + 1(x)

V0V1w0,0(x)

f(x) = 0.5w1,0 (x) + w1,1 (x) - 0.25w1,4 (x)
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The are changed to
because they are

used later (see Section
7.4) as filter bank 
coefficients.

hw(n)
an

should not be taken to indicate that any function with a support width of 1
automatically satisfies the condition. It is left as an exercise for the reader
to show that the equally simple function

is not a valid scaling function for a multiresolution analysis (see Problem 7.11).

MRA Requirement 3:The only function that is common to all is 
If we consider the coarsest possible expansion functions (i.e., ),
the only representable function is the function of no information. That is,

(7.2-16)

MRA Requirement 4:Any function can be represented with arbitrary precision.
Though it may not be possible to expand a particular at an arbitrarily
coarse resolution, as was the case for the function in Fig. 7.11(e), all mea-
surable, square-integrable functions can be represented by the scaling
functions in the limit as That is,

(7.2-17)

Under these conditions, the expansion functions of subspace can be ex-
pressed as a weighted sum of the expansion functions of subspace Using
Eq. (7.2-12), we let

where the index of summation has been changed to for clarity. Substituting
for from Eq. (7.2-10) and changing variable to this becomes

Because both and can be set to 0 to obtain the simpler non-
subscripted expression

(7.2-18)

The coefficients in this recursive equation are called scaling function co-
efficients; is referred to as a scaling vector. Equation (7.2-18) is fundamental
to multiresolution analysis and is called the refinement equation, the MRA
equation, or the dilation equation. It states that the expansion functions of any
subspace can be built from double-resolution copies of themselves—that is,
from expansion functions of the next higher resolution space. The choice of a
reference subspace, is arbitrary.V0,

hw

hw(n)

w(x) = a
n

hw(n)12w(2x - n)

kjw(x) = w0,0 (x),

wj,k (x) = a
n

hw(n)2(j + 1)>2w(2j + 1x - n)

hw(n),anwj + 1,n (x)
n

wj,k(x) = a
n
anwj + 1,n (x)

Vj + 1.
Vj

Vq = EL2(R)F
j: q .

f(x)

V-q = 506

j = - q
f(x) = 0.Vj

w(x) = b1 0.25 … x 6 0.75
0 elsewhere
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V0

V2 � V1 { W1 �V0 { W0 { W1

W0

W1

V1 � V0 { W0

FIGURE 7.13
The relationship
between scaling
and wavelet
function spaces.

EXAMPLE 7.5:
Haar scaling
function
coefficients.

■ The scaling function coefficients for the Haar function of Eq. (7.2-14)
are the first row of matrix in Eq. (7.1-18). Thus,
Eq. (7.2-18) yields

This decomposition was illustrated graphically for in Fig. 7.11(f), where
the bracketed terms of the preceding expression are seen to be and

Additional simplification yields ■

7.2.3 Wavelet Functions
Given a scaling function that meets the MRA requirements of the previous
section, we can define a wavelet function that, together with its integer
translates and binary scalings, spans the difference between any two adjacent 
scaling subspaces, and The situation is illustrated graphically in Fig. 7.13.
We define the set of wavelets

(7.2-19)

for all that span the spaces in the figure. As with scaling functions, we
write

(7.2-20)

and note that if 

(7.2-21)

The scaling and wavelet function subspaces in Fig. 7.13 are related by

(7.2-22)

where denotes the union of spaces (like the union of sets). The orthogonal
complement of in is and all members of are orthogonal to the
members of Thus,

(7.2-23)

for all appropriate j, k, l H Z.

8wj,k(x), cj, l(x)9 = 0
Wj.

VjWj,Vj + 1Vj

{

Vj + 1 = Vj { Wj

f(x) = a
k

akcj,k(x)

f(x) H Wj,

Wj = Span
k
Ecj,k(x)F

Wjk H Z

cj,k (x) = 2j>2c(2jx - k)

5cj,k (x)6
Vj + 1.Vj

c(x)

w(x) = w(2x) + w(2x - 1).w1,1(x).
w1,0(x)

w0,0 (x)

w(x) =
1
12
C12w(2x) D +

1
12
C12w(2x - 1) D

H2hw(0) = hw(1) = 1>12,



484 Chapter 7 ■ Wavelets and Multiresolution Processing

We can now express the space of all measurable, square-integrable func-
tions as

(7.2-24)

or

(7.2-25)

or even

(7.2-26)

which eliminates the scaling function, and represents a function in terms of
wavelets alone [i.e., there are only wavelet function spaces in Eq. (7.2-26)].
Note that if is an element of but not an expansion using Eq. (7.2-24)
contains an approximation of using scaling functions. Wavelets from

would encode the difference between this approximation and the actual
function. Equations (7.2-24) through (7.2-26) can be generalized to yield

(7.2-27)

where is an arbitrary starting scale.
Since wavelet spaces reside within the spaces spanned by the next higher

resolution scaling functions (see Fig. 7.13), any wavelet function—like its scal-
ing function counterpart of Eq. (7.2-18)—can be expressed as a weighted sum
of shifted, double-resolution scaling functions. That is, we can write

(7.2-28)

where the are called the wavelet function coefficients and is the
wavelet vector. Using the condition that wavelets span the orthogonal comple-
ment spaces in Fig. 7.13 and that integer wavelet translates are orthogonal, it
can be shown that is related to by (see, for example, Burrus,
Gopinath, and Guo [1998])

(7.2-29)

Note the similarity of this result and Eq. (7.1-14), the relationship governing
the impulse responses of orthonormal subband coding and decoding filters.

hc(n) = (-1)nhw(1 - n)

hw(n)hc(n)

hchc(n)

c(x) = a
n

hc(n)12w(2x - n)

j0

L2(R) = Vj0
{ Wj0

{ Wj0 + 1 { Á

W0

V0f(x)
V0,V1,f(x)

L2(R) = Á { W-2 { W-1 { W0 { W1 { W2 { Á

L2(R) = V1 { W1 { W2 { Á

L2(R) = V0 { W0 { W1 { Á

EXAMPLE 7.6:
The Haar wavelet
function
coefficients.

■ In the previous example, the Haar scaling vector was defined as
Using Eq. (7.2-29), the corresponding wavelet 

vector is and 
Note that these coefficients correspond to the second row of ma-

trix in Eq. (7.1-18). Substituting these values into Eq. (7.2-28), we getH2

= -1>12.
hc(1) = (-1)1hw(1 - 1)hc(0) = (-1)0hw(1 - 0) = 1>12

hw(0) = hw(1) = 1>12.
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c1,0(x) �   2 c(2x)

x x

c0,2(x) � c(x � 2)c(x) � c0,0(x)

f(x) H V1 � V0 { W0

x x

x x

0 1 2 3

0

1

�1

0 1 2 3

0

1

�1

0 1 2 3

0

1

�1

0 1 2 3

0

1

�1

0 1 2 3

0

1

�1

0 1 2 3

0

1

�1

3   2/4 w0,0

�   2/8 w0,2 �   2/4 c0,0

�   2/8 c0,2

fd(x) H W0fa(x) H V0

FIGURE 7.14
Haar wavelet
functions in 
and W1.

W0

which is plotted in Fig. 7.14(a). Thus, the Haar
wavelet function is

(7.2-30)

Using Eq. (7.2-19), we can now generate the universe of scaled and translated
Haar wavelets.Two such wavelets, and are plotted in Figs. 7.14(b)
and (c), respectively. Note that wavelet for space is narrower than 

for it can be used to represent finer detail.
Figure 7.14(d) shows a function of subspace that is not in subspace This

function was considered in an earlier example [see Fig. 7.11(e)]. Although the
function cannot be represented accurately in Eq. (7.2-22) indicates that it can
be expanded using and expansion functions.The resulting expansion is

f(x) = fa(x) + fd(x)

W0V0

V0,

V0.V1

W0;c0,2(x)
W1c1,0(x)

c1,0(x),c0,2(x)

c(x) = c 1 0 … x 6 0.5
-1 0.5 … x 6 1
0 elsewhere

c(x) = w(2x) - w(2x - 1),

c d
e f

a b
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where

and

Here, is an approximation of using scaling functions, while 
is the difference as a sum of wavelets. The two expansions,
which are shown in Figs. 7.14(e) and (f), divide in a manner similar to a
lowpass and highpass filter as discussed in connection with Fig. 7.6. The low
frequencies of are captured in —it assumes the average value of

in each integer interval—while the high-frequency details are encoded in
■

7.3 Wavelet Transforms in One Dimension

We can now formally define several closely related wavelet transformations:
the generalized wavelet series expansion, the discrete wavelet transform, and
the continuous wavelet transform. Their counterparts in the Fourier domain
are the Fourier series expansion, the discrete Fourier transform, and the inte-
gral Fourier transform, respectively. In Section 7.4, we develop a computation-
ally efficient implementation of the discrete wavelet transform called the fast
wavelet transform.

7.3.1 The Wavelet Series Expansions
We begin by defining the wavelet series expansion of function rel-
ative to wavelet and scaling function In accordance with Eq. (7.2-27),

can be represented by a scaling function expansion in subspace 
[Eq. (7.2-12) defines such an expansion] and some number of wavelet func-
tion expansions in subspaces [as defined in Eq. (7.2-21)]. Thus,

(7.3-1)

where is an arbitrary starting scale and the and are relabeled 
from Eqs. (7.2-12) and (7.2-21), respectively. The are normally called
approximation and/or scaling coefficients; the are referred to as detail
and/or wavelet coefficients.This is because the first sum in Eq. (7.3-1) uses scal-
ing functions to provide an approximation of at scale [unless 
so that the sum of the scaling functions is equal to ]. For each higher scale

in the second sum, a finer resolution function—a sum of wavelets—is
added to the approximation to provide increasing detail. If the expansion
j Ú j0

f(x)
f(x) H Vj0

j0f(x)

dj(k)
cj0

(k)
akdj(k)cj0

(k)j0

f(x) = a
k

cj0
(k)wj0,k(x) + a

q

j = j0

a
k

dj(k)cj,k(x)

Wj0
, Wj0 + 1, Á

Vj0
f(x)

w(x).c(x)
f(x) H L2(R)

fd(x).
f(x)

fa(x)f(x)

f(x)
W0f(x) - fa(x)

fd(x)V0f(x)fa(x)

fd(x) =
-12

4
c0,0(x) -

12
8
c0,2(x)

fa(x) =
312

4
w0,0(x) -

12
8
w0,2(x)
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Because is real, no con-
jugates are needed in the
inner products of Eqs.
(7.3-2) and (7.3-3).

f

functions form an orthonormal basis or tight frame, which is often the case, the
expansion coefficients are calculated—based on Eqs. (7.2-5) and (7.2-9)—as

(7.3-2)

and

(7.3-3)

In Eqs. (7.2-5) and (7.2-9), the expansion coefficients (i.e., the ) are defined
as inner products of the function being expanded and the expansion functions
being used. In Eqs. (7.3-2) and (7.3-3), the expansion functions are the and

the expansion coefficients are the and If the expansion functions
are part of a biorthogonal basis, the and terms in these equations must be
replaced by their dual functions, and respectively.c

'
,w

'
cw

dj.cj0
cj,k;

wj0,k

ak

dj(k) = 8f(x), cj,k(x)9 = Lf(x)cj,k(x) dx

cj0
(k) = 8f(x), wj0, k(x)9 = Lf(x)wj0,k(x) dx

EXAMPLE 7.7:
The Haar wavelet
series expansion
of y = x2.

■ Consider the simple function

shown in Fig. 7.15(a). Using Haar wavelets—see Eqs. (7.2-14) and (7.2-30)—
and a starting scale Eqs. (7.3-2) and (7.3-3) can be used to compute the
following expansion coefficients:

Substituting these values into Eq. (7.3-1), we get the wavelet series expansion

y =
1
3
w0,0(x) + c - 1

4
c0,0(x) d + c -12

32
c1,0(x) - 312

32
c1,1(x) d + Á

d1(1) = L
1

0
x2c1,1(x) dx = L

0.75

0.5
x212 dx - L

1

0.75
x212 dx = -

312
32

d1(0) = L
1

0
x2c1,0(x) dx = L

0.25

0
x212 dx - L

0.5

0.25
x212 dx = -

12
32

d0(0) = L
1

0
x2c0,0(x) dx = L

0.5

0
x2 dx - L

1

0.5
x2 dx = -

1
4

c0(0) = L
1

0
x2w0,0(x) dx = L

1

0
x2 dx =

x3

3
`
0

1

=
1
3

j0 = 0,

y = bx2 0 … x … 1
0 otherwise

¯˘˚̇ ¯˚̊ ˘˚˙
¯˚̊ ˚̊ ˚̆ ˚̊ ˚̊ ˙

¯˚˚˚˚̊ ˚˘˚˚˚˚˚˚˙

¯˚˚˚˚˚˚˚˚˚˚˚˚˘˚˚˚˚˚˚˚˚˚˚˙

W1W0V0

V2 = V1 { W1 = V0 { W0 { W1

V1 = V0 { W0
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FIGURE 7.15
A wavelet series
expansion of

using Haar
wavelets.
y = x2

The first term in this expansion uses to generate a subspace approxima-
tion of the function being expanded. This approximation is shown in Fig. 7.15(b)
and is the average value of the original function.The second term uses to
refine the approximation by adding a level of detail from subspace The
added detail and resulting approximation are shown in Figs. 7.15(c) and
(d), respectively. Another level of detail is added by the subspace coeffi-
cients and This additional detail is shown in Fig. 7.15(e), and the
resulting approximation is depicted in 7.15(f). Note that the expansion is
now beginning to resemble the original function.As higher scales (greater lev-
els of detail) are added, the approximation becomes a more precise represen-
tation of the function, realizing it in the limit as  ■

7.3.2 The Discrete Wavelet Transform
Like the Fourier series expansion, the wavelet series expansion of the previous
section maps a function of a continuous variable into a sequence of coeffi-
cients. If the function being expanded is discrete (i.e., a sequence of numbers),
the resulting coefficients are called the discrete wavelet transform (DWT). For
example, if for some and n = 0, 1, 2, Á , M - 1,x0 , ¢x,f(n) = f(x0 + n ¢x)

j: q .

V2

d1(1).d1(0)
W1

V1

W0.
d0(0)

V0c0(0)

c d
e f

a b
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the wavelet series expansion coefficients for [defined by Eqs. (7.3-2) and
(7.3-3)] become the forward DWT coefficients for sequence 

(7.3-5)

(7.3-6)

The and in these equations are sampled versions of basis func-
tions and For example, for some

and Thus, we employ equally spaced sam-
ples over the support of the basis functions (see Example 7.8 below). In accor-
dance with Eq. (7.3-1), the complementary inverse DWT is

(7.3-7)

Normally, we let and select to be a power of 2 (i.e., ) so 
that the summations in Eqs. (7.3-5) through (7.3-7) are performed over

and For
Haar wavelets, the discretized scaling and wavelet functions employed in the
transform (i.e., the basis functions) correspond to the rows of the 
Haar transformation matrix of Section 7.1.3. The transform itself is composed
of coefficients, the minimum scale is 0, and the maximum scale is For
reasons noted in Section 7.3.1 and illustrated in Example 7.6, the coefficients
defined in Eqs. (7.3-5) and (7.3-6) are usually called approximation and detail
coefficients, respectively.

The and in Eqs. (7.3-5) to (7.3-7) correspond to the
and of the wavelet series expansion in the previous section. (This

change of variables is not necessary but paves the way for the standard nota-
tion used for the continuous wavelet transform of the next section.) Note that
the integrations in the series expansion have been replaced by summations,
and a normalizing factor, reminiscent of the DFT in Section 4.4.1, has
been added to both the forward and inverse expressions. This factor alternate-
ly could be incorporated into the forward or inverse alone as Finally, it
should be remembered that Eqs. (7.3-5) through (7.3-7) are valid for ortho-
normal bases and tight frames alone. For biorthogonal bases, the and 
terms in Eqs. (7.3-5) and (7.3-6) must be replaced by their duals, and 
respectively.

c
'

,w
'

cw

1>M.

1>1M

dj(k)cj0
(k)

Wc(j, k)Ww(j0, k)

J - 1.M

M * M

k = 0, 1, 2, Á , 2j - 1.n = 0, 1, 2, Á , M - 1, j = 0, 1, 2, Á , J - 1,

M = 2JMj0 = 0

f(n) =
1
1M a

k

Ww (j0, k)wj0,k (n) +
1
1M a

q

j = j0

a
k

Wc (j, k)cj, k (n)

Mn = 0, 1, 2, Á , M - 1.xs, ¢xs,
wj0, k (n) = wj0,k (xS + n¢xs)cj, k (x).wj0,k(x)

cj,k (n)wj0, k(n)

Wc (j, k) =
1
1M a

n
f(n)cj, k (n) for j Ú j0

Ww (j0, k) =
1
1M a

n
f(n)wj0, k (n)

f(n):
f(x)

EXAMPLE 7.8:
Computing a one-
dimensional
discrete wavelet
transform.

■ To illustrate the use of Eqs. (7.3-5) through (7.3-7), consider the discrete
function of four points: and Because

and, with the summations are performed over
and for or for We will use

the Haar scaling and wavelet functions and assume that the four samples of
j = 1.k = 0, 1j = 0k = 0x = 0, 1, 2, 3, j = 0, 1,

j0 = 0,M = 4, J = 2
f(3) = 0.f(0) = 1, f(1) = 4, f(2) = -3,
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are distributed over the support of the basis functions, which is 1 in width.
Substituting the four samples into Eq. (7.3-5), we find that

because for Note that we have employed uniformly
spaced samples of the Haar scaling function for and The values
correspond to the first row of Haar transformation matrix of Section 7.1.3.
Continuing with Eq. (7.3-6) and similarly spaced samples of which cor-
respond to rows 2, 3, and 4 of we get

Thus, the discrete wavelet transform of our simple four-sample function rela-
tive to the Haar wavelet and scaling function is 
where the transform coefficients have been arranged in the order in which
they were computed.

Equation (7.3-7) lets us reconstruct the original function from its transform.
Iterating through its summation indices, we get

for If for instance,

As in the forward case, uniformly spaced samples of the scaling and wavelet
functions are used in the computation of the inverse. ■

The four-point DWT in the preceding example is an illustration of a two-
scale decomposition of —that is, The underlying assumption
was that starting scale was zero, but other starting scales are possible. It is
left as an exercise for the reader (see Problem 7.16) to compute the single-
scale transform which results when the
starting scale is 1. Thus, Eqs. (7.3-5) and (7.3-6) define a “family” of transforms
that differ in starting scale j0.

E2.512, -1.512, -1.512, -1.512F ,
j0

j = 50, 16.f(n)

f(0) =
1
2
C1 # 1 + 4 # 1 - 1.512 # A12 B - 1.512 # 0 D = 1

n = 0,n = 0, 1, 2, 3.

+ Wc(1, 1)c1, 1 (n) D
f(n) =

1
2
CWw (0, 0)w0,0(n) + Wc (0, 0)c0,0(n) + Wc (1, 0)c1,0(n)

E1, 4, -1.512, -1.512F ,
Wc(1, 1) =

1
2
C1 # 0 + 4 # 0 - 3 # 12 + 0 # A -12 B D = -1.512

Wc(1, 0) =
1
2
C1 # 12 + 4 # A -12 B - 3 # 0 + 0 # 0 D = -1.512

Wc(0, 0) =
1
2
C1 # 1 + 4 # 1 - 3 # (-1) + 0 # (-1) D = 4

H4,
cj,k(x),

H4

k = 0.j = 0
n = 0, 1, 2, 3.w0,0(n) = 1

=
1
2
C1 # 1 + 4 # 1 - 3 # 1 + 0 # 1 D = 1

Ww(0, 0) =
1
2 a

3

n = 0
f(n)w0, 0 (n)

f(x)
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7.3.3 The Continuous Wavelet Transform
The natural extension of the discrete wavelet transform is the continuous
wavelet transform (CWT), which transforms a continuous function into a highly
redundant function of two continuous variables—translation and scale.The re-
sulting transform is easy to interpret and valuable for time-frequency analysis.
Although our interest is in discrete images, the continuous transform is cov-
ered here for completeness.

The continuous wavelet transform of a continuous, square-integrable func-
tion, relative to a real-valued wavelet, is defined as

(7.3-8)

where

(7.3-9)

and and are called scale and translation parameters, respectively. Given
can be obtained using the inverse continuous wavelet transform

(7.3-10)

where

(7.3-11)

and is the Fourier transform of Equations (7.3-8) through (7.3-11)
define a reversible transformation as long as the so-called admissibility criterion,

is satisfied (Grossman and Morlet [1984]). In most cases, this sim-
ply means that and as fast enough to make

The preceding equations are reminiscent of their discrete counterparts—
Eqs. (7.2-19), (7.3-1), (7.3-3), (7.3-6), and (7.3-7). The following similarities
should be noted:

1. The continuous translation parameter, takes the place of the integer
translation parameter,

2. The continuous scale parameter, is inversely related to the binary scale
parameter, This is because appears in the denominator of

in Eq. (7.3-9). Thus, wavelets used in continuous transforms
are compressed or reduced in width when and dilated or ex-
panded when Wavelet scale and our traditional notion of frequency
are inversely related.

s 7 1.
0 6 s 6 1

c A(x - t)>s B s2j.
s,

k.
t,

Cc 6 q .
m: q°(m): 0°(0) = 0

Cc 6 q ,

c(x).°(m)

Cc = L
q

-q

ƒ °(m) ƒ 2

ƒm ƒ
dm

f(x) =
1

Cc L
q

0 L
q

-q
Wc(s, t)

cs,t(x)

s2 dt ds

Wc(s, t), f(x)
ts

cs,t(x) =
1
1s
c¢x - t

s
≤

Wc(s, t) = L
q

-q
f(x)cs,t(x) dx

c(x),f(x),
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3. The continuous transform is similar to a series expansion [see Eq. (7.3-1)]
or discrete transform [see Eq. (7.3-6)] in which the starting scale

This—in accordance with Eq. (7.2-26)—eliminates explicit scal-
ing function dependence, so that the function is represented in terms of
wavelets alone.

4. Like the discrete transform, the continuous transform can be viewed as a

set of transform coefficients, that measure the similarity of 

with a set of basis functions, In the continuous case, however, both

sets are infinite. Because is real valued and each

coefficient from Eq. (7.3-8) is the integral inner product, of

and cs,t(x).f(x)

8f(x), cs,t(x)9,
cs,t(x) = cs,t

* (x),cs,t(x)

Ecs,t(x)F .
f(x)EWc(s, t)F ,

j0 = - q .

EXAMPLE 7.9:
A one-
dimensional
continuous
wavelet
transform.

■ The Mexican hat wavelet,

(7.3-12)

gets its name from its distinctive shape [see Fig. 7.16(a)]. It is proportional to
the second derivative of the Gaussian probability function, has an average
value of 0, and is compactly supported (i.e., dies out rapidly as ). Al-
though it satisfies the admissibility requirement for the existence of continuous,
reversible transforms, there is not an associated scaling function, and the com-
puted transform does not result in an orthogonal analysis. Its most distinguish-
ing features are its symmetry and the existence of the explicit expression of
Eq. (7.3-12).

The continuous, one-dimensional function in Fig. 7.16(a) is the sum of two
Mexican hat wavelets:

Its Fourier spectrum, shown in Fig. 7.16(b), reveals the close connection be-
tween scaled wavelets and Fourier frequency bands. The spectrum contains
two broad frequency bands (or peaks) that correspond to the two Gaussian-
like perturbations of the function.

Figure 7.16(c) shows a portion ( and ) of the CWT of
the function in Fig. 7.16(a) relative to the Mexican hat wavelet. Unlike the
Fourier spectrum in Fig. 7.16(b), it provides both spatial and frequency infor-
mation. Note, for example, that when the transform achieves a maxi-
mum at which corresponds to the location of the component
of Because the transform provides an objective measure of the similarity
between and the wavelets for which it is computed, it is easy to see how it
can be used for feature detection.We simply need wavelets that match the fea-
tures of interest. Similar observations can be drawn from the intensity plot in
Fig. 7.16(d), where the absolute value of the transform is displayed
as intensities between black and white. Note that the continuous wavelet
transform turns a 1-D function into a 2-D result. ■

ƒ Wc(s, t) ƒ

f(x)
f(x).

c1, 10 (x)t = 10,
s = 1,

t … 1001 … s … 10

f(x) = c1, 10(x) + c6, 80(x)

ƒ x ƒ : q

c(x) = ¢ 2
13
p-1>4≤(1 - x2)e-x2>2
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FIGURE 7.16
The continuous
wavelet transform
(c and d) and
Fourier spectrum
(b) of a
continuous 1-D
function (a).

7.4 The Fast Wavelet Transform

The fast wavelet transform (FWT) is a computationally efficient implementa-
tion of the discrete wavelet transform (DWT) that exploits a surprising but
fortunate relationship between the coefficients of the DWT at adjacent scales.
Also called Mallat’s herringbone algorithm (Mallat [1989a, 1989b]), the FWT
resembles the two-band subband coding scheme of Section 7.1.2.

Consider again the multiresolution refinement equation

(7.4-1)

Scaling by translating it by and letting gives

(7.4-2)= a
m

hw(m - 2k)12w (2j + 1x - m)

= a
m

hw(n)12w (2j + 1x - 2k - n)

w(2jx - k) = a
n

hw(n)12w A2(2jx - k) - n B
m = 2k + nk,2j,x

w(x) = a
n

hw(n)12w (2x - n) Equation (7.4-1) is Eq.
(7.2-18) of Section 7.2.2.

c d
a b
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Note that scaling vector can be thought of as the “weights” used to expand
as a sum of scale scaling functions. A similar sequence of

operations—beginning with Eq. (7.2-28)—provides an analogous result for
That is,

(7.4-3)

where scaling vector in Eq. (7.4-2) corresponds to wavelet vector 
in Eq. (7.4-3).

Now consider Eqs. (7.3-2) and (7.3-3) of Section 7.3.1. They define the
wavelet series expansion coefficients of continuous function Substituting
Eq. (7.2-19)—the wavelet defining equation—into Eq. (7.3-3), we get

(7.4-4)

which, upon replacing with the right side of Eq. (7.4-3), becomes

(7.4-5)

Interchanging the sum and integral and rearranging terms then gives

(7.4-6)

where the bracketed quantity is of Eq. (7.3-2) with and
To see this, substitute Eq. (7.2-10) into Eq. (7.3-2) and replace and 

with and respectively. Therefore, we can write

(7.4-7)

and note that the detail coefficients at scale are a function of the approxima-
tion coefficients at scale Using Eqs. (7.4-2) and (7.3-2) as the starting
point of a similar derivation involving the wavelet series expansion (and
DWT) approximation coefficients, we find similarly that

(7.4-8)

Because the and coefficients of the wavelet series expansion be-
come the and coefficients of the DWT when is discrete
(see Section 7.3.2), we can write

f(x)Wc(j, k)Ww(j, k)
dj(k)cj(k)

cj(k) = a
m

hw(m - 2k)cj + 1(m)

j + 1.
j

dj(k) = a
m

hc(m - 2k)cj + 1(m)

m,j + 1
kj0k = m.

j0 = j + 1cj0
(k)

dj(k) = a
m

hc(m - 2k)BLf(x)2(j + 1)>2w(2j + 1x - m)R
dj(k) = Lf(x)2j>2 Ba

m
hc(m - 2k)12w(2j + 1x - m)R dx

c(2jx - k)

dj(k) = Lf(x)2j>2c(2jx - k) dx

f(x).

hc(n)hw(n)

c(2jx - k) = a
m

hc(m - 2k)12w(2j + 1x - m)

c(2jx - k).

j + 1w(2jx - k)
hw

The wavelet series 
expansion coefficients
become the DWT 
coefficient when is 
discrete. Here, we begin
with the series expansion
coefficients to simplify
the derivation; we will be
able to substitute freely
from earlier results (like
the scaling and wavelet
function definitions).

f
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FIGURE 7.17
An FWT analysis
bank.

(7.4-9)

(7.4-10)

Equations (7.4-9) and (7.4-10) reveal a remarkable relationship between
the DWT coefficients of adjacent scales. Comparing these results to Eq. (7.1-7),
we see that both and the scale approximation and the de-
tail coefficients, can be computed by convolving the scale 
approximation coefficients, with the order-reversed scaling and wavelet vec-
tors, and and subsampling the results. Figure 7.17 summarizes
these operations in block diagram form. Note that this diagram is identical to
the analysis portion of the two-band subband coding and decoding system of
Fig. 7.6, with and Therefore, we can write

(7.4-11)

and

(7.4-12)

where the convolutions are evaluated at instants for As will be
shown in Example 7.10, evaluating convolutions at nonnegative, even indices
is equivalent to filtering and downsampling by 2.

Equations (7.4-11) and (7.4-12) are the defining equations for the computa-
tion of the fast wavelet transform. For a sequence of length the num-
ber of mathematical operations involved is on the order of That is, the
number of multiplications and additions is linear with respect to the length of
the input sequence—because the number of multiplications and additions in-
volved in the convolutions performed by the FWT analysis bank in Fig. 7.17 is
proportional to the length of the sequences being convolved. Thus, the FWT
compares favorably with the FFT algorithm, which requires on the order of

operations.
To conclude the development of the FWT, we simply note that the filter

bank in Fig. 7.17 can be “iterated” to create multistage structures for computing
DWT coefficients at two or more successive scales. For example, Fig. 7.18(a)
shows a two-stage filter bank for generating the coefficients at the two highest
scales of the transform. Note that the highest scale coefficients are assumed to
be samples of the function itself.That is, where is the highestJWw(J, n) = f(n),

O(M log2 M)

O(M).
M = 2J,

k Ú 0.n = 2k

Ww(j, k) = hw(-n)�Ww(j + 1, n) `
n = 2k,k Ú 0

Wc(j, k) = hc(-n)�Ww(j + 1, n) `
n = 2k,k Ú 0

h1(n) = hc(-n).h0(n) = hw(-n)

hc(-n),hw(-n)

j + 1Ww(j + 1, k),
jWc(j, k),Ww(j, k)

Ww(j, k) = a
m

hw(m - 2k)Ww(j + 1, m)

Wc(j, k) = a
m

hc(m - 2k)Ww(j + 1, m)

If in 
Eq. (7.4-9) is rewritten as

we see
that the first minus sign
is responsible for the
order reversal [see 
Eq. (7.1-6)], the is 
responsible for the 
subsampling [see Eq.
(7.1-2)], and is the
dummy variable for 
convolution [see 
Eq. (7.1-7)].

m

2k

hw(-(2k - m)),

hw(m - 2k)
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(a) A two-stage or
two-scale FWT
analysis bank and
(b) its frequency
splitting
characteristics.

scale. [In accordance with Section 7.2.2, where is the scaling
space in which resides.] The first filter bank in Fig. 7.18(a) splits the origi-
nal function into a lowpass, approximation component, which corresponds to
scaling coefficients and a highpass, detail component, correspond-
ing to coefficients This is illustrated graphically in Fig. 7.18(b),
where scaling space is split into wavelet subspace and scaling subspace

The spectrum of the original function is split into two half-band compo-
nents. The second filter bank of Fig. 7.18(a) splits the spectrum and subspace

the lower half-band, into quarter-band subspaces and with
corresponding DWT coefficients and respectively.

The two-stage filter bank of Fig. 7.18(a) is extended easily to any number of
scales. A third filter bank, for example, would operate on the co-
efficients, splitting scaling space into two eighth-band subspaces 
and Normally, we choose samples of and employ filter banks
(as in Fig. 7.17) to generate a P-scale FWT at scales 
The highest scale (i.e., ) coefficients are computed first; the lowest scale
(i.e., ) last. If function is sampled above the Nyquist rate, as is usu-
ally the case, its samples are good approximations of the scaling coefficients at
the sampling resolution and can be used as the starting high-resolution scaling
coefficient inputs. In other words, no wavelet or detail coefficients are needed
at the sampling scale. The highest-resolution scaling functions act as unit dis-
crete impulse functions in Eqs. (7.3-5) and (7.3-6), allowing to be used as
the scaling (approximation) input to the first two-band filter bank (Odegard,
Gopinath, and Burrus [1992]).

f(n)

f(x)J - P
J - 1

J - 1, J - 2, Á , J - P.
Pf(x)2JVJ - 3.

WJ - 3VJ - 2

Ww(J - 2, n)

Ww(J - 2, n),Wc(J - 2, n)
VJ - 2WJ - 2VJ - 1,

VJ - 1.
WJ - 1VJ

Wc(J - 1, n).
Ww(J - 1, n);

f(x)
VJf(x) H VJ,

b
a
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EXAMPLE 7.10:
Computing a 1-D
fast wavelet
transform.

■ To illustrate the preceding concepts, consider the discrete function 
from Example 7.8. As in that example, we will compute the

transform based on Haar scaling and wavelet functions. Here, however, we will
not use the basis functions directly, as was done in the DWT of Example 7.8.
Instead, we will use the corresponding scaling and wavelet vectors from
Examples 7.5 and 7.6:

(7.4-13)

and

(7.4-14)

These are the functions used to build the FWT filter banks; they provide the filter
coefficients. Note that because Haar scaling and wavelet functions are orthonor-
mal, Eq. (7.1-14) can be used to generate the FWT filter coefficients from a single
prototype filter—like in Table 7.2,which corresponds to in Eq.(7.1-14):

Since the DWT computed in Example 7.8 was composed of elements
we will compute the corresponding 

two-scale FWT for scales That is, (there are sam-
ples) and (we are working with scales and

in that order). The transform will be computed using the
two-stage filter bank of Fig. 7.18(a). Figure 7.19 shows the sequences that re-
sult from the required FWT convolutions and downsamplings. Note that func-
tion itself is the scaling (approximation) input to the leftmost filter bank.
To compute the coefficients that appear at the end of the upper
branch of Fig. 7.19, for example, we first convolve with As ex-
plained in Section 3.4.2, this requires flipping one of the functions about the ori-
gin, sliding it past the other, and computing the sum of the point-wise product of 
the two functions. For sequences and this
produces

where the second term corresponds to index (In Fig. 7.19, under-
lined values represent negative indices, i.e., ) When downsampled byn 6 0.

k = 2n = 0.

E -1>12, -3>12, 7>12, -3>12, 0F
E -1>12, 1>12F ,51, 4, -3, 06

hc(-n).f(n)
Wc(1, k)

f(n)

J - P = 2 - 2 = 0
J - 1 = 2 - 1 = 1P = 2

2J = 22J = 2j = 50, 16.
EWw(0, 0), Wc(0, 0), Wc(1, 0), Wc(1, 1)F ,

g0(n)hw(n)

hc(n) = c 1>12 n = 0  
-1>12 n = 1  

0 otherwise

hw(n) = b1>12 n = 0, 1 
0 otherwise

= 51, 4, -3, 06 f(n)

TABLE 7.2 
Orthonormal
Haar filter
coefficients for
hw(n).

0
1 1>12

1>12

hW(n)n
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taking the even-indexed points, we get for 
Alternatively, we can use Eq. (7.4-12) to compute

Here, we have substituted for in the convolution and employed as a dummy
variable of convolution (i.e., for displacing the two sequences relative to one
another). There are only two terms in the expanded sum because there are only
two nonzero values in the order-reversed wavelet vector Substituting 

we find that for we get 
Thus, the filtered and downsampled sequence is which match-
es the earlier result. The remaining convolutions and downsamplings are per-
formed in a similar manner. ■

As one might expect, a fast inverse transform for the reconstruction of 
from the results of the forward transform can be formulated. Called the
inverse fast wavelet transform it uses the scaling and wavelet vectors
employed in the forward transform, together with the level approximationj

(FWT -1),

f(n)

E -3>12, -3>12F ,
Wc(1, 1) = -3>12.k = 1,Wc(1, 0) = -3>12;k = 0,
hc(-n).

ln2k

=
1
12

x(2k) -
1
12

x(2k + 1) `
k = 0,1

= a
l

hc(l - 2k)x(l) `
k = 0,1

Wc(1, k) = hc(-n)�Ww(2, n) `
n = 2k,k Ú 0

= hc(-n)�f(n) `
n = 2k,k Ú 0

k = 50, 16.
Wc(1, k) = E -3>12, -3>12F

Ww(2, n) � f(n)
� {1, 4, �3, 0}

Wc(0, 0) � {4}

Ww(0, 0) � {1}

{�1/   2, �3/   2, 7/   2, �3/   2, 0}

{1/   2, 5/   2, 1/   2, �3/   2, 0}

Wc(1, n) � {�3/   2, �3/   2}

Ww(I, n) � {5/   2, �3/   2}

{2.5, 1, �1.5}

{�2.5, 4, �1.5}

�{�1/   2, 1/   2}

�{�1/   2, 1/   2}

�{1/   2, 1/   2}

�{1/   2, 1/   2}

2T

2T

2T

2T

FIGURE 7.19 Computing a two-scale fast wavelet transform of sequence using Haar scaling and
wavelet vectors.

51, 4, -3, 06
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WW( j � 1, n)

Wc( j, n)

Ww( j, n)

�

� hc(n)

� hw(n)

2c

2c

FIGURE 7.20
The
synthesis filter
bank.

FWT -1

and detail coefficients, to generate the level approximation coefficients.
Noting the similarity between the FWT analysis bank in Fig. 7.17 and the two-
band subband analysis portion of Fig. 7.6(a), we can immediately postulate the
required synthesis filter bank. Figure 7.20 details its structure, which is
identical to the synthesis portion of the two-band subband coding and decod-
ing system in Fig. 7.6(a). Equation (7.1-14) of Section 7.1.2 defines the relevant
synthesis filters. As noted there, perfect reconstruction (for two-band ortho-
normal filters) requires for That is, the synthesis
and analysis filters must be order-reversed versions of one another. Since the
FWT analysis filters (see Fig. 7.17) are and 
the required synthesis filters are and 

It should be remembered, however, that it is possible also
to use biorthogonal analysis and synthesis filters, which are not order-reversed
versions of one another. Biorthogonal analysis and synthesis filters are cross-
modulated per Eqs. (7.1-10) and (7.1-11).

The filter bank in Fig. 7.20 implements the computation

(7.4-15)

where signifies upsampling by 2 [i.e., inserting zeros in as defined by
Eq. (7.1-1) so that it is twice its original length].The upsampled coefficients are
filtered by convolution with and and added to generate a higher
scale approximation. In essence, a better approximation of sequence with
greater detail and resolution is created. As with the forward FWT, the inverse
filter bank can be iterated as shown in Fig. 7.21, where a two-scale structure for
computing the final two scales of a reconstruction is depicted. This co-
efficient combining process can be extended to any number of scales and guar-
antees perfect reconstruction of sequence f(n).

FWT -1

f(n)
hc(n)hw(n)

WW 2c

Ww(j + 1, k) = hw(k)�Ww
2c(j, k) + hc(k)�Wc

2c(j, k) `
k Ú 0

FWT -1

= h1(-n) = hc(n).
g1(n)g0(n) = h0(-n) = hw(n)FWT -1

h1(n) = hc(-n),h0(n) = hw(-n)

i = 50, 16.gi(n) = hi(-n)

FWT-1

j + 1

Remember that like in
pyramid coding (see
Section 7.1.1), wavelet
transforms can be com-
puted at a user-specified
number of scales. For a

image, for exam-
ple, there are 
possible scales.

1 + log2 J
2J * 2J

Wc(J � 2, n)

Ww(J � 2, n)

Wc(J � 1, n)

Ww(J � 1, n)
Ww(J, n)

�

�� hc(n)

� hc(n)

� hw(n)

� hw(n)

2c

2c

2c

2c
FIGURE 7.21
A two-stage or
two-scale
synthesis bank.

FWT -1
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f(n) � Ww(2, n)
� {1, 4, �3, 0}Wc(0, 0) � {4}

Ww(0, 0) � {1}

Wc(1, n) � {�3/   2, �3/   2}

{�3/   2, 0, �3/   2, 0}

{5/   2, 0, �3/   2, 0}

{1/   2, 1/   2, 0}

{4/   2, �4/   2, 0}

Ww(1, n) � {5/   2, �3/   2}
�

�

{4, 0}

{1, 0}

{2.5, 2.5, �1.5,�1.5, 0}

{�1.5, 1.5, �1.5, 1.5, 0}
�{1/   2, �1/   2}

�{1/   2, 1/   2}

�{1/   2, 1/   2}

�{1/   2, �1/   2}2c

2c

2c

2c

FIGURE 7.22 Computing a two-scale inverse fast wavelet transform of sequence 
with Haar scaling and wavelet functions.

E1, 4, -1.512, -1.512F

Thus, the level 1 approximation of Fig. 7.22, which 
matches the computed approximation in Fig. 7.19, is reconstructed. Continuing in
this manner, is formed at the right of the second synthesis filter bank. ■

We conclude our discussion of the fast wavelet transform by noting that
while the Fourier basis functions (i.e., sinusoids) guarantee the existence of the
FFT, the existence of the FWT depends upon the availability of a scaling func-
tion for the wavelets being used, as well as the orthogonality (or biorthogonal-
ity) of the scaling function and corresponding wavelets. Thus, the Mexican hat
wavelet of Eq. (7.3-12), which does not have a companion scaling function,
cannot be used in the computation of the FWT. In other words, we cannot con-
struct a filter bank like that of Fig. 7.17 for the Mexican hat wavelet; it does not
satisfy the underlying assumptions of the FWT approach.

Finally, we note that while time and frequency usually are viewed as different
domains when representing functions, they are inextricably linked. When you
try to analyze a function simultaneously in time and frequency, you run into the
following problem: If you want precise information about time, you must accept
some vagueness about frequency, and vice versa. This is the Heisenberg
uncertainty principle applied to information processing. To illustrate the princi-
ple graphically, each basis function used in the representation of a function can
be viewed schematically as a tile in a time-frequency plane. The tile, also called a
Heisenberg cell or Heisenberg box, shows the frequency content of the basis
function that it represents and where the basis function resides in time. Basis
functions that are orthonormal are characterized by nonoverlapping tiles.

Figure 7.23 shows the time-frequency tiles for (a) an impulse function (i.e.,
conventional time domain) basis, (b) a sinusoidal (FFT) basis, and (c) an FWT

f(n)

Ww(1, n) = E5>12, -3>12F .

EXAMPLE 7.11:
Computing a 1-D
inverse fast
wavelet
transform.

■ Computation of the inverse fast wavelet transform mirrors its forward coun-
terpart. Figure 7.22 illustrates the process for the sequence considered in Example
7.10.To begin the calculation, the level 0 approximation and detail coefficients are
upsampled to yield and respectively. Convolution with filters 

and

produces and which when added give-4>12, 0F ,E4>12,E1>12, 1>12, 0F
g1(n) = hc(n) = E1>12, -1>12Fg0(n) = hw(n) = E1>12, 1>12F 54, 06,51, 06
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Time Time Time

F
re

qu
en

cy

FIGURE 7.23 Time-frequency tilings for the basis functions associated with (a) sampled
data, (b) the FFT, and (c) the FWT. Note that the horizontal strips of equal height
rectangles in (c) represent FWT scales.

basis. Each tile is a rectangular region in Figs. 7.23(a) through (c); the height
and width of the region defines the frequency and time characteristics of the
functions that can be represented using the basis function. Note that the stan-
dard time domain basis in Fig. 7.23(a) pinpoints the instants when events occur
but provides no frequency information [the width of each rectangle in Fig. 7.23(a)
should be considered one instant in time]. Thus, to represent a single frequency
sinusoid as an expansion using impulse basis functions, every basis function is
required. The sinusoidal basis in Fig. 7.23(b), on the other hand, pinpoints the
frequencies that are present in events that occur over long periods but pro-
vides no time resolution [the height of each rectangle in Fig. 7.23(b) should be
considered a single frequency]. Thus, the single frequency sinusoid that was
represented by an infinite number of impulse basis functions can be represented
as an expansion involving one sinusoidal basis function.The time and frequency
resolution of the FWT tiles in Fig. 7.23(c) vary, but the area of each tile (rec-
tangle) is the same.At low frequencies, the tiles are shorter (i.e., have better fre-
quency resolution or less ambiguity regarding frequency) but are wider (which
corresponds to poorer time resolution or more ambiguity regarding time). At
high frequencies, tile width is smaller (so the time resolution is improved) and
tile height is greater (which means the frequency resolution is poorer). Thus,
the FWT basis functions provide a compromise between the two limiting cases
in Fig. 7.23(a) and (b).This fundamental difference between the FFT and FWT
was noted in the introduction to the chapter and is important in the analysis of
nonstationary functions whose frequencies vary in time.

7.5 Wavelet Transforms in Two Dimensions

The one-dimensional transforms of the previous sections are easily extended to
two-dimensional functions like images. In two dimensions, a two-dimensional
scaling function, and three two-dimensional wavelets,

and are required. Each is the product of two one-
dimensional functions. Excluding products that produce one-dimensional results,
like the four remaining products produce the separable scaling function

(7.5-1)w(x, y) = w(x)w(y)

w(x)c(x),

cD(x, y),cV(x, y),
cH(x, y),w(x, y),

a b c
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and separable, “directionally sensitive” wavelets

(7.5-2)

(7.5-3)

(7.5-4)

These wavelets measure functional variations—intensity variations for images—
along different directions: measures variations along columns (for exam-
ple, horizontal edges), responds to variations along rows (like vertical
edges), and corresponds to variations along diagonals. The directional sen-
sitivity is a natural consequence of the separability in Eqs. (7.5-2) to (7.5-4); it
does not increase the computational complexity of the 2-D transform dis-
cussed in this section.

Given separable two-dimensional scaling and wavelet functions, extension
of the 1-D DWT to two dimensions is straightforward. We first define the
scaled and translated basis functions:

(7.5-5)

(7.5-6)

where index identifies the directional wavelets in Eqs. (7.5-2) to (7.5-4).
Rather than an exponent, is a superscript that assumes the values and

The discrete wavelet transform of image of size is then

(7.5-7)

(7.5-8)

As in the one-dimensional case, is an arbitrary starting scale and the
coefficients define an approximation of at scale The

coefficients add horizontal, vertical, and diagonal details for scales
We normally let and select so that 

and Given the and of Eqs. (7.5-7) and
(7.5-8), is obtained via the inverse discrete wavelet transform

(7.5-9)

Like the 1-D discrete wavelet transform, the 2-D DWT can be implemented
using digital filters and downsamplers.With separable two-dimensional scaling
and wavelet functions, we simply take the 1-D FWT of the rows of fol-
lowed by the 1-D FWT of the resulting columns. Figure 7.24(a) shows the

f(x, y),

 +
1

1MN a
i = H,V,D

a
q

j = j0

a
m
a
n

Wc
i (j, m, n)cj,m,n

i (x, y)

f(x, y) =
1

1MN am an Ww(j0, m, n)wj0,m,n(x, y)

f(x, y)
Wc

iWwm = n = 0, 1, 2, Á , 2j - 1.J - 1
Á ,j = 0, 1, 2,N = M = 2Jj0 = 0j Ú j0.

Wc
i (j, m, n)

j0.f(x, y)Ww(j0, m, n)
j0

Wc
i (j, m, n) =

1
1MN a

M - 1

x = 0
a

N - 1

y = 0
f(x, y)cj,m,n

i (x, y), i = 5H, V, D6

Ww(j0, m, n) =
1

1MN a
M - 1

x = 0
a

N - 1

y = 0
f(x, y)wj0,m,n(x, y)

M * Nf(x, y)D.
H, V,i

i

cj,m,n
i (x, y) = 2j>2ci(2jx - m, 2jy - n), i = 5H, V, D6
wj,m,n(x, y) = 2j>2w(2jx - m, 2jy - n)

cD
cV
cH

cD(x, y) = c(x)c(y)

cV(x, y) = w(x)c(y)

cH(x, y) = c(x)w(y)

Now that we are dealing
with 2-D images,
is a discrete function or 
sequence of values and 
and are discrete 
variables. The scaling and
wavelet functions in 
Eq. (7.5-7) and (7.5-8)
are sampled over their
support (as was done in
the 1-D case in 
Section 7.3.2).

y
x

f(x, y)
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Columns
(along n)

Columns
(along n)

Rows
(along m)

Rows

Rows

Rows

Columns

Columns

Rows
(along m)

Rows

Rows

Rows

Wc( j, m, n)
D

Wc( j, m, n)
D

Wc( j, m, n)
D

Wc( j, m, n)
V

Wc( j, m, n)
V

Wc( j, m, n)
V

Wc( j, m, n)
H

Wc( j, m, n)
H

Wc( j, m, n)
H

Ww( j, m, n)

Ww( j, m, n)

Ww( j, m, n)

Ww( j � 1, m, n)

Ww( j � 1, m, n)

Ww( j � 1, m, n)

�

�

�

� hw(�m)

� hw(�m)

� hw(�n)

� hw(m)

� hw(n)

� hw(m)

� hc(m)

� hc(m)

� hc(n)

� hc(�n)

� hc(�m)

� hc(�m)

2c

2c

2c

2c

2c

2c

2T

2T

2T

2T

2T

2T

FIGURE 7.24 The 2-D fast wavelet transform: (a) the analysis filter bank; (b) the
resulting decomposition; and (c) the synthesis filter bank.

b
c

a
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process in block diagram form. Note that, like its one-dimensional counterpart
in Fig. 7.17, the 2-D FWT “filters” the scale approximation coefficients
to construct the scale approximation and detail coefficients. In the two-
dimensional case, however, we get three sets of detail coefficients—the hori-
zontal, vertical, and diagonal details.

The single-scale filter bank of Fig. 7.24(a) can be “iterated” (by tying the ap-
proximation output to the input of another filter bank) to produce a scale
transform in which scale is equal to As in the one-
dimensional case, image is used as the input. Convolving
its rows with and and downsampling its columns, we get two
subimages whose horizontal resolutions are reduced by a factor of 2.The high-
pass or detail component characterizes the image’s high-frequency informa-
tion with vertical orientation; the lowpass, approximation component contains
its low-frequency, vertical information. Both subimages are then filtered
columnwise and downsampled to yield four quarter-size output subimages—

and These subimages, which are shown in the middle of
Fig. 7.24(b), are the inner products of and the two-dimensional scaling
and wavelet functions in Eqs. (7.5-1) through (7.5-4), followed by downsam-
pling by two in each dimension. Two iterations of the filtering process pro-
duces the two-scale decomposition at the far right of Fig. 7.24(b).

Figure 7.24(c) shows the synthesis filter bank that reverses the process just
described.As would be expected, the reconstruction algorithm is similar to the
one-dimensional case. At each iteration, four scale approximation and detail
subimages are upsampled and convolved with two one-dimensional filters—
one operating on the subimages’ columns and the other on its rows. Addition
of the results yields the scale approximation, and the process is repeated
until the original image is reconstructed.

j + 1

j

f(x, y)
Wc

D.Ww, Wc
H, Wc

V,

hc(-n)hw(-n)
Ww(J, m, n)f(x, y)

J - 1, J - 2, Á , J - P.j
P

j
j + 1

Note how 
and are arranged in
Fig. 7.24(b). For each
scale that is computed,
they replace the previous
scale approximation on
which they were based.

Wc
D

Ww, Wc
H, Wc

V,

EXAMPLE 7.12:
Computing a 2-D
fast wavelet
transform.

■ Figure 7.25(a) is a computer-generated image consisting of 2-D
sine-like pulses on a black background. The objective of this example is to
illustrate the mechanics involved in computing the 2-D FWT of this image.
Figures 7.25(b) through (d) show three FWTs of the image in Fig. 7.25(a). The
2-D filter bank of Fig. 7.24(a) and the decomposition filters shown in Figs. 7.26(a)
and (b) were used to generate all three results.

Figure 7.25(b) shows the one-scale FWT of the image in Fig. 7.25(a). To
compute this transform, the original image was used as the input to the filter
bank of Fig. 7.24(a).The four resulting quarter-size decomposition outputs (i.e.,
the approximation and horizontal, vertical, and diagonal details) were then
arranged in accordance with Fig. 7.24(b) to produce the image in Fig. 7.25(b). A
similar process was used to generate the two-scale FWT in Fig. 7.25(c), but the
input to the filter bank was changed to the quarter-size approximation subim-
age from the upper-left-hand corner of Fig. 7.25(b). As can be seen in Fig.
7.25(c), that quarter-size subimage was then replaced by the four quarter-size

128 * 128

The scaling and wavelet
vectors used in this 
example are described
later. Our focus here is
on the mechanics of the
transform computation,
which are independent of
the filter coefficients 
employed.
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FIGURE 7.25
Computing a 2-D
three-scale FWT:
(a) the original
image; (b) a one-
scale FWT; (c) a
two-scale FWT;
and (d) a three-
scale FWT.

†The kth moment of wavelet is Zero moments impact the smoothness of the
scaling and wavelet functions and our ability to represent them as polynomials. An symlet has

vanishing moments.N
order-N

m(k) = 1xkc(x) dx.c(x)

(now 1 16th of the size of the original image) decomposition results that were
generated in the second filtering pass. Finally, Fig. 7.25(d) is the three-scale
FWT that resulted when the subimage from the upper-left-hand corner of Fig.
7.25(c) was used as the filter bank input. Each pass through the filter bank pro-
duced four quarter-size output images that were substituted for the input from
which they were derived. Note the directional nature of the wavelet-based
subimages, and at each scale. ■

The decomposition filters used in the preceding example are part of a well-
known family of wavelets called symlets, short for “symmetrical wavelets.” Al-
though they are not perfectly symmetrical, they are designed to have the least
asymmetry and highest number of vanishing moments† for a given compact
support (Daubechies [1992]). Figures 7.26(e) and (f) show the fourth-order

Wc
D,Wc

H, Wc
V,

>

c d
a b

Recall that the compact
support of a function is
the interval in which the
function has non-zero
values.
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FIGURE 7.26
Fourth-order
symlets: (a)–(b)
decomposition
filters; (c)–(d)
reconstruction
filters; (e) the
one-dimensional
wavelet; (f) the
one-dimensional
scaling function;
and (g) one of
three two-
dimensional
wavelets,
See Table 7.3 for
the values of

for
0 … n … 7.
hw(n)

cV(x, y).

a
c
e

g

b
d
f
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0
1
2
3 0.2979
4 0.8037
5 0.4976
6
7 -0.0758

-0.0296

-0.0992
-0.0126

0.0322

hW(n)n TABLE 7.3 
Orthonormal
fourth-order
symlet filter
coefficients for

.
(Daubechies
[1992].)

hw(n)

1-D symlets (i.e., wavelet and scaling functions). Figures 7.26(a) through (d)
show the corresponding decomposition and reconstruction filters. The co-
efficients of lowpass reconstruction filter for are
given in Table 7.3. The coefficients of the remaining orthonormal filters are
obtained using Eq. (7.1-14). Figure 7.26(g), a low-resolution graphic depiction
of wavelet is provided as an illustration of how a one-dimensional
scaling and wavelet function can combine to form a separable, two-dimensional
wavelet.

We conclude this section with two examples that demonstrate the useful-
ness of wavelets in image processing. As in the Fourier domain, the basic ap-
proach is to

Step 1. Compute a 2-D wavelet transform of an image.
Step 2. Alter the transform.
Step 3. Compute the inverse transform.

Because the DWT’s scaling and wavelet vectors are used as lowpass and high-
pass filters, most Fourier-based filtering techniques have an equivalent
“wavelet domain” counterpart.

cV(x, y),

0 … n … 7g0(n) = hw(n)

EXAMPLE 7.13:
Wavelet-based
edge detection.

■ Figure 7.27 provides a simple illustration of the preceding three steps. In
Fig. 7.27(a), the lowest scale approximation component of the discrete wavelet
transform shown in Fig. 7.25(c) has been eliminated by setting its values to
zero. As Fig. 7.27(b) shows, the net effect of computing the inverse wavelet
transform using these modified coefficients is edge enhancement, reminiscent
of the Fourier-based image sharpening results discussed in Section 4.9. Note
how well the transitions between signal and background are delineated, de-
spite the fact that they are relatively soft, sinusoidal transitions. By zeroing the
horizontal details as well—see Figs. 7.27(c) and (d)—we can isolate the verti-
cal edges. ■
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FIGURE 7.27
Modifying a DWT
for edge
detection: (a) and
(c) two-scale
decompositions
with selected
coefficients
deleted; (b) and
(d) the
corresponding
reconstructions.

■ As a second example, consider the CT image of a human head shown in
Fig. 7.28(a). As can be seen in the background, the image has been uniformly
corrupted with additive white noise. A general wavelet-based procedure for
denoising the image (i.e., suppressing the noise part) is as follows:

Step 1. Choose a wavelet (e.g. Haar, symlet, ) and number of levels
(scales), for the decomposition. Then compute the FWT of the noisy
image.
Step 2. Threshold the detail coefficients. That is, select and apply a thresh-
old to the detail coefficients from scales to This can be ac-
complished by hard thresholding, which means setting to zero the elements
whose absolute values are lower than the threshold, or by soft threshold-
ing, which involves first setting to zero the elements whose absolute values
are lower than the threshold and then scaling the nonzero coefficients to-
ward zero. Soft thresholding eliminates the discontinuity (at the threshold)
that is inherent in hard thresholding. (See Chapter 10 for a discussion of
thresholding.)
Step 3. Compute the inverse wavelet transform (i.e., perform a wavelet recon-
struction) using the original approximation coefficients at level and the
modified detail coefficients for levels to J - P.J - 1

J - P

J - P.J - 1

P,
Á

EXAMPLE 7.14:
Wavelet-based
noise removal.

c d
a b
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FIGURE 7.28
Modifying a DWT
for noise removal:
(a) a noisy CT of a
human head; (b),
(c) and (e) various
reconstructions
after thresholding
the detail
coefficients;
(d) and (f) the
information
removed during
the reconstruction
of (c) and (e).
(Original image
courtesy
Vanderbilt
University
Medical Center.)

c d
e f

a b

Figure 7.28(b) shows the result of performing these operations with fourth-
order symlets, two scales (i.e., ), and a global threshold that was de-
termined interactively. Note the reduction in noise and blurring of image
edges. This loss of edge detail is reduced significantly in Fig. 7.28(c), which

P = 2
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Ww(J, n) � f(n)

Ww(J�1, n)

Ww(J�2, n) Wc(J�2, n)

Wc(J�1, n)

VJ

VJ�1 WJ�1

VJ�2 WJ�2

FIGURE 7.29
An (a) coefficient
tree and 
(b) analysis tree
for the two-scale
FWT analysis
bank of Fig. 7.18.

was generated by simply zeroing the highest-resolution detail coefficients
(not thresholding the lower-resolution details) and reconstructing the
image. Here, almost all of the background noise has been eliminated and
the edges are only slightly disturbed. The difference image in Fig. 7.28(d)
shows the information that is lost in the process. This result was generated
by computing the inverse FWT of the two-scale transform with all but the
highest-resolution detail coefficients zeroed. As can be seen, the resulting
image contains most of the noise in the original image and some of the edge
information. Figures 7.28(e) and (f) are included to show the negative effect
of deleting all the detail coefficients. That is, Fig. 7.28(e) is a reconstruction
of the DWT in which the details at both levels of the two-scale transform
have been zeroed; Fig. 7.28(f) shows the information that is lost. Note the
significant increase in edge information in Fig. 7.28(f) and the correspond-
ing decrease in edge detail in Fig. 7.28(e). ■

7.6 Wavelet Packets

The fast wavelet transform decomposes a function into a sum of scaling and
wavelet functions whose bandwidths are logarithmically related. That is, the
low frequency content (of the function) is represented using (scaling and
wavelet) functions with narrow bandwidths, while the high-frequency content
is represented using functions with wider bandwidths. If you look along the
frequency axis of the time-frequency plane in Fig. 7.23(c), this is immediately
apparent. Each horizontal strip of constant height tiles, which contains the
basis functions for a single FWT scale, increases logarithmically in height as
you move up the frequency axis. If we want greater control over the partition-
ing of the time-frequency plane (e.g., smaller bands at the higher frequencies),
the FWT must be generalized to yield a more flexible decomposition—called
a wavelet packet (Coifman and Wickerhauser [1992]). The cost of this general-
ization is an increase in computational complexity from for the FWT to

for a wavelet packet.
Consider again the two-scale filter bank of Fig. 7.18(a)—but imagine the de-

composition as a binary tree. Figure 7.29(a) details the structure of the tree, and
links the appropriate FWT scaling and wavelet coefficients [from Fig. 7.18(a)] to
its nodes. The root node is assigned the highest-scale approximation coefficients,

O(M log2 M)
O(M)

Because only the highest
resolution detail 
coefficients were kept
when generating 
Fig. 7.28(d), the inverse 
transform is their contri-
bution to the image. In
the same way, Fig. 7.28(f)
is the contribution of all
the detail coefficients.

a b
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FIGURE 7.30
A three-scale
FWT filter bank:
(a) block diagram;
(b) decomposition
space tree; and 
(c) spectrum
splitting
characteristics.

which are samples of the function itself, while the leaves inherit the transform’s
approximation and detail coefficient outputs. The lone intermediate node,

is a filter bank approximation that is ultimately filtered to become
two leaf nodes. Note that the coefficients of each node are the weights of a linear
expansion that produces a band-limited “piece” of root node Because any
such piece is an element of a known scaling or wavelet subspace (see Sections
7.2.2 and 7.2.3), we can replace the generating coefficients in Fig. 7.29(a) by the
corresponding subspace.The result is the subspace analysis tree of Fig. 7.29(b).Al-
though the variable is used to denote both coefficients and subspaces, the two
quantities are distinguishable by the format of their subscripts.

These concepts are further illustrated in Fig. 7.30, where a three-scale FWT
analysis bank, analysis tree, and corresponding frequency spectrum are depicted.
Unlike Fig. 7.18(a), the block diagram of Fig. 7.30(a) is labeled to resemble the
analysis tree in Fig. 7.30(b)—as well as the spectrum in Fig. 7.30(c). Thus, while
the output of the upper-left filter and subsampler is, to be accurate,

it has been labeled —the subspace of the function that is
generated by the transform coefficients. This subspace corre-
sponds to the upper-right leaf of the associated analysis tree, as well as the right-
most (widest bandwidth) segment of the corresponding frequency spectrum.

Analysis trees provide a compact and informative way of representing mul-
tiscale wavelet transforms. They are simple to draw, take less space than their
corresponding filter and subsampler-based block diagrams, and make it relatively

Wc(J - 1, n)
WJ - 1Wc(J - 1, n),

W

f(n).

Ww(J - 1, n),

b c
a
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VJ

VJ�1 WJ�1

VJ�2 WJ�2

VJ�3 WJ�3 WJ�1, DD

WJ�1, A WJ�1, D

WJ�1, DAWJ�1, ADWJ�1, AAWJ�2, DWJ�2, A

FIGURE 7.31
A three-scale
wavelet packet
analysis tree.

easy to detect valid decompositions. The three-scale analysis tree of Fig. 7.30(b),
for example, makes possible the following three expansion options:

(7.6-1)

(7.6-2)

(7.6-3)

They correspond to the one-, two-, and three-scale FWT decompositions of
Section 7.4 and may be obtained from Eq. (7.2-27) of Section 7.2.3 by letting

for In general, a P-scale FWT analysis tree supports
unique decompositions.
Analysis trees also are an efficient mechanism for representing wavelet packets,

which are nothing more than conventional wavelet transforms in which the details
are filtered iteratively. Thus, the three-scale FWT analysis tree of Fig. 7.30(b)
becomes the three-scale wavelet packet tree of Fig. 7.31. Note the additional sub-
scripting that is introduced. The first subscript of a double-subscripted node
identifies the scale of the FWT parent node from which it descended. The
second—a variable length string of As and Ds—encodes the path from the par-
ent to the node.An designates approximation filtering, while a indicates de-
tail filtering. Subspace for example, is obtained by “filtering” the scale

FWT coefficients (i.e., parent in Fig. 7.31) through an additional de-
tail filter (yielding ), followed by an approximation filter (giving ).
Figures 7.32(a) and (b) are the filter bank and spectrum splitting characteristics
of the analysis tree in Fig. 7.31. Note that the “naturally ordered” outputs of the
filter bank in Fig. 7.32(a) have been reordered based on frequency content in
Fig. 7.32(b) (see Problem 7.25 for more on “frequency ordered” wavelets).

The three-scale packet tree in Fig. 7.31 almost triples the number of decompo-
sitions (and associated time-frequency tilings) that are available from the three-
scale FWT tree. Recall that in a normal FWT, we split, filter, and downsample the
lowpass bands alone. This creates a fixed logarithmic (base 2) relationship be-
tween the bandwidths of the scaling and wavelet spaces used in the representa-
tion of a function [see Figure 7.30(c)]. Thus, while the three-scale FWT analysis
tree of Fig. 7.30(a) offers three possible decompositions—defined by Eqs. (7.6-1)
to (7.6-3)—the wavelet packet tree of Fig. 7.31 supports 26 different decomposi-
tions. For instance, [and therefore function ] can be expanded asf(n)VJ

WJ - 1,DAWJ - 1,D

WJ - 1J - 1
WJ - 1,DA,

DA

P
P = 51, 2, 36.j0 = J - P

VJ = VJ - 3 { WJ - 3 { WJ - 2 { WJ - 1

VJ = VJ - 2 { WJ - 2 { WJ - 1

VJ = VJ - 1 { WJ - 1
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FIGURE 7.32
The (a) filter bank
and (b) spectrum
splitting
characteristics of
a three-scale full
wavelet packet
analysis tree.

VJ�1 WJ�1,DA WJ�1,DD WJ�1, A

|H(v)|

v
p/2 p5p/8 3p/40

FIGURE 7.33
The spectrum of
the decomposi-
tion in Eq. (7.6-5).

(7.6-4)

whose spectrum is shown in Fig. 7.32(b), or

(7.6-5)

whose spectrum is depicted in Fig. 7.33. Note the difference between this last
spectrum and the full packet spectrum of Fig. 7.32(b), or the three-scale FWT

VJ = VJ - 1 { WJ - 1,A { WJ - 1,DA { WJ - 1,DD

{ WJ - 1,DA { WJ - 1,DD{ WJ - 1,AD

VJ = VJ - 3 { WJ - 3 { WJ - 2,A { WJ - 2,D { WJ - 1,AA
Recall that denotes
the union of spaces (like
the union of sets). The 26
decompositions associated
with Fig. 7.31 are 
determined by various
combinations of nodes
(spaces) that can be 
combined to represent
the root node (space) at
the top of the tree.
Eqs. (7.6-4) and (7.6-5)
define two of them.

{

b
a
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FIGURE 7.34
The first
decomposition of
a two-dimensional
FWT: (a) the
spectrum and 
(b) the subspace
analysis tree.

spectrum of Fig. 7.30(c). In general, P-scale, one-dimensional wavelet packet
transforms (and associated analysis trees) support

(7.6-6)

unique decompositions, where With such a large number of valid
expansions, packet-based transforms provide improved control over partition-
ing the spectrum of the decomposed function. The cost of this control is an in-
crease in computational complexity [compare the filter bank in Fig. 7.30(a) to
that of Fig. 7.32(a)].

Now consider the two-dimensional, four-band filter bank of Fig. 7.24(a). As
was noted in Section 7.5, it splits approximation into outputs,

and As in the one-
dimensional case, it can be “iterated” to generate scale transforms for scales

with The spectrum re-
sulting from the first iteration [i.e., using in Fig. 7.24(a)] is shown in
Fig. 7.34(a). Note that it divides the frequency plane into four equal areas. The
low-frequency quarter-band in the center of the plane coincides with trans-
form coefficients and scaling space (This nomenclature
is consistent with the one-dimensional case.) To accommodate the two-
dimensional nature of the input, however, we now have three (rather than one)
wavelet subspaces. They are denoted and and correspond
to coefficients and 
respectively. Figure 7.34(b) shows the resulting four-band, single-scale quaternary
FWT analysis tree. Note the superscripts that link the wavelet subspace desig-
nations to their transform coefficient counterparts.

Figure 7.35 shows a portion of a three-scale, two-dimensional wavelet packet
analysis tree.Like its one-dimensional counterpart in Fig.7.31, the first subscript of
every node that is a descendant of a conventional FWT detail node is the scale of
that parent detail node.The second subscript—a variable length string of As,Hs,Vs,
and Ds—encodes the path from the parent to the node under consideration. The
node labeled for example, is obtained by “row/column filtering” theWJ - 1,VD

H ,

Wc
D(J - 1, m, n),Wc

H(J - 1, m, n), Wc
V(J - 1, m, n),

WJ - 1
DWJ - 1

H , WJ - 1
V ,

VJ - 1.Ww(J - 1, m, n)

j + 1 = J
Ww(J, m, n) = f(m, n).j = J - 1, J - 2, Á , J - P,

P
Wc

D(j, m, n).Ww(j, m, n), Wc
H(j, m, n), Wc

V(j, m, n),
Ww(j + 1, m, n)

D(1) = 1.

D(P + 1) = CD(P) D2 + 1

P + 1-level

a b
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FIGURE 7.35 A three-scale, full wavelet packet decomposition tree. Only a portion of the tree is provided.

scale FWT horizontal detail coefficients (i.e., parent in Fig. 7.35)
through an additional detail/approximation filter (yielding ), followed by a
detail/detail filter (giving ). A P-scale, two-dimensional wavelet pack-
et tree supports

(7.6-7)

unique expansions, where Thus, the three-scale tree of Fig. 7.35 of-
fers 83,522 possible decompositions. The problem of selecting among them is
the subject of the next example.

D(1) = 1.

D(P + 1) = CD(P) D4 + 1

WJ - 1,VD
H

WJ - 1,V
H

WJ - 1
HJ - 1

EXAMPLE 7.15:
Two-dimensional
wavelet packet
decompositions.

■ As noted in the above discussion, a single wavelet packet tree presents nu-
merous decomposition options. In fact, the number of possible decompositions is
often so large that it is impractical, if not impossible, to enumerate or examine
them individually.An efficient algorithm for finding optimal decompositions with
respect to application specific criteria is highly desirable.As will be seen, classical
entropy- and energy-based cost functions are applicable in many situations and
are well suited for use in binary and quaternary tree searching algorithms.

Consider the problem of reducing the amount of data needed to represent
the fingerprint image in Fig. 7.36(a). Image compression is dis-
cussed in detail in Chapter 8. In this example, we want to select the “best”
three-scale wavelet packet decomposition as a starting point for the com-
pression process. Using three-scale wavelet packet trees, there are 83,522
[see Eq. (7.6-7)] potential decompositions. Figure 7.36(b) shows one of
them—a full wavelet packet, 64-leaf decomposition like the analysis tree of
Fig. 7.35. Note that the leaves of the tree correspond to the subbands of the

array of decomposed subimages in Fig. 7.36(b). The probability that this
particular 64-leaf decomposition is in some way optimal for the purpose of
compression, however, is relatively low. In the absence of a suitable optimality
criterion, we can neither confirm nor deny it.

One reasonable criterion for selecting a decomposition for the compression
of the image of Fig. 7.36(a) is the additive cost function

(7.6-8)E(f) = a
m,n

ƒ f(m, n) ƒ

8 * 8

400 * 480

The 64 leaf nodes in 
Fig. 7.35 correspond to
the array of 64
subimages in Fig. 7.36(b).
Despite appearances,
they are not square. The
distortion (particularly
noticeable in the 
approximation subim-
age) is due to the 
program used to produce
the result.

8 * 8
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Other possible energy
measures include the
sum of the squares of

, the sum of the
log of the squares, etc.
Problem 7.27 defines one
possible entropy-based
cost function.

f(x, y)

This function provides one possible measure of the energy content of two-
dimensional function Under this measure, the energy of function 
for all and is 0. High values of on the other hand, are indicative of func-
tions with many nonzero values. Since most transform-based compression
schemes work by truncating or thresholding the small coefficients to zero, a cost
function that maximizes the number of near-zero values is a reasonable criterion
for selecting a “good” decomposition from a compression point of view.

The cost function just described is both computationally simple and easily
adapted to tree optimization routines. The optimization algorithm must use
the function to minimize the “cost” of the leaf nodes in the decomposition
tree. Minimal energy leaf nodes should be favored because they have more
near-zero values, which leads to greater compression. Because the cost func-
tion of Eq. (7.6-8) is a local measure that uses only the information available at
the node under consideration, an efficient algorithm for finding minimal energy
solutions is easily constructed as follows:

For each node of the analysis tree, beginning with the root and proceeding
level by level to the leaves:

Step 1. Compute both the energy of the node, denoted (for parent
energy), and the energy of its four offspring—denoted and

For two-dimensional wavelet packet decompositions, the parent is 
a two-dimensional array of approximation or detail coefficients; the
ED.

EA, EH, EV,
EP

E,nm
f(m, n) = 0f.

FIGURE 7.36 (a) A scanned fingerprint and (b) its three-scale, full wavelet packet decomposition. (Original
image courtesy of the National Institute of Standards and Technology.)

a b
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FIGURE 7.37
An optimal
wavelet packet
decomposition for
the fingerprint of
Fig. 7.36(a).

offspring are the filtered approximation, horizontal, vertical, and diago-
nal details.
Step 2. If the combined energy of the offspring is less than the energy of the
parent—that is, —include the offspring in the
analysis tree. If the combined energy of the offspring is greater than or
equal to that of the parent, prune the offspring, keeping only the parent. It
is a leaf of the optimized analysis tree.

The preceding algorithm can be used to (1) prune wavelet packet trees or (2)
design procedures for computing optimal trees from scratch. In the latter case,
nonessential siblings—descendants of nodes that would be eliminated in step 2
of the algorithm—would not be computed. Figure 7.37 shows the optimized
decomposition that results from applying the algorithm to the image of
Fig. 7.36(a) with the cost function of Eq. (7.6-8). The corresponding analysis
tree is given in Fig. 7.38. Note that many of the original full packet decompo-
sition’s 64 subbands in Fig. 7.36(b) (and corresponding 64 leaves of the analy-
sis tree in Fig. 7.35) have been eliminated. In addition, the subimages that are
not split (further decomposed) in Fig. 7.37 are relatively smooth and com-
posed of pixels that are middle gray in value. Because all but the approxima-
tion subimage of this figure have been scaled so that gray level 128 indicates a
zero-valued coefficient, these subimages contain little energy. There would be
no overall decrease in energy realized by splitting them. ■

The preceding example is based on a real-world problem that was solved
through the use of wavelets. The Federal Bureau of Investigation (FBI) cur-
rently maintains a large database of fingerprints and has established a wavelet-
based national standard for the digitization and compression of fingerprint

EA + EH + EV + ED 6 EP
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FIGURE 7.38 The optimal wavelet packet analysis tree for the decomposition in Fig. 7.37.

images (FBI [1993]). Using biorthogonal wavelets, the standard achieves a typical
compression ratio of 15:1. The advantages of wavelet-based compression over
the more traditional JPEG approach are examined in the next chapter.

The decomposition filters used in Example 7.15, as well as by the FBI, are
part of a well-known family of wavelets called Cohen-Daubechies-Feauveau
biorthogonal wavelets (Cohen, Daubechies, and Feauveau [1992]). Because
the scaling and wavelet functions of the family are symmetrical and have simi-
lar lengths, they are among the most widely used biorthogonal wavelets.
Figures 7.39(e) through (h) show the dual scaling and wavelet functions.
Figures 7.39(a) through (d) are the corresponding decomposition and recon-
struction filters. The coefficients of the lowpass and highpass decomposition
filters, and for are shown in Table 7.4. The corre-
sponding coefficients of the biorthogonal synthesis filters can be computed
using and of Eq. (7.1-11). That is,
they are cross-modulated versions of the decomposition filters. Note that zero
padding is employed to make the filters the same length and that Table 7.4 and
Fig. 7.39 define them with respect to the subband coding and decoding system
of Fig. 7.6(a); with respect to the FWT, and hc(-n) = h1(n).hw(-n) = h0(n)

g1(n) = (-1)n h0(n)g0(n) = (-1)n + 1h1(n)

0 … n … 17h1(n)h0(n)

0 0 0 9 0.8259 0.4178
1 0.0019 0 10 0.4208 0.0404
2 0 11
3 0.0144 12
4 0.0119 13 0.0497 0.0144
5 0.0497 14 0.0119 0
6 0.0404 15 0
7 0.4178 16 0
8 0.4208 17 0.0010 0-0.7589

-0.0019-0.0941
-0.017-0.0773

-0.0787
-0.0145

-0.0145-0.0773-0.017
-0.0787-0.0941-0.0019

h1(n)h0(n)nh1(n)h0(n)nTABLE 7.4 
Biorthogonal
Cohen-
Daubechies-
Feauveau filter
coefficients
(Cohen,
Daubechies, and
Feauveau [1992]).
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FIGURE 7.39
A member of the
Cohen-
Daubechies-
Feauveau
biorthogonal
wavelet family:
(a) and (b)
decomposition
filter coefficients;
(c) and (d)
reconstruction
filter coefficients;
(e)–(h) dual
wavelet and
scaling functions.
See Table 7.3 for
the values of

and
for 0 … n … 17.
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Summary
The material of this chapter establishes a solid mathematical foundation for under-
standing and accessing the role of wavelets and multiresolution analysis in image pro-
cessing. Wavelets and wavelet transforms are relatively new imaging tools that are
being rapidly applied to a wide variety of image processing problems. Because of their
similarity to the Fourier transform, many of the techniques in Chapter 4 have wavelet
domain counterparts. A partial listing of the imaging applications that have been ap-
proached from a wavelet point of view includes image matching, registration, segmen-
tation, denoising, restoration, enhancement, compression, morphological filtering, and
computed tomography. Since it is impractical to cover all of these applications in a sin-
gle chapter, the topics included were chosen for their value in introducing or clarifying
fundamental concepts and preparing the reader for further study in the field. In
Chapter 8, we will apply wavelets to the compression of images.

References and Further Reading
There are many good texts on wavelets and their application. Several complement our
treatment and were relied upon during the development of the core sections of the
chapter. The material in Section 7.1.2 on subband coding and digital filtering follows
the book by Vetterli and Kovacevic [1995], while Sections 7.2 and 7.4 on multiresolu-
tion expansions and the fast wavelet transform follow the treatment of these subjects in
Burrus, Gopinath, and Guo [1998]. The remainder of the material in the chapter is
based on the references cited in the text. All of the examples in the chapter were done
using MATLAB (see Gonzalez et al. [2004]).

The history of wavelet analysis is recorded in a book by Hubbard [1998]. The early
predecessors of wavelets were developed simultaneously in different fields and unified
in a paper by Mallat [1987]. It brought a mathematical framework to the field. Much of
the history of wavelets can be traced through the works of Meyer [1987] [1990] [1992a,
1992b] [1993], Mallat [1987] [1989a–c] [1998], and Daubechies [1988] [1990] [1992]
[1993] [1996]. The current interest in wavelets was stimulated by many of their publica-
tions. The book by Daubechies [1992] is a classic source for the mathematical details of
wavelet theory.

The application of wavelets to image processing is addressed in general image pro-
cessing texts, like Castleman [1996], and many application specific books, some of
which are conference proceedings. In this latter category, for example, are Rosenfeld
[1984], Prasad and Iyengar [1997], and Topiwala [1998]. Recent articles that can serve
as starting points for further research into specific imaging applications include Gao
et al. [2007] on corner detection; Olkkonen and Olkkonen [2007] on lattice implemen-
tations; Selesnick et al. [2005] and Kokare et al. [2005] on complex wavelets; Thévenaz
and Unser [2000] for image registration; Chang and Kuo [1993] and Unser [1995] on
texture-based classification; Heijmans and Goutsias [2000] on morphological wavelets;
Banham et al. [1994], Wang, Zhang, and Pan [1995], and Banham and Kastaggelos
[1996] on image restoration; Xu et al. [1994] and Chang, Yu, and Vetterli [2000] on
image enhancement; Delaney and Bresler [1995] and Westenberg and Roerdink [2000]
on computed tomography; and Lee, Sun, and Chen [1995], Liang and Kuo [1999],Wang,
Lee, and Toraichi [1999], and You and Bhattacharya [2000] on image description and
matching. One of the most important applications of wavelets is image compression—
see, for example, Brechet et al. [2007], Demin Wang et al. [2006], Antonini et al. [1992],
Wei et al. [1998], and the book by Topiwala [1998]. Finally, there have been a number of
special issues devoted to wavelets, including a special issue on wavelet transforms and
multiresolution signal anaysis in the IEEE Transactions on Information Theory [1992],
a special issue on wavelets and signal processing in the IEEE Transactions on Signal
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Processing [1993], and a special section on multiresolution representation in the IEEE
Transactions on Pattern Analysis and Machine Intelligence [1989].

Although the chapter focuses on the fundamentals of wavelets and their application
to image processing, there is considerable interest in the construction of wavelets them-
selves.The interested reader is referred to the work of Battle [1987] [1988], Daubechies
[1988] [1992], Cohen and Daubechies [1992], Meyer [1990], Mallat [1989b], Unser,
Aldroubi, and Eden [1993], and Gröchenig and Madych [1992]. This is not an exhaus-
tive list but should serve as a starting point for further reading. See also the general ref-
erences on subband coding and filter banks, including Strang and Nguyen [1996] and
Vetterli and Kovacevic [1995], and the references included in the chapter with respect
to the wavelets we used as examples.

Problems
7.1 Design a system for decoding the prediction residual pyramid generated by the

encoder of Fig. 7.2(b) and draw its block diagram. Assume there is no quantiza-
tion error introduced by the encoder.

7.2 Construct a fully populated approximation pyramid and corresponding predic-
tion residual pyramid for the image

Use block neighborhood averaging for the approximation filter in Fig. 7.2(b)
and assume the interpolation filter implements pixel replication.

7.3 Given a image, does a pyramid reduce or expand the
amount of data required to represent the image? What is the compression or ex-
pansion ratio?

7.4 Is the two-band subband coding filter bank containing filters 

and

orthonormal, biorthogonal, or both?

7.5 Given the sequence where compute:
(a) The sign-reversed sequence.
(b) The order-reversed sequence.
(c) The modulated sequence.
(d) The modulated and then order-reversed sequence.
(e) The order-reversed and then modulated sequence.
(f) Does the result from (d) or (e) correspond to Eq. (7.1-9)?

7.6 Compute the coefficients of the Daubechies synthesis filters and 
for Example 7.2. Using Eq. (7.1-13) with only, show that the filters are
orthonormal.

7.7 Draw a two-dimensional four-band filter bank decoder to reconstruct input
in Fig. 7.7.

7.8 Obtain the Haar transformation matrix for 

7.9 (a) Compute the Haar transform of the image

F = B3 -1
6 2

R2 * 2

N = 8.
f(m, n)

m = 0
g1(n)g0(n)

n = 0, 1, 2, 3,f(n) = 50, 0.5, 0.25, 16
-1>12F= E1>12,

g1(n) 1>12F ,1>12F , h1(n) = E -1>12, 1>12F ,  g0(n) = E1>12,

h0(n) = E1>12,

J + 1-level2J * 2J

2 * 2

f(x, y) = D 1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

T
�

�

�
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Time

Sc
al

e

(b) The inverse Haar transform is where T is the Haar transform of
F and is the matrix inverse of H. Show that and use it to com-
pute the inverse Haar transform of the result in (a).

7.10 Compute the expansion coefficients of 2-tuple for the following bases
and write the corresponding expansions:
(a) Basis and on the set of

real 2-tuples.
(b) Basis and and its dual, and

on
(c) Basis and and 

their duals, for on 
(Hint:Vector inner products must be used in place of the integral inner products
of Section 7.2.1.)

7.11 Show that scaling function

does not satisfy the second requirement of a multiresolution analysis.
7.12 Write an expression for scaling space as a function of scaling function 

Use the Haar scaling function definition of Eq. (7.2-14) to draw the Haar scal-
ing functions at translations 

7.13 Draw wavelet for the Haar wavelet function. Write an expression for
in terms of Haar scaling functions.

7.14 Suppose function is a member of Haar scaling space —that is,
Use Eq. (7.2-22) to express as a function of scaling space and any re-
quired wavelet spaces. If is 0 outside the interval [0, 1), sketch the scaling
and wavelet functions required for a linear expansion of based on your
expression.

7.15 Compute the first four terms of the wavelet series expansion of the function
used in Example 7.7 with starting scale Write the resulting expansion in
terms of the scaling and wavelet functions involved. How does your result com-
pare to the example, where the starting scale was 

7.16 The DWT in Eqs. (7.3-5) and (7.3-6) is a function of starting scale 
(a) Recompute the one-dimensional DWT of function for

in Example 7.8 with (rather than 0).
(b) Use the result from (a) to compute from the transform values.

7.17 What does the following continuous wavelet transform reveal about the one-
dimensional function upon which it was based?

f(1)
j0 = 10 … n … 3

f(n) = 51, 4, -3, 06
j0.

j0 = 0?

j0 = 1.

f(x)
f(x)

V0V3

f(x) H V3.V3f(x)
c3,3(x)

c3,3(x)
k = 50, 1, 26.

V3

w(x).V3

w(x) = b1 0.25 … x 6 0.75
0 elsewhere

R2.i = 50, 1, 2,6,w
'

i = 2wi>3
w2 = C -1>2, -13>2 DT,w0 = [1, 0]T, w1 = C -1>2, 13>2 DT,

R2.w
'

1 = [0, 1]T,
w
'

0 = [1, -1]Tw1 = [1, 1]T,w0 = [1, 0]T

R2,w1 = C1>12, -1>12, DTw0 = C1>12, 1>12, DT
[3, 2]T

H2
-1 = H2

THT
F = HTTH,

�

�

�
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7.18 (a) The continuous wavelet transform of Problem 7.17 is computer generated.
The function upon which it is based was first sampled at discrete intervals.
What is continuous about the transform—or what distinguishes it from the
discrete wavelet transform of the function?

(b) Under what circumstances is the DWT a better choice than the CWT? Are
there times when the CWT is better than the DWT?

7.19 Draw the FWT filter bank required to compute the transform in Problem 7.16.
Label all inputs and outputs with the appropriate sequences.

7.20 The computational complexity of an M-point fast wavelet transform is 
That is, the number of operations is proportional What determines the con-
stant of proportionality?

7.21 (a) If the input to the three-scale FWT filter bank of Fig. 7.30(a) is the Haar
scaling function for and 0 elsewhere, what is the re-
sulting transform with respect to Haar wavelets?

(b) What is the transform if the input is the corresponding Haar wavelet func-
tion for 

(c) What input sequence produces transform with nonzero
coefficient

7.22 The two-dimensional fast wavelet transform is similar to the pyramidal coding
scheme of Section 7.2.1. How are they similar? Given the three-scale wavelet
transform in Fig. 7.10(a), how would you construct the corresponding approxi-
mation pyramid? How many levels would it have?

7.23 Compute the two-dimensional wavelet transform with respect to Haar wavelets
of the image in Problem 7.9. Draw the required filter bank and label all
inputs and outputs with the proper arrays.

7.24 In the Fourier domain

and translation does not affect the display of Using the following se-
quence of images, explain the translation property of wavelet transforms. The
leftmost image contains two white squares centered on a 
gray background. The second image (from the left) is its single-scale wavelet
transform with respect to Haar wavelets. The third is the wavelet transform of
the original image after shifting it 32 pixels to the right and downward, and the
final (rightmost) image is the wavelet transform of the original image after it has
been shifted one pixel to the right and downward.

128 * 12832 * 32

ƒ F(m, y) ƒ .

f(x - x0, y - y0) 3 F(m, y)e-2p(mx0 >M +yy0 >N)

2 * 2

Wc(2, 2) = B?
50, 0, 0, 0, 0, 0, B, 06

n = 0, 1, Á , 7?c(n) = 51, 1, 1, 1, -1, -1, -1, -16

n = 0, 1, Á , 7w(n) = 1

M.
O(M).

�

�

�

�

�

7.25 The following table shows the Haar wavelet and scaling functions for a four-
scale fast wavelet transform. Sketch the additional basis functions needed for a
full three-scale packet decomposition. Give the mathematical expression or ex-
pressions for determining them. Then order the basis functions according to fre-
quency content and explain the results.
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V3

V2

V1 W0

W2

W1

W2, A

W2, D

W1, A

W1, D

W2, AA

W2, AD

W2, DA

W2, DD

V0

7.27 Using the Haar wavelet, determine the minimum entropy packet decomposition
for the function for Employ the nonnormalized
Shannon entropy,

as the minimization criterion. Draw the optimal tree, labeling the nodes with the
computed entropy values.

E C f(n) D = a
n

f2(n) ln C f2(n) D
n = 0, 1, 2, Á , 15.f(n) = 0.25

7.26 A wavelet packet decomposition of the vase from Fig. 7.1 is shown below.
(a) Draw the corresponding decomposition analysis tree, labeling all nodes

with the names of the proper scaling and wavelet spaces.
(b) Draw and label the decomposition’s frequency spectrum.



But life is short and information endless 
Abbreviation is a necessary evil and the abbreviator’s
business is to make the best of a job which, although
intrinsically bad, is still better than nothing.

Aldous Huxley
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Preview
Image compression, the art and science of reducing the amount of data required
to represent an image, is one of the most useful and commercially successful
technologies in the field of digital image processing. The number of images that
are compressed and decompressed daily is staggering, and the compressions
and decompressions themselves are virtually invisible to the user. Anyone who
owns a digital camera, surfs the web, or watches the latest Hollywood movies
on Digital Video Disks (DVDs) benefits from the algorithms and standards
discussed in this chapter.

To better understand the need for compact image representations, consider
the amount of data required to represent a two-hour standard definition (SD)
television movie using bit pixel arrays. A digital movie (or
video) is a sequence of video frames in which each frame is a full-color still
image. Because video players must display the frames sequentially at rates
near 30 fps (frames per second), SD digital video data must be accessed at

and a two-hour movie consists of

31,104,000
bytes
sec

* A602 B sec
hr

* 2 hrs � 2.24 * 1011 bytes

30
frames

sec
* (720 * 480)

pixels
frame

* 3
bytes
pixel

= 31,104,000 bytes>sec

720 * 480 * 24

Image Compression8
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or 224 GB (gigabytes) of data.Twenty-seven 8.5 GB dual-layer DVDs (assuming
conventional 12 cm disks) are needed to store it. To put a two-hour movie on a
single DVD, each frame must be compressed—on average—by a factor of 26.3.
The compression must be even higher for high definition (HD) television, where
image resolutions reach 

Web page images and high-resolution digital camera photos also are com-
pressed routinely to save storage space and reduce transmission time. For exam-
ple, residential Internet connections deliver data at speeds ranging from 56 Kbps
(kilobits per second) via conventional phone lines to more than 12 Mbps
(megabits per second) for broadband. The time required to transmit a small

bit full-color image over this range of speeds is from 7.0 to
0.03 seconds. Compression can reduce transmission time by a factor of 2 to 10
or more. In the same way, the number of uncompressed full-color images that
an 8-megapixel digital camera can store on a 1-GB flash memory card [about
forty-one 24 MB (megabyte) images] can be similarly increased. In addition to
these applications, image compression plays an important role in many other
areas, including televideo conferencing, remote sensing, document and medical
imaging, and facsimile transmission (FAX). An increasing number of applica-
tions depend on the efficient manipulation, storage, and transmission of binary,
gray-scale, and color images.

In this chapter, we introduce the theory and practice of digital image com-
pression. We examine the most frequently used compression techniques and
describe the industry standards that make them useful. The material is introduc-
tory in nature and applicable to both still image and video applications.The chap-
ter concludes with an introduction to digital image watermarking, the process of
inserting visible and invisible data (like copyright information) into images.

8.1 Fundamentals

The term data compression refers to the process of reducing the amount of data
required to represent a given quantity of information. In this definition, data and
information are not the same thing; data are the means by which information is
conveyed. Because various amounts of data can be used to represent the same
amount of information, representations that contain irrelevant or repeated
information are said to contain redundant data. If we let and denote the num-
ber of bits (or information-carrying units) in two representations of the same
information, the relative data redundancy of the representation with bits is

(8.1-1)

where commonly called the compression ratio, is defined as

(8.1-2)

If (sometimes written 10:1), for instance, the larger representation 
has 10 bits of data for every 1 bit of data in the smaller representation.

C = 10

C =
b

b¿

C,

R = 1 -
1
C

bR

b¿b

128 * 128 * 24

1920 * 1080 * 24 bits>image.
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The corresponding relative data redundancy of the larger representation is 0.9
indicating that % of its data is redundant.

In the context of digital image compression, in Eq. (8.1-2) usually is the
number of bits needed to represent an image as a 2-D array of intensity values.
The 2-D intensity arrays introduced in Section 2.4.2 are the preferred formats
for human viewing and interpretation—and the standard by which all other
representations are judged. When it comes to compact image representation,
however, these formats are far from optimal. Two-dimensional intensity arrays
suffer from three principal types of data redundancies that can be identified
and exploited:

1. Coding redundancy. A code is a system of symbols (letters, numbers, bits, and
the like) used to represent a body of information or set of events. Each piece
of information or event is assigned a sequence of code symbols, called a code
word.The number of symbols in each code word is its length.The 8-bit codes
that are used to represent the intensities in most 2-D intensity arrays contain
more bits than are needed to represent the intensities.

2. Spatial and temporal redundancy. Because the pixels of most 2-D intensity
arrays are correlated spatially (i.e., each pixel is similar to or dependent on
neighboring pixels), information is unnecessarily replicated in the repre-
sentations of the correlated pixels. In a video sequence, temporally corre-
lated pixels (i.e., those similar to or dependent on pixels in nearby frames)
also duplicate information.

3. Irrelevant information. Most 2-D intensity arrays contain information that
is ignored by the human visual system and/or extraneous to the intended
use of the image. It is redundant in the sense that it is not used.

The computer-generated images in Figs. 8.1(a) through (c) exhibit each of these
fundamental redundancies. As will be seen in the next three sections, compres-
sion is achieved when one or more redundancy is reduced or eliminated.

b
90(R = 0.9),

FIGURE 8.1 Computer generated bit images with (a) coding redundancy, (b) spatial redundancy,
and (c) irrelevant information. (Each was designed to demonstrate one principal redundancy but may exhibit
others as well.)

256 * 256 * 8

a b c
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8.1.1 Coding Redundancy
In Chapter 3, we developed techniques for image enhancement by histogram
processing, assuming that the intensity values of an image are random quanti-
ties. In this section, we use a similar formulation to introduce optimal informa-
tion coding.

Assume that a discrete random variable in the interval is used
to represent the intensities of an image and that each occurs with
probability As in Section 3.3,

(8.1-3)

where is the number of intensity values, and is the number of times that
the kth intensity appears in the image. If the number of bits used to represent
each value of is then the average number of bits required to represent
each pixel is

(8.1-4)

That is, the average length of the code words assigned to the various intensity
values is found by summing the products of the number of bits used to repre-
sent each intensity and the probability that the intensity occurs. The total
number of bits required to represent an image is If the
intensities are represented using a natural m-bit fixed-length code,† the
right-hand side of Eq. (8.1-4) reduces to bits. That is, when is
substituted for The constant can be taken outside the summation,
leaving only the sum of the for which, of course, equals 1.0 … k … L - 1,pr1rk2

ml1rk2.
mLavg = mm

MNLavg.M * N

Lavg = a
L - 1

k = 0
l1rk2pr1rk2

l1rk2,rk

nkL

pr1rk2 =
nk

MN
k = 0, 1, 2, Á , L - 1

pr(rk).
rkM * N

[0, L - 1]rk

Code 1 Code 2

0.25 01010111 8 01 2
0.47 10000000 8 1 1
0.25 11000100 8 000 3
0.03 11111111 8 001 3

for 0 — 8 — 0k Z  87, 128, 186, 255rk

r255 = 255
r186 = 186
r128 = 128
r87 = 87

l 21rk2l11rk2p r1rk2rk
TABLE 8.1 
Example of
variable-length
coding.

EXAMPLE 8.1:
A simple
illustration of
variable-length
coding.

†A natural binary code is one in which each event or piece of information to be encoded (such as inten-
sity value) is assigned one of codes from an m-bit binary counting sequence.2m

■ The computer-generated image in Fig. 8.1(a) has the intensity distribution
shown in the second column of Table 8.1. If a natural 8-bit binary code (denoted
as code 1 in Table 8.1) is used to represent its 4 possible intensities, —the
average number of bits for code 1—is 8 bits, because bits for all rk.l11rk2 = 8

Lavg
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On the other hand, if the scheme designated as code 2 in Table 8.1 is used, the av-
erage length of the encoded pixels is, in accordance with Eq. (8.1-4),

The total number of bits needed to represent the entire image is 
or 118,621. From Eqs. (8.1-2) and (8.1-1), the resulting com-

pression and corresponding relative redundancy are

and

respectively. Thus 77.4% of the data in the original 8-bit 2-D intensity array is
redundant.

The compression achieved by code 2 results from assigning fewer bits to
the more probable intensity values than to the less probable ones. In the re-
sulting variable-length code, —the image’s most probable intensity—is as-
signed the 1-bit code word 1 [of length ], while —its least probable
occurring intensity—is assigned the 3-bit code word 001 [of length ].
Note that the best fixed-length code that can be assigned to the intensities of
the image in Fig. 8.1(a) is the natural 2-bit counting sequence 
but the resulting compression is only or 4:1—about 10% less than the
4.42:1 compression of the variable-length code. ■

As the preceding example shows, coding redundancy is present when the
codes assigned to a set of events (such as intensity values) do not take full ad-
vantage of the probabilities of the events. Coding redundancy is almost always
present when the intensities of an image are represented using a natural binary
code. The reason is that most images are composed of objects that have a regu-
lar and somewhat predictable morphology (shape) and reflectance, and are
sampled so that the objects being depicted are much larger than the picture ele-
ments.The natural consequence is that, for most images, certain intensities are
more probable than others (that is, the histograms of most images are not uni-
form). A natural binary encoding assigns the same number of bits to both the
most and least probable values, failing to minimize Eq. (8.1-4) and resulting in
coding redundancy.

8.1.2 Spatial and Temporal Redundancy
Consider the computer-generated collection of constant intensity lines in
Fig. 8.1(b). In the corresponding 2-D intensity array:

1. All 256 intensities are equally probable.As Fig. 8.2 shows, the histogram of
the image is uniform.

8>2 500, 01, 10, 116,
l2 Ar255 B = 3

r255l2(r128) = 1
r128

R = 1 -
1

4.42
= 0.774

C =
256 * 256 * 8

118,621
=

8
1.81

L 4.42

256 * 256 * 1.81
MNLavg =

Lavg = 0.25(2) + 0.47(1) + 0.25(3) + 0.03(3) = 1.81 bits
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2. Because the intensity of each line was selected randomly, its pixels are in-
dependent of one another in the vertical direction.

3. Because the pixels along each line are identical, they are maximally corre-
lated (completely dependent on one another) in the horizontal direction.

The first observation tells us that the image in Fig. 8.1(b)—when represented
as a conventional 8-bit intensity array—cannot be compressed by variable-
length coding alone. Unlike the image of Fig. 8.1(a) (and Example 8.1), whose
histogram was not uniform, a fixed-length 8-bit code in this case minimizes
Eq. (8.1-4). Observations 2 and 3 reveal a significant spatial redundancy that
can be eliminated, for instance, by representing the image in Fig. 8.1(b) as a
sequence of run-length pairs, where each run-length pair specifies the start of
a new intensity and the number of consecutive pixels that have that intensity.
A run-length based representation compresses the original 2-D, 8-bit intensity
array by or 128:1. Each 256-pixel line of
the original representation is replaced by a single 8-bit intensity value and
length 256 in the run-length representation.

In most images, pixels are correlated spatially (in both and ) and in time
(when the image is part of a video sequence). Because most pixel intensities
can be predicted reasonably well from neighboring intensities, the information
carried by a single pixel is small. Much of its visual contribution is redundant in
the sense that it can be inferred from its neighbors. To reduce the redundancy
associated with spatially and temporally correlated pixels, a 2-D intensity array
must be transformed into a more efficient but usually “non-visual” representa-
tion. For example, run-lengths or the differences between adjacent pixels can
be used.Transformations of this type are called mappings.A mapping is said to
be reversible if the pixels of the original 2-D intensity array can be recon-
structed without error from the transformed data set; otherwise the mapping is
said to be irreversible.

8.1.3 Irrelevant Information
One of the simplest ways to compress a set of data is to remove superfluous
data from the set. In the context of digital image compression, information that
is ignored by the human visual system or is extraneous to the intended use of an
image are obvious candidates for omission. Thus, the computer-generated
image in Fig. 8.1(c), because it appears to be a homogeneous field of gray, can
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be represented by its average intensity alone—a single 8-bit value. The original
bit intensity array is reduced to a single byte; and the resulting

compression is or 65,536:1. Of course, the original
bit image must be recreated to view and/or analyze it—but

there would be little or no perceived decrease in reconstructed image quality.
Figure 8.3(a) shows the histogram of the image in Fig. 8.1(c). Note that

there are several intensity values (intensities 125 through 131) actually
present. The human visual system averages these intensities, perceives only
the average value, and ignores the small changes in intensity that are pre-
sent in this case. Figure 8.3(b), a histogram equalized version of the image
in Fig. 8.1(c), makes the intensity changes visible and reveals two previous-
ly undetected regions of constant intensity—one oriented vertically and
the other horizontally. If the image in Fig. 8.1(c) is represented by its aver-
age value alone, this “invisible” structure (i.e., the constant intensity re-
gions) and the random intensity variations surrounding them—real
information—is lost. Whether or not this information should be preserved is
application dependent. If the information is important, as it might be in a
medical application (like digital X-ray archival), it should not be omitted;
otherwise, the information is redundant and can be excluded for the sake of
compression performance.

We conclude the section by noting that the redundancy examined here is
fundamentally different from the redundancies discussed in Sections 8.1.1 and
8.1.2. Its elimination is possible because the information itself is not essential
for normal visual processing and/or the intended use of the image. Because its
omission results in a loss of quantitative information, its removal is commonly
referred to as quantization. This terminology is consistent with normal use of
the word, which generally means the mapping of a broad range of input values
to a limited number of output values (see Section 2.4). Because information is
lost, quantization is an irreversible operation.

8.1.4 Measuring Image Information
In the previous sections, we introduced several ways to reduce the amount of
data used to represent an image.The question that naturally arises is this: How
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few bits are actually needed to represent the information in an image? That is,
is there a minimum amount of data that is sufficient to describe an image with-
out losing information? Information theory provides the mathematical frame-
work to answer this and related questions. Its fundamental premise is that the
generation of information can be modeled as a probabilistic process that can
be measured in a manner that agrees with intuition. In accordance with this
supposition, a random event with probability is said to contain

(8.1-5)

units of information. If (that is, the event always occurs),
and no information is attributed to it. Because no uncertainty is associated
with the event, no information would be transferred by communicating that
the event has occurred [it always occurs if ].

The base of the logarithm in Eq. (8.1-5) determines the unit used to mea-
sure information. If the base logarithm is used, the measurement is said
to be in m-ary units. If the base 2 is selected, the unit of information is the
bit. Note that if or 1 bit. That is, 1 bit is the
amount of information conveyed when one of two possible equally likely
events occurs. A simple example is flipping a coin and communicating the
result.

Given a source of statistically independent random events from a discrete
set of possible events with associated probabilities 

the average information per source output, called the
entropy of the source, is

(8.1-6)

The in this equation are called source symbols. Because they are statistically
independent, the source itself is called a zero-memory source.

If an image is considered to be the output of an imaginary zero-memory
“intensity source,” we can use the histogram of the observed image to esti-
mate the symbol probabilities of the source. Then the intensity source’s en-
tropy becomes

(8.1-7)

where variables and are as defined in Sections 8.1.1 and 3.3. Be-
cause the base 2 logarithm is used, Eq. (8.1-7) is the average information per
intensity output of the imaginary intensity source in bits. It is not possible to
code the intensity values of the imaginary source (and thus the sample image)
with fewer than .bits>pixelH

'
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Consult the book Web
site for a brief review of
information and proba-
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Equation (8.1-6) is for
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with source symbols;
Eq. (8.1-7) uses probabil-
ity estimates for the
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EXAMPLE 8.2:
Image entropy
estimates.

†The output of the nth extension is an n-tuple of symbols from the underlying single-symbol source. It
was considered a block random variable in which the probability of each n-tuple is the product of the
probabilities of its individual symbols. The entropy of the nth extension is then times the entropy of
the single-symbol source from which it is derived.

n

■ The entropy of the image in Fig. 8.1(a) can be estimated by substituting the
intensity probabilities from Table 8.1 into Eq. (8.1-7):

In a similar manner, the entropies of the images in Fig. 8.1(b) and (c) can be
shown to be 8 and 1.566 , respectively. Note that the image
in Fig. 8.1(a) appears to have the most visual information, but has almost the
lowest computed entropy—1.66 . The image in Fig. 8.1(b) has almost
five times the entropy of the image in (a), but appears to have about the same
(or less) visual information; and the image in Fig. 8.1(c), which seems to have
little or no information, has almost the same entropy as the image in (a). The
obvious conclusion is that the amount of entropy and thus information in an
image is far from intuitive. ■

Shannon’s first theorem

Recall that the variable-length code in Example 8.1 was able to represent the
intensities of the image in Fig. 8.1(a) using only 1.81 . Although this is
higher than the 1.6614 entropy estimate from Example 8.2, Shannon’s
first theorem—also called the noiseless coding theorem (Shannon [1948])—assures
us that the image in Fig. 8.1(a) can be represented with as few as 1.6614 .
To prove it in a general way, Shannon looked at representing groups of consecu-
tive source symbols with a single code word (rather than one code word per
source symbol) and showed that

(8.1-8)

where is the average number of code symbols required to represent all
n-symbol groups. In the proof, he defined the nth extension of a zero-memory
source to be the hypothetical source that produces n-symbol blocks† using the
symbols of the original source; and computed by applying Eq. (8.1-4) to
the code words used to represent the n-symbol blocks. Equation (8.1-8) tells
us that can be made arbitrarily close to by encoding infinitely long
extensions of the single-symbol source. That is, it is possible to represent the
output of a zero-memory source with an average of information units per
source symbol.

H

HLavg, n>n
Lavg, n

Lavg, n

lim
n:q

BLavg,n

n
R = H

n
bits>pixel

bits>pixel
bits>pixel

bits>pixel

bits>pixelbits>pixel

L 1.6614 bits>pixel

L -[0.25(-2) + 0.47(-1.09) + 0.25(-2) + 0.03(-5.06)]

H
'

= -[0.25 log2 0.25 + 0.47 log2 0.47 + 0.25 log2 0.25 + 0.03 log2 0.03]
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If we now return to the idea that an image is a “sample” of the intensity
source that produced it, a block of source symbols corresponds to a group
of adjacent pixels. To construct a variable-length code for n-pixel blocks,
the relative frequencies of the blocks must be computed. But the nth exten-
sion of a hypothetical intensity source with 256 intensity values has pos-
sible n-pixel blocks. Even in the simple case of a 65,536 element
histogram and up to 65,536 variable-length code words must be generated.
For as many as 16,777,216 code words are needed. So even for small
values of computational complexity limits the usefulness of the extension
coding approach in practice.

Finally, we note that although Eq. (8.1-7) provides a lower bound on the
compression that can be achieved when coding statistically independent pixels
directly, it breaks down when the pixels of an image are correlated. Blocks of
correlated pixels can be coded with fewer average bits per pixel than the equa-
tion predicts. Rather than using source extensions, less correlated descriptors
(like intensity run-lengths) are normally selected and coded without exten-
sion.This was the approach used to compress Fig. 8.1(b) in Section 8.1.2.When
the output of a source of information depends on a finite number of preceding
outputs, the source is called a Markov or finite memory source.

8.1.5 Fidelity Criteria
In Section 8.1.3, it was noted that the removal of “irrelevant visual” informa-
tion involves a loss of real or quantitative image information. Because infor-
mation is lost, a means of quantifying the nature of the loss is needed. Two
types of criteria can be used for such an assessment: (1) objective fidelity crite-
ria and (2) subjective fidelity criteria.

When information loss can be expressed as a mathematical function of the
input and output of a compression process, it is said to be based on an objective fi-
delity criterion.An example is the root-mean-square (rms) error between two im-
ages. Let be an input image and be an approximation of 
that results from compressing and subsequently decompressing the input. For
any value of and the error between and is

(8.1-9)

so that the total error between the two images is

where the images are of size The root-mean-square error, between
and is then the square root of the squared error averaged over the

array, or

(8.1-10)erms = B 1
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If is considered [by a simple rearrangement of the terms in Eq. (8.1-9)] to
be the sum of the original image and an error or “noise” signal the
mean-square signal-to-noise ratio of the output image, denoted can be
defined as in Section 5.8:

(8.1-11)

The rms value of the signal-to-noise ratio, denoted is obtained by tak-
ing the square root of Eq. (8.1-11).

While objective fidelity criteria offer a simple and convenient way to evalu-
ate information loss, decompressed images are ultimately viewed by humans.
So, measuring image quality by the subjective evaluations of people is often
more appropriate. This can be done by presenting a decompressed image to a
cross section of viewers and averaging their evaluations. The evaluations may
be made using an absolute rating scale or by means of side-by-side comparisons
of and Table 8.2 shows one possible absolute rating scale. Side-
by-side comparisons can be done with a scale such as to
represent the subjective evaluations much worse, worse, slightly worse, the
same, slightly better, better, much better respectively. In either case, the evalua-
tions are based on subjective fidelity criteria.

6,5
5-3, -2, -1, 0, 1, 2, 36fN(x, y).f(x, y)

SNRrms,
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y = 0
CfN(x,y) - f(x,y) D 2

SNRms,
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fN(x,y)

EXAMPLE 8.3:
Image quality
comparisons.

Value Rating Description

1 Excellent An image of extremely high quality, as good as you could 
desire.

2 Fine An image of high quality, providing enjoyable viewing.
Interference is not objectionable.

3 Passable An image of acceptable quality. Interference is not 
objectionable.

4 Marginal An image of poor quality; you wish you could improve it.
Interference is somewhat objectionable.

5 Inferior A very poor image, but you could watch it. Objectionable 
interference is definitely present.

6 Unusable An image so bad that you could not watch it.

TABLE 8.2 
Rating scale of
the Television
Allocations Study
Organization.
(Frendendall and
Behrend.)

■ Figure 8.4 shows three different approximations of the image in Fig. 8.1(a).
Using Eq. (8.1-10) with Fig. 8.1(a) for and the images in Figs. 8.4(a)
through (c) as the computed rms errors are 5.17, 15.67, and 14.17 in-
tensity levels, respectively. In terms of rms error—an objective fidelity criterion—
the three images in Fig. 8.4 are ranked in order of decreasing quality as
5(a), (c), (b)6.

fN(x,y),
f(x,y)
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FIGURE 8.4 Three approximations of the image in Fig. 8.1(a).

Here, the notation
is used to 

denote both and
f(x,y, t).

f(x,y)
f(x, Á )

Figures 8.4(a) and (b) are typical of images that have been compressed
and subsequently reconstructed. Both retain the essential information of the
original image—like the spatial and intensity characteristics of its objects.
And their rms errors correspond roughly to perceived quality. Figure 8.4(a),
which is practically as good as the original image, has the lowest rms error,
while Fig. 8.4(b) has more error but noticeable degradation at the bound-
aries between objects. This is exactly as one would expect.

Figure 8.4(c) is an artificially generated image that demonstrates the limita-
tions of objective fidelity criteria. Note that the image is missing large sections
of several important lines (i.e., visual information), and has small dark squares
(i.e., artifacts) in the upper right quadrant. The visual content of the image is
misleading and certainly not as accurate as the image in (b), but it has less rms
error—14.17 versus 15.67 intensity values.A subjective evaluation of the three
images using Table 8.2 might yield an excellent rating for (a), a passable or
marginal rating for (b), and an inferior of unusable rating for (c).The rms error
measure, on the other hand, ranks (c) ahead of (b). ■

8.1.6 Image Compression Models
As Fig. 8.5 shows, an image compression system is composed of two distinct
functional components: an encoder and a decoder. The encoder performs com-
pression, and the decoder performs the complementary operation of decom-
pression. Both operations can be performed in software, as is the case in Web
browsers and many commercial image editing programs, or in a combination
of hardware and firmware, as in commercial DVD players. A codec is a device
or program that is capable of both encoding and decoding.

Input image is fed into the encoder, which creates a compressed
representation of the input.This representation is stored for later use, or trans-
mitted for storage and use at a remote location. When the compressed repre-
sentation is presented to its complementary decoder, a reconstructed output
image is generated. In still-image applications, the encoded input and
decoder output are and respectively; in video applications, theyfN(x, y),f(x, y)

fN(x, Á )

f(x, Á )

a b c
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Compressed data
for storage
and transmission

QuantizerMapper
Symbol
coder

Symbol
decoder

Inverse
mapper

Encoder

f(x, y)
or

f(x, y, t)

Decoder

f(x, y)
or

f(x, y, t)ˆ

ˆ

FIGURE 8.5
Functional block
diagram of a
general image
compression
system.

are and where discrete parameter specifies time. In general,
may or may not be an exact replica of If it is, the compres-

sion system is called error free, lossless, or information preserving. If not, the
reconstructed output image is distorted and the compression system is re-
ferred to as lossy.

The encoding or compression process

The encoder of Fig. 8.5 is designed to remove the redundancies described in
Sections 8.1.1–8.1.3 through a series of three independent operations. In the first
stage of the encoding process, a mapper transforms into a (usually non-
visual) format designed to reduce spatial and temporal redundancy. This opera-
tion generally is reversible and may or may not reduce directly the amount of
data required to represent the image. Run-length coding (see Sections 8.1.2 and
8.2.5) is an example of a mapping that normally yields compression in the first
step of the encoding process. The mapping of an image into a set of less corre-
lated transform coefficients (see Section 8.2.8) is an example of the opposite
case (the coefficients must be further processed to achieve compression). In
video applications, the mapper uses previous (and in some cases future) video
frames to facilitate the removal of temporal redundancy.

The quantizer in Fig. 8.5 reduces the accuracy of the mapper’s output in ac-
cordance with a pre-established fidelity criterion. The goal is to keep irrelevant
information out of the compressed representation. As noted in Section 8.1.3,
this operation is irreversible. It must be omitted when error-free compression
is desired. In video applications, the bit rate of the encoded output is often
measured (in ) and used to adjust the operation of the quantizer so
that a predetermined average output rate is maintained. Thus, the visual qual-
ity of the output can vary from frame to frame as a function of image content.

In the third and final stage of the encoding process, the symbol coder of Fig. 8.5
generates a fixed- or variable-length code to represent the quantizer output and
maps the output in accordance with the code. In many cases, a variable-length
code is used. The shortest code words are assigned to the most frequently occur-
ring quantizer output values—thus minimizing coding redundancy. This opera-
tion is reversible. Upon its completion, the input image has been processed for
the removal of each of the three redundancies described in Sections 8.1.1 to 8.1.3.

bits>second

f(x, Á )

f(x, Á ).fN(x, Á )
tfN(x, y, t),f(x, y, t)
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The decoding or decompression process

The decoder of Fig. 8.5 contains only two components: a symbol decoder and
an inverse mapper. They perform, in reverse order, the inverse operations of
the encoder’s symbol encoder and mapper. Because quantization results in
irreversible information loss, an inverse quantizer block is not included in the
general decoder model. In video applications, decoded output frames are
maintained in an internal frame store (not shown) and used to reinsert the
temporal redundancy that was removed at the encoder.

8.1.7 Image Formats, Containers, and Compression Standards
In the context of digital imaging, an image file format is a standard way to
organize and store image data. It defines how the data is arranged and the type
of compression—if any—that is used. An image container is similar to a file
format but handles multiple types of image data. Image compression stan-
dards, on the other hand, define procedures for compressing and decompress-
ing images—that is, for reducing the amount of data needed to represent an
image. These standards are the underpinning of the widespread acceptance of
image compression technology.

Figure 8.6 lists the most important image compression standards, file for-
mats, and containers in use today, grouped by the type of image handled. The
entries in black are international standards sanctioned by the International
Standards Organization (ISO), the International Electrotechnical Commission
(IEC), and/or the International Telecommunications Union (ITU-T)—a United
Nations (UN) organization that was once called the Consultative Committee of
the International Telephone and Telegraph (CCITT). Two video compression
standards, VC-1 by the Society of Motion Pictures and Television Engineers
(SMPTE) and AVS by the Chinese Ministry of Information Industry (MII), are

Image Compression
Standards, Formats, and Containers

Still Image Video

Binary Continuous Tone

CCITT Group 3
CCITT Group 4
JBIG (or JBIG1)
JBIG2

TIFF

JPEG
JPEG-LS
JPEG-2000

BMP
GIF
PDF
PNG
TIFF

AVS
HDV
M-JPEG
QuickTime
VC-1 (or WMV9)

DV
H.261
H.262
H.263
H.264
MPEG-1
MPEG-2
MPEG-4
MPEG-4 AVC

FIGURE 8.6 Some
popular image
compression
standards, file
formats, and
containers.
Internationally
sanctioned entries
are shown in
black; all others
are grayed.



Name Organization Description

Bi-Level Still Images

CCITT ITU-T Designed as a facsimile (FAX) method for transmitting 
Group 3 binary documents over telephone lines. Supports 1-D 

and 2-D run-length [8.2.5] and Huffman [8.2.1] coding.

CCITT ITU-T A simplified and streamlined version of the CCITT 
Group 4 Group 3 standard supporting 2-D run-length coding only.

JBIG or ISO/IEC/ A Joint Bi-level Image Experts Group standard for 
JBIG1 ITU-T progressive, lossless compression of bi-level images.

Continuous-tone images of up to 6 can be 
coded on a bit-plane basis [8.2.7]. Context sensitive 
arithmetic coding [8.2.3] is used and an initial low 
resolution version of the image can be gradually 
enhanced with additional compressed data.

JBIG2 ISO/IEC/ A follow-on to JBIG1 for bi-level images in desktop,
ITU-T Internet, and FAX applications. The compression 

method used is content based, with dictionary based 
methods [8.2.6] for text and halftone regions, and 
Huffman [8.2.1] or arithmetic coding [8.2.3] for other 
image content. It can be lossy or lossless.

Continuous-Tone Still Images

JPEG ISO/IEC/ A Joint Photographic Experts Group standard for images 
ITU-T of photographic quality. Its lossy baseline coding system

(most commonly implemented) uses quantized discrete 
cosine transforms (DCT) on image blocks [8.2.8],
Huffman [8.2.1], and run-length [8.2.5] coding. It is one 
of the most popular methods for compressing images on
the Internet.

JPEG-LS ISO/IEC/ A lossless to near-lossless standard for continuous tone 
ITU-T images based on adaptive prediction [8.2.9], context 

modeling [8.2.3], and Golomb coding [8.2.2].

JPEG- ISO/IEC/ A follow-on to JPEG for increased compression of 
2000 ITU-T photographic quality images. Arithmetic coding [8.2.3] 

and quantized discrete wavelet transforms (DWT) 
[8.2.10] are used.The compression can be lossy or lossless.

8 * 8

bits>pixel
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also included. Note that they are shown in gray, which is used in Fig. 8.6 to de-
note entries that are not sanctioned by an international standards organization.

Tables 8.3 and 8.4 summarize the standards, formats, and containers listed
in Fig. 8.6. Responsible organizations, targeted applications, and key compres-
sion methods are identified.The compression methods themselves are the sub-
ject of the next section. In both tables, forward references to the relevant
subsections of Section 8.2 are enclosed in square brackets.

TABLE 8.3 
Internationally
sanctioned image
compression
standards. The
numbers in
brackets refer to
sections in this
chapter.

(Continues)
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Name Organization Description

Video

DV IEC Digital Video. A video standard tailored to home and 
semiprofessional video production applications and 
equipment—like electronic news gathering and camcorders.
Frames are compressed independently for uncomplicated 
editing using a DCT-based approach [8.2.8] similar to JPEG.

H.261 ITU-T A two-way videoconferencing standard for ISDN 
(integrated services digital network) lines. It supports 
non-interlaced and resolution 
images, called CIF (Common Intermediate Format) and 
QCIF (Quarter CIF ), respectively. A DCT-based 
compression approach [8.2.8] similar to JPEG is used,
with frame-to-frame prediction differencing [8.2.9] to 
reduce temporal redundancy. A block-based technique is 
used to compensate for motion between frames.

H.262 ITU-T See MPEG-2 below.

H.263 ITU-T An enhanced version of H.261 designed for ordinary 
telephone modems (i.e., 28.8 Kb/s) with additional 
resolutions: SQCIF (Sub-Quarter CIF ), 4CIF 

and 16CIF 

H.264 ITU-T An extension of H.261–H.263 for videoconferencing,
Internet streaming, and television broadcasting. It 
supports prediction differences within frames [8.2.9],
variable block size integer transforms (rather than the 
DCT), and context adaptive arithmetic coding [8.2.3].

MPEG-1 ISO/IEC A Motion Pictures Expert Group standard for CD-ROM 
applications with non-interlaced video at up to 1.5 Mb/s.
It is similar to H.261 but frame predictions can be based 
on the previous frame, next frame, or an interpolation of 
both. It is supported by almost all computers and DVD 
players.

MPEG-2 ISO/IEC An extension of MPEG-1 designed for DVDs with 
transfer rates to 15 Mb/s. Supports interlaced video and 
HDTV. It is the most successful video standard to date.

MPEG-4 ISO/IEC An extension of MPEG-2 that supports variable block 
sizes and prediction differencing [8.2.9] within frames.

MPEG-4 ISO/IEC MPEG-4 Part 10 Advanced Video Coding (AVC). Identical 
AVC to H.264 above.

(1408 * 512).(704 * 576),
128 * 96

176 * 144352 * 288

TABLE 8.3 
(Continued)
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TABLE 8.4 
Popular image
compression
standards, file
formats, and
containers, not
included in 
Table 8.3.

Name Organization Description

Continuous-Tone Still Images

BMP Microsoft Windows Bitmap. A file format used mainly for 
simple uncompressed images.

GIF CompuServe Graphic Interchange Format. A file format that 
uses lossless LZW coding [8.2.4] for 
1- through 8-bit images. It is frequently used 
to make small animations and short low 
resolution films for the World Wide Web.

PDF Adobe Systems Portable Document Format. A format for 
representing 2-D documents in a device and 
resolution independent way. It can function as 
a container for JPEG, JPEG 2000, CCITT, and 
other compressed images. Some PDF versions 
have become ISO standards.

PNG World Wide Web Portable Network Graphics. A file format that 
Consortium losslessly compresses full color images with 
(W3C) transparency (up to 48 ) by coding 

the difference between each pixel’s value and 
a predicted value based on past pixels [8.2.9].

TIFF Aldus Tagged Image File Format. A flexible file format 
supporting a variety of image compression 
standards, including JPEG, JPEG-LS, JPEG-
2000, JBIG2, and others.

Video

AVS MII Audio-Video Standard. Similar to H.264 but uses 
exponential Golomb coding [8.2.2]. Developed 
in China.

HDV Company High Definition Video. An extension of DV 
consortium for HD television that uses MPEG-2 like 

compression, including temporal redundancy 
removal by prediction differencing [8.2.9].

M-JPEG Various Motion JPEG. A compression format in which 
companies each frame is compressed independently 

using JPEG.

Quick-Time Apple Computer A media container supporting DV, H.261, H.262,
H.264, MPEG-1, MPEG-2, MPEG-4, and 
other video compression formats.

VC-1 SMPTE The most used video format on the Internet.
WMV9 Microsoft Adopted for HD and Blu-ray high-definition

DVDs. It is similar to H.264/AVC, using an 
integer DCT with varying block sizes [8.2.8 
and 8.2.9] and context dependent variable-
length code tables [8.2.1]—but no predictions 
within frames.

bits>pixel
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Original source

Symbol Probability 1 2 3 4

a2 0.4 0.4 0.4 0.4 0.6
a6 0.3 0.3 0.3 0.3 0.4
a1 0.1 0.1 0.2 0.3
a4 0.1 0.1 0.1
a3 0.06 0.1
a5 0.04

Source reductionFIGURE 8.7
Huffman source
reductions.

With reference to Tables
8.3 and 8.4, Huffman
codes are used in

● CCITT
● JBIG2
● JPEG
● MPEG-1,2,4
● H.261, H.262,

H.263, H.264

and other compression
standards.

8.2 Some Basic Compression Methods

In this section, we describe the principal lossy and error-free compression
methods in use today. Our focus is on methods that have proven useful in main-
stream binary, continuous-tone still images, and video compression standards.
The standards themselves are used to demonstrate the methods presented.

8.2.1 Huffman Coding
One of the most popular techniques for removing coding redundancy is due to
Huffman (Huffman [1952]). When coding the symbols of an information
source individually, Huffman coding yields the smallest possible number of
code symbols per source symbol. In terms of Shannon’s first theorem (see
Section 8.1.4), the resulting code is optimal for a fixed value of subject to the
constraint that the source symbols be coded one at a time. In practice, the
source symbols may be either the intensities of an image or the output of an
intensity mapping operation (pixel differences, run lengths, and so on).

The first step in Huffman’s approach is to create a series of source reductions
by ordering the probabilities of the symbols under consideration and combining
the lowest probability symbols into a single symbol that replaces them in the next
source reduction. Figure 8.7 illustrates this process for binary coding (K-ary Huff-
man codes can also be constructed). At the far left, a hypothetical set of source
symbols and their probabilities are ordered from top to bottom in terms of
decreasing probability values.To form the first source reduction, the bottom two
probabilities, 0.06 and 0.04, are combined to form a “compound symbol” with
probability 0.1. This compound symbol and its associated probability are placed
in the first source reduction column so that the probabilities of the reduced
source also are ordered from the most to the least probable. This process is then
repeated until a reduced source with two symbols (at the far right) is reached.

The second step in Huffman’s procedure is to code each reduced source,
starting with the smallest source and working back to the original source. The
minimal length binary code for a two-symbol source, of course, are the symbols
0 and 1.As Fig. 8.8 shows, these symbols are assigned to the two symbols on the
right (the assignment is arbitrary; reversing the order of the 0 and 1 would work
just as well). As the reduced source symbol with probability 0.6 was generated
by combining two symbols in the reduced source to its left, the 0 used to code it
is now assigned to both of these symbols, and a 0 and 1 are arbitrarily appended
to each to distinguish them from each other.This operation is then repeated for

n,
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Original source

Symbol Probability Code 1 2 3 4

1 10.4 10.4 10.4 00.6
00 000.3 000.3 000.3 10.4
011 0110.1 0100.2 010.3
0100 01000.1 0110.1
01010 01010.1

a2
a6
a1
a4
a3
a5

0.4
0.3
0.1
0.1
0.06
0.04 01011

Source reduction FIGURE 8.8
Huffman code
assignment
procedure.

each reduced source until the original source is reached.The final code appears
at the far left in Fig. 8.8. The average length of this code is

and the entropy of the source is 2.14 .
Huffman’s procedure creates the optimal code for a set of symbols and

probabilities subject to the constraint that the symbols be coded one at a time.
After the code has been created, coding and/or error-free decoding is accom-
plished in a simple lookup table manner. The code itself is an instantaneous
uniquely decodable block code. It is called a block code because each source
symbol is mapped into a fixed sequence of code symbols. It is instantaneous
because each code word in a string of code symbols can be decoded without
referencing succeeding symbols. It is uniquely decodable because any string of
code symbols can be decoded in only one way. Thus, any string of Huffman
encoded symbols can be decoded by examining the individual symbols of the
string in a left-to-right manner. For the binary code of Fig. 8.8, a left-to-right
scan of the encoded string 010100111100 reveals that the first valid code word
is 01010, which is the code for symbol The next valid code is 011, which
corresponds to symbol Continuing in this manner reveals the completely
decoded message to be a3a1a2a2a6.

a1.
a3.

bits>symbol

= 2.2 bits>pixel

Lavg = (0.4)(1) + (0.3)(2) + (0.1)(3) + (0.1)(4) + (0.06)(5) + (0.04)(5)

EXAMPLE 8.4:
Huffman coding.

■ The bit monochrome image in Fig. 8.9(a) has the intensity
histogram shown in Fig. 8.9(b). Because the intensities are not equally probable,
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FIGURE 8.9 (a)
A 8-bit
image, and (b) its
histogram.
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a MATLAB implementation of Huffman’s procedure was used to encode
them with 7.428 —including the Huffman code table that is required
to reconstruct the original 8-bit image intensities.The compressed representation
exceeds the estimated entropy of the image [7.3838 from Eq. (8.1-7)]
by or 11,587 bits—about 0.6%. The resulting
compression ratio and corresponding relative redundancy are

and respectively. Thus
7.15% of the original 8-bit fixed-length intensity representation was removed
as coding redundancy. ■

When a large number of symbols is to be coded, the construction of an opti-
mal Huffman code is a nontrivial task. For the general case of source symbols,

symbol probabilities, source reductions, and code assignments
are required. When source symbol probabilities can be estimated in advance,
“near optimal” coding can be achieved with pre-computed Huffman codes.
Several popular image compression standards, including the JPEG and MPEG
standards discussed in Sections 8.2.8 and 8.2.9, specify default Huffman coding
tables that have been pre-computed based on experimental data.

8.2.2 Golomb Coding
In this section we consider the coding of nonnegative integer inputs with ex-
ponentially decaying probability distributions. Inputs of this type can be opti-
mally encoded (in the sense of Shannon’s first theorem) using a family of
codes that are computationally simpler than Huffman codes. The codes them-
selves were first proposed for the representation of nonnegative run lengths
(Golomb [1966]). In the discussion that follows, the notation denotes the
largest integer less than or equal to means the smallest integer greater
than or equal to and mod is the remainder of divided by 

Given a nonnegative integer and a positive integer divisor the
Golomb code of with respect to denoted is a combination of the
unary code of quotient and the binary representation of remainder

mod is constructed as follows:

Step 1. Form the unary code of quotient (The unary code of an in-
teger is defined as 1s followed by a 0.)

Step 2. Let and compute trun-
cated remainder such that

(8.2-1)

Step 3. Concatenate the results of steps 1 and 2.

To compute for example, begin by determining the unary code of
the quotient which is 110 (the result of step 1). Then
let and which in binary is
1001mod0100 or 0001. In accordance with Eq. (8.2-1), is then (i.e., 0001)
truncated to 2 bits, which is 01 (the result of step 2). Finally, concatenate 110
from step 1 and 01 from step 2 to get 11001, which is G4(9).

rr¿
r = 9mod4,k = < log2 4= = 2, c = 22 - 4 = 0,

:9>4; = :2.25; = 2,
G4(9),

r¿ = b r truncated to k - 1 bits 0 … r 6 c

r + c truncated to k bits otherwise

r¿
k = < log2 m= , c = 2k - m, r = nmodm,

qq
:n>m; .

m. Gm(n)n
:n>m; Gm(n),m,n

m 7 0,n
y.xyxx,

x, <x=
:x;

J - 2J - 2J
J

R = 1 - (1>1.077) = 0.0715,C = 8>7.428 = 1.077

5122 * (7.428 - 7.3838)
bits>pixel

bits>pixel

With reference to 
Tables 8.3 and 8.4,
Golomb codes are used in

● JPEG-LS
● AVS

compression.
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†A probability mass function (PMF) is a function that defines the probability that a discrete random vari-
able is exactly equal to some value. A PMF differs from a PDF in that a PDF’s values are not probabili-
ties; rather, the integral of a PDF over a specified interval is a probability.

For the special case of and mod truncated to 
bits in Eq. (8.2-1) for all The divisions required to generate the resulting
Golomb codes become binary shift operations and the computationally sim-
pler codes are called Golomb-Rice or Rice codes (Rice [1975]). Columns 2, 3,
and 4 of Table 8.5 list the and codes of the first ten nonnegative inte-
gers. Because is a power of 2 in each case (i.e., and ),
they are the first three Golomb-Rice codes as well. Moreover, is the
unary code of the nonnegative integers because and mod
for all 

Keeping in mind that Golomb codes can only be used to represent nonneg-
ative integers and that there are many Golomb codes to choose from, a key
step in their effective application is the selection of divisor When the inte-
gers to be represented are geometrically distributed with probability mass
function (PMF)†

(8.2-2)

for some Golomb codes can be shown to be optimal—in the sense
that provides the shortest average code length of all uniquely decipher-
able codes—when (Gallager and Voorhis [1975])

(8.2-3)

Figure 8.10(a) plots Eq. (8.2-2) for three values of and illustrates graphically
the symbol probabilities that Golomb codes handle well (that is, code effi-
ciently).As is shown in the figure, small integers are much more probable than
large ones.

Because the probabilities of the intensities in an image [see, for example,
the histogram of Fig. 8.9(b)] are unlikely to match the probabilities specified in
Eq. (8.2-2) and shown in Fig. 8.10(a), Golomb codes are seldom used for the
coding of intensities. When intensity differences are to be coded, however, the

r

m = l log2(1 + r)
log2(1>r) m

Gm(n)
0 6 r 6 1,

P(n) = (1 - r)rn

m.

n.
1 = 0n:n>1; = n

G1

4 = 221 = 20, 2 = 21,m
G4G1, G2,

n.
kmr¿ = r = nm = 2k, c = 0

The discrete probability
distribution defined by
the PMF in Eq. (8.2-2) is
called the geometric
probability distribution.
Its continuous counter-
part is the exponential
distribution.

0 0 00 000 0
1 10 01 001 100
2 110 100 010 101
3 1110 101 011 11000
4 11110 1100 1000 11001
5 111110 1101 1001 11010
6 1111110 11100 1010 11011
7 11111110 11101 1011 1110000
8 111111110 111100 11000 1110001
9 1111111110 111101 11001 1110010

G 0
exp(n)G4(n)G2(n)G1(n)n TABLE 8.5 

Several Golomb
codes for the
integers 0 – 9.

The graphical 
representation of a PMF
is a histogram.
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FIGURE 8.10
(a) Three one-
sided geometric
distributions from
Eq. (8.2-2); (b) a
two-sided
exponentially
decaying
distribution; and
(c) a reordered
version of 
(b) using 
Eq. (8.2-4). probabilities of the resulting “difference values” (see Section 8.2.9)—with

the notable exception of the negative differences—often resemble those of
Eq. (8.2-2) and Fig. 8.10(a). To handle negative differences in Golomb cod-
ing, which can only represent nonnegative integers, a mapping like

(8.2-4)

typically is used. Using this mapping, for example, the two-sided PMF shown
in Fig. 8.10(b) can be transformed into the one-sided PMF in Fig. 8.10(c). Its
integers are reordered, alternating the negative and positive integers so that
the negative integers are mapped into the odd positive integer positions. If

is two-sided and centered at zero, will be one-sided. The
mapped integers, can then be efficiently encoded using an appropriate
Golomb-Rice code (Weinberger et al. [1996]).

M(n),
P(M(n))P(n)

M(n) = b2n n Ú 0
2 ƒ n ƒ - 1 n 6 0

EXAMPLE 8.5:
Golomb-Rice
coding.

■ Consider again the image from Fig. 8.1(c) and note that its histogram—see
Fig. 8.3(a)—is similar to the two-sided distribution in Fig. 8.10(b) above. If we
let be some nonnegative integer intensity in the image, where 
and be the mean intensity, is the two-sided distribution shown in
Fig. 8.11(a).This plot was generated by normalizing the histogram in Fig. 8.3(a)
by the total number of pixels in the image and shifting the normalized values
to the left by 128 (which in effect subtracts the mean intensity from the
image). In accordance with Eq. (8.2-4), is then the one-sided
distribution shown in Fig. 8.11(b). If the reordered intensity values are
Golomb coded using a MATLAB implementation of code in column 2 of
Table 8.5, the encoded representation is 4.5 times smaller than the original
image (i.e., ). The realizes or 88% of the theoretical
compression possible with variable-length coding. (Based on the entropy cal-
culated in Example 8.2, the maximum possible compression ratio through
variable-length coding is ) Moreover, Golomb coding
achieves 96% of the compression provided by a MATLAB implementation
of Huffman’s approach—and doesn’t require the computation of a custom
Huffman coding table.

Now consider the image in Fig. 8.9(a). If its intensities are Golomb coded
using the same code as above, That is, there is data expansion.C = 0.0922.G1

C = 8>1.566 L 5.1.

4.5>5.1G1 codeC = 4.5

G1

P(M(n - m))

P(n - m)m

0 … n … 255,n

a b c
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FIGURE 8.11
(a) The
probability
distribution of 
the image in 
Fig. 8.1(c) after
subtracting the
mean intensity
from each pixel,
and (b) a mapped
version of (a)
using Eq. (8.2-4).

This is due to the fact that the probabilities of the intensities of the image in
Fig. 8.9(a) are much different than the probabilities defined in Eq. (8.2-2). In a
similar manner, Huffman codes can produce data expansion when used to
encode symbols whose probabilities are different from those for which the
code was computed. In practice, the further you depart from the input proba-
bility assumptions for which a code is designed, the greater the risk of poor
compression performance and data expansion. ■

To conclude our coverage of Golomb codes, we note that Column 5 of
Table 8.5 contains the first 10 codes of the zeroth order exponential-
Golomb code, denoted Exponential-Golomb codes are useful for
the encoding of run lengths, because both short and long runs are encoded
efficiently. An order-k exponential-Golomb code is computed as
follows:

Step 1. Find an integer such that

(8.2-5)

and form the unary code of If and the code is
also known as the Elias gamma code.
Step 2. Truncate the binary representation of

(8.2-6)

to least significant bits.
Step 3. Concatenate the results of steps 1 and 2.

k + i

n - a
i - 1

j = 0
2j + k

k = 0, i = : log2(n + 1);i.

a
i - 1

j = 0
2j + k … n 6 a

i

j = 0
2j + k

i Ú 0

Gexp
k (n)

Gexp
0 (n).

When C is less than 1 in
Eq. (8.1-2), there is data
expansion.

a b
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To find for example, we let or 3 in step 1 because 
Equation (8.2-5) is then satisfied because

The unary code of 3 is 1110 and Eq. (8.2-6) of step 2 yields

which when truncated to its least significant bits becomes 001. The con-
catenation of the results from steps 1 and 2 then yields 1110001. Note that this is
the entry in column 4 of Table 8.5 for Finally, we note that like the Huff-
man codes of the last section, the Golomb codes of Table 8.5 are variable-length,
instantaneous uniquely decodable block codes.

8.2.3 Arithmetic Coding
Unlike the variable-length codes of the previous two sections, arithmetic cod-
ing generates nonblock codes. In arithmetic coding, which can be traced to the
work of Elias (see Abramson [1963]), a one-to-one correspondence between
source symbols and code words does not exist. Instead, an entire sequence of
source symbols (or message) is assigned a single arithmetic code word. The
code word itself defines an interval of real numbers between 0 and 1. As the
number of symbols in the message increases, the interval used to represent it
becomes smaller and the number of information units (say, bits) required to
represent the interval becomes larger. Each symbol of the message reduces
the size of the interval in accordance with its probability of occurrence. Be-
cause the technique does not require, as does Huffman’s approach, that each
source symbol translate into an integral number of code symbols (that is, that
the symbols be coded one at a time), it achieves (but only in theory) the bound
established by Shannon’s first theorem of Section 8.1.4.

Figure 8.12 illustrates the basic arithmetic coding process. Here, a five-symbol
sequence or message, from a four-symbol source is coded. At the
start of the coding process, the message is assumed to occupy the entire half-open
interval [0, 1).As Table 8.6 shows, this interval is subdivided initially into four re-
gions based on the probabilities of each source symbol. Symbol for example, is
associated with subinterval [0, 0.2). Because it is the first symbol of the message
being coded, the message interval is initially narrowed to [0, 0.2).Thus in Fig. 8.12

a1,

a1a2a3a3a4,

n = 8.

3 + 0

8 - a
3 - 1

j = 0
2j + 0 = 8 - a

2

j = 0
2j = 8 - (20 + 21 + 22) = 8 - 7 = 1 = 0001

 7 … 8 6 15

 20 + 21 + 22 … 8 6 20 + 21 + 22 + 23

a
2

j = 0
2j … 8 6 a

3

j = 0
2j

a
3 - 1

j = 0
2j + 0 … 8 6 a

3

j = 0
2j + 0

k = 0.i = : log2 9;Gexp
0 (8),

With reference to Tables
8.3 and 8.4, arithmetic
coding is used in

● JBIG1
● JBIG2
● JPEG-2000
● H.264
● MPEG-4 AVC

and other compression
standards.
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[0, 0.2) is expanded to the full height of the figure and its end points labeled by
the values of the narrowed range. The narrowed range is then subdivided in
accordance with the original source symbol probabilities and the process con-
tinues with the next message symbol. In this manner, symbol narrows the
subinterval to [0.04, 0.08), further narrows it to [0.056, 0.072), and so on.The
final message symbol, which must be reserved as a special end-of-message in-
dicator, narrows the range to [0.06752, 0.0688). Of course, any number within
this subinterval—for example, 0.068—can be used to represent the message.

In the arithmetically-coded message of Fig. 8.12, three decimal digits are used
to represent the five-symbol message. This translates into 0.6 decimal digits per
source symbol and compares favorably with the entropy of the source, which,
from Eq. (8.1-6), is 0.58 decimal digits per source symbol.As the length of the se-
quence being coded increases, the resulting arithmetic code approaches the
bound established by Shannon’s first theorem. In practice, two factors cause cod-
ing performance to fall short of the bound: (1) the addition of the end-of-message
indicator that is needed to separate one message from another; and (2) the use
of finite precision arithmetic. Practical implementations of arithmetic coding
address the latter problem by introducing a scaling strategy and a rounding strat-
egy (Langdon and Rissanen [1981]). The scaling strategy renormalizes each
subinterval to the [0, 1) range before subdividing it in accordance with the symbol
probabilities. The rounding strategy guarantees that the truncations associated
with finite precision arithmetic do not prevent the coding subintervals from being
represented accurately.
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FIGURE 8.12
Arithmetic coding
procedure.

Source Symbol Probability Initial Subinterval

a1 0.2 [0.0, 0.2)
a2 0.2 [0.2, 0.4)
a3 0.4 [0.4, 0.8)
a4 0.2 [0.8, 1.0)

TABLE 8.6 
Arithmetic coding
example.
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Adaptive context dependent probability estimates

With accurate input symbol probability models, that is, models that provide the
true probabilities of the symbols being coded, arithmetic coders are near opti-
mal in the sense of minimizing the average number of code symbols required
to represent the symbols being coded. Like in both Huffman and Golomb cod-
ing, however, inaccurate probability models can lead to non-optimal results. A
simple way to improve the accuracy of the probabilities employed is to use an
adaptive, context dependent probability model. Adaptive probability models
update symbol probabilities as symbols are coded or become known.Thus, the
probabilities adapt to the local statistics of the symbols being coded. Context
dependent models provide probabilities that are based on a predefined neigh-
borhood of pixels—called the context—around the symbols being coded. Nor-
mally, a causal context—one limited to symbols that have already been
coded—is used. Both the Q-coder (Pennebaker et al. [1988]) and MQ-coder
(ISO/IEC [2000]), two well-known arithmetic coding techniques that have
been incorporated into the JBIG, JPEG-2000, and other important image
compression standards, use probability models that are both adaptive and con-
text dependent. The Q-coder dynamically updates symbol probabilities during
the interval renormalizations that are part of the arithmetic coding process.
Adaptive context dependent models also have been used in Golomb coding—
for example, in the JPEG-LS compression standard.

Figure 8.13(a) diagrams the steps involved in adaptive, context-dependent
arithmetic coding of binary source symbols. Arithmetic coding often is used
when binary symbols are to be coded.As each symbol (or bit) begins the coding
process, its context is formed in the Context determination block of Fig. 8.13(a).
Figures 8.13(b) through (d) show three possible contexts that can be used:
(1) the immediately preceding symbol, (2) a group of preceding symbols, and
(3) some number of preceding symbols plus symbols on the previous scan line.
For the three cases shown, the Probability estimation block must manage 
(or 2), (or 256), and (or 32) contexts and their associated probabilities.
For instance, if the context in Fig. 8.13(b) is used, conditional probabilities
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FIGURE 8.13
(a) An adaptive,
context-based
arithmetic coding
approach (often
used for binary
source symbols).
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(the probability that the symbol being coded is a 0 given that the
preceding symbol is a 0), and must be
tracked. The appropriate probabilities are then passed to the Arithmetic coding
block as a function of the current context and drive the generation of the arith-
metically coded output sequence in accordance with the process illustrated in
Fig. 8.12. The probabilities associated with the context involved in the current
coding step are then updated to reflect the fact that another symbol within that
context has been processed.

Finally, we note that a variety of arithmetic coding techniques are protected
by United States patents (and may in addition be protected in other jurisdic-
tions). Because of these patents and the possibility of unfavorable monetary
judgments for their infringement, most implementations of the JPEG com-
pression standard, which contains options for both Huffman and arithmetic
coding, typically support Huffman coding alone.

8.2.4 LZW Coding
The techniques covered in the previous sections are focused on the removal
of coding redundancy. In this section, we consider an error-free compression
approach that also addresses spatial redundancies in an image.The technique,
called Lempel-Ziv-Welch (LZW) coding, assigns fixed-length code words to
variable length sequences of source symbols. Recall from Section 8.1.4 that
Shannon used the idea of coding sequences of source symbols, rather than in-
dividual source symbols, in the proof of his first theorem.A key feature of LZW
coding is that it requires no a priori knowledge of the probability of occurrence of
the symbols to be encoded. Despite the fact that until recently it was protected
under a United States patent, LZW compression has been integrated into a vari-
ety of mainstream imaging file formats, including GIF, TIFF, and PDF. The PNG
format was created to get around LZW licensing requirements.

P(1 ƒ a = 1)P(1 ƒ a = 0), P(0 ƒ a = 1),
P(0 ƒ a = 0)

With reference to 
Tables 8.3 and 8.4, LZW
coding is used in the

● GIF
● TIFF
● PDF

formats, but not in any of
the internationally 
sanctioned compression
standards.

EXAMPLE 8.6:
LZW coding 
Fig. 8.9(a).

■ Consider again the 8-bit image from Fig. 8.9(a). Using Adobe
Photoshop, an uncompressed TIFF version of this image requires 286,740
bytes of disk space—262,144 bytes for the 8-bit pixels plus 24,596
bytes of overhead. Using TIFF’s LZW compression option, however, the re-
sulting file is 224,420 bytes. The compression ratio is Recall that for
the Huffman encoded representation of Fig. 8.9(a) in Example 8.4,
The additional compression realized by the LZW approach is due the removal
of some of the image’s spatial redundancy. ■

LZW coding is conceptually very simple (Welch [1984]).At the onset of the
coding process, a codebook or dictionary containing the source symbols to be
coded is constructed. For 8-bit monochrome images, the first 256 words of the
dictionary are assigned to intensities 0, 1, 2, 255. As the encoder sequen-
tially examines image pixels, intensity sequences that are not in the dictionary
are placed in algorithmically determined (e.g., the next unused) locations. If
the first two pixels of the image are white, for instance, sequence “255–255”
might be assigned to location 256, the address following the locations reserved
for intensity levels 0 through 255. The next time that two consecutive white

Á ,

C = 1.077.
C = 1.28.

512 * 512

512 * 512,
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pixels are encountered, code word 256, the address of the location containing
sequence 255–255, is used to represent them. If a 9-bit, 512-word dictionary is
employed in the coding process, the original bits that were used to rep-
resent the two pixels are replaced by a single 9-bit code word. Clearly, the size
of the dictionary is an important system parameter. If it is too small, the detec-
tion of matching intensity-level sequences will be less likely; if it is too large,
the size of the code words will adversely affect compression performance.

(8 + 8)

EXAMPLE 8.7:
LZW coding.

■ Consider the following 8-bit image of a vertical edge:

39 39 126 126
39 39 126 126
39 39 126 126
39 39 126 126

Table 8.7 details the steps involved in coding its 16 pixels. A 512-word dictio-
nary with the following starting content is assumed:

4 * 4,

Locations 256 through 511 initially are unused.
The image is encoded by processing its pixels in a left-to-right, top-to-bottom

manner. Each successive intensity value is concatenated with a variable—
column 1 of Table 8.7—called the “currently recognized sequence.” As can be
seen, this variable is initially null or empty.The dictionary is searched for each con-
catenated sequence and if found, as was the case in the first row of the table, is
replaced by the newly concatenated and recognized (i.e., located in the dictionary)
sequence. This was done in column 1 of row 2. No output codes are generated,
nor is the dictionary altered. If the concatenated sequence is not found, however,
the address of the currently recognized sequence is output as the next encoded
value, the concatenated but unrecognized sequence is added to the dictionary,
and the currently recognized sequence is initialized to the current pixel value.
This occurred in row 2 of the table.The last two columns detail the intensity se-
quences that are added to the dictionary when scanning the entire 
image. Nine additional code words are defined. At the conclusion of coding,
the dictionary contains 265 code words and the LZW algorithm has success-
fully identified several repeating intensity sequences—leveraging them to reduce
the original 128-bit image to 90 bits (i.e., 10 9-bit codes).The encoded output is
obtained by reading the third column from top to bottom. The resulting com-
pression ratio is 1.42:1. ■

4 * 4

Dictionary Location Entry

0 0
1 1

255 255
256 —

511 —
oo

oo
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Currently Dictionary 
Recognized Pixel Being Encoded Location 
Sequence Processed Output (Code Word) Dictionary Entry

39
39 39 39 256 39-39
39 126 39 257 39-126
126 126 126 258 126-126
126 39 126 259 126-39
39 39

39-39 126 256 260 39-39-126
126 126

126-126 39 258 261 126-126-39
39 39

39-39 126
39-39-126 126 260 262 39-39-126-126

126 39
126-39 39 259 263 126-39-39

39 126
39-126 126 257 264 39-126-126

126 126

TABLE 8.7 
LZW coding
example.

A unique feature of the LZW coding just demonstrated is that the coding
dictionary or code book is created while the data are being encoded. Remark-
ably, an LZW decoder builds an identical decompression dictionary as it de-
codes simultaneously the encoded data stream. It is left as an exercise to the
reader (see Problem 8.20) to decode the output of the preceding example and
reconstruct the code book. Although not needed in this example, most practi-
cal applications require a strategy for handling dictionary overflow. A simple
solution is to flush or reinitialize the dictionary when it becomes full and con-
tinue coding with a new initialized dictionary. A more complex option is to
monitor compression performance and flush the dictionary when it becomes
poor or unacceptable. Alternatively, the least used dictionary entries can be
tracked and replaced when necessary.

8.2.5 Run-Length Coding
As was noted in Section 8.1.2, images with repeating intensities along their
rows (or columns) can often be compressed by representing runs of identical
intensities as run-length pairs, where each run-length pair specifies the start of
a new intensity and the number of consecutive pixels that have that intensi-
ty. The technique, referred to as run-length encoding (RLE), was developed
in the 1950s and became, along with its 2-D extensions, the standard com-
pression approach in facsimile (FAX) coding. Compression is achieved by
eliminating a simple form of spatial redundancy—groups of identical intensi-
ties. When there are few (or no) runs of identical pixels, run-length encoding
results in data expansion.

With reference to Tables
8.3 and 8.4, the coding of
run-lengths is used in

● CCITT
● JBIG2
● JPEG
● M-JPEG
● MPEG-1,2,4
● BMP

and other compression
standards and file formats.
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EXAMPLE 8.8:
RLE in the BMP
file format.

■ The BMP file format uses a form of run-length encoding in which image
data is represented in two different modes: encoded and absolute—and either
mode can occur anywhere in the image. In encoded mode, a two byte RLE
representation is used. The first byte specifies the number of consecutive pix-
els that have the color index contained in the second byte. The 8-bit color
index selects the run’s intensity (color or gray value) from a table of 256 pos-
sible intensities.

In absolute mode, the first byte is 0 and the second byte signals one of four
possible conditions, as shown in Table 8.8. When the second byte is 0 or 1, the
end of a line or the end of the image has been reached. If it is 2, the next two
bytes contain unsigned horizontal and vertical offsets to a new spatial position
(and pixel) in the image. If the second byte is between 3 and 255, it specifies
the number of uncompressed pixels that follow—with each subsequent byte
containing the color index of one pixel. The total number of bytes must be
aligned on a 16-bit word boundary.

An uncompressed BMP file (saved using Photoshop) of the 
bit image shown in Fig. 8.9(a) requires 263,244 bytes of memory. Compressed
using BMP’s RLE option, the file expands to 267,706 bytes—and the compres-
sion ratio is There are not enough equal intensity runs to make run-
length compression effective; a small amount of expansion occurs. For the
image in Fig. 8.1(c), however, the BMP RLE option results in a compression
ratio ■

Run-length encoding is particularly effective when compressing binary im-
ages. Because there are only two possible intensities (black and white), adjacent
pixels are more likely to be identical. In addition, each image row can be repre-
sented by a sequence of lengths only—rather than length-intensity pairs as was
used in Example 8.8. The basic idea is to code each contiguous group (i.e., run)
of or 1s encountered in a left to right scan of a row by its length and to estab-
lish a convention for determining the value of the run. The most common con-
ventions are (1) to specify the value of the first run of each row, or (2) to assume
that each row begins with a white run, whose run length may in fact be zero.

Although run-length encoding is in itself an effective method of compress-
ing binary images, additional compression can be achieved by variable-length
coding the run lengths themselves. The black and white run lengths can be
coded separately using variable-length codes that are specifically tailored to
their own statistics. For example, letting symbol represent a black run of
length we can estimate the probability that symbol was emitted by an
imaginary black run-length source by dividing the number of black run lengths

ajj,
aj

0s

C = 1.35.

C = 0.98.

512 * 512 * 8Note that due to differ-
ences in overhead, the
uncompressed BMP file
is smaller than the un-
compressed TIFF file in
Example 8.7.

Second Byte Value Condition

0 End of line
1 End of image
2 Move to a new position

3–255 Specify pixels individually

TABLE 8.8 
BMP absolute
coding mode
options. In this
mode, the first
byte of the BMP
pair is 0.
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†In the standard, images are referred to as pages and sequences of images are called documents.

of length in the entire image by the total number of black runs. An estimate
of the entropy of this black run-length source, denoted follows by substi-
tuting these probabilities into Eq. (8.1-6).A similar argument holds for the en-
tropy of the white runs, denoted The approximate run-length entropy of
the image is then

(8.2-7)

where the variables and denote the average values of black and white
run lengths, respectively. Equation (8.2-7) provides an estimate of the average
number of bits per pixel required to code the run lengths in a binary image
using a variable-length code.

Two of the oldest and most widely used image compression standards are
the CCITT Group 3 and 4 standards for binary image compression. Al-
though they have been used in a variety of computer applications, they were
originally designed as facsimile (FAX) coding methods for transmitting doc-
uments over telephone networks. The Group 3 standard uses a 1-D run-
length coding technique in which the last lines of each group of 
lines (for or 4) can be optionally coded in a 2-D manner. The Group 4
standard is a simplified or streamlined version of the Group 3 standard in
which only 2-D coding is allowed. Both standards use the same 2-D coding
approach, which is two-dimensional in the sense that information from the
previous line is used to encode the current line. Both 1-D and 2-D coding are
discussed next.

One-dimensional CCITT compression

In the 1-D CCITT Group 3 compression standard, each line of an image† is
encoded as a series of variable-length Huffman code words that represent
the run lengths of alternating white and black runs in a left-to-right scan of
the line. The compression method employed is commonly referred to as
Modified Huffman (MH) coding. The code words themselves are of two
types, which the standard refers to as terminating codes and makeup codes.
If run length is less than 63, a terminating code from Table A.1 in Appen-
dix A is used to represent it. Note that the standard specifies different ter-
minating codes for black and white runs. If two codes are used—a
makeup code for quotient and terminating code for remainder 

mod64. Makeup codes are listed in Table A.2 and may or may not depend
on the intensity (black or white) of the run being coded. If 
separate black and white run makeup codes are specified; otherwise, makeup
codes are independent of run intensity. The standard requires that each line
begin with a white run-length code word, which may in fact be 00110101, the
code for a white run of length zero. Finally, a unique end-of-line (EOL) code
word 000000000001 is used to terminate each line, as well as to signal the
first line of each new image. The end of a sequence of images is indicated by
six consecutive EOLs.

:r>64; 6 1792,
r

:r>64; r 7 63,

r

K = 2
KK - 1

L1L0

HRL =
H0 + H1

L0 + L1

H1.

H0,
j

Recall from Section 8.2.2
that the notation 
denotes the largest 
integer less than or 
equal to x.

:x;
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Two-dimensional CCITT compression

The 2-D compression approach adopted for both the CCITT Group 3 and 4
standards is a line-by-line method in which the position of each black-to-white
or white-to-black run transition is coded with respect to the position of a
reference element that is situated on the current coding line. The previously
coded line is called the reference line; the reference line for the first line of
each new image is an imaginary white line. The 2-D coding technique that is
used is called Relative Element Address Designate (READ) coding. In the
Group 3 standard, one or three READ coded lines are allowed between suc-
cessive MH coded lines and the technique is called Modified READ (MR)
coding. In the Group 4 standard, a greater number of READ coded lines are al-
lowed and the method is called Modified Modified READ (MMR) coding. As
was previously noted, the coding is two-dimensional in the sense that informa-
tion from the previous line is used to encode the current line. Two-dimensional
transforms are not involved.

Figure 8.14 shows the basic 2-D coding process for a single scan line. Note
that the initial steps of the procedure are directed at locating several key
changing elements: and A changing element is defined by the
standard as a pixel whose value is different from that of the previous pixel on
the same line. The most important changing element is (the reference ele-
ment), which is either set to the location of an imaginary white changing ele-
ment to the left of the first pixel of each new coding line or determined from
the previous coding mode. Coding modes are discussed in the following para-
graph. After is located, is identified as the location of the next changing
element to the right of on the current coding line, as the next changing
element to the right of on the coding line, as the changing element of
the opposite value (of ) and to the right of on the reference (or previ-
ous) line, and as the next changing element to the right of on the refer-
ence line. If any of these changing elements are not detected, they are set to
the location of an imaginary pixel to the right of the last pixel on the appro-
priate line. Figure 8.15 provides two illustrations of the general relationships
between the various changing elements.

After identification of the current reference element and associated chang-
ing elements, two simple tests are performed to select one of three possible
coding modes: pass mode, vertical mode, or horizontal mode. The initial test,
which corresponds to the first branch point in the flowchart in Fig. 8.14, com-
pares the location of to that of The second test, which corresponds to the
second branch point in Fig. 8.14, computes the distance (in pixels) between the
locations of and and compares it against 3. Depending on the outcome of
these tests, one of the three outlined coding blocks of Fig. 8.14 is entered and
the appropriate coding procedure is executed.A new reference element is then
established, as per the flowchart, in preparation for the next coding iteration.

Table 8.9 defines the specific codes utilized for each of the three possible
coding modes. In pass mode, which specifically excludes the case in which is
directly above only the pass mode code word 0001 is needed.As Fig. 8.15(a)
shows, this mode identifies white or black reference line runs that do not overlap

a1,
b2

b1a1

a1.b2

b1b2

a0a0

b1a1

a2a0

a1a0

a0

b2.a0, a1, a2, b1,

a0
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Start new
coding line

Put a0 before
the first pixel

End of
coding line

Detect a1

Detect b1

Detect b2

b2 left of a1

Pass mode
coding

Horizontal
mode coding

Put a0 on a2
Put a0

under b2

Vertical mode
coding

Put a0 on a1

Detect a2

End of
line?No

Yes

No

Yes

No

Yes


a1b1
 � 3

FIGURE 8.14
CCITT 2-D
READ coding
procedure. The
notation
denotes the
absolute value of
the distance
between changing
elements
and b1.

a1

ƒ a1b1 ƒ
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Reference line

Coding line

Vertical mode

� 0
� 1

b1

a0 a1Next a0 Pass mode

b2

Reference line

Coding line

b2a1b1

a0 a1

Horizontal mode

a2

b1

a0a1 a1a2

FIGURE 8.15
CCITT (a) pass
mode and 
(b) horizontal 
and vertical mode
coding
parameters.

the current white or black coding line runs. In horizontal coding mode, the dis-
tances from to and to must be coded in accordance with the termina-
tion and makeup codes of Tables A.1 and A.2 of Appendix A and then
appended to the horizontal mode code word 001. This is indicated in Table 8.9
by the notation where and denote the dis-
tances from to and to respectively. Finally, in vertical coding mode,
one of six special variable-length codes is assigned to the distance between 
and Figure 8.15(b) illustrates the parameters involved in both horizontal
and vertical mode coding. The extension mode code word at the bottom of
Table 8.9 is used to enter an optional facsimile coding mode. For example, the
0000001111 code is used to initiate an uncompressed mode of transmission.

b1.
a1

a2,a1a1a0

a1a2a0a1001 + M(a0a1) + M(a1a2),

a2a1a1a0

Mode Code Word

Pass 0001
Horizontal
Vertical

below 1
one to the right of 011
two to the right of 000011
three to the right of 0000011
one to the left of 010
two to the left of 000010
three to the left of 0000010

Extension 0000001xxx
b1a1

b1a1

b1a1

b1a1

b1a1

b1a1

b1a1

001 + M(a0a1) + M(a1a2)

TABLE 8.9 
CCITT two-
dimensional code
table.

EXAMPLE 8.9:
CCITT vertical
mode coding
example.

■ Although Fig. 8.15(b) is annotated with the parameters for both horizontal
and vertical mode coding (to facilitate the discussion above), the depicted pat-
tern of black and white pixels is a case for vertical mode coding. That is, be-
cause is to the right of the first (or pass mode) test in Fig. 8.14 fails. The
second test, which determines whether the vertical or horizontal coding mode

a1,b2

a
b
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EXAMPLE 8.10:
CCITT
compression
example.

■ Figure 8.16(a) is a 300 dpi scan of a inch book page displayed at
about 1 3 scale. Note that about half of the page contains text, around 9% is oc-
cupied by a halftone image, and the rest is white space. A section of the page is
enlarged in Fig. 8.16(b). Keep in mind that we are dealing with a binary image;
the illusion of gray tones is created, as was described in Section 4.5.4, by the
halftoning process used in printing. If the binary pixels of the image in Fig. 8.16(a)
are stored in groups of 8 pixels per byte, the bit scanned image,
commonly called a document, requires 658,068 bytes.An uncompressed PDF file
of the document (created in Photoshop) requires 663,445 bytes. CCITT Group
3 compression reduces the file to 123,497 bytes—resulting in a compression
ratio CCITT Group 4 compression reduces the file to 110,456 bytes,
increasing the compression ratio to about 6. ■

8.2.6 Symbol-Based Coding
In symbol- or token-based coding, an image is represented as a collection of
frequently occurring sub-images, called symbols. Each such symbol is stored in
a symbol dictionary and the image is coded as a set of triplets 

where each pair specifies the location of a symbol in(xi, yi)(x2, y2, t2), Á 6, 5(x1, y1, t1),

C = 5.37;

1952 * 2697

> 7 * 9.25

Do not confuse the PDF
used here, which stands
for Portable Document
Format, with the PDF
used in previous sections
and chapters for proba-
bility density function.

is entered, indicates that vertical mode coding should be used, because the dis-
tance from to is less than 3. In accordance with Table 8.9, the appropriate
code word is 000010, implying that is two pixels left of In preparation for
the next coding iteration, is moved to the location of   ■a1.a0

b1.a1

b1a1

With reference to Tables
8.3 and 8.4, symbol-based
coding is used in

● JBIG2

compression.

FIGURE 8.16
A binary scan of 
a book page:
(a) scaled to show
the general page
content; (b) scaled
to show the
binary pixels used
in dithering.

a b
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the image and token is the address of the symbol or sub-image in the dictionary.
That is, each triplet represents an instance of a dictionary symbol in the
image. Storing repeated symbols only once can compress images significantly—
particularly in document storage and retrieval applications, where the sym-
bols are often character bitmaps that are repeated many times.

Consider the simple bilevel image in Fig. 8.17(a). It contains the single word,
banana, which is composed of three unique symbols: a three a’s, and two n’s.
Assuming that the is the first symbol identified in the coding process, its 
bitmap is stored in location 0 of the symbol dictionary.As Fig. 8.17(b) shows, the
token identifying the bitmap is 0. Thus, the first triplet in the encoded image’s
representation [see Fig. 8.17(c)] is (0, 2, 0)—indicating that the upper-left corner
(an arbitrary convention) of the rectangular bitmap representing the symbol is
to be placed at location (0, 2) in the decoded image. After the bitmaps for the 
and symbols have been identified and added to the dictionary, the remainder
of the image can be encoded with five additional triplets. As long as the six
triplets required to locate the symbols in the image, together with the three
bitmaps required to define them, are smaller than the original image, com-
pression occurs. In this case, the starting image has or 459 bits and,
assuming that each triplet is composed of 3 bytes, the compressed representa-
tion has or 285 bits; the result-
ing compression ratio To decode the symbol-based representation
in Fig. 8.17(c), you simply read the bitmaps of the symbols specified in the
triplets from the symbol dictionary and place them at the spatial coordinates
specified in each triplet.

Symbol-based compression was proposed in the early 1970s (Ascher and
Nagy [1974]), but has become practical only recently. Advances in symbol
matching algorithms (see Chapter 12) and increased CPU computer process-
ing speeds have made it possible both to select dictionary symbols and to find
where they occur in an image in a timely manner. And like many other com-
pression methods, symbol-based decoding is significantly faster than encoding.
Finally, we note that both the symbol bitmaps that are stored in the dictionary
and the triplets used to reference them can themselves be encoded to further
improve compression performance. If—as in Fig. 8.17—only exact symbol
matches are allowed, the resulting compression is lossless; if small differences
are permitted, some level of reconstruction error will be present.

C = 1.61.
(6 * 7) + (6 * 6)](6 * 3 * 8) + [(9 * 7) +

9 * 51 * 1

n
a

b

b

9 * 7b
b,

ti

Token

0
(0, 2, 0)
(3, 10, 1)
(3, 18, 2)
(3, 26, 1)
(3, 34, 2)
(3, 42, 1)

1

2

Symbol Triplet

FIGURE 8.17
(a) A bi-level
document,
(b) symbol
dictionary, and 
(c) the triplets
used to locate the
symbols in the
document.

a b c
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JBIG2 compression

JBIG2 is an international standard for bilevel image compression. By segmenting
an image into overlapping and/or non-overlapping regions of text, halftone, and
generic content, compression techniques that are specifically optimized for each
type of content are employed:

● Text regions are composed of characters that are ideally suited for a symbol-
based coding approach. Typically, each symbol will correspond to a charac-
ter bitmap—a subimage representing a character of text. There is normally
only one character bitmap (or subimage) in the symbol dictionary for each
upper- and lowercase character of the font being used. For example, there
would be one “a” bitmap in the dictionary, one “A” bitmap, one “b” bitmap,
and so on.

In lossy JBIG2 compression, often called perceptually lossless or
visually lossless, we neglect differences between dictionary bitmaps (i.e.,
the reference character bitmaps or character templates) and specific in-
stances of the corresponding characters in the image. In lossless compres-
sion, the differences are stored and used in conjunction with the triplets
encoding each character (by the decoder) to produce the actual image
bitmaps.All bitmaps are encoded either arithmetically or using MMR (see
Section 8.2.5); the triplets used to access dictionary entries are either
arithmetically or Huffman encoded.

● Halftone regions are similar to text regions in that they are composed of
patterns arranged in a regular grid. The symbols that are stored in the dic-
tionary, however, are not character bitmaps but periodic patterns that rep-
resent intensities (e.g., of a photograph) that have been dithered to
produce bilevel images for printing.

● Generic regions contain non-text, non-halftone information, like line art
and noise, and are compressed using either arithmetic or MMR coding.

As is true of many image compression standards, JBIG2 defines decoder be-
havior. It does not explicitly define a standard encoder, but is flexible enough
to allow various encoder designs.Although the design of the encoder is left un-
specified, it is nevertheless important, because it determines the level of com-
pression that is achieved. After all, the encoder must segment the image into
regions, choose the text and halftone symbols that are stored in the dictionar-
ies, and decide when those symbols are essentially the same as, or different
from, potential instances of the symbols in the image. The decoder simply uses
that information to recreate the original image.

EXAMPLE 8.11:
JBIG2
compression
example.

■ Consider again the bilevel image in Fig. 8.16(a). Figure 8.18(a) shows a re-
constructed section of the image after lossless JBIG2 encoding (by a commer-
cially available document compression application). It is an exact replica of
the original image. Note that the ds in the reconstructed text vary slightly, de-
spite the fact that they were generated from the same entry in the dictionary.
The differences between that and the ds in the image were used to refine the
output of the dictionary. The standard defines an algorithm for accomplishing

d
d
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FIGURE 8.18
JBIG2
compression
comparison:
(a) lossless
compression and
reconstruction;
(b) perceptually
lossless; and 
(c) the scaled
difference
between the two.

With reference to 
Tables 8.3 and 8.4,
bit-plane coding is used
in the

● JBIG1
● JPEG-2000

compression standards.

this during the decoding of the encoded dictionary bitmaps. For the purposes
of our discussion, you can think of it as adding the difference between a dictio-
nary bitmap and a specific instance of the corresponding character in the
image to the bitmap read from the dictionary.

Figure 8.18(b) is another reconstruction of the area in (a) after perceptu-
ally lossless JBIG2 compression. Note that the ds in this figure are identical.
They have been copied directly from the symbol dictionary. The reconstruc-
tion is called perceptually lossless because the text is readable and the font is
even the same. The small differences—shown in Fig. 8.18(c)—between the ds
in the original image and the in the dictionary are considered unimportant
because they do not affect readability. Remember that we are dealing with
bilevel images, so there are only three intensities in Fig. 8.18(c). Intensity 128
indicates areas where there is no difference between the corresponding pixels
of the images in Figs. 8.18(a) and (b); intensities 0 (black) and 255 (white) in-
dicate pixels of opposite intensities in the two images—for example, a black
pixel in one image that is white in the other, and vice versa.

The lossless JBIG2 compression that was used to generate Fig. 8.18(a) re-
duces the original 663,445 byte uncompressed PDF image to 32,705 bytes; the
compression ratio is Perceptually lossless JBIG2 compression re-
duces the image to 23,913 bytes, increasing the compression ratio to about
27.7.These compressions are 4 to 5 times greater than the CCITT Group 3 and
4 results from Example 8.10. ■

8.2.7 Bit-Plane Coding
The run-length and symbol-based techniques of the previous sections can be
applied to images with more than two intensities by processing their bit planes
individually. The technique, called bit-plane coding, is based on the concept of
decomposing a multilevel (monochrome or color) image into a series of binary
images (see Section 3.2.4) and compressing each binary image via one of sev-
eral well-known binary compression methods. In this section, we describe the
two most popular decomposition approaches.

The intensities of an m-bit monochrome image can be represented in the
form of the base-2 polynomial

(8.2-8)am - 12m - 1 + am - 22m - 2 + Á + a121 + a020

C = 20.3.

d

a b c
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Based on this property, a simple method of decomposing the image into a col-
lection of binary images is to separate the coefficients of the polynomial into

1-bit bit planes. As noted in Section 3.2.4, the lowest order bit plane (the
plane corresponding to the least significant bit) is generated by collecting the 
bits of each pixel, while the highest order bit plane contains the bits or coef-
ficients. In general, each bit plane is constructed by setting its pixels equal to the
values of the appropriate bits or polynomial coefficients from each pixel in the
original image.The inherent disadvantage of this decomposition approach is that
small changes in intensity can have a significant impact on the complexity of the
bit planes. If a pixel of intensity 127 (01111111) is adjacent to a pixel of intensity
128 (10000000), for instance, every bit plane will contain a corresponding 0 to 1
(or 1 to 0) transition. For example, because the most significant bits of the binary
codes for 127 and 128 are different, the highest bit plane will contain a zero-valued
pixel next to a pixel of value 1, creating a 0 to 1 (or 1 to 0) transition at that point.

An alternative decomposition approach (which reduces the effect of
small intensity variations) is to first represent the image by an m-bit Gray
code. The m-bit Gray code that corresponds to the polynomial
in Eq. (8.2-8) can be computed from

(8.2-9)

Here, denotes the exclusive OR operation. This code has the unique prop-
erty that successive code words differ in only one bit position. Thus, small
changes in intensity are less likely to affect all bit planes. For instance, when
intensity levels 127 and 128 are adjacent, only the highest order bit plane will
contain a 0 to 1 transition, because the Gray codes that correspond to 127 and
128 are 11000000 and 01000000, respectively.

m

{

gm - 1 = am - 1

gi = ai { ai + 1 0 … i … m - 2

gm - 1 Á g2g1g0

am - 1

a0

m
m

EXAMPLE 8.12:
Bit-plane coding.

■ Figures 8.19 and 8.20 show the eight binary and Gray-coded bit planes of
the 8-bit monochrome image of the child in Fig. 8.19(a). Note that the high-
order bit planes are far less complex than their low-order counterparts.That is,
they contain large uniform areas of significantly less detail, busyness, or ran-
domness. In addition, the Gray-coded bit planes are less complex than the cor-
responding binary bit planes. Both observations are reflected in the JBIG2
coding results of Table 8.10. Note, for instance, that the and results areg5a5

7 6,999 6,999 1.00
6 12,791 11,024 1.16
5 40,104 36,914 1.09
4 55,911 47,415 1.18
3 78,915 67,787 1.16
2 101,535 92,630 1.10
1 107,909 105,286 1.03
0 99,753 107,909 0.92

TABLE 8.10 
JBIG2 lossless
coding results for
the binary and
Gray-coded bit
planes of 
Fig. 8.19(a). These
results include the
overhead of each
bit plane’s PDF
representation.

Coefficient Binary Code Gray Code Compression
m (PDF bits) (PDF bits) Ratio
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All
bits

a6 g6

a5 g5

a4 g4

a7, g7

FIGURE 8.19
(a) A 256-bit
monochrome
image. (b)–(h)
The four most
significant binary
and Gray-coded
bit planes of the
image in (a).

c
b
d

e
g

f
h

a
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a3

a2

a0

a1

g3

g2

g0

g1

FIGURE 8.20
(a)–(h) The four
least significant
binary (left
column) and
Gray-coded
(right column) 
bit planes of
the image in 
Fig. 8.19(a).

c
b
d

e
g

f
h

a
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Input
image

(M � N)

Construct
n � n

subimages

Forward
transform

Quantizer Symbol
encoder

Compressed
image

Symbol
decoder

Inverse
transform

Merge
n � n

subimages

Compressed
image

Decompressed
image

FIGURE 8.21
A block
transform coding
system:
(a) encoder;
(b) decoder.

In this section, we restrict
our attention to square
subimages (the most
commonly used). It is 
assumed that the input
image is padded, if 
necessary, so that both 

and are multiples
of n.

NM

significantly larger than the and compressions; and that both and 
are smaller than their and counterparts. This trend continues throughout
the table, with the single exception of Gray-coding provides a compression
advantage of about 1.06:1 on average. Combined together, the Gray-coded
files compress the original monochrome image by 678,676 475,964 or 1.43:1;
the non-Gray-coded files compress the image by 678,676 503,916 or 1.35:1.

Finally, we note that the two least significant bits in Fig. 8.20 have little ap-
parent structure. Because this is typical of most 8-bit monochrome images, bit-
plane coding is usually restricted to images of 6 or less. JBIG1, the
predecessor to JBIG2, imposes such a limit. ■

8.2.8 Block Transform Coding
In this section, we consider a compression technique that divides an image into
small non-overlapping blocks of equal size (e.g., ) and processes the
blocks independently using a 2-D transform. In block transform coding, a re-
versible, linear transform (such as the Fourier transform) is used to map each
block or subimage into a set of transform coefficients, which are then quantized
and coded. For most images, a significant number of the coefficients have small
magnitudes and can be coarsely quantized (or discarded entirely) with little
image distortion. A variety of transformations, including the discrete Fourier
transform (DFT) of Chapter 4, can be used to transform the image data.

Figure 8.21 shows a typical block transform coding system. The decoder im-
plements the inverse sequence of steps (with the exception of the quantization
function) of the encoder, which performs four relatively straightforward oper-
ations: subimage decomposition, transformation, quantization, and coding. An

input image is subdivided first into subimages of size which are
then transformed to generate subimage transform arrays, each of size

The goal of the transformation process is to decorrelate the pixels of
each subimage, or to pack as much information as possible into the smallest
number of transform coefficients.The quantization stage then selectively elim-
inates or more coarsely quantizes the coefficients that carry the least amount
of information in a predefined sense (several methods are discussed later in
the section). These coefficients have the smallest impact on reconstructed
subimage quality. The encoding process terminates by coding (normally using
a variable-length code) the quantized coefficients. Any or all of the transform
encoding steps can be adapted to local image content, called adaptive trans-
form coding, or fixed for all subimages, called nonadaptive transform coding.

n * n.
MN>n2

n * n,M * N

8 * 8

bits>pixel

> >
a0.

a6a5

g6g5g6a6

With reference to Tables
8.3 and 8.4, block trans-
form coding is used in

● JPEG
● M-JPEG
● MPEG-1, 2, 4
● H.261, H.262,

H.263, and H.264
● DV and HDV
● VC-1

and other compression
standards.

a
b
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We use to differ-
entiate a subimage from
the input image 
Thus, the summation lim-
its become rather than

and N.M
n

f(x, y).

g(x, y)

Transform selection

Block transform coding systems based on a variety of discrete 2-D transforms
have been constructed and/or studied extensively. The choice of a particular
transform in a given application depends on the amount of reconstruction
error that can be tolerated and the computational resources available. Com-
pression is achieved during the quantization of the transformed coefficients
(not during the transformation step).

With reference to the discussion in Section 2.6.7, consider a subimage
of size whose forward, discrete transform, can be ex-

pressed in terms of the general relation

(8.2-10)

for Given similarly can be obtained
using the generalized inverse discrete transform

(8.2-11)

for In these equations, and 
are called the forward and inverse transformation kernels, respectively. For
reasons that will become clear later in the section, they also are referred to
as basis functions or basis images. The for in
Eq. (8.2-10) are called transform coefficients; they can be viewed as the ex-
pansion coefficients—see Section 7.2.1—of a series expansion of with
respect to basis functions 

As explained in Section 2.6.7, the kernel in Eq. (8.2-10) is separable if

(8.2-12)

In addition, the kernel is symmetric if is functionally equal to In this case,
Eq. (8.2-12) can be expressed in the form

(8.2-13)

Identical comments apply to the inverse kernel if is replaced by
in Eqs. (8.2-12) and (8.2-13). It is not difficult to show that a 2-D

transform with a separable kernel can be computed using row-column or
column-row passes of the corresponding 1-D transform, in the manner ex-
plained in Section 4.11.1.

The forward and inverse transformation kernels in Eqs. (8.2-10) and (8.2-11)
determine the type of transform that is computed and the overall computation-
al complexity and reconstruction error of the block transform coding system in
which they are employed. The best known transformation kernel pair is

(8.2-14)r (x, y, u, v) = e-j2p(ux + vy)>n

s(x, y, u, v)
r(x, y, u, v)

r (x, y, u, v) = r1(x, u)r1(y, v)

r2.r1

r (x, y, u, v) = r1(x, u)r2(y, v)

s(x, y, u, v).
g(x, y)

u, v = 0, 1, 2, Á , n - 1T(u, v)

s(x, y, u, v)r(x, y, u, v)x, y = 0, 1, 2, Á , n - 1.

g(x, y) = a
n - 1

u = 0
a
n - 1

v = 0
T(u, v)s(x, y, u, v)

T(u, v), g(x, y)u, v = 0, 1, 2, Á , n - 1.

T(u, v) = a
n - 1

x = 0
a
n - 1

y = 0
g(x, y)r(x, y, u, v)

T(u, v),n * ng(x, y)
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and

(8.2-15)

where These are the transformation kernels defined in Eqs. (2.6-34)
and (2.6-35) of Chapter 2 with Substituting these kernels into
Eqs. (8.2-10) and (8.2-11) yields a simplified version of the discrete Fourier
transform pair introduced in Section 4.5.5.

A computationally simpler transformation that is also useful in transform
coding, called the Walsh-Hadamard transform (WHT), is derived from the
functionally identical kernels

(8.2-16)

where The summation in the exponent of this expression is performed
in modulo 2 arithmetic and is the kth bit (from right to left) in the binary
representation of If and (110 in binary), for example,

and The in Eq. (8.2-16) are computed using:

(8.2-17)

where the sums, as noted previously, are performed in modulo 2 arithmetic.
Similar expressions apply to 

Unlike the kernels of the DFT, which are sums of sines and cosines [see
Eqs. (8.2-14) and (8.2-15)], the Walsh-Hadamard kernels consist of alternating
plus and minus 1s arranged in a checkerboard pattern. Figure 8.22 shows the
kernel for Each block consists of elements (subsquares).4 * 4 = 16n = 4.

pi(v).

pm - 1(u) = b1(u) + b0(u)
o

p2(u) = bm - 2(u) + bm - 3(u)
p1(u) = bm - 1(u) + bm - 2(u)
p0(u) = bm - 1(u)

pi(u)b2(z) = 1.b1(z) = 1,
b0(z) = 0,z = 6m = 3z.

bk(z)
n = 2m.

i =0

m - 1g :bi(x)pi(u)+bi(y)pi(v);
=

1
n

(-1)= s(x, y, u, v)r(x, y, u, v)

M = N = n.
j = 1-1.

s(x, y, u, v) =
1

n2 ej2p(ux + vy)>n

To compute the WHT 
of an input
image rather
than a subimage, change

to in Eq. (8.2-16).Nn

f(x, y),
N * N

FIGURE 8.22
Walsh-Hadamard
basis functions for

The origin
of each block is at
its top left.

n = 4.
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White denotes and black denotes To obtain the top left block, we let
and plot values of for All values in this

case are The second block on the top row is a plot of values of 
for and so on. As already noted, the importance of the Walsh-
Hadamard transform is its simplicity of implementation—all kernel values are

or
One of the transformations used most frequently for image compression is

the discrete cosine transform (DCT). It is obtained by substituting the follow-
ing (equal) kernels into Eqs. (8.2-10) and (8.2-11)

(8.2-18)

where

(8.2-19)

and similarly for Figure 8.23 shows for the case The
computation follows the same format as explained for Fig. 8.22, with the dif-
ference that the values of are not integers. In Fig. 8.23, the lighter intensity
values correspond to larger values of r.

r

n = 4.r(x, y, u, v)a(v).

a(u) = dA 1
n

for u = 0

A
2
n

for u = 1, 2, Á , n - 1

= a(u)a(v) cosB (2x + 1)up

2n
R  cosB (2y + 1)vp

2n
Rr(x, y, u, v) = s(x, y, u, v)

-1.+1

x, y = 0, 1, 2, 3,
r(x, y, 0, 1)+1.

x, y = 0, 1, 2, 3.r(x, y, 0, 0)u = v = 0
-1.+1

To compute the DCT of
an input image

rather than a
subimage, change to 

in Eqs. (8.2-18) and
(8.2-19).
N

n
f(x, y),

N * N

EXAMPLE 8.13:
Block transform
coding with the
DFT, WHT, and
DCT.

■ Figures 8.24(a) through (c) show three approximations of the 
monochrome image in Fig. 8.9(a). These pictures were obtained by dividing
the original image into subimages of size representing each subimage
using one of the transforms just described (i.e., the DFT, WHT, or DCT
transform), truncating 50% of the resulting coefficients, and taking the inverse
transform of the truncated coefficient arrays.

8 * 8,

512 * 512

FIGURE 8.23
Discrete-cosine
basis functions for

The origin
of each block is at
its top left.

n = 4.
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FIGURE 8.24 Approximations of Fig. 8.9(a) using the (a) Fourier, (b) Walsh-Hadamard, and (c) cosine
transforms, together with the corresponding scaled error images in (d)–(f).

In each case, the 32 retained coefficients were selected on the basis of max-
imum magnitude. Note that in all cases, the 32 discarded coefficients had little
visual impact on the quality of the reconstructed image. Their elimination,
however, was accompanied by some mean-square error, which can be seen in
the scaled error images of Figs. 8.24(d) through (f). The actual rms errors were
2.32, 1.78, and 1.13 intensities, respectively. ■

The small differences in mean-square reconstruction error noted in the pre-
ceding example are related directly to the energy or information packing prop-
erties of the transforms employed. In accordance with Eq. (8.2-11), an 
subimage can be expressed as a function of its 2-D transform 

(8.2-20)

for Because the inverse kernel in 
Eq. (8.2-20) depends only on the indices and not on the values of

or it can be viewed as defining a set of basis functions or basisT(u, v),g(x, y)
x, y, u, v,

s(x, y, u, v)x, y = 0, 1, 2, Á , n - 1.

g(x, y) = a
n - 1

u = 0
a
n - 1

v = 0
T(u, v)s(x, y, u, v)

T(u, v):g(x, y)
n * n

a b c
d e f
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images for the series defined by Eq. (8.2-20). This interpretation becomes
clearer if the notation used in Eq. (8.2-20) is modified to obtain

(8.2-21)

where G is an matrix containing the pixels of and

(8.2-22)

Then G, the matrix containing the pixels of the input subimage, is explicitly de-
fined as a linear combination of matrices of size that is, the for

in Eq. (8.2-22).These matrices in fact are the basis im-
ages (or functions) of the series expansion in Eq. (8.2-20); the associated

are the expansion coefficients. Figures 8.22 and 8.23 illustrate graphi-
cally the WHT and DCT basis images for the case of 

If we now define a transform coefficient masking function

(8.2-23)

for an approximation of G can be obtained from the
truncated expansion

(8.2-24)

where is constructed to eliminate the basis images that make the
smallest contribution to the total sum in Eq. (8.2-21). The mean-square error
between subimage G and approximation then is

(8.2-25)

= a
n - 1

u = 0
a
n - 1

v = 0
sT(u,v)

2 C1 - x(u, v) D
= Eb " an - 1

u = 0
a
n - 1

v = 0
T(u, v)Suv C1 - x(u, v) D " 2 r

= Eb " an - 1

u = 0
a
n - 1

v = 0
T(u, v)Suv - a

n - 1

u = 0
a
n - 1

v = 0

x(u, v)T(u, v)Suv
" 2 rems = Ee 7G - GN 72 f

GN

x(u, v)

GN = a
n - 1

u = 0
a
n - 1

v = 0

x(u, v)T(u, v)Suv

u, v = 0, 1, 2, Á , n - 1,

x(u, v) = b 0 if T(u, v) satisfies a specified truncation criterion
1 otherwise

n = 4.
T(u, v)

u, v = 0, 1, 2, Á , n - 1
Suvn * n;n2

Suv = F
s(0, 0, u, v) s(0, 1, u, v) Á s(0, n - 1, u, v)
s(1, 0, u, v) o Á o

o o Á o
o o Á o
o

s(n - 1, 0, u, v) s(n - 1, 1, u, v) Á s(n - 1, n - 1, u, v)

V
g(x, y)n * n

G = a
n - 1

u = 0
a
n - 1

v = 0
T(u, v)Suv
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where is the norm of matrix and is the variance of 
the coefficient at transform location The final simplification is based on
the orthonormal nature of the basis images and the assumption that the pixels
of G are generated by a random process with zero mean and known covari-
ance. The total mean-square approximation error thus is the sum of the vari-
ances of the discarded transform coefficients; that is, the coefficients for which

so that in Eq. (8.2-25) is 1. Transformations that re-
distribute or pack the most information into the fewest coefficients provide
the best subimage approximations and, consequently, the smallest reconstruc-
tion errors. Finally, under the assumptions that led to Eq. (8.2-25), the mean-
square error of the subimages of an image are identical. Thus
the mean-square error (being a measure of average error) of the 
image equals the mean-square error of a single subimage.

The earlier example showed that the information packing ability of the DCT
is superior to that of the DFT and WHT. Although this condition usually holds
for most images, the Karhunen-Loève transform (see Chapter 11), not the
DCT, is the optimal transform in an information packing sense. This is due to
the fact that the KLT minimizes the mean-square error in Eq. (8.2-25) for any
input image and any number of retained coefficients (Kramer and Mathews
[1956]).† However, because the KLT is data dependent, obtaining the KLT
basis images for each subimage, in general, is a nontrivial computational task.
For this reason, the KLT is used infrequently in practice for image compression.
Instead, a transform, such as the DFT, WHT, or DCT, whose basis images are
fixed (input independent), normally is used. Of the possible input independent
transforms, the nonsinusoidal transforms (such as the WHT transform) are the
simplest to implement. The sinusoidal transforms (such as the DFT or DCT)
more closely approximate the information packing ability of the optimal KLT.

Hence, most transform coding systems are based on the DCT, which provides
a good compromise between information packing ability and computational
complexity. In fact, the properties of the DCT have proved to be of such practi-
cal value that the DCT has become an international standard for transform cod-
ing systems. Compared to the other input independent transforms, it has the
advantages of having been implemented in a single integrated circuit, packing
the most information into the fewest coefficients‡ (for most images), and mini-
mizing the block-like appearance, called blocking artifact, that results when the
boundaries between subimages become visible. This last property is particularly
important in comparisons with the other sinusoidal transforms. As Fig. 8.25(a)
shows, the implicit n-point periodicity (see Section 4.6.3) of the DFT gives rise to
boundary discontinuities that result in substantial high-frequency transform

M * N
M * NMN>n2

C1 - x(u, v) Dx(u, v) = 0,

(u, v).
sT(u,v)

2AG - GN B7G - GN 7

†An additional condition for optimality is that the masking function of Eq. (8.2-23) selects the KLT coef-
ficients of maximum variance.

In Example 8.13, 50% of
a DFT, WHT, and DCT
block transform coded
image’s coefficients were
discarded (using 
blocks). After decoding,
the DCT-based result
had the smallest rms
error, indicating that with
respect to rms error the
least amount of informa-
tion was discarded.

8 * 8

‡Ahmed et al. [1974] first noticed that the KLT basis images of a first-order Markov image source close-
ly resemble the DCT’s basis images. As the correlation between adjacent pixels approaches one, the
input dependent KLT basis images become identical to the input independent DCT basis images
(Clarke [1985]).
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content. When the DFT transform coefficients are truncated or quantized, the
Gibbs phenomenon† causes the boundary points to take on erroneous values,
which appear in an image as blocking artifact.That is, the boundaries between ad-
jacent subimages become visible because the boundary pixels of the subimages
assume the mean values of discontinuities formed at the boundary points [see
Fig. 8.25(a)]. The DCT of Fig. 8.25(b) reduces this effect, because its implicit
2n-point periodicity does not inherently produce boundary discontinuities.

Subimage size selection

Another significant factor affecting transform coding error and computational
complexity is subimage size. In most applications, images are subdivided so
that the correlation (redundancy) between adjacent subimages is reduced to
some acceptable level and so that is an integer power of 2 where, as before,
is the subimage dimension. The latter condition simplifies the computation of
the subimage transforms (see the base-2 successive doubling method dis-
cussed in Section 4.11.3). In general, both the level of compression and com-
putational complexity increase as the subimage size increases. The most
popular subimage sizes are and 16 * 16.8 * 8

nn

Boundary
points

Discontinuity

n

2n

FIGURE 8.25 The
periodicity
implicit in the 1-D
(a) DFT and 
(b) DCT.

†This phenomenon, described in most electrical engineering texts on circuit analysis, occurs because the
Fourier transform fails to converge uniformly at discontinuities. At discontinuities, Fourier expansions
take the mean values of the points of discontinuity.

EXAMPLE 8.14:
Effects of
subimage size on
transform coding.

■ Figure 8.26 illustrates graphically the impact of subimage size on transform
coding reconstruction error. The data plotted were obtained by dividing the
monochrome image of Fig. 8.9(a) into subimages of size for

computing the transform of each subimage, trun-
cating 75% of the resulting coefficients, and taking the inverse transform of the
truncated arrays. Note that the Hadamard and cosine curves flatten as the size of
the subimage becomes greater than whereas the Fourier reconstruction8 * 8,

n = 2, 4, 8, 16, Á , 256, 512,
n * n,

a
b
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FIGURE 8.26
Reconstruction
error versus
subimage size.

FIGURE 8.27 Approximations of Fig. 8.27(a) using 25% of the DCT coefficients and (b) subimages, (c)
subimages, and (d) subimages. The original image in (a) is a zoomed section of Fig. 8.9(a).8 * 84 * 4

2 * 2

error continues to decrease in this region. As further increases, the Fourier re-
construction error crosses the Walsh-Hadamard curve and approaches the cosine
result. This result is consistent with the theoretical and experimental findings re-
ported by Netravali and Limb [1980] and by Pratt [1991] for a 2-D Markov image
source.

All three curves intersect when subimages are used. In this case, only
one of the four coefficients (25%) of each transformed array was retained.The
coefficient in all cases was the dc component, so the inverse transform simply
replaced the four subimage pixels by their average value [see Eq. (4.6-21)].
This condition is evident in Fig. 8.27(b), which shows a zoomed portion of
the DCT result. Note that the blocking artifact that is prevalent in
this result decreases as the subimage size increases to and in
Figs. 8.27(c) and (d). Figure 8.27(a) shows a zoomed portion of the original
image for reference. ■

Bit allocation

The reconstruction error associated with the truncated series expansion of
Eq. (8.2-24) is a function of the number and relative importance of the

8 * 84 * 4
2 * 2

2 * 2

n

a b c d
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transform coefficients that are discarded, as well as the precision that is
used to represent the retained coefficients. In most transform coding sys-
tems, the retained coefficients are selected [that is, the masking function of
Eq. (8.2-23) is constructed] on the basis of maximum variance, called zonal
coding, or on the basis of maximum magnitude, called threshold coding. The
overall process of truncating, quantizing, and coding the coefficients of a
transformed subimage is commonly called bit allocation.

EXAMPLE 8.15:
Bit allocation.

■ Figures 8.28(a) and (c) show two approximations of Fig. 8.9(a) in which
87.5% of the DCT coefficients of each subimage were discarded. The
first result was obtained via threshold coding by keeping the eight largest
transform coefficients, and the second image was generated by using a zonal
coding approach. In the latter case, each DCT coefficient was considered a
random variable whose distribution could be computed over the ensemble of
all transformed subimages. The 8 distributions of largest variance (12.5% of
the 64 coefficients in the transformed subimage) were located and used
to determine the coordinates, and of the coefficients, that were re-
tained for all subimages. Note that the threshold coding difference image of
Fig. 8.28(b) contains less error than the zonal coding result in Fig. 8.28(d). Both
images have been scaled to make the errors more visible. The corresponding
rms errors are 4.5 and 6.5 intensities, respectively. ■

T(u, v),v,u
8 * 8

8 * 8

FIGURE 8.28
Approximations
of Fig. 8.9(a) using
12.5% of the

DCT
coefficients:
(a)—(b) threshold
coding results;
(c)—(d) zonal
coding results. The
difference images
are scaled by 4.

8 * 8

a b
c d
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Zonal coding implementation Zonal coding is based on the information
theory concept of viewing information as uncertainty.Therefore the transform
coefficients of maximum variance carry the most image information and
should be retained in the coding process. The variances themselves can be cal-
culated directly from the ensemble of transformed subimage arrays, as
in the preceding example, or based on an assumed image model (say, a Markov
autocorrelation function). In either case, the zonal sampling process can be
viewed, in accordance with Eq. (8.2-24), as multiplying each by the cor-
responding element in a zonal mask, which is constructed by placing a 1 in the
locations of maximum variance and a 0 in all other locations. Coefficients of
maximum variance usually are located around the origin of an image trans-
form, resulting in the typical zonal mask shown in Fig. 8.29(a).

The coefficients retained during the zonal sampling process must be quan-
tized and coded, so zonal masks are sometimes depicted showing the number of
bits used to code each coefficient [Fig. 8.29(b)]. In most cases, the coefficients are
allocated the same number of bits, or some fixed number of bits is distributed
among them unequally. In the first case, the coefficients generally are normal-
ized by their standard deviations and uniformly quantized. In the second case, a
quantizer, such as an optimal Lloyd-Max quantizer (see Optimal quantizers in
Section 8.2.9), is designed for each coefficient. To construct the required quan-
tizers, the zeroth or dc coefficient normally is modeled by a Rayleigh density
function, whereas the remaining coefficients are modeled by a Laplacian or

T(u, v)

MN>n2

1 1 1 1 1 0 0 0

1 1 1 1 0 0 0 0

1 1 1 0 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

8 7 6 4 3 2 1 0

7 6 5 4 3 2 1 0

6 5 4 3 3 1 1 0

4 4 3 3 2 1 0 0

3 3 3 2 1 1 0 0

2 2 1 1 1 0 0 0

1 1 1 0 0 0 0 0

0 0 0 0 0 0 0 0

1 1 0 1 1 0 0 0

1 1 1 1 0 0 0 0

1 1 0 0 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 1 5 6 14 15 27 28

2 4 7 13 16 26 29 42

3 8 12 17 25 30 41 43

9 11 18 24 31 40 44 53

10 19 23 32 39 45 52 54

20 22 33 38 46 51 55 60

21 34 37 47 50 56 59 61

35 36 48 49 57 58 62 63

FIGURE 8.29
A typical 
(a) zonal mask,
(b) zonal bit
allocation,
(c) threshold
mask, and 
(d) thresholded
coefficient
ordering
sequence. Shading
highlights the
coefficients that
are retained.

a b
c d
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†As each coefficient is a linear combination of the pixels in its subimage [see Eq. (8.2-10)], the central-
limit theorem suggests that, as subimage size increases, the coefficients tend to become Gaussian. This
result does not apply to the dc coefficient, however, because nonnegative images always have positive
dc coefficients.

Gaussian density.† The number of quantization levels (and thus the number of
bits) allotted to each quantizer is made proportional to Thus the re-
tained coefficients in Eq. (8.2-24)—which (in the context of the current discus-
sion) are selected on the basis of maximum variance—are assigned bits in
proportion to the logarithm of the coefficient variances.

Threshold coding implementation Zonal coding usually is implemented by
using a single fixed mask for all subimages. Threshold coding, however, is in-
herently adaptive in the sense that the location of the transform coefficients
retained for each subimage vary from one subimage to another. In fact,
threshold coding is the adaptive transform coding approach most often used
in practice because of its computational simplicity. The underlying concept is
that, for any subimage, the transform coefficients of largest magnitude make
the most significant contribution to reconstructed subimage quality, as
demonstrated in the last example. Because the locations of the maximum co-
efficients vary from one subimage to another, the elements of 
normally are reordered (in a predefined manner) to form a 1-D, run-length
coded sequence. Figure 8.29(c) shows a typical threshold mask for one subim-
age of a hypothetical image. This mask provides a convenient way to visualize
the threshold coding process for the corresponding subimage, as well as to
mathematically describe the process using Eq. (8.2-24). When the mask is ap-
plied [via Eq. (8.2-24)] to the subimage for which it was derived, and the re-
sulting array is reordered to form an coefficient sequence
in accordance with the zigzag ordering pattern of Fig. 8.29(d), the reordered
1-D sequence contains several long runs of 0s [the zigzag pattern becomes ev-
ident by starting at 0 in Fig. 8.29(d) and following the numbers in sequence].
These runs normally are run-length coded. The nonzero or retained coeffi-
cients, corresponding to the mask locations that contain a 1, are represented
using a variable-length code.

There are three basic ways to threshold a transformed subimage or, stated
differently, to create a subimage threshold masking function of the form given
in Eq. (8.2-23): (1) A single global threshold can be applied to all subimages;
(2) a different threshold can be used for each subimage; or (3) the threshold
can be varied as a function of the location of each coefficient within the subim-
age. In the first approach, the level of compression differs from image to
image, depending on the number of coefficients that exceed the global thresh-
old. In the second, called N-largest coding, the same number of coefficients is
discarded for each subimage. As a result, the code rate is constant and known
in advance. The third technique, like the first, results in a variable code rate,
but offers the advantage that thresholding and quantization can be combined

n2-elementn * n

x(u, v)T(u, v)

log2 sT(u, v)
2 .

The in “N-largest cod-
ing” is not an image di-
mension, but refers to
the number of coeffi-
cients that are kept.

N
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by replacing in Eq. (8.2-24) with

(8.2-26)

where is a thresholded and quantized approximation of and
is an element of the transform normalization array

(8.2-27)

Before a normalized (thresholded and quantized) subimage transform,
can be inverse transformed to obtain an approximation of subimage
it must be multiplied by The resulting denormalized array, de-

noted is an approximation of 

(8.2-28)

The inverse transform of yields the decompressed subimage approxi-
mation.

Figure 8.30(a) depicts Eq. (8.2-26) graphically for the case in which 
is assigned a particular value Note that assumes integer value if
and only if

(8.2-29)

If then and the transform coefficient is com-
pletely truncated or discarded.When is represented with a variable-length
code that increases in length as the magnitude of increases, the number of bits
used to represent is controlled by the value of Thus the elements of Zc.T(u, v)

k
TN (u, v)

TN (u, v) = 0Z(u, v) 7 2T(u, v),

kc -
c

2
… T(u, v) 6 kc +

c

2

kTN (u, v)c.
Z(u, v)

T
#
(u, v)

T
#
(u, v) = TN (u, v)Z(u, v)

TN (u, v):T
#
(u, v)

Z(u, v).g(x, y),
TN (u, v),

Z = F
Z(0, 0) Z(0, 1) Á Z(0, n - 1)
Z(1, 0) o Á o

o o Á o
o o Á o
o o Á o

Z(n - 1, 0) Z(n - 1, 1) Á Z(n - 1, n - 1)

V
Z(u, v)

T(u, v),TN (u, v)

TN (u, v) = roundBT(u, v)
Z(u, v)

Rx(u, v)T(u, v)

16 11 10 16 24 40 51 61

12 12 14 19 26 58 60 55

14 13 16 24 40 57 69 56

14 17 22 29 51 87 80 62

18 22 37 56 68 109 103 77

24 35 55 64 81 104 113 92

49 64 78 87 103 121 120 101

72 92 95 98 112 100 103 99

T(u, v)

T(u, v)
1

2

3

c 2c 3c
�1

�2

�3

�3c �2c �c

ˆ
FIGURE 8.30
(a) A threshold
coding
quantization
curve [see Eq.
(8.2-29)]. (b) A
typical
normalization
matrix.

ba
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can be scaled to achieve a variety of compression levels. Figure 8.30(b) shows a
typical normalization array. This array, which has been used extensively in the
JPEG standardization efforts (see the next section), weighs each coefficient of a
transformed subimage according to heuristically determined perceptual or psy-
chovisual importance.

EXAMPLE 8.16:
Illustration of
threshold coding.

■ Figures 8.31(a) through (f) show six threshold-coded approximations of the
monochrome image in Fig. 8.9(a). All images were generated using an 
DCT and the normalization array of Fig. 8.30(b).The first result, which provides
a compression ratio of about 12 to 1 (i.e., ), was obtained by direct appli-
cation of that normalization array. The remaining results, which compress the
original image by 19, 30, 49, 85, and 182 to 1, were generated after multiplying
(scaling) the normalization arrays by 2, 4, 8, 16, and 32, respectively. The corre-
sponding rms errors are 3.83, 4.93, 6.62, 9.35, 13.94, and 22.46 intensity levels. ■

JPEG

One of the most popular and comprehensive continuous tone, still frame com-
pression standards is the JPEG standard. It defines three different coding sys-
tems: (1) a lossy baseline coding system, which is based on the DCT and is
adequate for most compression applications; (2) an extended coding system for

C = 12

8 * 8

FIGURE 8.31 Approximations of Fig. 8.9(a) using the DCT and normalization array of Fig. 8.30(b): (a) Z,
(b) 2Z, (c) 4Z, (d) 8Z, (e) 16Z, and (f) 32Z.

a b c
d e f
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EXAMPLE 8.17:
JPEG baseline
coding and
decoding.

†In the standard, the term AC denotes all transform coefficients with the exception of the zeroth or DC
coefficient.

■ Consider compression and reconstruction of the following subimage
with the JPEG baseline standard:

52 55 61 66 70 61 64 73

63 59 66 90 109 85 69 72

62 59 68 113 144 104 66 73

63 58 71 122 154 106 70 69

67 61 68 104 126 88 68 70

79 65 60 70 77 63 58 75

85 71 64 59 55 61 65 83

87 79 69 68 65 76 78 94

8 * 8

greater compression, higher precision, or progressive reconstruction applications;
and (3) a lossless independent coding system for reversible compression. To be
JPEG compatible, a product or system must include support for the baseline sys-
tem. No particular file format, spatial resolution, or color space model is specified.

In the baseline system, often called the sequential baseline system, the input
and output data precision is limited to 8 bits, whereas the quantized DCT val-
ues are restricted to 11 bits. The compression itself is performed in three se-
quential steps: DCT computation, quantization, and variable-length code
assignment.The image is first subdivided into pixel blocks of size which
are processed left to right, top to bottom. As each block or subimage is
encountered, its 64 pixels are level-shifted by subtracting the quantity 
where is the maximum number of intensity levels. The 2-D discrete cosine
transform of the block is then computed, quantized in accordance with 
Eq. (8.2-26), and reordered, using the zigzag pattern of Fig. 8.29(d), to form a
1-D sequence of quantized coefficients.

Because the one-dimensionally reordered array generated under the zigzag
pattern of Fig. 8.29(d) is arranged qualitatively according to increasing spatial
frequency, the JPEG coding procedure is designed to take advantage of the
long runs of zeros that normally result from the reordering. In particular, the
nonzero AC† coefficients are coded using a variable-length code that defines
the coefficient values and number of preceding zeros. The DC coefficient is
difference coded relative to the DC coefficient of the previous subimage. Ta-
bles A.3, A.4, and A.5 in Appendix A provide the default JPEG Huffman
codes for the luminance component of a color image or intensity of a mono-
chrome image. The JPEG recommended luminance quantization array is
given in Fig. 8.30(b) and can be scaled to provide a variety of compression
levels. The scaling of this array allows users to select the “quality” of JPEG
compressions. Although default coding tables and quantization arrays are
provided for both color and monochrome processing, the user is free to construct
custom tables and/or arrays, which may in fact be adapted to the characteris-
tics of the image(s) being compressed.

2k
2k - 1,

8 * 8
8 * 8,
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The original image consists of 256 or possible intensities, so the coding
process begins by level shifting the pixels of the original subimage by or

intensity levels. The resulting shifted array is

16

26

which, when transformed in accordance with the forward DCT of Eqs. (8.2-10)
and (8.2-18) for becomes

25 55 3

7 9 11 6

8 77 10 7

13 35 6 0 3

11 1 1

1 3 0 2

2 2 1

0

If the JPEG recommended normalization array of Fig. 8.30(b) is used to quan-
tize the transformed array, the scaled and truncated [that is, normalized in ac-
cordance with Eq. (8.2-26)] coefficients are

2 2 0 0 0

1 0 0 0 0 0

1 5 0 0 0

1 2 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

where, for instance, the DC coefficient is computed as

Note that the transformation and normalization process produces a large
number of zero-valued coefficients. When the coefficients are reordered in

= roundB -415
16
R = -26

TN (0, 0) = roundBT(0, 0)
Z(0, 0)

R

-1-4

-1-1-3

-4-2

-6-3-26

-1-1-1-2-1-1-1

-2-3-1-1-4

-1-1-3-10

-4-1-2-13-8

-9-15-50

-5-30-25-46

-6-7-62-21

-1-20-62-29-415

n = 8,

-34-50-52-63-60-59-49-41

-45-63-67-73-69-64-57-43

-53-70-65-51-58-68-63-49

-58-60-40-2-24-60-67-61

-59-58-22-6-57-70-65

-55-62-24-15-60-69-66

-56-59-43-19-38-62-69-65

-55-64-67-58-62-67-73-76

-128
-27

28
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accordance with the zigzag ordering pattern of Fig. 8.29(d), the resulting 1-D
coefficient sequence is

where the EOB symbol denotes the end-of-block condition. A special EOB
Huffman code word (see category 0 and run-length 0 in Table A.5) is provided to
indicate that the remainder of the coefficients in a reordered sequence are zeros.

The construction of the default JPEG code for the reordered coefficient se-
quence begins with the computation of the difference between the current DC
coefficient and that of the previously encoded subimage.Assuming the DC co-
efficient of the transformed and quantized subimage to its immediate left was
17, the resulting DPCM difference is or which lies in DC
difference category 4 of Table A.3. In accordance with the default Huffman
difference code of Table A.4, the proper base code for a category 4 difference
is 101 (a 3-bit code), while the total length of a completely encoded category 4
coefficient is 7 bits. The remaining 4 bits must be generated from the least sig-
nificant bits (LSBs) of the difference value. For a general DC difference cate-
gory (say, category ), an additional bits are needed and computed as either
the LSBs of the positive difference or the LSBs of the negative difference
minus 1. For a difference of the appropriate LSBs are or 0110,
and the complete DPCM coded DC code word is 1010110.

The nonzero AC coefficients of the reordered array are coded similarly
from Tables A.3 and A.5. The principal difference is that each default AC
Huffman code word depends on the number of zero-valued coefficients pre-
ceding the nonzero coefficient to be coded, as well as the magnitude category
of the nonzero coefficient. (See the column labeled Run/Category in Table
A.5.) Thus the first nonzero AC coefficient of the reordered array is
coded as 0100. The first 2 bits of this code indicate that the coefficient was in
magnitude category 2 and preceded by no zero-valued coefficients (see Table
A.3); the last 2 bits are generated by the same process used to arrive at the
LSBs of the DC difference code. Continuing in this manner, the completely
coded (reordered) array is

1010110  0100  001  0100  0101  100001  0110  100011  001  100011  001
001  100101  11100110  110110  0110  11110100  000  1010

where the spaces have been inserted solely for readability. Although it was not
needed in this example, the default JPEG code contains a special code word for
a run of 15 zeros followed by a zero (see category 0 and run-length F in Table
A.5). The total number of bits in the completely coded reordered array (and
thus the number of bits required to represent the entire 8-bit subimage
of this example) is 92. The resulting compression ratio is 512 92, or about 5.6:1.

To decompress a JPEG compressed subimage, the decoder must first recre-
ate the normalized transform coefficients that led to the compressed bit stream.
Because a Huffman-coded binary sequence is instantaneous and uniquely
decodable, this step is easily accomplished in a simple lookup table manner.

>8 * 8,

(-3)

(0111) - 1-9,
KK

KK

-9,[-26 - (-17)]

[-26 -3 1 -3 -2 -6 2 -4 1 -4 1 1 5 0 2 0 0 -1 2 0 0 0 0 0 -1 -1 EOB]
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Here the regenerated array of quantized coefficients is

2 2 0 0 0

1 0 0 0 0 0

1 5 0 0 0

1 2 0 0 0 0

1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

-1-4

-1-1-3

-4-2

-6-3-26

After denormalization in accordance with Eq. (8.2-28), the array becomes

32 48 0 0 0

12 0 0 0 0 0

13 80 0 0 0

17 44 0 0 0 0

18 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

-29-56

-40-24-42

-56-24

-60-33-416

where, for example, the DC coefficient is computed as

The completely reconstructed subimage is obtained by taking the inverse DCT of
the denormalized array in accordance with Eqs. (8.2-11) and (8.2-18) to obtain

13

0 22

and level shifting each inverse transformed pixel by (or ) to yield

58 64 67 64 59 62 70 78

56 55 67 89 98 88 74 69

60 50 70 119 141 116 80 64

69 51 71 128 149 115 77 68

74 53 64 105 115 84 65 72

76 57 56 74 75 57 57 74

83 69 59 60 61 61 67 78

93 81 67 62 69 80 84 84

+12827

-44-44-48-60-66-61-47-35

-50-61-67-67-68-70-59-45

-54-71-71-54-54-72-71-52

-56-63-44-13-23-64-75-54

-60-51-13-57-77-59

-64-48-12-9-58-78-68

-59-54-40-30-39-61-73-72

-50-58-66-69-64-61-64-70

T
#
(0, 0) = TN (0, 0)Z(0, 0) = (-26)(16) = -416
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Any differences between the original and reconstructed subimage are a result
of the lossy nature of the JPEG compression and decompression process. In
this example, the errors range from to and are distributed as follows:

2 11

7 4 1 11 3

2 9 9

7 0 1

8 4 6 4 3

3 8 4 2 6 1 1

2 2 5 0 5

2 6 10

The root-mean-square error of the overall compression and reconstruction
process is approximately 5.8 intensity levels. ■

-6-4-4-2-6

-2-6-1

-4

-2-1-7

-7-9-5-4-6

-14-12-3-6-2

-5-3-1

-5-6-1-6-9-6

+11-14

EXAMPLE 8.18:
Illustration of
JPEG coding.

■ Figures 8.32(a) and (d) show two JPEG approximations of the mono-
chrome image in Fig. 8.9(a). The first result provides a compression of 25:1;
the second compresses the original image by 52:1. The differences between
the original image and the reconstructed images in Figs. 8.30(a) and (d) are
shown in Figs. 8.30(b) and (e), respectively. The corresponding rms errors are
5.4 and 10.7 intensities. The errors are clearly visible in the zoomed images in
Figs. 8.32(c) and (f). These images show a magnified section of Figs. 8.32(a)
and (d), respectively. Note that the JPEG blocking artifact increases with
compression. ■

8.2.9 Predictive Coding
We now turn to a simpler compression approach that achieves good compres-
sion without significant computational overhead and can be either error-free
or lossy. The approach, commonly referred to as predictive coding, is based on
eliminating the redundancies of closely spaced pixels—in space and/or time—
by extracting and coding only the new information in each pixel. The new in-
formation of a pixel is defined as the difference between the actual and
predicted value of the pixel.

Lossless predictive coding

Figure 8.33 shows the basic components of a lossless predictive coding system.
The system consists of an encoder and a decoder, each containing an identical
predictor. As successive samples of discrete time input signal, are intro-
duced to the encoder, the predictor generates the anticipated value of each
sample based on a specified number of past samples. The output of the predic-
tor is then rounded to the nearest integer, denoted and used to form the
difference or prediction error

(8.2-30)e(n) = f(n) - fN(n)

fN(n),

f(n),

With reference to 
Tables 8.3 and 8.4,
predictive coding is 
used in

● JBIG2
● JPEG
● JPEG-LS
● MPEG-1,2,4
● H.261, H.262,

H.263, and H.264
● HDV
● VC-1

and other compression
standards and file 
formats.
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FIGURE 8.32 Two JPEG approximations of Fig. 8.9(a). Each row contains a result after compression and
reconstruction, the scaled difference between the result and the original image, and a zoomed portion of the
reconstructed image.

which is encoded using a variable-length code (by the symbol encoder) to gener-
ate the next element of the compressed data stream. The decoder in Fig. 8.33(b)
reconstructs from the received variable-length code words and performs the
inverse operation

(8.2-31)

to decompress or recreate the original input sequence.
Various local, global, and adaptive methods (see the later subsection enti-

tled Lossy predictive coding) can be used to generate In many cases, the
prediction is formed as a linear combination of previous samples. That is,

(8.2-32)

where is the order of the linear predictor, round is a function used to denote
the rounding or nearest integer operation, and the for are
prediction coefficients. If the input sequence in Fig. 8.33(a) is considered to be

i = 1, 2, Á , mai

m

fN(n) = roundBam
i = 1
aif(n - i)Rm

fN(n).

f(n) = e(n) + fN(n)

e(n)

a b c
d e f
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samples of an image, the in Eqs. (8.2-30) through (8.2-32) are pixels—and
the samples used to predict the value of each pixel come from the current
scan line (called 1-D linear predictive coding), from the current and previous
scan lines (called 2-D linear predictive coding), or from the current image and
previous images in a sequence of images (called 3-D linear predictive coding).
Thus, for 1-D linear predictive image coding, Eq. (8.2-32) can be written as

(8.2-33)

where each sample is now expressed explicitly as a function of the input
image’s spatial coordinates, and Note that Eq. (8.2-33) indicates that the
1-D linear prediction is a function of the previous pixels on the current line
alone. In 2-D predictive coding, the prediction is a function of the previous pix-
els in a left-to-right, top-to-bottom scan of an image. In the 3-D case, it is based
on these pixels and the previous pixels of preceding frames. Equation (8.2-33)
cannot be evaluated for the first pixels of each line, so those pixels must be
coded by using other means (such as a Huffman code) and considered as an
overhead of the predictive coding process. Similar comments apply to the
higher-dimensional cases.

m

y.x

fN(x, y) = roundBam
i = 1
aif(x, y - i)R

m
f(n)

EXAMPLE 8.19:
Predictive coding
and spatial
redundancy.

■ Consider encoding the monochrome image of Fig. 8.34(a) using the simple
first-order (i.e., ) linear predictor from Eq. (8.2-33)

(8.2-34)

This equation is a simplification of Eq. (8.2-33) with and the subscript of
lone prediction coefficient dropped as unnecessary. A predictor of this gen-
eral form is called a previous pixel predictor, and the corresponding predictive
coding procedure is known as differential coding or previous pixel coding.
Figure 8.34(c) shows the prediction error image,
that results from Eq. (8.2-34) with The scaling of this image is such that
intensity 128 represents a prediction error of zero, while all nonzero positive

a = 1.
e(x, y) = f(x, y) - fN(x, y),

a1

m = 1

fN(x, y) = round Caf(x, y - 1) D
m = 1

Symbol
encoder

Compressed
sequence

Nearest
integer

Predictor

Input
sequence �

�

Symbol
decoder

Compressed
sequence

Decompressed
sequence

Predictor

�
�

f(n)

f(n)

f(n)

f(n)

e(n)

e(n)

!

!

FIGURE 8.33
A lossless
predictive coding
model:
(a) encoder;
(b) decoder.

a
b
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and negative prediction errors (under and over estimates) are displayed as
lighter and darker shades of gray, respectively.The mean value of the prediction
image is 128.26. Because intensity 128 corresponds to a prediction error of 0,
the average prediction error is only 0.26 bits.

Figures 8.34(b) and (d) show the intensity histogram of the image in Fig.8.34(a)
and the histogram of prediction error respectively. Note that the standard
deviation of the prediction error in Fig. 8.34(d) is much smaller than the standard
deviation of the intensities in the original image. Moreover, the entropy of the pre-
diction error—as estimated using Eq. (8.1-7)—is significantly less than the es-
timated entropy of the original image (3.99 as opposed to 7.25

).This decrease in entropy reflects removal of a great deal of spatial re-
dundancy, despite the fact that for k-bit images, numbers are needed
to represent accurately prediction error sequence In general, the maxi-
mum compression of a predictive coding approach can be estimated by dividing
the average number of bits used to represent each pixel in the original image by an
estimate of the entropy of the prediction error. In this example, any variable-length
coding procedure can be used to code but the resulting compression will be
limited to about or 2:1. ■

The preceding example illustrates that the compression achieved in predic-
tive coding is related directly to the entropy reduction that results from mapping

8>3.99
e(x, y),

e(x, y).
(k + 1)-bit

bits>pixel
bits>pixel

e(x, y),

Note that the variable-
length encoded predic-
tion error is the
compressed image.
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FIGURE 8.34
(a) A view of the
Earth from an
orbiting space
shuttle. (b) The
intensity
histogram of 
(a). (c) The
prediction error
image resulting
from Eq. (8.2-34).
(d) A histogram
of the prediction
error.
(Original image
courtesy of
NASA.)
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an input image into a prediction error sequence—often called a prediction resid-
ual. Because spatial redundancy is removed by the prediction and differencing
process, the probability density function of the prediction residual is, in general,
highly peaked at zero and characterized by a relatively small (in comparison to
the input intensity distribution) variance. In fact, it is often modeled by a zero
mean uncorrelated Laplacian PDF

(8.2-35)

where is the standard deviation of e.se

pe(e) =
1
12se

e
-12
se

ƒ e ƒ

EXAMPLE 8.20:
Predictive coding
and temporal
redundancy.

■ The image in Fig. 8.34(a) is a portion of a frame of NASA video in which
the Earth is moving from left to right with respect to a stationary camera at-
tached to the space shuttle. It is repeated in Fig. 8.35(b)—along with its imme-
diately preceding frame in Fig. 8.35(a). Using the first-order linear predictor

(8.2-36)fN(x, y, t) = round Caf(x, y, t - 1) D
N
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FIGURE 8.35
(a) and (b) Two
views of Earth
from an orbiting
space shuttle
video. (c) The
prediction error
image resulting
from Eq. (8.2-36).
(d) A histogram
of the prediction
error.
(Original images
courtesy of
NASA.)

a b
c d



8.2 ■ Some Basic Compression Methods 589

with the intensities of the pixels in Fig. 8.35(b) can be predicted from
the corresponding pixels in (a). Figure 8.34(c) is the resulting prediction resid-
ual image, Figure 8.34(d) is the histogram of

Note that there is very little prediction error. The standard deviation
of the error is much smaller than in the previous example—3.76 as
opposed to 15.58 . In addition, the entropy of the prediction error
[computed using Eq. (8.1-7)] has decreased from 3.99 to 2.59 . By
variable-length coding the resulting prediction residual, the original image is
compressed by approximately or 3.1:1—a 50% improvement over the
2:1 compression obtained using the spatially-oriented previous pixel predictor
in Example 8.19. ■

Motion compensated prediction residuals

As you saw in Example 8.20, successive frames in a video sequence often are
very similar. Coding their differences can reduce temporal redundancy and
provide significant compression. However, when a sequence of frames con-
tains rapidly moving objects—or involves camera zoom and pan, sudden scene
changes, or fade-ins and fade-outs—the similarity between neighboring
frames is reduced and compression is affected negatively. That is, like most
compression techniques (see Example 8.5), temporally-based predictive cod-
ing works best with certain kinds of inputs—namely, a sequence of images with
significant temporal redundancy.When used on images with little temporal re-
dundancy, data expansion can occur. Video compression systems avoid the
problem of data expansion in two ways:

1. By tracking object movement and compensating for it during the predic-
tion and differencing process.

2. By switching to an alternate coding method when there is insufficient
interframe correlation (similarity between frames) to make predictive
coding advantageous.

The first of these—called motion compensation—is the subject of the remain-
der of this section. Before proceeding, however, we note that when there is in-
sufficient interframe correlation to make predictive coding effective, the
second problem is typically addressed using a block-oriented 2-D transform,
like JPEG’s DCT-based coding (see Section 8.2.8). Frames compressed in this
way (i.e., without a prediction residual) are called intraframes or Independent
frames (I-frames). They can be decoded without access to other frames in the
video to which they belong. I-frames usually resemble JPEG encoded images
and are ideal starting points for the generation of prediction residuals. More-
over, they provide a high degree of random access, ease of editing, and resis-
tance to the propagation of transmission error.As a result, all standards require
the periodic insertion of I-frames into the compressed video codestream.

Figure 8.36 illustrates the basics of motion compensated predictive coding.
Each video frame is divided into non-overlapping rectangular regions—typically
of size to —called macroblocks. (Only one macroblock is shown in
Fig. 8.36.) The “movement” of each macroblock with respect to its “most likely”
position in the previous (or subsequent) video frame, called the reference frame,

16 * 164 * 4

8>2.59

bits>pixel
bits>pixel

bits>pixel
e(x, y, t).

e(x, y, t) = f(x, y, t) - fN(x, y, t).

a = 1,

Recall again that the
variable-length encoded
prediction error is the
compressed image.
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is encoded in a motion vector. The vector describes the motion by defining the
horizontal and vertical displacement from the “most likely” position. The dis-
placements typically are specified to the nearest pixel, pixel, or pixel precision.
If sub-pixel precision is used, the predictions must be interpolated [e.g., using bi-
linear interpolation (see Section 2.4.4)] from a combination of pixels in the
reference frame.An encoded frame that is based on the previous frame (a for-
ward prediction in Fig. 8.36) is called a Predictive frame (P-frame); one that is
based on the subsequent frame (a backward prediction in Fig. 8.36) is called a
Bidirectional frame (B-frame). B-frames require the compressed codestream
to be reordered so that frames are presented to the decoder in the proper de-
coding sequence—rather than the natural display order.

As you might expect, motion estimation is the key component of motion
compensation. During motion estimation, the motion of objects is measured
and encoded into motion vectors. The search for the “best” motion vector re-
quires that a criterion of optimality be defined. For example, motion vectors
may be selected on the basis of maximum correlation or minimum error be-
tween macroblock pixels and the predicted pixels (or interpolated pixels for
sub-pixel motion vectors) from the chosen reference frame. One of the most
commonly used error measures is mean absolute distortion

(8.2-37)

where and are the coordinates of the upper-left pixel of the macro-
block being coded, and are displacements from the reference frame as
shown in Fig. 8.36, and is an array of predicted macroblock pixel values. For
sub-pixel motion vector estimation, is interpolated from pixels in the refer-
ence frame. Typically, and must fall within a limited search region (see
Fig. 8.36) around each macroblock.Values from to pixels are common,
and the horizontal search area often is slightly larger than the vertical area. A
more computationally efficient error measure, called the sum of absolute dis-
tortions (SAD), omits the factor in Eq. (8.2-37).

Given a selection criterion like that of Eq. (8.2-37), motion estimation is
performed by searching for the and that minimize over theMAD(x, y)dydx

1>mn

;64;8
dydx

p
p

dydx
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FIGURE 8.36
Macroblock
motion
specification.

The “most likely” posi-
tion is the one that mini-
mizes an error measure
between the reference
macroblock and macro-
block being encoded. The
two blocks do not have
to be representations of
the same object, but they
must minimize the error
measure.
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allowed range of motion vector displacements—including sub-pixel displace-
ments. This process often is called block matching. An exhaustive search guar-
antees the best possible result, but is computationally expensive, because
every possible motion must be tested over the entire displacement range. For

macroblocks and a pixel displacement range (not out of the
question for action films and sporting events), 4225 calculations
must be performed for each macroblock in a frame when integer displacement
precision is used. If or pixel precision is desired, the number of calculations
is multiplied by a factor of 4 or 16, respectively. Fast search algorithms can re-
duce the computational burden but may or may not yield optimal motion vec-
tors. A number of fast block-based motion estimation algorithms have been
proposed and studied in the literature (see, for example, Furht et al. [1997] or
Mitchell et al. [1997]).

1
4

1
2

16 * 16 MAD
;3216 * 16

EXAMPLE 8.21:
Motion
compensated
prediction.

■ Figures 8.37(a) and (b) were taken from the same NASA video sequence
used in Examples 8.19 and 8.20. Figure 8.37(b) is identical to Figs. 8.34(a) and
8.35(b); Fig. 8.37(a) is the corresponding section of a frame occurring thirteen
frames earlier. Figure 8.37(c) is the difference between the two frames, scaled
to the full intensity range. Note that the difference is 0 in the area of the sta-
tionary (with respect to the camera) space shuttle, but there are significant dif-
ferences in the remainder of the image due to the relative motion of the Earth.
The standard deviation of the prediction residual in Fig. 8.37(c) is 12.73 inten-
sity levels; its entropy [using Eq. (8.1-7)] is 4.17 . The maximum com-
pression achievable when variable-length coding the prediction residual is

Figure 8.37(d) shows a motion compensated prediction residual with a
much lower standard deviation (5.62 as opposed to 12.73 intensity levels) and
slightly lower entropy (3.04 vs. 4.17 ). The entropy was computed
using Eq. (8.1-7). If the prediction residual in Fig. 8.37(d) is variable-length
coded, the resulting compression ratio is To generate this
prediction residual, we divided Fig. 8.37(b) into non-overlapping 
macroblocks and compared each macroblock against every region in
Fig. 8.37(a)—the reference frame—that fell within pixels of the mac-
roblock’s position in (b). We used Eq. (8.2-37) to determine the best match
by selecting displacement with the lowest The resulting dis-
placements are the and components of the motion vectors shown in
Fig. 8.37(e). The white dots in the figure are the heads of the motion vec-
tors; they indicate the upper-left-hand corner of the coded macroblocks. As
you can see from the pattern of the vectors, the predominant motion in the
image is from left to right. In the lower portion of the image, which corre-
sponds to the area of the space shuttle in the original image, there is no mo-
tion and therefore no motion vectors displayed. Macroblocks in this area are
predicted from similarly located (i.e., the corresponding) macroblocks in the
reference frame. Because the motion vectors in Fig. 8.37(e) are highly corre-
lated, they can be variable-length coded to reduce their storage and transmis-
sion requirements. ■

yx
MAD.(dx, dy)

;16
16 * 16

16 * 16
C = 8>3.04 = 2.63.

bits>pixel

C = 8>4.17 = 1.92.
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Figure 8.38 illustrates the increased prediction accuracy that is possible with
sub-pixel motion compensation. Figure 8.38(a) is repeated from Fig. 8.37(c)
and included as a point of reference; it shows the prediction error that results
without motion compensation.The images in Figs. 8.38(b), (c), and (d) are mo-
tion compensated prediction residuals.They are based on the same two frames
that were used in Example 8.21 and computed with macroblock displacements
to 1, and pixel resolution (i.e., precision), respectively. Macroblocks of size

were used; displacements were limited to pixels.
The most significant visual difference between the prediction residuals in

Fig. 8.38 is the number and size of intensity peaks and valleys—their darkest
and lightest areas of intensity.The pixel residual in Fig. 8.38(d) is the “flattest”
of the four images, with the fewest excursions to black or white.As would be ex-
pected, it has the narrowest histogram. The standard deviations of the predic-
tion residuals in Figs. 8.38(a) through (d) decrease as motion vector precision
increases—from 12.7 to 4.4, 4, and 3.8 pixels, respectively. The entropies of the

1
4

;88 * 8

1
4

1
2,

The visual difference be-
tween Figs. 8.37(c) and
8.38(a) is due to scaling.
The image in Fig. 8.38(a)
has been scaled to match
Figs. 8.38(b)–(d).

FIGURE 8.37 (a) and (b) Two views of Earth that are thirteen frames apart in an orbiting space shuttle video.
(c) A prediction error image without motion compensation. (d) The prediction residual with motion
compensation. (e) The motion vectors associated with (d).The white dots in (d) represent the arrow heads of
the motion vectors that are depicted. (Original images courtesy of NASA.)

a b
c d e
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residuals, as determined using Eq. (8.1-7), are 4.17, 3.34, 3.35, and 3.34 
respectively. Thus, the motion compensated residuals contain about the same
amount of information, despite the fact that the residuals in Figs. 8.38(c) and (d)
use additional bits to accommodate and pixel interpolation. Finally, we note
that there is an obvious strip of increased prediction error on the left side of
each motion compensated residual. This is due to the left-to-right motion of the
Earth, which introduces new or previously unseen areas of the Earth’s terrain
into the left side of each image. Because these areas are absent from the previ-
ous frames, they cannot be accurately predicted, regardless of the precision used
to compute motion vectors.

Motion estimation is a computationally demanding task. Fortunately, only
the encoder must estimate macroblock motion. Given the motion vectors of
the macroblocks, the decoder simply accesses the areas of the reference
frames that were used in the encoder to form the prediction residuals. Be-
cause of this, motion estimation is not included in most video compression
standards. Compression standards focus on the decoder—placing constraints
on macroblock dimensions, motion vector precision, horizontal and vertical

1
4

1
2

bits>pixel ,

FIGURE 8.38
Sub-pixel motion
compensated
prediction
residuals:
(a) without
motion
compensation;
(b) single pixel
precision;
(c) pixel
precision; and 
(d) pixel
precision. (All
prediction errors
have been scaled
to the full
intensity range
and then
multiplied by 2 to
increase their
visibility.)
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displacement ranges, and the like. Table 8.11 gives the key predictive coding
parameters of some the most important video compression standards. Note
that most of the standards use an DCT for I-frame encoding, but
specify a larger area (i.e., macroblock) for motion compensation. In
addition, even the P- and B-frame prediction residuals are transform coded
due to the effectiveness of DCT coefficient quantization. Finally, we note
that the H.264 and MPEG-4 AVC standards support intraframe predictive
coding (in I-frames) to reduce spatial redundancy.

Figure 8.39 shows a typical motion compensated video encoder. It ex-
ploits redundancies within and between adjacent video frames, motion uni-
formity between frames, and the psychovisual properties of the human visual
system. We can think of the input to the encoder as sequential macroblocks
of video. For color video, each macroblock is composed of a luminance block
and two chrominance blocks. Because the eye has far less spatial acuity for
color than for luminance, the chrominance blocks often are sampled at half
the horizontal and vertical resolution of the luminance block. The grayed el-
ements in the figure parallel the transformation, quantization, and variable-
length coding operations of a JPEG encoder. The principal difference is the
input, which may be a conventional macroblock of image data (for I-frames)

16 * 16
8 * 8

H.264
H.262 VC-1 MPEG-4 

Parameter H.261 MPEG-1 MPEG-2 H.263 MPEG-4 WMV-9 AVC

Motion 1
vector
precision

Macroblock
sizes

Transform
DCT DCT DCT DCT DCT

Integer

Integer
DCT

Interframe P P, B P, B P, B P, B P, B P, B
predictions

I-frame No No No No No No Yes
intra-
predictions

4 * 4
4 * 8

8 * 88 * 4
 4 * 48 * 88 * 88 * 88 * 88 * 88 * 8

4 * 4
 4 * 8
 8 * 4
 8 * 8
 8 * 16
16 * 88 * 88 * 88 * 816 * 8
16 * 1616 * 1616 * 1616 * 1616 * 1616 * 1616 * 16

1�4
1�4

1�4
1�2

1�2
1�2

TABLE 8.11 
Predictive coding in video compression standards.
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Prediction macroblock

Decoded
macroblock

Encoded
macroblock

Image
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Difference
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Mapper
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Variable-length
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�

FIGURE 8.39
A typical motion
compensated
video encoder.

or the difference between a conventional macroblock and a prediction of it
based on previous and/or subsequent video frames (for P- and B-frames).
The encoder includes an inverse quantizer and inverse mapper (e.g., inverse
DCT) so that its predictions match those of the complementary decoder.
Also, it is designed to produce compressed bit streams that match the capac-
ity of the intended video channel. To accomplish this, the quantization para-
meters are adjusted by a rate controller as a function of the occupancy of an
output buffer. As the buffer becomes fuller, the quantization is made coarser,
so that fewer bits stream into the buffer.

EXAMPLE 8.22:
Video
compression
example.

■ We conclude our discussion of motion compensated predictive coding with
an example illustrating the kind of compression that is possible with modern
video compression methods. Figure 8.40 shows fifteen frames of a 1 minute HD

full-color NASA video, parts of which have been used through-
out this section.Although the images shown are monochrome, the video is a se-
quence of 1,829 full-color frames. Note that there are a variety of scenes, a great
deal of motion, and multiple fade effects. For example, the video opens with a
150 frame fade-in from black, which includes frames 21 and 44 in Fig. 8.40, and
concludes with a fade sequence containing frames 1595, 1609, and 1652 in
Fig. 8.40, followed by a final fade to black. There are also several abrupt scene
changes, like the change involving frames 1303 and 1304 in Fig. 8.40.

An H.264 compressed version of the NASA video stored as a Quicktime
file (see Table 8.4) requires 44.56 MB of storage—plus another 1.39 MB for
the associated audio. The video quality is excellent. About 5 GB of data
would be needed to store the video frames as uncompressed full-color im-
ages. It should be noted that the video contains sequences involving both ro-
tation and scale change (e.g., the sequence including frames 959, 1023, and
1088 in Fig. 840). The discussion in this section, however, has been limited to
translation alone. ■

(1280 * 720)

See the book Web site for
the NASA video segment
used in this section.

Quantization as defined
earlier in the chapter is
irreversible. The “inverse
quantizer” in Fig. 8.39
does not prevent infor-
mation loss.
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Frame 0021

Frame 0266

Frame 0959

Frame 1224

Frame 1595 Frame 1609 Frame 1652

Frame 1303 Frame 1304

Frame 1023 Frame 1088

Frame 0424 Frame 0801

Frame 0044 Frame 0201

FIGURE 8.40 Fifteen frames from an 1829-frame, 1-minute NASA video.The original video is in HD full color.
(Courtesy of NASA.)

Lossy predictive coding

In this section, we add a quantizer to the lossless predictive coding model intro-
duced earlier and examine the trade-off between reconstruction accuracy and
compression performance within the context of spatial predictors. As Fig. 8.41
shows, the quantizer, which replaces the nearest integer function of the error-free
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encoder, is inserted between the symbol encoder and the point at which the pre-
diction error is formed. It maps the prediction error into a limited range of out-
puts, denoted which establish the amount of compression and distortion
that occurs.

In order to accommodate the insertion of the quantization step, the error-
free encoder of Fig. 8.33(a) must be altered so that the predictions generated
by the encoder and decoder are equivalent. As Fig. 8.41(a) shows, this is ac-
complished by placing the lossy encoder’s predictor within a feedback loop,
where its input, denoted is generated as a function of past predictions
and the corresponding quantized errors. That is,

(8.2-38)

where is as defined earlier. This closed loop configuration prevents error
buildup at the decoder’s output. Note in Fig. 8.41(b) that the output of the de-
coder is given also by Eq. (8.2-38).
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A lossless
predictive
coding model:
(a) encoder;
(b) decoder.

a
b

EXAMPLE 8.23:
Delta modulation.

■ Delta modulation (DM) is a simple but well-known form of lossy predictive
coding in which the predictor and quantizer are defined as

(8.2-39)

and

(8.2-40)

where is a prediction coefficient (normally less than 1) and is a positive
constant. The output of the quantizer, can be represented by a single bit
[Fig. 8.42(a)], so the symbol encoder of Fig. 8.41(a) can utilize a 1-bit fixed-
length code. The resulting DM code rate is 1 .

Figure 8.42(c) illustrates the mechanics of the delta modulation process,
where the calculations needed to compress and reconstruct input sequence
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FIGURE 8.42
An example of
delta modulation.

14, 15, 14, 15, 13, 15, 15, 14, 20, 26, 27, 28, 27, 27, 29, 37, 47, 62, 75, 77, 78,
79, 80, 81, 81, 82, 82 with and are tabulated. The process be-
gins with the error-free transfer of the first input sample to the decoder. With
the initial condition established at both the encoder and
decoder, the remaining outputs can be computed by repeatedly evaluating
Eqs. (8.2-39), (8.2-30), (8.2-40), and (8.2-38). Thus, when for example,

(because ),
and the resulting reconstruction error is 

or
Figure 8.42(b) shows graphically the tabulated data in Fig. 8.42(c). Both the

input and completely decoded output [ and ] are shown. Note that in
the rapidly changing area from to 19, where was too small to repre-
sent the input’s largest changes, a distortion known as slope overload occurs.
Moreover, when was too large to represent the input’s smallest changes, as in
the relatively smooth region from to granular noise appears. In
images, these two phenomena lead to blurred object edges and grainy or noisy
surfaces (that is, distorted smooth areas). ■

The distortions noted in the preceding example are common to all forms of
lossy predictive coding.The severity of these distortions depends on a complex set
of interactions between the quantization and prediction methods employed. De-
spite these interactions, the predictor normally is designed with the assumption of
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no quantization error, and the quantizer is designed to minimize its own error.
That is, the predictor and quantizer are designed independently of each other.

Optimal predictors

In many predictive coding applications, the predictor is chosen to minimize the
encoder’s mean-square prediction error†

(8.2-41)

subject to the constraint that

(8.2-42)

and

(8.2-43)

That is, the optimization criterion is minimal mean-square prediction error, the
quantization error is assumed to be negligible and the prediction is
constrained to a linear combination of previous samples.‡ These restrictions are
not essential, but they simplify the analysis considerably and, at the same time, de-
crease the computational complexity of the predictor. The resulting predictive
coding approach is referred to as differential pulse code modulation (DPCM).

Under these conditions, the optimal predictor design problem is reduced to
the relatively straightforward exercise of selecting the prediction coeffi-
cients that minimize the expression

(8.2-44)

Differentiating Eq. (8.2-44) with respect to each coefficient, equating the de-
rivatives to zero, and solving the resulting set of simultaneous equations under
the assumption that has mean zero and variance yields

(8.2-45)

where is the inverse of the autocorrelation matrixm * mR-1

A = R-1r

s2f(n)

E5e2(n)6 = Eb Bf(n) - a
m

i = 1
aif(n - i)R2 r

m

m
[e

#
(n) L e(n)]

fN(n) = a
m

i = 1
aif(n - i)

f
#
(n) = e

#
(n) + fN(n) L e(n) + fN(n) = f(n)

EEe2(n)F = EE Cf(n) - fN (n) D2F

(8.2-46)

R = F
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V

†The notation denotes the statistical expectation operator.E5 #6
‡In general, the optimal predictor for a non-Gaussian sequence is a nonlinear function of the samples
used to form the estimate.
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and r and are the m-element vectors

(8.2-47)

Thus for any input sequence, the coefficients that minimize Eq. (8.2-44) can be
determined via a series of elementary matrix operations. Moreover, the coeffi-
cients depend only on the autocorrelations of the samples in the original se-
quence. The variance of the prediction error that results from the use of these
optimal coefficients is

(8.2-48)

Although the mechanics of evaluating Eq. (8.2-45) are quite simple, compu-
tation of the autocorrelations needed to form R and r is so difficult in practice
that local predictions (those in which the prediction coefficients are computed
for each input sequence) are almost never used. In most cases, a set of global
coefficients is computed by assuming a simple input model and substituting
the corresponding autocorrelations into Eqs. (8.2-46) and (8.2-47). For instance,
when a 2-D Markov image source (see Section 8.1.4) with separable autocor-
relation function

(8.2-49)

and generalized fourth-order linear predictor

(8.2-50)

are assumed, the resulting optimal coefficients (Jain [1989]) are

(8.2-51)

where and are the horizontal and vertical correlation coefficients, respec-
tively, of the image under consideration.

Finally, the sum of the prediction coefficients in Eq. (8.2-43) normally is re-
quired to be less than or equal to one. That is,

(8.2-52)

This restriction is made to ensure that the output of the predictor falls within the
allowed range of the input and to reduce the impact of transmission noise
[which generally is seen as horizontal streaks in reconstructed images when the
input to Fig. 8.41(a) is an image]. Reducing the DPCM decoder’s susceptibility
to input noise is important, because a single error (under the right circum-
stances) can propagate to all future outputs. That is, the decoder’s output may
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become unstable. By further restricting Eq. (8.2-52) to be strictly less than 1 con-
fines the impact of an input error to a small number of outputs.

EXAMPLE 8.24:
Comparison of
prediction
techniques.

■ Consider the prediction error that results from DPCM coding the mono-
chrome image of Fig. 8.9(a) under the assumption of zero quantization error
and with each of four predictors:

(8.2-53)

(8.2-54)

(8.2-55)

(8.2-56)

where and 
denote the horizontal and vertical gradients at point 

Equations (8.2-53) through (8.2-56) define a relatively robust set of that
provide satisfactory performance over a wide range of images. The adaptive
predictor of Eq. (8.2-56) is designed to improve edge rendition by computing a
local measure of the directional properties of an image ( and ) and se-
lecting a predictor specifically tailored to the measured behavior.

Figures 8.43(a) through (d) show the prediction error images that result
from using the predictors of Eqs. (8.2-53) through (8.2-56). Note that the

¢v¢h

ai

(x, y).f(x - 1, y - 1) ƒ
¢v = ƒf(x, y - 1) -¢h = ƒf(x - 1, y) - f(x - 1, y - 1) ƒ

fN (x, y) = b0.97f(x, y - 1) if ¢h … ¢v

0.97f(x - 1, y) otherwise

fN (x, y) = 0.75f(x, y - 1) + 0.75f(x - 1, y) - 0.5f(x - 1, y - 1)

fN (x, y) = 0.5f(x, y - 1) + 0.5f(x - 1, y)

fN (x, y) = 0.97f(x, y - 1)

FIGURE 8.43
A comparison of
four linear
prediction
techniques.

a b
c d
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FIGURE 8.44
A typical
quantization
function.

visually perceptible error decreases as the order of the predictor increases.†

The standard deviations of the prediction errors follow a similar pattern. They
are 11.1, 9.8, 9.1, and 9.7 intensity levels, respectively. ■

Optimal quantization

The staircase quantization function in Fig. 8.44 is an odd function of 
[that is, ] that can be described completely by the values of

and shown in the first quadrant of the graph. These break points define
function discontinuities and are called the decision and reconstruction levels of
the quantizer. As a matter of convention, is considered to be mapped to if
it lies in the half-open interval 

The quantizer design problem is to select the best and for a particular op-
timization criterion and input probability density function If the optimiza-
tion criterion, which could be either a statistical or psychovisual measure,‡ is the
minimization of the mean-square quantization error (that is, ) and

is an even function, the conditions for minimal error (Max [1960]) are

(8.2-57)

(8.2-58)si = e 0 i = 0
ti + ti + 1

2
i = 1, 2, Á ,

L

2
- 1

q i =
L

2

L
si

si - 1

(s - ti)p(s) ds i = 1, 2, Á ,
L

2

p(s)
E5(si - ti)

26
p(s).
tisi

(si, si + 1].
tis

tisi

L>2q(-s) = -q(s)
st = q(s)

†Predictors that use more than three or four previous pixels provide little compression gain for the
added predictor complexity (Habibi [1971]).

‡See Netravali [1977] and Limb and Rubinstein [1978] for more on psychovisual measures.
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and

(8.2-59)

Equation (8.2-57) indicates that the reconstruction levels are the centroids of
the areas under over the specified decision intervals, whereas Eq. (8.2-58)
indicates that the decision levels are halfway between the reconstruction lev-
els. Equation (8.2-59) is a consequence of the fact that is an odd function. For
any the and that satisfy Eqs. (8.2-57) through (8.2-59) are optimal in the
mean-square error sense; the corresponding quantizer is called an L-level
Lloyd-Max quantizer.

Table 8.12 lists the 2-, 4-, and 8-level Lloyd-Max decision and reconstruc-
tion levels for a unit variance Laplacian probability density function [see
Eq. (8.2-35)]. Because obtaining an explicit or closed-form solution to Eqs.
(8.2-57) through (8.2-59) for most nontrivial is difficult, these values
were generated numerically (Paez and Glisson [1972]). The three quantizers
shown provide fixed output rates of 1, 2, and 3 respectively. As
Table 8.12 was constructed for a unit variance distribution, the reconstruc-
tion and decision levels for the case of are obtained by multiplying
the tabulated values by the standard deviation of the probability density
function under consideration. The final row of the table lists the step size,

that simultaneously satisfies Eqs. (8.2-57) through (8.5-59) and the addi-
tional constraint that

(8.2-60)

If a symbol encoder that utilizes a variable-length code is used in the general
lossy predictive encoder of Fig. 8.41(a), an optimum uniform quantizer of
step size will provide a lower code rate (for a Laplacian PDF) than a
fixed-length coded Lloyd-Max quantizer with the same output fidelity
(O’Neil [1971]).

Although the Lloyd-Max and optimum uniform quantizers are not adap-
tive, much can be gained from adjusting the quantization levels based on the
local behavior of an image. In theory, slowly changing regions can be finely
quantized, while the rapidly changing areas are quantized more coarsely. This
approach simultaneously reduces both granular noise and slope overload,
while requiring only a minimal increase in code rate. The trade-off is in-
creased quantizer complexity.

u

ti - ti - 1 = si - si - 1 = u

u,

s Z 1

bits>pixel ,

p(s)

tisiL,
q

p(s)

s-i = -si t-i = - ti

Levels 2 4 8

1 0.707 1.102 0.395 0.504 0.222
2 1.810 1.181 0.785
3 2.285 1.576
4 2.994

1.414 1.087 0.731u

q

q
q

tisitisitisii

TABLE 8.12 
Lloyd-Max
quantizers for a
Laplacian
probability
density function
of unit variance.
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8.2.10 Wavelet Coding
As with the transform coding techniques of Section 8.2.8, wavelet coding is
based on the idea that the coefficients of a transform that decorrelates the pix-
els of an image can be coded more efficiently than the original pixels them-
selves. If the basis functions of the transform—in this case wavelets—pack
most of the important visual information into a small number of coefficients,
the remaining coefficients can be quantized coarsely or truncated to zero with
little image distortion.

Figure 8.45 shows a typical wavelet coding system. To encode a 
image, an analyzing wavelet, and minimum decomposition level, are
selected and used to compute the discrete wavelet transform of the image. If
the wavelet has a complementary scaling function the fast wavelet trans-
form (see Sections 7.4 and 7.5) can be used. In either case, the computed trans-
form converts a large portion of the original image to horizontal, vertical, and
diagonal decomposition coefficients with zero mean and Laplacian-like prob-
abilities. Recall the image of Fig. 7.1 and the dramatically simpler statistics of
its wavelet transform in Fig. 7.10(a). Because many of the computed coeffi-
cients carry little visual information, they can be quantized and coded to mini-
mize intercoefficient and coding redundancy. Moreover, the quantization can
be adapted to exploit any positional correlation across the decomposition
levels. One or more lossless coding methods, like run-length, Huffman, arith-
metic, and bit-plane coding, can be incorporated into the final symbol coding
step. Decoding is accomplished by inverting the encoding operations—with
the exception of quantization, which cannot be reversed exactly.

The principal difference between the wavelet-based system of Fig. 8.45 and
the transform coding system of Fig. 8.21 is the omission of the subimage process-
ing stages of the transform coder. Because wavelet transforms are both computa-
tionally efficient and inherently local (i.e., their basis functions are limited in
duration), subdivision of the original image is unnecessary.As you will see later in
this section, the removal of the subdivision step eliminates the blocking artifact
that characterizes DCT-based approximations at high compression ratios.

Wavelet selection

The wavelets chosen as the basis of the forward and inverse transforms in
Fig. 8.45 affect all aspects of wavelet coding system design and perfor-
mance. They impact directly the computational complexity of the trans-
forms and, less directly, the system’s ability to compress and reconstruct

P

w,

J - P,c,
2J * 2J

With reference to Tables
8.3 and 8.4, wavelet cod-
ing is used in the

● JPEG-2000

compression standard.

Input
image

Compressed
image

Wavelet
transform

Quantizer Symbol
encoder

Compressed
image

Decompressed
image

Symbol
decoder

Inverse
wavelet transform

FIGURE 8.45
A wavelet coding
system:
(a) encoder;
(b) decoder.

a
b
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images of acceptable error. When the transforming wavelet has a compan-
ion scaling function, the transformation can be implemented as a sequence
of digital filtering operations, with the number of filter taps equal to the
number of nonzero wavelet and scaling vector coefficients. The ability of
the wavelet to pack information into a small number of transform coeffi-
cients determines its compression and reconstruction performance.

The most widely used expansion functions for wavelet-based compression
are the Daubechies wavelets and biorthogonal wavelets. The latter allow use-
ful analysis properties, like the number of zero moments (see Section 7.5), to
be incorporated into the decomposition filters, while important synthesis
properties, like smoothness of reconstruction, are built into the reconstruc-
tion filters.

In digital filtering, each
filter tap multiplies a 
filter coefficient by a 
delayed version of the
signal being filtered.

EXAMPLE 8.25:
Wavelet bases in
wavelet coding.

■ Figure 8.46 contains four discrete wavelet transforms of Fig. 8.9(a). Haar
wavelets, the simplest and only discontinuous wavelets considered in this exam-
ple, were used as the expansion or basis functions in Fig. 8.46(a). Daubechies
wavelets, among the most popular imaging wavelets, were used in Fig. 8.46(b),

FIGURE 8.46
Three-scale
wavelet
transforms of 
Fig. 8.9(a) with
respect to 
(a) Haar wavelets,
(b) Daubechies
wavelets,
(c) symlets, and
(d) Cohen-
Daubechies
Feauveau
biorthogonal
wavelets.

a b
c d
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EXAMPLE 8.26:
Decomposition
levels in wavelet
coding.

and symlets, which are an extension of the Daubechies wavelets with increased
symmetry, were used in Fig. 8.46(c).The Cohen-Daubechies-Feauveau wavelets
that were employed in Fig. 8.46(d) are included to illustrate the capabilities of
biorthogonal wavelets. As in previous results of this type, all detail coefficients
were scaled to make the underlying structure more visible—with intensity 128
corresponding to coefficient value 0.

As you can see in Table 8.13, the number of operations involved in the com-
putation of the transforms in Fig. 8.46 increases from 4 to 28 multiplications and
additions per coefficient (for each decomposition level) as you move from Fig.
8.46(a) to (d). All four transforms were computed using a fast wavelet trans-
form (i.e., filter bank) formulation. Note that as the computational complexity
(i.e., the number of filter taps) increases, the information packing performance
does as well. When Haar wavelets are employed and the detail coefficients
below 1.5 are truncated to zero, 33.8% of the total transform is zeroed.With the
more complex biorthogonal wavelets, the number of zeroed coefficients rises to
42.1%, increasing the potential compression by almost 10%. ■

Decomposition level selection

Another factor affecting wavelet coding computational complexity and recon-
struction error is the number of transform decomposition levels. Because a
P-scale fast wavelet transform involves P-filter bank iterations, the number of
operations in the computation of the forward and inverse transforms increases
with the number of decomposition levels. Moreover, quantizing the increas-
ingly lower-scale coefficients that result with more decomposition levels 
affects increasingly larger areas of the reconstructed image. In many appli-
cations, like searching image databases or transmitting images for progressive
reconstruction, the resolution of the stored or transmitted images and the
scale of the lowest useful approximations normally determine the number of
transform levels.

Filter Taps 
Wavelet Zeroed Coefficients

Haar (see Ex. 7.10) 33.8%
Daubechies (see Fig. 7.8) 40.9%
Symlet (see Fig. 7.26) 41.2%
Biorthogonal (see Fig. 7.39) 42.1%17 + 11

8 + 8
8 + 8
2 + 2

(Scaling � Wavelet)

TABLE 8.13 
Wavelet transform
filter taps and
zeroed coefficients
when truncating
the transforms in 
Fig. 8.46 below 1.5.

DWT detail coefficients
are discussed in Section
7.3.2.

■ Table 8.14 illustrates the effect of decomposition level selection on the cod-
ing of Fig. 8.9(a) using biorthogonal wavelets and a fixed global threshold of
25. As in the previous wavelet coding example, only detail coefficients are
truncated. The table lists both the percentage of zeroed coefficients and the
resulting rms reconstruction errors from Eq. (8.1-10). Note that the initial
decompositions are responsible for the majority of the data compression.There
is little change in the number of truncated coefficients above three decompo-
sition levels. ■
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TABLE 8.14 
Decomposition
level impact on
wavelet coding
the
image of 
Fig. 8.9(a).

512 * 512

Decomposition Level 
(Scales or Filter Approximation Truncated Reconstruction
Bank Iterations) Coefficient Image Coefficients (%) Error (rms)

1 74.7% 3.27
2 91.7% 4.23
3 95.1% 4.54
4 95.6% 4.61
5 95.5% 4.6316 * 16

32 * 32
64 * 64

128 * 128
256 * 256

Quantizer design

The most important factor affecting wavelet coding compression and recon-
struction error is coefficient quantization. Although the most widely used
quantizers are uniform, the effectiveness of the quantization can be improved
significantly by (1) introducing a larger quantization interval around zero,
called a dead zone, or (2) adapting the size of the quantization interval from
scale to scale. In either case, the selected quantization intervals must be trans-
mitted to the decoder with the encoded image bit stream. The intervals them-
selves may be determined heuristically or computed automatically based on
the image being compressed. For example, a global coefficient threshold could
be computed as the median of the absolute values of the first-level detail coef-
ficients or as a function of the number of zeroes that are truncated and the
amount of energy that is retained in the reconstructed image.

One measure of the 
energy of a digital signal
is the sum of the squared
samples.

EXAMPLE 8.27:
Dead zone
interval selection
in wavelet coding.

■ Figure 8.47 illustrates the impact of dead zone interval size on the per-
centage of truncated detail coefficients for a three-scale biorthogonal
wavelet-based encoding of Fig. 8.9(a). As the size of the dead zone increases,
the number of truncated coefficients does as well. Above the knee of the
curve (i.e., beyond 5), there is little gain. This is due to the fact that the his-
togram of the detail coefficients is highly peaked around zero (see, for exam-
ple, Fig. 7.10).

The rms reconstruction errors corresponding to the dead zone thresholds in
Fig. 8.47 increase from 0 to 1.94 intensity levels at a threshold of 5 and to 3.83
intensity levels for a threshold of 18, where the number of zeroes reaches
93.85%. If every detail coefficient were eliminated, that percentage would in-
crease to about 97.92% (about 4%), but the reconstruction error would grow
to 12.3 intensity levels. ■

JPEG-2000

JPEG-2000 extends the popular JPEG standard to provide increased flexibility
in both the compression of continuous-tone still images and access to the com-
pressed data. For example, portions of a JPEG-2000 compressed image can
be extracted for retransmission, storage, display, and/or editing. The stan-
dard is based on the wavelet coding techniques just described. Coefficient
quantization is adapted to individual scales and subbands and the quantized
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Ssiz is used in the 
standard to denote 
intensity resolution.

coefficients are arithmetically coded on a bit-plane basis (see Sections 8.2.3
and 8.2.7). Using the notation of the standard, an image is encoded as follows
(ISO/IEC [2000]).

The first step of the encoding process is to DC level shift the samples of the
Ssiz-bit unsigned image to be coded by subtracting If the image has
more than one component—like the red, green, and blue planes of a color
image—each component is shifted individually. If there are exactly three com-
ponents, they may be optionally decorrelated using a reversible or nonre-
versible linear combination of the components. The irreversible component
transform of the standard, for example, is

(8.2-61)

where and are the level-shifted input components and and are
the corresponding decorrelated components. If the input components are the
red, green, and blue planes of a color image, Eq. (8.2-61) approximates the

to color video transform (Poynton [1996]).† The goal of the trans-
formation is to improve compression efficiency; transformed components and

are difference images whose histograms are highly peaked around zero.Y2

Y1

Y¿CbCrR¿G¿B¿

Y2Y0, Y1,I2I0, I1,

Y2 (x, y) = 0.5I0 (x, y) - 0.41869I1 (x, y) - 0.08131I2 (x, y)

Y1 (x, y) = -0.16875I0 (x, y) - 0.33126I1 (x, y) + 0.5I2 (x, y)

Y0 (x, y) = 0.299I0 (x, y) + 0.587I1 (x, y) + 0.114I2 (x, y)

2Ssiz - 1.

The irreversible 
component transform 
is the component 
transform used for 
lossy compression. The
component transform 
itself is not irreversible.
A different component
transform is used for 
reversible compression.
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impact of dead
zone interval
selection on
wavelet coding.
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After the image has been level shifted and optionally decorrelated, its com-
ponents can be divided into tiles. Tiles are rectangular arrays of pixels that are
processed independently. Because an image can have more than one compo-
nent (e.g., it could be made up of three color components), the tiling process
creates tile components. Each tile component can be reconstructed indepen-
dently, providing a simple mechanism for accessing and/or manipulating a
limited region of a coded image. For example, an image having a 16:9 aspect
ratio could be subdivided into tiles so that one of its tiles is a subimage with a
4:3 aspect ratio. That tile could then be reconstructed without accessing the
other tiles in the compressed image. If the image is not subdivided into tiles, it
is a single tile.

The 1-D discrete wavelet transform of the rows and columns of each tile
component is then computed. For error-free compression, the transform is
based on a biorthogonal, 5-3 coefficient scaling and wavelet vector (Le Gall
and Tabatabai [1988]). A rounding procedure is defined for non-integer-valued
transform coefficients. In lossy applications, a 9-7 coefficient scaling-wavelet
vector (Antonini, Barlaud, Mathieu, and Daubechies [1992]) is employed. In ei-
ther case, the transform is computed using the fast wavelet transform of Section
7.4 or via a complementary lifting-based approach (Mallat [1999]). For example,
in lossy applications, the coefficients used to construct the 9-7 FWT analysis
filter bank are given in Table 8.15.The complementary lifting-based implemen-
tation involves six sequential “lifting” and “scaling” operations:

(8.2-62)

Here, is the tile component being transformed, is the resulting transform,
and and define the position of the tile component within a component.
That is, they are the indices of the first sample of the tile-component row or
column being transformed and the one immediately following the last sample.
Variable assumes values based on and which of the six operations isi0, i1,n

i1i0

YX

Y(2n) = Y(2n)>K, i0 … 2n 6 i1

Y(2n + 1) = -K # Y(2n + 1),                          i0 … 2n + 1 6 i1

i0 … 2n 6 i1Y(2n) = Y(2n) + d CY(2n - 1) + Y(2n + 1) D ,
i0 - 1 … 2n + 1 6 i1 + 1Y(2n + 1) = Y(2n + 1) + g CY(2n) + Y(2n + 2) D ,
i0 - 2 … 2n 6 i1 + 2Y(2n) = X(2n) + b CY(2n - 1) + Y(2n + 1) D ,
i0 - 3 … 2n + 1 6 i1 + 3Y(2n + 1) = X(2n + 1) + a CX(2n) + X(2n + 2) D ,

Highpass Wavelet Lowpass Scaling
Filter Tap Coefficient Coefficient

0 0.6029490182363579
0.5912717631142470 0.2668641184428723
0.05754352622849957

0 0.02674875741080976;4
-0.01686411844287495-0.09127176311424948;3
-0.07822326652898785;2

;1
-1.115087052456994

TABLE 8.15 
Impulse responses
of the low- and
highpass analysis
filters for an
irreversible 9-7
wavelet
transform.

Lifting-based
implementations are
another way to compute
wavelet transforms. The
coefficients used in the
approach are directly 
related to the FWT filter
bank coefficients.
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being performed. If or is obtained by symmetrically ex-
tending For example,

and At the conclusion of the lift-
ing and scaling operations, the even-indexed values of are equivalent to the
FWT lowpass filtered output; the odd-indexed values of correspond to
the highpass FWT filtered result. Lifting parameters and are

0.882911075, and 0.433506852, respectively.
Scaling factor is 1.230174105.

The transformation just described produces four subbands—a low-resolution
approximation of the tile component and the component’s horizontal, vertical,
and diagonal frequency characteristics. Repeating the transformation 
times, with subsequent iterations restricted to the previous decomposition’s
approximation coefficients, produces an wavelet transform. Adja-
cent scales are related spatially by powers of 2 and the lowest scale contains
the only explicitly defined approximation of the original tile component. As
can be surmised from Fig. 8.48, where the notation of the JPEG-2000 standard
is summarized for the case of a general transform contains

subbands whose coefficients are denoted for 
The standard does not specify the number of

scales to be computed.
When each of the tile components has been processed, the total number of

transform coefficients is equal to the number of samples in the original
image—but the important visual information is concentrated in a few coeffi-
cients. To reduce the number of bits needed to represent the transform, coeffi-
cient of subband is quantized to value using

(8.2-63)qb(u, v) = sign Cab(u, v) D # floorB ƒab(u, v) ƒ
¢b

Rqb(u, v)bab(u, v)

NLHL, Á , 1HL, 1LH, 1HH.
b = NLLL,ab ,3NL + 1

NL-scaleNL = 2,

NL-scale

NL

K
-1.586134342, -0.052980118,

da, b, g,
Y

Y
X(i1 + 1) = X(i1 - 3).= X(i1 - 2),X(i1)

X(i0 - 1) = X(i0 + 1), X(i0 - 2) = X(i0 + 2),X.
n Ú i1, X(n)n 6 i0

These lifting-based 
coefficients are specified
in the standard.

a2LL(u, v)

a2LH(u, v) a2HH(u, v)

a1LH(u, v) a1HH(u, v)

a2HL(u, v)

a1HL(u, v)
0 1

1 2 1

1 2

FIGURE 8.48
JPEG 2000 
two-scale wavelet
transform
tile-component
coefficient
notation and
analysis gain.

Recall from Chapter 7
that the DWT 
decomposes an image
into a set of band-limited
components called 
subbands.
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where the quantiztion step size is

(8.2-64)

is the nominal dynamic range of subband and and are the number
of bits allotted to the exponent and mantissa of the subband’s coefficients. The
nominal dynamic range of subband is the sum of the number of bits used to
represent the original image and the analysis gain bits for subband Subband
analysis gain bits follow the simple pattern shown in Fig. 8.48. For example,
there are two analysis gain bits for subband 

For error-free compression, and For irreversible
compression, no particular quantization step size is specified in the standard.
Instead, the number of exponent and mantissa bits must be provided to the de-
coder on a subband basis, called expounded quantization, or for the sub-
band only, called derived quantization. In the latter case, the remaining
subbands are quantized using extrapolated subband parameters. Let-
ting and be the number of bits allocated to the subband, the extrap-
olated parameters for subband are

(8.2-65)

where denotes the number of subband decomposition levels from the orig-
inal image tile component to subband 

In the final steps of the encoding process, the coefficients of each trans-
formed tile-component’s subbands are arranged into rectangular blocks called
code blocks, which are coded individually, one bit plane at a time. Starting
from the most significant bit plane with a nonzero element, each bit plane is
processed in three passes. Each bit (in a bit plane) is coded in only one of the
three passes, which are called significance propagation, magnitude refinement,
and cleanup. The outputs are then arithmetically coded and grouped with sim-
ilar passes from other code blocks to form layers. A layer is an arbitrary num-
ber of groupings of coding passes from each code block. The resulting layers
finally are partitioned into packets, providing an additional method of extract-
ing a spatial region of interest from the total code stream. Packets are the fun-
damental unit of the encoded code stream.

JPEG-2000 decoders simply invert the operations described previously.
After reconstructing the subbands of the tile-components from the arith-
metically coded JPEG-2000 packets, a user-selected number of the sub-
bands is decoded. Although the encoder may have encoded bit planes
for a particular subband, the user—due to the embedded nature of the
code stream—may choose to decode only bit planes. This amounts to
quantizing the coefficients of the code block using a step size of 
Any nondecoded bits are set to zero and the resulting coefficients, denoted

2Mb - Nb # ¢b.
Nb

Mb

b.
nb

eb = e0 + nb - NL

mb = m0

b
NLLLm0e0

NLLL

NLLL

¢b = 1.mb = 0, Rb = eb,
b = 1HH.

b.
b

mbebb,Rb

¢b = 2Rb -eb¢1 +
mb

211 ≤
¢b

Do not confuse the
standard’s definition of
nominal dynamic range
with the closely related
definition in Chapter 2.
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are inverse quantized using

(8.2-66)

where denotes an inverse-quantized transform coefficient and
is the number of decoded bit planes for Reconstruction para-

meter is chosen by the decoder to produce the best visual or objective quality
of reconstruction. Generally with a common value being 
The inverse-quantized coefficients then are inverse-transformed by column
and by row using an filter bank whose coefficients are obtained from
Table 8.15 and Eq. (7.1-11), or via the following lifting-based operations:

(8.2-67)

where parameters and are as defined for Eq. (8.2-62). Inverse-
quantized coefficient row or column element is symmetrically extended
when necessary. The final decoding steps are the assembly of the component
tiles, inverse component transformation (if required), and DC level shifting.
For irreversible coding, the inverse component transformation is

(8.2-68)

and the transformed pixels are shifted by +2Ssiz - 1.

I2(x, y) = Y0(x, y) + 1.772Y1(x, y)

I1(x, y) = Y0(x, y) - 0.34413Y1(x, y) - 0.71414Y2 (x, y)

I0(x, y) = Y0(x, y) + 1.402Y2(x, y)

Y(n)
Ka, b, g, d,

X(2n) = K # Y(2n), i 0 - 3 … 2n 6 i1 + 3

X(2n + 1) = (-1>K) # Y(2n + 1), i 0 - 2 … 2n - 1 6 i1 + 2

X(2n) = X(2n) - d CX(2n - 1) + X(2n + 1) D , i 0 - 3 … 2n 6 i1 + 3

X(2n + 1) = X(2n + 1) - g CX(2n) + X(2n + 2) D , i 0 -2 … 2n + 1 6 i1 + 2

X(2n) = X(2n) - b CX(2n - 1) + X(2n +1) D , i 0 - 1 … 2n 6 i1 + 1

X(2n + 1) = X(2n + 1) - a CX(2n) + X(2n + 2) D , i 0 … 2n + 1 6 i1

FWT-1

r = 1>2.0 … r 6 1,
r

q
b
(u, v).Nb (u, v)

Rqb
(u, v)

Rqb
(u, v) = d (qb(u, v) + r # 2Mb - Nb(u, v)) # ¢b qb(u, v) 7 0

(qb(u, v) - r # 2Mb - Nb(u, v)) # ¢b qb(u, v) 6 0
0 qb(u, v) = 0

qb(u, v),Quantization as defined
earlier in the chapter is
irreversible. The term
“inverse quantized” does
not mean that there is no
information loss. This
process is lossy except
for the case of reversible
JPEG-2000 compression,
where
and ¢b = 1.

Rb = eb,mb = 0,

EXAMPLE 8.28:
A comparison of
JPEG-2000
wavelet-based
coding and JPEG
DCT-based
compression.

■ Figure 8.49 shows four JPEG-2000 approximations of the monochrome
image in Figure 8.9(a). Successive rows of the figure illustrate increasing levels
of compression—including and 105. The images in column 1
are decompressed JPEG-2000 encodings. The differences between these im-
ages and the original image [Fig. 8.9(a)] are shown in the second column, and
the third column contains a zoomed portion of the reconstructions in column 1.
Because the compression ratios for the first two rows are virtually identical to
the compression ratios in Example 8.18, these results can be compared—both
qualitatively and quantitatively—to the JPEG transform-based results in Figs.
8.32(a) through (f).

C = 25, 52, 75,



FIGURE 8.49 Four JPEG-2000 approximations of Fig. 8.9(a). Each row contains a result after compression
and reconstruction, the scaled difference between the result and the original image, and a zoomed portion of
the reconstructed image. (Compare the results in rows 1 and 2 with the JPEG results in Fig. 8.32.)
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A visual comparison of the error images in rows 1 and 2 of Fig. 8.49 with the
corresponding images in Figs. 8.32(b) and (e) reveals a noticeable decrease of
error in the JPEG-2000 results—3.86 and 5.77 intensity levels as opposed to
5.4 and 10.7 intensity levels for the JPEG results. The computed errors favor
the wavelet-based results at both compression levels. Besides decreasing re-
construction error, wavelet coding dramatically increases (in a subjective
sense) image quality. Note that the blocking artifact that dominated the JPEG
results [see Figs. 8.32(c) and (f)] is not present in Fig. 8.49. Finally, we note that
the compression achieved in rows 3 and 4 of Fig. 8.49 is not practical with
JPEG. JPEG-2000 provides useable images that are compressed by more than
100:1—with the most objectionable degradation being increased image blur.■

8.3 Digital Image Watermarking

The methods and standards of Section 8.2 make the distribution of images
(whether in photographs or videos) on digital media and over the Internet
practical. Unfortunately, the images so distributed can be copied repeatedly
and without error, putting the rights of their owners at risk. Even when en-
crypted for distribution, images are unprotected after decryption. One way to
discourage illegal duplication is to insert one or more items of information,
collectively called a watermark, into potentially vulnerable images in such a
way that the watermarks are inseparable from the images themselves. As inte-
gral parts of the watermarked images, they protect the rights of their owners in
a variety of ways, including:

1. Copyright identification. Watermarks can provide information that serves
as proof of ownership when the rights of the owner have been infringed.

2. User identification or fingerprinting. The identity of legal users can be en-
coded in watermarks and used to identify sources of illegal copies.

3. Authenticity determination. The presence of a watermark can guarantee
that an image has not been altered—assuming the watermark is designed
to be destroyed by any modification of the image.

4. Automated monitoring. Watermarks can be monitored by systems that
track when and where images are used (e.g., programs that search the Web
for images placed on Web pages). Monitoring is useful for royalty collec-
tion and/or the location of illegal users.

5. Copy protection. Watermarks can specify rules of image usage and copy-
ing (e.g., to DVD players).

In this section, we provide a brief overview of digital image watermarking—
the process of inserting data into an image in such a way that it can be used to
make an assertion about the image. The methods described have little in com-
mon with the compression techniques presented in the previous sections—
although they do involve the coding of information. In fact, watermarking and
compression are in some ways opposites. While the objective in compression is
to reduce the amount of data used to represent images, the goal in watermarking
is to add information and thus data (i.e., watermarks) to them.As will be seen in
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the remainder of the section, the watermarks themselves can be either visible or
invisible.

A visible watermark is an opaque or semi-transparent sub-image or image
that is placed on top of another image (i.e., the image being watermarked) so
that it is obvious to the viewer. Television networks often place visible water-
marks (fashioned after their logos) in the upper- or lower-right hand corner of
the television screen. As the following example illustrates, visible watermark-
ing typically is performed in the spatial domain.

EXAMPLE 8.29:
A simple visible
watermark.

■ The image in Fig. 8.50(b) is the lower-right-hand quadrant of the image in
Fig. 8.9(a) with a scaled version of the watermark in Fig. 8.50(a) overlaid on
top of it. Letting denote the watermarked image, we can express it as a lin-
ear combination of the unmarked image and watermark using

(8.3-1)

where constant controls the relative visibility of the watermark and the un-
derlying image. If is 1, the watermark is opaque and the underlying image is
completely obscured. As approaches 0, more of the underlying image and
less of the watermark is seen. In general, in Fig. 8.50(b),
Figure 8.50(c) is the computed difference (scaled in intensity) between the wa-
termarked image in (b) and the unmarked image in Fig. 8.9(a). Intensity 128
represents a difference of 0. Note that the underlying image is clearly visible
through the “semi-transparent” watermark. This is evident in both Fig. 8.50(b)
and the difference image in (c). ■

a = 0.3.0 6 a … 1;
a

a

a

fw = (1 - a)f + aw

wf
fw

FIGURE 8.50
A simple visible
watermark:
(a) watermark;
(b) the
watermarked
image; and (c) the
difference
between the
watermarked
image and the
original (non-
watermarked)
image.

a
b c
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Unlike the visible watermark of the previous example, invisible watermarks
cannot be seen with the naked eye.They are imperceptible—but can be recov-
ered with an appropriate decoding algorithm. Invisibility is assured by insert-
ing them as visually redundant information—as information that the human
visual system ignores or cannot perceive (see Section 8.1.3). Figure 8.51(a)
provides a simple example. Because the least significant bits of an 8-bit image
have virtually no effect on our perception of the image, the watermark from
Fig. 8.50(a) was inserted or “hidden” in its two least significant bits. Using the
notation introduced above, we let

(8.3-2)

and use unsigned integer arithmetic to perform the calculations. Dividing and
multiplying by 4 sets the two least significant bits of to 0, dividing by 64
shifts its two most significant bits into the two least significant bit positions,
and adding the two results generates the LSB watermarked image. Note that
the embedded watermark is not visible in Fig. 8.51(a). By zeroing the most sig-
nificant 6 bits of this image and scaling the remaining values to the full intensity
range, however, the watermark can be extracted as in Fig. 8.51(b).

wf

fw = 4¢f

4
≤ +

w

64

FIGURE 8.51 A
simple invisible
watermark:
(a) watermarked
image; (b) the
extracted
watermark;
(c) the
watermarked
image after high
quality JPEG
compression and
decompression;
and (d) the
extracted
watermark
from (c).

a b
c d
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An important property of invisible watermarks is their resistance to both
accidental and intentional attempts to remove them. Fragile invisible water-
marks are destroyed by any modification of the images in which they are em-
bedded. In some applications, like image authentication, this is a desirable
characteristic. As Figs. 8.51(c) and (d) show, the LSB watermarked image in
Fig. 8.51(a) contains a fragile invisible watermark. If the image in (a) is com-
pressed and decompressed using lossy JPEG, the watermark is destroyed.
Figure 8.51(c) is the result after compressing and decompressing Fig. 8.51(a);
the rms error is 2.1 bits. If we try to extract the watermark from this image
using the same method as in (b), the result is unintelligible [see Fig. 8.51(d)].
Although lossy compression and decompression preserved the important visual
information in the image, the fragile watermark was destroyed.

Robust invisible watermarks are designed to survive image modification,
whether the so called attacks are inadvertent or intentional. Common inadver-
tent attacks include lossy compression, linear and non-linear filtering, crop-
ping, rotation, resampling, and the like. Intentional attacks range from printing
and rescanning to adding additional watermarks and/or noise. Of course, it is
unnecessary to withstand attacks that leave the image itself unusable.

Figure 8.52 shows the basic components of a typical image watermarking
system.The encoder in Fig. 8.52(a) inserts watermark into image produc-
ing watermarked image the complementary decoder in (b) extracts and
validates the presence of in watermarked input or unmarked input If

is visible, the decoder is not needed. If it is invisible, the decoder may or
may not require a copy of and [shown in gray in Fig. 8.52(b)] to do its job.
If and/or are used, the watermarking system is known as a private or
restricted-key system; if not, it is a public or unrestricted-key system. Because
the decoder must process both marked and unmarked images, is used in
Fig. 8.52(b) to denote the absence of a mark. Finally, we note that to determine
the presence of in an image, the decoder must correlate extracted water-
mark with and compare the result to a predefined threshold.The thresh-
old sets the degree of similarity that is acceptable for a “match.”
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FIGURE 8.52
A typical image
watermarking
system:
(a) encoder;
(b) decoder.
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EXAMPLE 8.30:
A DCT-based
invisible robust
watermark.

FIGURE 8.53 (a) and (c) Two watermarked versions of Fig. 8.9(a); (b) and (d) the differences (scaled in
intensity) between the watermarked versions and the unmarked image. These two images show the intensity
contribution (although scaled dramatically) of the pseudo-random watermarks on the original image.

■ Mark insertion and extraction can be performed in the spatial domain, as in
the previous examples, or in the transform domain. Figures 8.53(a) and (c)
show two watermarked versions of the image in Fig. 8.9(a) using the DCT-
based watermarking approach outlined below (Cox et al. [1997]):

Step 1. Compute the 2-D DCT of the image to be watermarked.

Step 2. Locate its largest coefficients, by magnitude.c1, c2, Á , cK,K

a b
c d
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Step 3. Create a watermark by generating a K-element pseudo-random se-
quence of numbers, taken from a Gaussian distribution with
mean and variance 

Step 4. Embed the watermark from step 3 into the largest DCT coeffi-
cients from step 2 using the following equation

(8.3-3)

for a specified constant (that controls the extent to which alters
). Replace the original with the computed from Eq. (8.3-3).

Step 5. Compute the inverse DCT of the result from step 4.

By employing watermarks made from pseudo-random numbers and spreading
them across an image’s perceptually significant frequency components, can
be made small, reducing watermark visibility. At the same time, watermark
security is kept high because (1) the watermarks are composed of pseudo-
random numbers with no obvious structure, (2) the watermarks are embedded
in multiple frequency components with spatial impact over the entire 2-D
image (so their location is not obvious) and (3) attacks against them tend to
degrade the image as well (i.e., the image’s most important frequency compo-
nents must be altered to affect the watermarks).

Figures 8.53(b) and (d) make the changes in image intensity that result
from the pseudo-random numbers that are embedded in the DCT coefficients
of the watermarked images in Figs. 8.53(a) and (c) visible. Obviously, the pseudo-
random numbers must have an effect—even if too small to see—on the water-
marked images. To display the effect, the images in Figs. 8.53(a) and (c) were
subtracted from the unmarked image in Fig. 8.9(a) and scaled in intensity to
the range [0, 255]. Figures 8.53(b) and (d) are the resulting images; they show
the 2-D spatial contributions of the pseudo-random numbers. Because they
have been scaled, however, you cannot simply add these images to the image
in Fig. 8.9(a) and get the watermarked images in Figs. 8.53(a) and (c). As can
be seen in Figs. 8.53(a) and (c), their actual intensity perturbations are small to
negligible.

To determine whether a particular image is a copy of a previously water-
marked image with watermark and DCT coefficients

we use the following procedure:

Step 1. Compute the 2-D DCT of the image in question.

Step 2. Extract the DCT coefficients (in the positions corresponding 
to of step 2 in the watermarking procedure) and denote the
coefficients as If the image in question is the previously 
watermarked image (without modification), for If it is 
a modified copy of the watermarked image (i.e., it has undergone some sort
of attack), for (the will be approximations of the ).
Otherwise, the image in question will be an unmarked image or an image
with a completely different watermark—and the will bear no 
resemblance to the original ci

œ.
cNi

ci
œcNi1 … i … KcNi L ci

œ

1 … i … K.cNi = ci
œ

cN1, cN2, Á , cNK.
c1, c2, Á , cK

K

c1, c2, Á , cK,
v1, v 2, Á , vK

a

ci
œcici

via 7 0

ci
œ = ci

# (1 + avi)  1 … i … K

K

s2 = 1.m = 0
v1, v 2, Á , vK,

For the images in 
Fig. 8.53, and
K = 1000.

a = 0.1

A pseudo-random 
number sequence 
approximates the 
properties of random
numbers. It is not truly
random because it 
depends on a 
predetermined initial
value.
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Step 3. Compute watermark using

(8.3-4)

Recall that watermarks are a sequence of pseudo-random numbers.

Step 4. Measure the similarity of (from step 2) and
(from step 3 of the watermarking procedure) using a metric

such as the correlation coefficient

(8.3-5)

where and are the means of the two K-element watermarks.

Step 5. Compare the measured similarity, to a predefined threshold,
and make a binary detection decision

(8.3-6)

In other words, indicates that watermark is present
(with respect to the specified threshold, ); indicates that it was not.

Using this procedure, the original watermarked image in Fig. 8.53(a)—measured
against itself—yields a correlation coefficient of 0.9999, i.e., It is
an unmistakable match. In a similar manner, the image in Fig. 8.53(b), when
measured against the image in Fig. 8.53(a), results in a of 0.0417—it could
not be mistaken for the watermarked image in Fig. 8.53(a) because the corre-
lation coefficient is so low. ■

To conclude the section, we note that the DCT-based watermarking ap-
proach of the previous example is fairly resistant to watermark attacks, partly
because it is a private or restricted-key method. Restricted-key methods are
always more resilient than their unrestricted-key counterparts. Using the wa-
termarked image in Fig. 8.53(a), Fig. 8.54 illustrates the ability of the method
to withstand a variety of common attacks. As can be seen in the figure, water-
mark detection is quite good over the range of attacks that were implemented—
the resulting correlation coefficients (shown under each image in the figure)
vary from 0.3113 to 0.9945. When subjected to a high quality but lossy (result-
ing in an rms error of 7 intensities) JPEG compression and decompression,

Even when the compression and reconstructed yields an rms error
of 10 intensity levels, —and the usability of this image has been sig-
nificantly degraded. Significant smoothing by spatial filtering and the addition
of Gaussian noise do not reduce the correlation coefficient below 0.8230.
However, histogram equalization reduces to 0.5210; and rotation has the
largest effect—reducing to 0.3313. All attacks, except for the lossy JPEGg

g

g = 0.7395
g = 0.9945.

g

g = 0.9999.

D = 0T
v1, v 2, Á , vKD = 1

D = b 1 if g Ú T

0 otherwise

T,g,

vNv

g =
a
K

i = 1
(vN i - vN )(vi - v)

Ba
K

i = 1
(vN i - vN )2 # a

K

i = 1
(vi - v)2

 1 … i … K

v1, v2, Á , vK

vN 1, vN 2, Á , vN K

vN i = cNi - ci for 1 … i … K

vN 1, vN 2, Á , vN K

We discuss the 
correlation coefficient
in detail in Section
12.2.1.
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compression and reconstruction in (a), have significantly reduced the usability
of the original watermarked image.

Summary
The principal objectives of this chapter were to present the theoretic foundation of
digital image compression, to describe the most commonly used compression meth-
ods, and to introduce the related area of digital image watermarking. Although the
level of the presentation is introductory in nature, the references provide an entry into
the extensive body of literature dealing with the topics discussed. As evidenced by the
international standards listed in Tables 8.3 and 8.4, compression plays a key role in

G � 0.9945 G � 0.7395 G � 0.8390

G � 0.8230 G � 0.5210 G � 0.3113

FIGURE 8.54 Attacks on the watermarked image in Fig. 8.53(a): (a) lossy JPEG compression and
decompression with an rms error of 7 intensity levels; (b) lossy JPEG compression and decompression with
an rms error of 10 intensity levels (note the blocking artifact); (c) smoothing by spatial filtering; (d) the
addition of Gaussian noise; (e) histogram equalization; and (f) rotation. Each image is a modified version of
the watermarked image in Fig. 8.53(a). After modification, they retain their watermarks to varying degrees,
as indicated by the correlation coefficients below each image.

a b
d e

c
f
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document image storage and transmission, the Internet, and commercial video distrib-
ution (e.g., DVDs). It is one of the few areas of image processing that has received a
sufficiently broad commercial appeal to warrant the adoption of widely accepted stan-
dards.And image watermarking is becoming increasingly important as more and more
images are distributed in compressed digital form.

References and Further Reading
The introductory material of the chapter, which is generally confined to Section 8.1,
is basic to image compression and may be found in one form or another in most of
the general image processing books cited at the end of Chapter 1. For additional in-
formation on the human visual system, see Netravali and Limb [1980], as well as
Huang [1966], Schreiber and Knapp [1958], and the references cited at the end of
Chapter 2. For more on information theory, see the book Web site or Abramson
[1963], Blahut [1987], and Berger [1971]. Shannon’s classic paper, “A Mathematical
Theory of Communication” [1948], lays the foundation for the area and is another ex-
cellent reference. Subjective fidelity criteria are discussed in Frendendall and
Behrend [1960].

Throughout the chapter, a variety of compression standards are used in examples.
Most of them were implemented using Adobe Photoshop (with freely available com-
pression plug-ins) and/or MATLAB, which is described in Gonzalez et al. [2004]. Com-
pression standards, as a rule, are lengthy and complex; we have not attempted to cover
any of them in their entirety. For more information on a particular standard, see the
published documents of the appropriate standards organization—the International
Standards Organization, International Electrotechnical Commission, and/or the Inter-
national Telecommunications Union. Additional references on standards include
Hunter and Robinson [1980], Ang et al. [1991], Fox [1991], Pennebaker and Mitchell
[1992], Bhatt et al. [1997], Sikora [1997], Bhaskaran and Konstantinos [1997], Ngan et al.
[1999], Weinberger et al. [2000], Symes [2001], Mitchell et al. [1997], and Manjunath
et al. [2001].

The lossy and error-free compression techniques described in Section 8.2 and wa-
termarking techniques in Section 8.3 are, for the most part, based on the original papers
cited in the text.The algorithms covered are representative of the work in this area, but
are by no means exhaustive. The material on LZW coding has its origins in the work of
Ziv and Lempel [1977, 1978]. The material on arithmetic coding follows the develop-
ment in Witten, Neal, and Cleary [1987]. One of the more important implementations
of arithmetic coding is summarized in Pennebaker et al. [1988]. For a good discussion of
lossless predictive coding, see the tutorial by Rabbani and Jones [1991]. The adaptive
predictor of Eq. (8.2-56) is from Graham [1958]. For more on motion compensation,
see S. Solari [1997], which also contains an introduction to general video compression
and compression standards, and Mitchell et al. [1997]. The DCT-based watermarking
technique in Section 8.3 is based on the paper by Cox et al. [1997]. For more on water-
marking, see the books by Cox et al. [2001] and Parhi and Nishitani [1999]. See also the
paper by S. Mohanty [1999].

Many survey articles have been devoted to the field of image compression. Notewor-
thy are Netravali and Limb [1980],A. K. Jain [1981], a special issue on picture communi-
cation systems in the IEEE Transactions on Communications [1981], a special issue on
the encoding of graphics in the Proceedings of IEEE [1980], a special issue on visual
communication systems in the Proceedings of the IEEE [1985], a special issue on image
sequence compression in the IEEE Transactions on Image Processing [1994], and a special
issue on vector quantization in the IEEE Transactions on Image Processing [1996]. In
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addition, most issues of the IEEE Transactions on Image Processing, IEEE Transactions
on Circuits and Systems for Video Technology, and IEEE Transactions on Multimedia in-
clude articles on video and still image compression, motion compensation, and water-
marking. See, for example, Robinson [2006], Chandler and Hemami [2005], Yan and
Cosman [2003], Boulgouris et al. [2001], Martin and Bell [2001], Chen and Wilson [2000],
Hartenstein et al. [2000],Yang and Ramchandran [2000], Meyer et al. [2000], S. Mitra et al.
[1998], Mukherjee and Mitra [2003], Xu et al. [2005], Rane and Sapiro [2001], Hu et al.
[2006], Pi et al. [2006], Dugelay et al. [2006], and Kamstra and Heijmans [2005] as a start-
ing point for further reading and references.

Problems
8.1 (a) Can variable-length coding procedures be used to compress a histogram

equalized image with intensity levels? Explain.

(b) Can such an image contain spatial or temporal redundancies that could be
exploited for data compression?

8.2 One variation of run-length coding involves (1) coding only the runs of 0’s or 1’s
(not both) and (2) assigning a special code to the start of each line to reduce the
effect of transmission errors. One possible code pair is where and 
represent the kth run’s starting coordinate and run length, respectively. The code
(0, 0) is used to signal each new line.

(a) Derive a general expression for the maximum average runs per scan line re-
quired to guarantee data compression when run-length coding a bi-
nary image.

(b) Compute the maximum allowable value for 

8.3 Consider an 8-pixel line of intensity data,
If it is uniformly quantized with 4-bit accuracy, compute the rms error and rms
signal-to-noise ratios for the quantized data.

8.4 Although quantization results in information loss, it is sometimes invisible to the
eye. For example, when 8-bit pixels are uniformly quantized to fewer 
false contouring often occurs. It can be reduced or eliminated using improved
gray-scale (IGS) quantization. A sum—initially set to zero—is formed from the
current 8-bit intensity value and the four least significant bits of the previously
generated sum. If the four most significant bits of the intensity value are 
however, is added instead. The four most significant bits of the resulting
sum are used as the coded pixel value.

(a) Construct the IGS code for the intensity data in Problem 8.3.

(b) Compute the rms error and rms signal-to-noise ratios for the decoded IGS
data.

8.5 A 8-bit image with 5.3 entropy [computed from its his-
togram using Eq. (8.1-7)] is to be Huffman coded.

(a) What is the maximum compression that can be expected?

(b) Will it be obtained?

(c) If a greater level of lossless compression is required, what else can be done?

8.6 The base unit of information is commonly called a nat, and the base-10 infor-
mation unit is called a Hartley. Compute the conversion factors needed to relate
these units to the base-2 unit of information (the bit).

e

bits>pixel1024 * 1024
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11112,

bits>pixel ,

5108, 139, 135, 244, 172, 173, 56, 996.
n = 10.
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8.7 Prove that, for a zero-memory source with symbols, the maximum value of the
entropy is log which is achieved if and only if all source symbols are equiprob-
able. [Hint: Consider the quantity and note the inequality

]

8.8 (a) How many unique Huffman codes are there for a three-symbol source?

(b) Construct them.

8.9 Consider the simple 8-bit image:

21    21    21    95    169    243    243    243
21    21    21    95    169    243    243    243
21    21    21    95    169    243    243    243
21    21    21    95    169    243    243    243

(a) Compute the entropy of the image.

(b) Compress the image using Huffman coding.

(c) Compute the compression achieved and the effectiveness of the Huffman
coding.

(d) Consider Huffman encoding pairs of pixels rather than individual pixels.
That is, consider the image to be produced by the second extension of the
zero-memory source that produced the original image. What is the entropy
of the image when looked at as pairs of pixels?

(e) Consider coding the differences between adjacent pixels. What is the en-
tropy of the new difference image? What does this tell us about compressing
the image?

(f) Explain the entropy differences in (a), (d) and (e).

8.10 Using the Huffman code in Fig. 8.8, decode the encoded string
0101000001010111110100.

8.11 Compute Golomb code for 

8.12 Write a general procedure for decoding Golomb code 

8.13 Why is it not possible to compute the Huffman code of the nonnegative integers,
with the geometric probability mass function of Eq. (8.2-2)?

8.14 Compute exponential Golomb code for 

8.15 Write a general procedure for decoding exponential Golomb code 

8.16 Plot the optimal Golomb coding parameter as a function of for 
in Eq. (8.2-3).

8.17 Given a four-symbol source with source probabilities
arithmetically encode the sequence bbadc.

8.18 The arithmetic decoding process is the reverse of the encoding procedure. De-
code the message 0.23355 given the coding model

50.1, 0.4, 0.3, 0.26,
5a, b, c, d6
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a 0.2
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�

�

�

8.19 Use the LZW coding algorithm of Section 8.2.4 to encode the 7-bit ASCII string
“aaaaaaaaaaa”.

8.20 Devise an algorithm for decoding the LZW encoded output of Example 8.7.
Since the dictionary that was used during the encoding is not available, the code
book must be reproduced as the output is decoded.

8.21 Decode the BMP encoded sequence 

8.22 (a) Construct the entire 4-bit Gray code.

(b) Create a general procedure for converting a Gray-coded number to its bi-
nary equivalent and use it to decode 0111010100111.

8.23 Use the CCITT Group 4 compression algorithm to code the second line of the
following two-line segment:

01100111001111111100001
11111110001110000111111

Assume that the initial reference element is located on the first pixel of the
second line segment.

8.24 (a) List all the members of JPEG DC coefficient difference category 3.

(b) Compute their default Huffman codes using Table A.4.

8.25 How many computations are required to find the optimal motion vector of an
macroblock using the MAD optimality criterion, single pixel precision,

and a maximum allowable displacement of 8 pixels? What would it become for
pixel precision?

8.26 What are the advantages of using B-frames for motion compensation?

8.27 Draw the block diagram of the companion motion compensated video decoder
for the encoder in Fig. 8.39.

8.28 An image whose autocorrelation function is of the form of Eq. (8.2-49) with
is to be DPCM coded using a second-order predictor.

(a) Form the autocorrelation matrix R and vector r.

(b) Find the optimal prediction coefficients.

(c) Compute the variance of the prediction error that would result from using
the optimal coefficients.

8.29 Derive the Lloyd-Max decision and reconstruction levels for and the uni-
form probability density function.

8.30 A radiologist from a well-known research hospital recently attended a medical
conference at which a system that could transmit 12-bit digitized
X-ray images over standard T1 (1.544 Mb/s) phone lines was exhibited. The sys-
tem transmitted the images in a compressed form using a progressive technique
in which a reasonably good approximation of the X-ray was first reconstructed
at the viewing station and then refined gradually to produce an error-free dis-
play. The transmission of the data needed to generate the first approximation
took approximately 5 or 6 s. Refinements were made every 5 or 6 s (on the aver-
age) for the next 1 min, with the first and last refinements having the most and
least significant impact on the reconstructed X-ray, respectively. The physician

4096 * 4096
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-A … s … A

0 otherwise

L = 4

rh = 0

1
4

8 * 8
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�

was favorably impressed with the system, because she could begin her diagnosis
by using the first approximation of the X-ray and complete it as the error-free
reconstruction of the X-ray was being generated. Upon returning to her office,
she submitted a purchase request to the hospital administrator. Unfortunately,
the hospital was on a relatively tight budget, which recently had been stretched
thinner by the hiring of an aspiring young electrical engineering graduate.To ap-
pease the radiologist, the administrator gave the young engineer the task of de-
signing such a system. (He thought it might be cheaper to design and build a
similar system in-house. The hospital currently owned some of the elements of
such a system, but the transmission of the raw X-ray data took more than 2
min.) The administrator asked the engineer to have an initial block diagram by
the afternoon staff meeting. With little time and only a copy of Digital Image
Processing from his recent school days in hand, the engineer was able to devise
conceptually a system to satisfy the transmission and associated compression re-
quirements. Construct a conceptual block diagram of such a system, specifying
the compression techniques you would recommend.

8.31 Show that the lifting-based wavelet transform defined by Eq. (8.2-62) is equiva-
lent to the traditional FWT filter bank implementation using the coefficients in
Table 8.15. Define the filter coefficients in terms of and 

8.32 Compute the quantization step sizes of the subbands for a JPEG-2000 encoded
image in which derived quantization is used and 8 bits are allotted to the man-
tissa and exponent of the 2LL subband.

8.33 How would you add a visible watermark to an image in the frequency domain?

8.34 Design an invisible watermarking system based on the discrete Fourier transform.

8.35 Design an invisible watermarking system based on the discrete wavelet transform.

K.a, b, g, d,
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Preview
The word morphology commonly denotes a branch of biology that deals with
the form and structure of animals and plants.We use the same word here in the
context of mathematical morphology as a tool for extracting image compo-
nents that are useful in the representation and description of region shape,
such as boundaries, skeletons, and the convex hull. We are interested also in
morphological techniques for pre- or postprocessing, such as morphological
filtering, thinning, and pruning.

In the following sections we develop and illustrate several important
concepts in mathematical morphology. Many of the ideas introduced here
can be formulated in terms of n-dimensional Euclidean space, Howev-
er, our interest initially is on binary images whose components are ele-
ments of (see Section 2.4.2). We discuss extensions to gray-scale images
in Section 9.6.

The material in this chapter begins a transition from a focus on purely
image processing methods, whose input and output are images, to processes in
which the inputs are images, but the outputs are attributes extracted from
those images, in the sense defined in Section 1.1.Tools such as morphology and
related concepts are a cornerstone of the mathematical foundation that is uti-
lized for extracting “meaning” from an image. Other approaches are devel-
oped and applied in the remaining chapters of the book.

Z2

En.

Morphological Image
Processing

In form and feature, face and limb, 
I grew so like my brother 
That folks got taking me for him 
And each for one another.

Henry Sambrooke Leigh, Carols of Cockayne, The Twins

9
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†When working with graphics, such as the sets in Fig. 9.1, we use shading to indicate points (pixels) that
are members of the set under consideration. When working with binary images, the sets of interest are
pixels corresponding to objects. We show these in white, and all other pixels in black. The terms
foreground and background are used often to denote the sets of pixels in an image defined to be objects
and non-objects, respectively.

You will find it helpful to
review Sections 2.4.2 and
2.6.4 before proceeding.

9.1 Preliminaries

The language of mathematical morphology is set theory. As such, morpholo-
gy offers a unified and powerful approach to numerous image processing
problems. Sets in mathematical morphology represent objects in an image.
For example, the set of all white pixels in a binary image is a complete mor-
phological description of the image. In binary images, the sets in question are
members of the 2-D integer space (see Section 2.4.2), where each element
of a set is a tuple (2-D vector) whose coordinates are the coordinates
of a white (or black, depending on convention) pixel in the image. Gray-
scale digital images of the form discussed in the previous chapters can be
represented as sets whose components are in In this case, two compo-
nents of each element of the set refer to the coordinates of a pixel, and the
third corresponds to its discrete intensity value. Sets in higher dimensional
spaces can contain other image attributes, such as color and time varying
components.

In addition to the basic set definitions in Section 2.6.4, the concepts of set
reflection and translation are used extensively in morphology.The reflection of
a set denoted is defined as

(9.1-1)

If is the set of pixels (2-D points) representing an object in an image, then is
simply the set of points in whose coordinates have been replaced by

Figures 9.1(a) and (b) show a simple set and its reflection.†(-x, -y).
(x, y)B

BNB

BN = 5w ƒ w = -b, for b H B6
BN ,B,

Z3.

(x, y)
Z2

The set reflection opera-
tion is analogous to the
flipping (rotating) opera-
tion performed in spatial
convolution (Section
3.4.2).

B

(B)z

z1

z2B̂

FIGURE 9.1
(a) A set, (b) its
reflection, and 
(c) its translation
by z.

a b c
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The translation of a set by point denoted is defined as

(9.1-2)

If is the set of pixels representing an object in an image, then is the
set of points in whose coordinates have been replaced by

Figure 9.1(c) illustrates this concept using the set from
Fig. 9.1(a).

Set reflection and translation are employed extensively in morphology to
formulate operations based on so-called structuring elements (SEs): small
sets or subimages used to probe an image under study for properties of in-
terest. The first row of Fig. 9.2 shows several examples of structuring ele-
ments where each shaded square denotes a member of the SE. When it does
not matter whether a location in a given structuring element is or is not a
member of the SE set, that location is marked with an to denote a “don’t
care” condition, as defined later in Section 9.5.4. In addition to a definition
of which elements are members of the SE, the origin of a structuring element
also must be specified. The origins of the various SEs in Fig. 9.2 are indicated
by a black dot (although placing the center of an SE at its center of gravity is
common, the choice of origin is problem dependent in general). When the
SE is symmetric and no dot is shown, the assumption is that the origin is at
the center of symmetry.

When working with images, we require that structuring elements be rec-
tangular arrays. This is accomplished by appending the smallest possible
number of background elements (shown nonshaded in Fig. 9.2) necessary to
form a rectangular array. The first and last SEs in the second row of Fig. 9.2
illustrate the procedure. The other SEs in that row already are in rectangu-
lar form.

As an introduction to how structuring elements are used in morphology,
consider Fig. 9.3. Figures 9.3(a) and (b) show a simple set and a structuring el-
ement. As mentioned in the previous paragraph, a computer implementation
requires that set be converted also to a rectangular array by adding back-
ground elements. The background border is made large enough to accommo-
date the entire structuring element when its origin is on the border of the

A

“*”

B(x + z1, y + z2).
(x, y)B

(B)zB

(B)z = 5c ƒ c = b + z, for b H B6
(B)z,z = (z1, z2),B

FIGURE 9.2 First
row: Examples of
structuring
elements. Second
row: Structuring
elements
converted to
rectangular
arrays. The dots
denote the centers
of the SEs.
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A

B

FIGURE 9.3 (a) A set (each shaded square is a member of the set). (b) A structuring
element. (c) The set padded with background elements to form a rectangular array and
provide a background border. (d) Structuring element as a rectangular array. (e) Set
processed by the structuring element.

original set (this is analogous to padding for spatial correlation and convolu-
tion, as discussed in Section 3.4.2). In this case, the structuring element is of
size with the origin in the center, so a one-element border that encom-
passes the entire set is sufficient, as Fig. 9.3(c) shows. As in Fig. 9.2, the struc-
turing element is filled with the smallest possible number of background
elements necessary to make it into a rectangular array [Fig. 9.3(d)].

Suppose that we define an operation on set using structuring element 
as follows: Create a new set by running over so that the origin of visits
every element of At each location of the origin of if is completely con-
tained in mark that location as a member of the new set (shown shaded);
else mark it as not being a member of the new set (shown not shaded).
Figure 9.3(e) shows the result of this operation.We see that, when the origin of

is on a border element of part of ceases to be contained in thus elim-
inating the location on which is centered as a possible member for the new
set.The net result is that the boundary of the set is eroded, as Fig. 9.3(e) shows.
When we use terminology such as “the structuring element is contained in the
set,” we mean specifically that the elements of and fully overlap. In other
words, although we showed and as arrays containing both shaded and
nonshaded elements, only the shaded elements of both sets are considered in
determining whether or not is contained in These concepts form the basis
of the material in the next section, so it is important that you understand the
ideas in Fig. 9.3 fully before proceeding.

9.2 Erosion and Dilation

We begin the discussion of morphology by studying two operations: erosion
and dilation. These operations are fundamental to morphological processing.
In fact, many of the morphological algorithms discussed in this chapter are
based on these two primitive operations.

A.B

BA
BA

B
A,BA,B

A,
BB,A.

BAB
B,A

3 * 3

In future illustrations, we
add enough background
points to form rectangular
arrays, but let the padding
be implicit when the
meaning is clear in order
to simplify the figures.

a b
c d e
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9.2.1 Erosion
With and as sets in the erosion of by denoted is defined as

(9.2-1)

In words, this equation indicates that the erosion of by is the set of all
points such that translated by is contained in In the following discus-
sion, set is assumed to be a structuring element. Equation (9.2-1) is the
mathematical formulation of the example in Fig. 9.3(e), discussed at the end of
the last section. Because the statement that has to be contained in is
equivalent to not sharing any common elements with the background, we
can express erosion in the following equivalent form:

(9.2-2)

where, as defined in Section 2.6.4, is the complement of and is the
empty set.

Figure 9.4 shows an example of erosion. The elements of and are
shown shaded and the background is white. The solid boundary in Fig. 9.4(c)
is the limit beyond which further displacements of the origin of would
cause the structuring element to cease being completely contained in 
Thus, the locus of points (locations of the origin of ) within (and includ-
ing) this boundary, constitutes the erosion of by We show the erosion
shaded in Fig. 9.4(c). Keep in mind that that erosion is simply the set of

B.A
B

A.
B

BA

�AAc

A | B = 5z ƒ (B)z ¨ Ac = �6

B
AB

B
A.z,B,z

BA

A | B = 5z ƒ (B)z 8 A6
A | B,B,AZ2,BA

d/4

d

d

d/8

A � B

A � B

d/8 3d/4

d/4

B

A

d/8

d/2

d/2

d/8
3d/4B

d/4

d

FIGURE 9.4 (a) Set (b) Square structuring element, (c) Erosion of by shown
shaded. (d) Elongated structuring element. (e) Erosion of by using this element.
The dotted border in (c) and (e) is the boundary of set shown only for reference.A,

BA
B,AB.A.
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d
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FIGURE 9.5 Using
erosion to remove
image compo-
nents. (a) A

binary
image of a wire-
bond mask.
(b)–(d) Image
eroded using
square structuring
elements of sizes

and ,
respectively. The
elements of the
SEs were all 1s.

45 * 45
11 * 11, 15 * 15,

486 * 486

values of that satisfy Eq. (9.2-1) or (9.2-2). The boundary of set is
shown dashed in Figs. 9.4(c) and (e) only as a reference; it is not part of the
erosion operation. Figure 9.4(d) shows an elongated structuring element,
and Fig. 9.4(e) shows the erosion of by this element. Note that the origi-
nal set was eroded to a line.

Equations (9.2-1) and (9.2-2) are not the only definitions of erosion (see
Problems 9.9 and 9.10 for two additional, equivalent definitions.) However,
these equations have the distinct advantage over other formulations in that
they are more intuitive when the structuring element is viewed as a spatial
mask (see Section 3.4.1).

B

A

Az

EXAMPLE 9.1:
Using erosion to
remove image
components.
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■ Suppose that we wish to remove the lines connecting the center region to
the border pads in Fig. 9.5(a). Eroding the image with a square structuring
element of size whose components are all 1s removed most of the
lines, as Fig. 9.5(b) shows. The reason the two vertical lines in the center were
thinned but not removed completely is that their width is greater than 11
pixels. Changing the SE size to and eroding the original image again
did remove all the connecting lines, as Fig. 9.5(c) shows (an alternate ap-
proach would have been to erode the image in Fig. 9.5(b) again using the
same SE). Increasing the size of the structuring element even more
would eliminate larger components. For example, the border pads can be re-
moved with a structuring element of size as Fig. 9.5(d) shows.45 * 45,

11 * 11

15 * 15

11 * 11

a b
c d
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We see from this example that erosion shrinks or thins objects in a bina-
ry image. In fact, we can view erosion as a morphological filtering operation
in which image details smaller than the structuring element are filtered (re-
moved) from the image. In Fig. 9.5, erosion performed the function of a
“line filter.” We return to the concept of a morphological filter in Sections
9.3 and 9.6.3. ■

9.2.2 Dilation
With and as sets in the dilation of by denoted is defined as

(9.2-3)

This equation is based on reflecting about its origin, and shifting this reflection
by (see Fig. 9.1). The dilation of by then is the set of all displacements,

such that and overlap by at least one element. Based on this inter-
pretation, Eq. (9.2-3) can be written equivalently as

(9.2-4)

As before, we assume that is a structuring element and is the set (image
objects) to be dilated.

Equations (9.2-3) and (9.2-4) are not the only definitions of dilation cur-
rently in use (see Problems 9.11 and 9.12 for two different, yet equivalent,
definitions). However, the preceding definitions have a distinct advantage
over other formulations in that they are more intuitive when the structuring
element is viewed as a convolution mask. The basic process of flipping
(rotating) about its origin and then successively displacing it so that it
slides over set (image) is analogous to spatial convolution, as introduced
in Section 3.4.2. Keep in mind, however, that dilation is based on set opera-
tions and therefore is a nonlinear operation, whereas convolution is a linear
operation.

Unlike erosion, which is a shrinking or thinning operation, dilation
“grows” or “thickens” objects in a binary image. The specific manner and ex-
tent of this thickening is controlled by the shape of the structuring element
used. Figure 9.6(a) shows the same set used in Fig. 9.4, and Fig. 9.6(b) shows a
structuring element (in this case because the SE is symmetric about its
origin). The dashed line in Fig. 9.6(c) shows the original set for reference, and
the solid line shows the limit beyond which any further displacements of the
origin of by would cause the intersection of and to be empty. There-
fore, all points on and inside this boundary constitute the dilation of by 
Figure 9.6(d) shows a structuring element designed to achieve more dilation
vertically than horizontally, and Fig. 9.6(e) shows the dilation achieved with
this element.

B.A
ABNzBN
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0 1 0
1 1 1
0 1 0

FIGURE 9.7
(a) Sample text of
poor resolution
with broken
characters (see
magnified view).
(b) Structuring
element.
(c) Dilation of (a)
by (b). Broken
segments were
joined.
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FIGURE 9.6
(a) Set 
(b) Square
structuring ele-
ment (the dot de-
notes the origin).
(c) Dilation of 
by shown
shaded.
(d) Elongated
structuring ele-
ment. (e) Dilation
of using this
element. The
dotted border in
(c) and (e) is the
boundary of set 
shown only for
reference

A,

A

B,
A

A.

■ One of the simplest applications of dilation is for bridging gaps. Figure 9.7(a)
shows the same image with broken characters that we studied in Fig. 4.49 in
connection with lowpass filtering. The maximum length of the breaks is
known to be two pixels. Figure 9.7(b) shows a structuring element that can be
used for repairing the gaps (note that instead of shading, we used 1s to denote
the elements of the SE and 0s for the background; this is because the SE is
now being treated as a subimage and not as a graphic). Figure 9.7(c) shows
the result of dilating the original image with this structuring element. The
gaps were bridged. One immediate advantage of the morphological approach
over the lowpass filtering method we used to bridge the gaps in Fig. 4.49 is

EXAMPLE 9.2:
An illustration of
dilation.

a b
d

c
e

a
b

c
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that the morphological method resulted directly in a binary image. Lowpass
filtering, on the other hand, started with a binary image and produced a gray-
scale image, which would require a pass with a thresholding function to con-
vert it back to binary form. ■

9.2.3 Duality
Erosion and dilation are duals of each other with respect to set complementa-
tion and reflection. That is,

(9.2-5)

and

(9.2-6)

Equation (9.2-5) indicates that erosion of by is the complement of the di-
lation of by and vice versa. The duality property is useful particularly
when the structuring element is symmetric with respect to its origin (as often is
the case), so that Then, we can obtain the erosion of an image by 
simply by dilating its background (i.e., dilating ) with the same structuring
element and complementing the result. Similar comments apply to Eq. (9.2-6).

We proceed to prove formally the validity of Eq. (9.2-5) in order to illus-
trate a typical approach for establishing the validity of morphological expres-
sions. Starting with the definition of erosion, it follows that

If set is contained in then in which case the preceding
expression becomes

But the complement of the set of z’s that satisfy is the set of z’s
such that Therefore,

where the last step follows from Eq. (9.2-3). This concludes the proof. A simi-
lar line of reasoning can be used to prove Eq. (9.2-6) (see Problem 9.13).

9.3 Opening and Closing

As you have seen, dilation expands the components of an image and erosion
shrinks them. In this section we discuss two other important morphological
operations: opening and closing. Opening generally smoothes the contour of
an object, breaks narrow isthmuses, and eliminates thin protrusions. Closing
also tends to smooth sections of contours but, as opposed to opening, it gener-
ally fuses narrow breaks and long thin gulfs, eliminates small holes, and fills
gaps in the contour.

= Ac { BN

 (A | B)c = Ez ƒ (B)z ¨ Ac Z �F
(B)z ¨ Ac Z �.
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Translates of B in A

A � B � �{(B)z|(B)z � A}

B

A

FIGURE 9.8 (a) Structuring element “rolling” along the inner boundary of (the dot
indicates the origin of ). (b) Structuring element. (c) The heavy line is the outer
boundary of the opening. (d) Complete opening (shaded). We did not shade in (a)
for clarity.

A
B

AB

The opening of set by structuring element denoted is de-
fined as

(9.3-1)

Thus, the opening by is the erosion of by followed by a dilation of
the result by 

Similarly, the closing of set by structuring element denoted is
defined as

(9.3-2)

which says that the closing of by is simply the dilation of by followed
by the erosion of the result by 

The opening operation has a simple geometric interpretation (Fig. 9.8).
Suppose that we view the structuring element as a (flat) “rolling ball.” The
boundary of is then established by the points in that reach the
farthest into the boundary of as is rolled around the inside of this bound-
ary. This geometric fitting property of the opening operation leads to a set-
theoretic formulation, which states that the opening of by is obtained by
taking the union of all translates of that fit into That is, opening can be ex-
pressed as a fitting process such that

(9.3-3)

where denotes the union of all the sets inside the braces.
Closing has a similar geometric interpretation, except that now we roll on

the outside of the boundary (Fig. 9.9).As discussed below, opening and closing
are duals of each other, so having to roll the ball on the outside is not unex-
pected. Geometrically, a point is an element of if and only if

for any translate of that contains Figure 9.9 illustrates
the basic geometrical properties of closing.
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A

A � B

A � B

A � B � (A � B) � B

A �� B � (A � B) � B

FIGURE 9.10
Morphological
opening and
closing. The
structuring
element is the
small circle shown
in various
positions in 
(b). The SE was
not shaded here
for clarity. The
dark dot is the
center of the
structuring
element.

EXAMPLE 9.3:
A simple
illustration of
morphological
opening and
closing.

■ Figure 9.10 further illustrates the opening and closing operations. Figure
9.10(a) shows a set and Fig. 9.10(b) shows various positions of a disk struc-
turing element during the erosion process. When completed, this process re-
sulted in the disjoint figure in Fig. 9.10(c). Note the elimination of the bridge
between the two main sections. Its width was thin in relation to the diameter of

A,

A � B

B

A

FIGURE 9.9 (a) Structuring element “rolling” on the outer boundary of set (b) The
heavy line is the outer boundary of the closing. (c) Complete closing (shaded). We did
not shade in (a) for clarity.A

A.B

a b c

a
b
d

c
e

f g
h i
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the structuring element; that is, the structuring element could not be complete-
ly contained in this part of the set, thus violating the conditions of Eq. (9.2-1).
The same was true of the two rightmost members of the object. Protruding el-
ements where the disk did not fit were eliminated. Figure 9.10(d) shows the
process of dilating the eroded set, and Fig. 9.10(e) shows the final result of
opening. Note that outward pointing corners were rounded, whereas inward
pointing corners were not affected.

Similarly, Figs. 9.10(f) through (i) show the results of closing with the
same structuring element. We note that the inward pointing corners were
rounded, whereas the outward pointing corners remained unchanged. The
leftmost intrusion on the boundary of was reduced in size significantly, be-
cause the disk did not fit there. Note also the smoothing that resulted in parts
of the object from both opening and closing the set with a circular structur-
ing element. ■

As in the case with dilation and erosion, opening and closing are duals of
each other with respect to set complementation and reflection. That is,

(9.3-4)

and

(9.3-5)

We leave the proof of this result as an exercise (Problem 9.14).
The opening operation satisfies the following properties:

(a) is a subset (subimage) of 
(b) If is a subset of then is a subset of 
(c)

Similarly, the closing operation satisfies the following properties:

(a) is a subset (subimage) of 
(b) If is a subset of then is a subset of 
(c)

Note from condition (c) in both cases that multiple openings or closings of a
set have no effect after the operator has been applied once.

(A • B) • B = A • B.
D • B.C • BD,C

A • B.A

(A � B) � B = A � B.
D � B.C � BD,C

A.A � B

(A � B)c = (Ac • BN )

(A • B)c = (Ac � BN )

A

A

A

EXAMPLE 9.4:
Use of opening
and closing for
morphological
filtering.

■ Morphological operations can be used to construct filters similar in concept
to the spatial filters discussed in Chapter 3. The binary image in Fig. 9.11(a)
shows a section of a fingerprint corrupted by noise. Here the noise manifests
itself as random light elements on a dark background and as dark elements on
the light components of the fingerprint. The objective is to eliminate the noise
and its effects on the print while distorting it as little as possible. A morpho-
logical filter consisting of opening followed by closing can be used to accom-
plish this objective.

Figure 9.11(b) shows the structuring element used. The rest of Fig. 9.11
shows a step-by-step sequence of the filtering operation. Figure 9.11(c) is the
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[(A � B) � B] � B � (A � B) � B(A � B) � B

(A � B) � B � A � B

A � B 1 1 1
1 1 1
1 1 1

A B

FIGURE 9.11
(a) Noisy image.
(b) Structuring
element.
(c) Eroded image.
(d) Opening of 
(e) Dilation of the
opening.
(f) Closing of the
opening.
(Original image
courtesy of the
National Institute
of Standards and
Technology.)

A.

result of eroding with the structuring element. The background noise was
completely eliminated in the erosion stage of opening because in this case all
noise components are smaller than the structuring element. The size of the
noise elements (dark spots) contained within the fingerprint actually increased
in size. The reason is that these elements are inner boundaries that increase in
size as the object is eroded. This enlargement is countered by performing dila-
tion on Fig. 9.11(c). Figure 9.11(d) shows the result.The noise components con-
tained in the fingerprint were reduced in size or deleted completely.

The two operations just described constitute the opening of by We note
in Fig. 9.11(d) that the net effect of opening was to eliminate virtually all noise
components in both the background and the fingerprint itself. However, new
gaps between the fingerprint ridges were created. To counter this undesirable
effect, we perform a dilation on the opening, as shown in Fig. 9.11(e). Most of
the breaks were restored, but the ridges were thickened, a condition that can be
remedied by erosion. The result, shown in Fig. 9.11(f), constitutes the closing of
the opening of Fig. 9.11(d).This final result is remarkably clean of noise specks,
but it has the disadvantage that some of the print ridges were not fully repaired,
and thus contain breaks. This is not totally unexpected, because no conditions
were built into the procedure for maintaining connectivity (we discuss this issue
again in Example 9.8 and demonstrate ways to address it in Section 11.1.7). ■

B.A

A

a
d

e

b
c

f
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Ac

C

D

E

A � C � D � E

(A � D)

W (W � D)

Origin

Ac � (W � D)

Ac � (W � D)

(A � D) � (Ac � [W � D])

FIGURE 9.12
(a) Set (b) A
window, and
the local back-
ground of with
respect to

(c) Complement
of (d) Erosion
of by 
(e) Erosion of 
by
(f) Intersection of
(d) and (e), show-
ing the location of
the origin of as
desired. The dots
indicate the
origins of 
and E .

C , D ,

D,

(W - D).
Ac

D.A
A.

W, (W - D).

D

W,
A.

9.4 The Hit-or-Miss Transformation

The morphological hit-or-miss transform is a basic tool for shape detection.
We introduce this concept with the aid of Fig. 9.12, which shows a set con-
sisting of three shapes (subsets), denoted and The shading in Figs. 9.12(a)
through (c) indicates the original sets, whereas the shading in Figs. 9.12(d) and
(e) indicates the result of morphological operations. The objective is to find
the location of one of the shapes, say, D.

E.D,C,
A

a
c
e

b
d

f
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Let the origin of each shape be located at its center of gravity. Let be en-
closed by a small window, The local background of with respect to is
defined as the set difference as shown in Fig. 9.12(b). Figure 9.12(c)
shows the complement of which is needed later. Figure 9.12(d) shows the
erosion of by (the dashed lines are included for reference). Recall that
the erosion of by is the set of locations of the origin of such that is
completely contained in Interpreted another way, may be viewed
geometrically as the set of all locations of the origin of at which found a
match (hit) in Keep in mind that in Fig. 9.12 consists only of the three
disjoint sets and 

Figure 9.12(e) shows the erosion of the complement of by the local back-
ground set The outer shaded region in Fig. 9.12(e) is part of the ero-
sion. We note from Figs. 9.12(d) and (e) that the set of locations for which 
exactly fits inside is the intersection of the erosion of by and the erosion
of by as shown in Fig. 9.12(f). This intersection is precisely the lo-
cation sought. In other words, if denotes the set composed of and its back-
ground, the match (or set of matches) of in denoted is

(9.4-1)

We can generalize the notation somewhat by letting where
is the set formed from elements of associated with an object and is the

set of elements of associated with the corresponding background. From the
preceding discussion, and With this notation, Eq.
(9.4-1) becomes

(9.4-2)

Thus, set contains all the (origin) points at which, simultaneously,
found a match (“hit”) in and found a match in By using the definition
of set differences given in Eq. (2.6-19) and the dual relationship between ero-
sion and dilation given in Eq. (9.2-5), we can write Eq. (9.4-2) as

(9.4-3)

However, Eq. (9.4-2) is considerably more intuitive.We refer to any of the pre-
ceding three equations as the morphological hit-or-miss transform.

The reason for using a structuring element associated with objects and
an element associated with the background is based on an assumed defini-
tion that two or more objects are distinct only if they form disjoint (discon-
nected) sets. This is guaranteed by requiring that each object have at least a
one-pixel-thick background around it. In some applications, we may be inter-
ested in detecting certain patterns (combinations) of 1s and 0s within a set, in
which case a background is not required. In such instances, the hit-or-miss
transform reduces to simple erosion. As indicated previously, erosion is still a
set of matches, but without the additional requirement of a background match
for detecting individual objects. This simplified pattern detection scheme is
used in some of the algorithms developed in the following section.

B2

B1

A ~* B = (A | B1) - (A { BN 2)

Ac.B2A
B1A ~* B

A ~* B = (A | B1) ¨ (Ac | B2)

B2 = (W - D).B1 = D
B

B2BB1

B = (B1, B2),

A ~* B = (A | D) ¨ CAc | (W - D) D
A ~* B,A,B

DB
(W - D)Ac

DAA
D

(W - D).
A

E.D,C,
AA.

DD
A | DA.

DD,DA
DA

A,
(W - D),

WDW.
D
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A � B

A

b(A)

B

FIGURE 9.13 (a) Set (b) Structuring element (c) eroded by (d) Boundary,
given by the set difference between and its erosion.A

B.AB.A.

9.5 Some Basic Morphological Algorithms

With the preceding discussion as foundation, we are now ready to consider
some practical uses of morphology. When dealing with binary images, one of
the principal applications of morphology is in extracting image components
that are useful in the representation and description of shape. In particular,
we consider morphological algorithms for extracting boundaries, connected
components, the convex hull, and the skeleton of a region. We also develop
several methods (for region filling, thinning, thickening, and pruning) that
are used frequently in conjunction with these algorithms as pre- or post-
processing steps. We make extensive use in this section of “mini-images,”
designed to clarify the mechanics of each morphological process as we in-
troduce it. These images are shown graphically with 1s shaded and 0s in
white.

9.5.1 Boundary Extraction
The boundary of a set denoted by can be obtained by first eroding

by and then performing the set difference between and its erosion.
That is,

(9.5-1)

where is a suitable structuring element.
Figure 9.13 illustrates the mechanics of boundary extraction. It shows a

simple binary object, a structuring element and the result of using Eq.
(9.5-1). Although the structuring element in Fig. 9.13(b) is among the most
frequently used, it is by no means unique. For example, using a struc-
turing element of 1s would result in a boundary between 2 and 3 pixels
thick.

5 * 5

B,

B

b(A) = A - (A | B)

ABA
b(A),A,

a b
c d

From this point on, we do
not show border padding
explicitly.
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FIGURE 9.14
(a) A simple
binary image, with
1s represented in
white. (b) Result
of using 
Eq. (9.5-1) with
the structuring
element in 
Fig. 9.13(b).

EXAMPLE 9.5:
Boundary
extraction by
morphological
processing.

■ Figure 9.14 further illustrates the use of Eq. (9.5-1) with a structuring
element of 1s. As for all binary images in this chapter, binary 1s are shown in
white and 0s in black, so the elements of the structuring element, which are 1s,
also are treated as white. Because of the size of the structuring element used,
the boundary in Fig. 9.14(b) is one pixel thick. ■

9.5.2 Hole Filling
A hole may be defined as a background region surrounded by a connected
border of foreground pixels. In this section, we develop an algorithm based on
set dilation, complementation, and intersection for filling holes in an image.
Let denote a set whose elements are 8-connected boundaries, each bound-
ary enclosing a background region (i.e., a hole). Given a point in each hole, the
objective is to fill all the holes with 1s.

We begin by forming an array, of 0s (the same size as the array contain-
ing ), except at the locations in corresponding to the given point in each
hole, which we set to 1.Then, the following procedure fills all the holes with 1s:

(9.5-2)

where is the symmetric structuring element in Fig. 9.15(c).The algorithm termi-
nates at iteration step if The set then contains all the filled
holes.The set union of and contains all the filled holes and their boundaries.

The dilation in Eq. (9.5-2) would fill the entire area if left unchecked. However,
the intersection at each step with limits the result to inside the region of inter-
est.This is our first example of how a morphological process can be conditioned to
meet a desired property. In the current application, it is appropriately called
conditional dilation. The rest of Fig. 9.15 illustrates further the mechanics of
Eq. (9.5-2).Although this example only has one hole, the concept clearly applies to
any finite number of holes, assuming that a point inside each hole region is given.

Ac

AXk

XkXk = Xk - 1.k
B

Xk = (Xk - 1 { B) ¨ Ac k = 1, 2, 3, Á

X0A
X0,

A

3 * 3

a b
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X0 X1 X2

X6 X8 X8 � A

A Ac B

FIGURE 9.15 Hole
filling. (a) Set 
(shown shaded).
(b) Complement
of
(c) Structuring
element
(d) Initial point
inside the
boundary.
(e)–(h) Various
steps of 
Eq. (9.5-2).
(i) Final result
[union of (a) 
and (h)].

B.

A.

A

FIGURE 9.16 (a) Binary image (the white dot inside one of the regions is the starting
point for the hole-filling algorithm). (b) Result of filling that region. (c) Result of filling
all holes.

EXAMPLE 9.6:
Morphological
hole filling.

■ Figure 9.16(a) shows an image composed of white circles with black inner
spots. An image such as this might result from thresholding into two levels a
scene containing polished spheres (e.g., ball bearings). The dark spots inside
the spheres could be the result of reflections. The objective is to eliminate the
reflections by hole filling. Figure 9.16(a) shows one point selected inside one of
the spheres, and Fig. 9.16(b) shows the result of filling that component. Finally,

a b c
d e f
g h i

a b c
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B

A X0 X1

X3 X6X2

FIGURE 9.17 Extracting connected components. (a) Structuring element. (b) Array
containing a set with one connected component. (c) Initial array containing a 1 in the
region of the connected component. (d)–(g) Various steps in the iteration of Eq. (9.5-3).

Fig. 9.16(c) shows the result of filling all the spheres. Because it must be known
whether black points are background points or sphere inner points, fully au-
tomating this procedure requires that additional “intelligence” be built into
the algorithm. We give a fully automatic approach in Section 9.5.9 based on
morphological reconstruction. (See also Problem 9.23.) ■

9.5.3 Extraction of Connected Components
The concepts of connectivity and connected components were introduced in
Section 2.5.2. Extraction of connected components from a binary image is cen-
tral to many automated image analysis applications. Let be a set containing
one or more connected components, and form an array (of the same size as
the array containing ) whose elements are 0s (background values), except at
each location known to correspond to a point in each connected component in

which we set to 1 (foreground value). The objective is to start with and
find all the connected components. The following iterative procedure accom-
plishes this objective:

(9.5-3)

where is a suitable structuring element (as in Fig. 9.17). The procedure ter-
minates when with containing all the connected componentsXkXk = Xk - 1,

B

Xk = (Xk - 1 { B) ¨ A k = 1, 2, 3, Á

X0A,

A
X0

A

b
a

dc
e gf



646 Chapter 9 ■ Morphological Image Processing

Connected
component

No. of pixels in
connected comp

01
02
03
04
05
06
07
08
09
10
11
12
13
14
15

11
9
9

39
133

1
1

743
7

11
11
9
9

674
85

FIGURE 9.18
(a) X-ray image
of chicken filet
with bone frag-
ments.
(b) Thresholded
image. (c) Image
eroded with a

structuring
element of 1s.
(d) Number of
pixels in the
connected compo-
nents of (c).
(Image courtesy of
NTB
Elektronische
Geraete GmbH,
Diepholz,
Germany,
www.ntbxray.com.)

5 * 5

of the input image. Note the similarity in Eqs. (9.5-3) and (9.5-2), the only dif-
ference being the use of as opposed to This is not surprising, because
here we are looking for foreground points, while the objective in Section 9.5.2
was to find background points.

Figure 9.17 illustrates the mechanics of Eq. (9.5-3), with convergence being
achieved for Note that the shape of the structuring element used is
based on 8-connectivity between pixels. If we had used the SE in Fig. 9.15,
which is based on 4-connectivity, the leftmost element of the connected com-
ponent toward the bottom of the image would not have been detected because
it is 8-connected to the rest of the figure. As in the hole-filling algorithm,
Eq. (9.5-3) is applicable to any finite number of connected components con-
tained in assuming that a point is known in each.A,

k = 6.

Ac.A

EXAMPLE 9.7:
Using connected
components to
detect foreign
objects in
packaged food.

■ Connected components are used frequently for automated inspection.
Figure 9.18(a) shows an X-ray image of a chicken breast that contains bone
fragments. It is of considerable interest to be able to detect such objects in
processed food before packaging and/or shipping. In this particular case, the
density of the bones is such that their nominal intensity values are different
from the background.This makes extraction of the bones from the background

a
b

dc

See Problem 9.24 for an
algorithm that does not
require that a point in
each connected compo-
nent be known a priori.
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a simple matter by using a single threshold (thresholding was introduced in
Section 3.1 and is discussed in more detail in Section 10.3). The result is the bi-
nary image in Fig. 9.18(b).

The most significant feature in this figure is the fact that the points that re-
main are clustered into objects (bones), rather than being isolated, irrelevant
points.We can make sure that only objects of “significant” size remain by erod-
ing the thresholded image. In this example, we define as significant any object
that remains after erosion with a structuring element of 1s. The result of
erosion is shown in Fig. 9.18(c). The next step is to analyze the size of the ob-
jects that remain. We label (identify) these objects by extracting the connected
components in the image.The table in Fig. 9.18(d) lists the results of the extrac-
tion. There are a total of 15 connected components, with four of them being
dominant in size. This is enough to determine that significant undesirable ob-
jects are contained in the original image. If needed, further characterization
(such as shape) is possible using the techniques discussed in Chapter 11. ■

9.5.4 Convex Hull
A set is said to be convex if the straight line segment joining any two points
in lies entirely within The convex hull of an arbitrary set is the small-
est convex set containing The set difference is called the convex de-
ficiency of As discussed in more detail in Sections 11.1.6 and 11.3.2, the
convex hull and convex deficiency are useful for object description. Here, we
present a simple morphological algorithm for obtaining the convex hull,
of a set 

Let represent the four structuring elements in Fig. 9.19(a).
The procedure consists of implementing the equation:

(9.5-4)

with When the procedure converges (i.e., when ), we let
Then the convex hull of is

(9.5-5)

In other words, the method consists of iteratively applying the hit-or-miss
transform to with when no further changes occur, we perform the union
with and call the result The procedure is repeated with (applied to )
until no further changes occur, and so on. The union of the four resulting Ds
constitutes the convex hull of Note that we are using the simplified imple-
mentation of the hit-or-miss transform in which no background match is re-
quired, as discussed at the end of Section 9.4.

Figure 9.19 illustrates the procedure given in Eqs. (9.5-4) and (9.5-5).
Figure 9.19(a) shows the structuring elements used to extract the convex hull.
The origin of each element is at its center. The * entries indicate “don’t care”
conditions.This means that a structuring element is said to have found a match

A.

AB2D1.A
B1;A

C(A) = d
4

i = 1
Di

ADi = Xi
k.

Xi
k = Xi

k - 1Xi
0 = A.

Xi
k = (Xk - 1 ~* Bi) ´ A i = 1, 2, 3, 4 and k = 1, 2, 3, Á

Bi, i = 1, 2, 3, 4,
A.

C(A),

S.
H - SS.

SHA.A
A

5 * 5
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X0
1 � A X4

1

X8
3 X2

4

X2
2

C(A)

B1

**

*

**

B2

*
**

*
*

B3

**

*

**

B4

*
* *

*
*

B1

B2

B3

B4

FIGURE 9.19
(a) Structuring
elements. (b) Set

(c)–(f) Results
of convergence
with the
structuring
elements shown
in (a). (g) Convex
hull. (h) Convex
hull showing the
contribution of
each structuring
element.

A.

in if the region of under the structuring element mask at that loca-
tion matches the pattern of the mask. For a particular mask, a pattern match
occurs when the center of the region in is 0, and the three pixels under
the shaded mask elements are 1.The values of the other pixels in the re-
gion do not matter. Also, with respect to the notation in Fig. 9.19(a), is a
clockwise rotation of by 90°.

Figure 9.19(b) shows a set for which the convex hull is sought. Starting
with resulted in the set in Fig. 9.19(c) after four iterations of Eq. (9.5-4).
Then, letting and again using Eq. (9.5-4) resulted in the set in 
Fig. 9.19(d) (convergence was achieved in only two steps in this case).The next
two results were obtained in the same way. Finally, forming the union of the
sets in Figs. 9.19(c), (d), (e), and (f) resulted in the convex hull shown in
Fig. 9.19(g). The contribution of each structuring element is highlighted in the
composite set shown in Fig. 9.19(h).

One obvious shortcoming of the procedure just outlined is that the con-
vex hull can grow beyond the minimum dimensions required to guarantee

X2
0 = A

X1
0 = A

A
Bi - 1

Bi
3 * 3

A3 * 3

A3 * 3A

a
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e f g

h
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FIGURE 9.20
Result of limiting
growth of the
convex hull
algorithm to the
maximum
dimensions of the
original set of
points along the
vertical and
horizontal
directions.

convexity. One simple approach to reduce this effect is to limit growth so
that it does not extend past the vertical and horizontal dimensions of the
original set of points. Imposing this limitation on the example in Fig. 9.19 re-
sulted in the image shown in Fig. 9.20. Boundaries of greater complexity can
be used to limit growth even further in images with more detail. For exam-
ple, we could use the maximum dimensions of the original set of points along
the vertical, horizontal, and diagonal directions. The price paid for refine-
ments such as this is additional complexity and increased computational re-
quirements of the algorithm.

9.5.5 Thinning
The thinning of a set by a structuring element denoted can be de-
fined in terms of the hit-or-miss transform:

(9.5-6)

As in the previous section, we are interested only in pattern matching with the
structuring elements, so no background operation is required in the hit-or-miss
transform. A more useful expression for thinning symmetrically is based on
a sequence of structuring elements:

(9.5-7)

where is a rotated version of Using this concept, we now define thin-
ning by a sequence of structuring elements as

(9.5-8)

The process is to thin by one pass with then thin the result with one pass
of and so on, until is thinned with one pass of The entire process is
repeated until no further changes occur. Each individual thinning pass is per-
formed using Eq. (9.5-6).

Bn.AB2,
B1,A

A z 5B6 = (( Á ((A z B1) z B2) Á ) z Bn)

Bi - 1.Bi

5B6 = 5B1, B2, B3, Á , Bn6

A

= A ¨ (A ~* B)c

A z B = A - (A ~* B)

A z B,B,A
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B1

**

B2

*

*

B3

*
*

B4

*

*

B5

* *

B6

*

*

B7

*
*

B8

*

*

Origin

A

Origin

A1 � A � B1 A2 � A1 � B2

A3 � A2 � B3

A6 � A5 � B6 A8 � A6 � B7,8 A8,4 � A8 � B1,2,3,4

A8,5 � A8,4 � B5 A8,6 � A8,5 � B6 A8,6 converted to
m-connectivity.No more changes after this. 

A4 � A3 � B4 A5 � A4 � B5

FIGURE 9.21 (a) Sequence of rotated structuring elements used for thinning. (b) Set 
(c) Result of thinning with the first element. (d)–(i) Results of thinning with the next
seven elements (there was no change between the seventh and eighth elements).
(j) Result of using the first four elements again. (l) Result after convergence. (m)
Conversion to m-connectivity.

A.

Figure 9.21(a) shows a set of structuring elements commonly used for
thinning, and Fig. 9.21(b) shows a set to be thinned by using the proce-
dure just discussed. Figure 9.21(c) shows the result of thinning after one
pass of with and Figs. 9.21(d) through (k) show the results of passes
with the other structuring elements. Convergence was achieved after the
second pass of Figure 9.21(l) shows the thinned result. Finally, Fig.
9.21(m) shows the thinned set converted to m-connectivity (see Section
2.5.2) to eliminate multiple paths.

9.5.6 Thickening
Thickening is the morphological dual of thinning and is defined by the expression

(9.5-9)A } B = A ´ (A ~* B)

B6.

B1,A

A

a
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e f g
h i j
k l m
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FIGURE 9.22 (a) Set . (b) Complement of . (c) Result of thinning the complement
of . (d) Thickened set obtained by complementing (c). (e) Final result, with no
disconnected points.

A
AA

where is a structuring element suitable for thickening. As in thinning, thick-
ening can be defined as a sequential operation:

(9.5-10)

The structuring elements used for thickening have the same form as those
shown in Fig. 9.21(a), but with all 1s and 0s interchanged. However, a separate
algorithm for thickening is seldom used in practice. Instead, the usual proce-
dure is to thin the background of the set in question and then complement the
result. In other words, to thicken a set we form thin and then
form Figure 9.22 illustrates this procedure.

Depending on the nature of this procedure can result in disconnected
points, as Fig. 9.22(d) shows. Hence thickening by this method usually is fol-
lowed by postprocessing to remove disconnected points. Note from Fig. 9.22(c)
that the thinned background forms a boundary for the thickening process.
This useful feature is not present in the direct implementation of thickening
using Eq. (9.5-10), and it is one of the principal reasons for using background
thinning to accomplish thickening.

9.5.7 Skeletons
As Fig. 9.23 shows, the notion of a skeleton, of a set is intuitively sim-
ple. We deduce from this figure that

(a) If is a point of and is the largest disk centered at and con-
tained in one cannot find a larger disk (not necessarily centered at )
containing and included in The disk is called a maximum
disk.

(b) The disk touches the boundary of at two or more different places.A(D)z

(D)zA.(D)z

zA,
z(D)zS(A)z

AS(A),

A,
Cc.

C,C = Ac,A,

A } 5B6 = (( Á ((A } B1) } B2) Á ) } Bn)

B

a b
c
e
d
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FIGURE 9.23
(a) Set 
(b) Various
positions of
maximum disks
with centers on
the skeleton of 
(c) Another
maximum disk on
a different
segment of the
skeleton of 
(d) Complete
skeleton.

A.

A.

A.

The skeleton of can be expressed in terms of erosions and openings. That is,
it can be shown (Serra [1982]) that

(9.5-11)

with

(9.5-12)

where is a structuring element, and indicates successive erosions
of

(9.5-13)

times, and is the last iterative step before erodes to an empty set. In
other words,

(9.5-14)

The formulation given in Eqs. (9.5-11) and (9.5-12) states that can be
obtained as the union of the skeleton subsets Also, it can be shown that

can be reconstructed from these subsets by using the equation

(9.5-15)

where denotes successive dilations of that is,

(9.5-16)(Sk(A) { kB) = (( Á ((Sk(A) { B) { B) { Á ) { B)

Sk(A);k(Sk(A) { kB)

A = d
K

k = 0
(Sk(A) { kB)

A
Sk(A).

S(A)

K = max5k ƒ (A | kB) Z �6
AKk

(A | kB) = (( Á ((A | B) | B) | Á ) | B)

A:
k(A | kB)B

Sk(A) = (A | kB) - (A | kB) � B

S(A) = d
K

k = 0
Sk(A)

A

a b
c d
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1

0

k

2

B

AS(A)

A � kB (A � kB) � B Sk(A) Sk(A) � kB �Sk(A) � kB
k � 0

K
�Sk(A)

k � 0

K
FIGURE 9.24
Implementation
of Eqs. (9.5-11)
through (9.5-15).
The original set is
at the top left, and
its morphological
skeleton is at the
bottom of the
fourth column.
The reconstructed
set is at the
bottom of the
sixth column.

EXAMPLE 9.8:
Computing the
skeleton of a
simple figure.

■ Figure 9.24 illustrates the concepts just discussed. The first column
shows the original set (at the top) and two erosions by the structuring ele-
ment Note that one more erosion of would yield the empty set, so

in this case. The second column shows the opening of the sets in the
first column by These results are easily explained by the fitting charac-
terization of the opening operation discussed in connection with Fig. 9.8.
The third column simply contains the set differences between the first and
second columns.

The fourth column contains two partial skeletons and the final result (at
the bottom of the column). The final skeleton not only is thicker than it
needs to be but, more important, it is not connected. This result is not unex-
pected, as nothing in the preceding formulation of the morphological skele-
ton guarantees connectivity. Morphology produces an elegant formulation in
terms of erosions and openings of the given set. However, heuristic formula-
tions such as the algorithm developed in Section 11.1.7 are needed if, as is
usually the case, the skeleton must be maximally thin, connected, and mini-
mally eroded.

B.
K = 2

AB.
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The fifth column shows and
Finally, the last column shows reconstruction of set which,

according to Eq. (9.5-15), is the union of the dilated skeleton subsets shown in the
fifth column. ■

9.5.8 Pruning
Pruning methods are an essential complement to thinning and skeletonizing
algorithms because these procedures tend to leave parasitic components that
need to be “cleaned up” by postprocessing. We begin the discussion with a
pruning problem and then develop a morphological solution based on the ma-
terial introduced in the preceding sections.Thus, we take this opportunity to il-
lustrate how to go about solving a problem by combining several of the
techniques discussed up to this point.

A common approach in the automated recognition of hand-printed charac-
ters is to analyze the shape of the skeleton of each character. These skeletons
often are characterized by “spurs” (parasitic components). Spurs are caused
during erosion by non uniformities in the strokes composing the characters.
We develop a morphological technique for handling this problem, starting
with the assumption that the length of a parasitic component does not exceed
a specified number of pixels.

Figure 9.25(a) shows the skeleton of a hand-printed “a.” The parasitic com-
ponent on the leftmost part of the character is illustrative of what we are in-
terested in removing. The solution is based on suppressing a parasitic branch
by successively eliminating its end point. Of course, this also shortens (or elim-
inates) other branches in the character but, in the absence of other structural
information, the assumption in this example is that any branch with three or
less pixels is to be eliminated. Thinning of an input set with a sequence of
structuring elements designed to detect only end points achieves the desired
result. That is, let

(9.5-17)

where denotes the structuring element sequence shown in Figs. 9.25(b)
and (c) [see Eq. (9.5-7) regarding structuring-element sequences]. The se-
quence of structuring elements consists of two different structures, each of
which is rotated 90° for a total of eight elements. The in Fig. 9.25(b) sig-
nifies a “don’t care” condition, in the sense that it does not matter whether
the pixel in that location has a value of 0 or 1. Numerous results reported in
the literature on morphology are based on the use of a single structuring ele-
ment, similar to the one in Fig. 9.25(b), but having “don’t care” conditions
along the entire first column. This is incorrect. For example, this element
would identify the point located in the eighth row, fourth column of Fig.
9.25(a) as an end point, thus eliminating it and breaking connectivity in the
stroke.

Applying Eq. (9.5-17) to three times yields the set in Fig. 9.25(d). The
next step is to “restore” the character to its original form, but with the parasitic

X1A

*

5B6
X1 = A z 5B6

A

A,(S2(A) { B) { B.
(S2(A) { 2B) =S1(A) { B,S0(A),

We may define an end
point as the center point
of a region that
satisfies any of the
arrangements in 
Figs. 9.25(b) or (c).

3 * 3
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B1, B2, B3, B4 (rotated 90�)

B5, B6, B7, B8 (rotated 90�)

*

*

FIGURE 9.25
(a) Original
image. (b) and 
(c) Structuring
elements used for
deleting end
points. (d) Result
of three cycles of
thinning. (e) End
points of (d).
(f) Dilation of end
points condi-
tioned on (a).
(g) Pruned image.

branches removed. To do so first requires forming a set containing all end
points in [Fig. 9.25(e)]:

(9.5-18)

where the are the same end-point detectors shown in Figs. 9.25(b) and (c).
The next step is dilation of the end points three times, using set as a delimiter:

(9.5-19)

where is a structuring element of 1s and the intersection with is
applied after each step. As in the case of region filling and extraction of con-
nected components, this type of conditional dilation prevents the creation
of 1-valued elements outside the region of interest, as evidenced by the re-
sult shown in Fig. 9.25(f). Finally, the union of and yields the desired
result,

(9.5-20)

in Fig. 9.25(g).
In more complex scenarios, use of Eq. (9.5-19) sometimes picks up the

“tips” of some parasitic branches. This condition can occur when the end

X4 = X1 ´ X3

X1X3

A3 * 3H

X3 = (X2 { H) ¨ A

A
Bk

X2 = d
8

k = 1
(X1 ~* Bk)

X1

X2

Equation (9.5-19) is the
basis for morphological
reconstruction by dila-
tion, as explained in the
next section.

a

d
f

b
c
e
g
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†In much of the literature on morphological reconstruction, the structuring element is tacitly assumed to
be isotropic and typically is called an elementary isotropic structuring element. In the context of this
chapter, an example of such an SE is simply a array of 1s with the origin at the center.

‡Although it is more intuitive to develop morphological-reconstruction methods using recursive formu-
lations (as we do here), their practical implementation typically is based on more computationally effi-
cient algorithms (see, for example, Vincent [1993] and Soille [2003]). All image-based examples in this
section were generated using such algorithms.

3 * 3

points of these branches are near the skeleton. Although Eq. (9.5-17) may
eliminate them, they can be picked up again during dilation because they are
valid points in Unless entire parasitic elements are picked up again (a rare
case if these elements are short with respect to valid strokes), detecting and
eliminating them is easy because they are disconnected regions.

A natural thought at this juncture is that there must be easier ways to solve
this problem. For example, we could just keep track of all deleted points and
simply reconnect the appropriate points to all end points left after application
of Eq. (9.5-17). This option is valid, but the advantage of the formulation just
presented is that the use of simple morphological constructs solved the entire
problem. In practical situations when a set of such tools is available, the ad-
vantage is that no new algorithms have to be written. We simply combine the
necessary morphological functions into a sequence of operations.

9.5.9 Morphological Reconstruction
The morphological concepts discussed thus far involve an image and a struc-
turing element. In this section, we discuss a powerful morphological transfor-
mation called morphological reconstruction that involves two images and a
structuring element. One image, the marker, contains the starting points for
the transformation. The other image, the mask, constrains the transformation.
The structuring element is used to define connectivity.†

Geodesic dilation and erosion

Central to morphological reconstruction are the concepts of geodesic dilation
and geodesic erosion. Let denote the marker image and the mask image.
It is assumed in this discussion that both are binary images and that 
The geodesic dilation of size 1 of the marker image with respect to the mask,
denoted by is defined as

(9.5-21)

where denotes the set intersection (here may be interpreted as a logical
AND because the set intersection and logical AND operations are the same
for binary sets). The geodesic dilation of size of with respect to is de-
fined as

(9.5-22)

with In this recursive expression, the set intersection in Eq. (9.5-21)
is performed at each step.‡ Note that the intersection operator guarantees that

DG
(0)(F) = F.

DG
(n)(F) = DG

(1) CDG
(n - 1)(F) D

GFn

¨¨
DG

(1)(F) = (F { B) ¨ G

DG
(1)(F),

F 8 G.
GF

A.



9.5 ■ Some Basic Morphological Algorithms 657

Marker, F

Mask, G

Marker eroded by B

B

�

Geodesic erosion, E(1)(F)
G

FIGURE 9.27
Illustration of
geodesic erosion.

mask will limit the growth (dilation) of marker Figure 9.26 shows a sim-
ple example of a geodesic dilation of size 1. The steps in the figure are a direct
implementation of Eq. (9.5-21).

Similarly, the geodesic erosion of size 1 of marker with respect to mask 
is defined as

(9.5-23)

where denotes set union (or OR operation). The geodesic erosion of size 
of with respect to is defined as

(9.5-24)

with The set union operation in Eq. (9.5-23) is performed at each
iterative step, and guarantees that geodesic erosion of an image remains
greater than or equal to its mask image. As expected from the forms in Eqs.
(9.5-21) and (9.5-23), geodesic dilation and erosion are duals with respect to
set complementation (see Problem 9.29). Figure 9.27 shows a simple example
of geodesic erosion of size 1. The steps in the figure are a direct implementa-
tion of Eq. (9.5-23).

EG
(0)(F) = F.

EG
(n)(F) = EG

(1) CEG
(n - 1)(F) D

GF
n´

EG
(1)(F) = (F | B) ´ G

GF

F.G

Marker, F

Mask, G

Marker dilated by B

B

�

Geodesic dilation, D(1)(F)
G

FIGURE 9.26
Illustration of
geodesic dilation.
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D (F) dilated by B
(3)

G

D (F) dilated by B
(1)

G
D (F) dilated by B

(2)

G
D (F)

(3)

G

D (F) �
(5)

G
R (F)D

G

D (F)
(2)

G

D (F)
(4)

G
D (F) dilated by B

(4)

G

FIGURE 9.28
Illustration of
morphological
reconstruction by
dilation.
and are 
from Fig. 9.26.

DG
(1)(F)

BG,F,

Geodesic dilation and erosion of finite images always converge after a finite
number of iterative step because propagation or shrinking of the marker
image is constrained by the mask.

Morphological reconstruction by dilation and by erosion

Based on the preceding concepts, morphological reconstruction by dilation of a
mask image from a marker image denoted is defined as the geo-
desic dilation of with respect to iterated until stability is achieved; that is,

(9.5-25)

with such that 
Figure 9.28 illustrates reconstruction by dilation. Figure 9.28(a) continues

the process begun in Fig. 9.26; that is, the next step in reconstruction after ob-
taining is to dilate this result and then AND it with the mask to yield

as Fig. 9.28(b) shows. Dilation of and masking with then
yields and so on. This procedure is repeated until stability is
reached. If we carried this example one more step, we would find that

so the morphologically reconstructed image by dilation is
given by as indicated in Eq. (9.5-25). Note that the recon-
structed image in this case is identical to the mask because contained a sin-
gle 1-valued pixel (this is analogous to convolution of an image with an
impulse, which simply copies the image at the location of the impulse, as ex-
plained in Section 3.4.2).

In a similar manner, the morphological reconstruction by erosion of a mask
image from a marker image denoted is defined as the geodesic
erosion of with respect to iterated until stability; that is,

(9.5-26)

with such that As an exercise, you should generate a
figure similar to Fig. 9.28 for morphological reconstruction by erosion.

EG
(k)(F) = EG

(k + 1)(F).k

RG
E(F) = EG

(k)(F)

G,F
RG

E(F),F,G

F
RG

D(F) = DG
(5)(F),

DG
(5)(F) = DG

(6)(F),

DG
(3)(F),

GDG
(2)(F)DG

(2)(F),
GDG

(1)(F)

DG
(k)(F) = DG

(k + 1)(F).k

RG
D(F) = DG

(k)(F)

G,F
RG

D(F),F,G
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Reconstruction by dilation and erosion are duals with respect to set com-
plementation (see Problem 9.30).

Sample applications

Morphological reconstruction has a broad spectrum of practical applications,
each determined by the selection of the marker and mask images, by the struc-
turing elements used, and by combinations of the primitive operations defined
in the preceding discussion.The following examples illustrate the usefulness of
these concepts.

Opening by reconstruction: In a morphological opening, erosion removes
small objects and the subsequent dilation attempts to restore the shape of ob-
jects that remain. However, the accuracy of this restoration is highly dependent
on the similarity of the shapes of the objects and the structuring element used.
Opening by reconstruction restores exactly the shapes of the objects that remain
after erosion.The opening by reconstruction of size of an image is defined as
the reconstruction by dilation of from the erosion of size of that is,

(9.5-27)

where indicates erosions of by as explained in Section 9.5.7.
Note that is used as the mask in this application.A similar expression can be
written for closing by reconstruction (see Table 9.1).

Figure 9.29 shows an example of opening by reconstruction. In this illus-
tration, we are interested in extracting from Fig. 9.29(a) the characters that
contain long, vertical strokes. Opening by reconstruction requires at least
one erosion, so we perform that step first. Figure 9.29(b) shows the erosion

F
B,Fn(F | nB)

OR
(n)(F) = RF

D C(F | nB) D
F;nF

Fn

FIGURE 9.29 (a) Text image of size pixels. The approximate average height
of the tall characters is 50 pixels. (b) Erosion of (a) with a structuring element of size

pixels. (c) Opening of (a) with the same structuring element, shown for
reference. (d) Result of opening by reconstruction.
51 * 1

918 * 2018

a b
c d
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of Fig. 9.29(a) with a structuring element of length proportional to the aver-
age height of the tall characters (51 pixels) and width of one pixel. For the
purpose of comparison, we computed the opening of the image using the
same structuring element. Figure 9.29(c) shows the result. Finally, Fig. 9.29(d)
is the opening by reconstruction (of size 1) of [i.e., ] given in Eq.
(9.5-27). This result shows that characters containing long vertical strokes
were restored accurately; all other characters were removed.

Filling holes: In Section 9.5.2, we developed an algorithm for filling holes
based on knowing a starting point in each hole in the image. Here, we develop
a fully automated procedure based on morphological reconstruction. Let

denote a binary image and suppose that we form a marker image that
is 0 everywhere, except at the image border, where it is set to that is,

(9.5-28)

Then

(9.5-29)

is a binary image equal to with all holes filled.
Let us consider the individual components of Eq. (9.5-29) to see how this

expression in fact leads to all holes in an image being filled. Figure 9.30(a)
shows a simple image containing one hole, and Fig. 9.30(b) shows its comple-
ment. Note that because the complement of sets all foreground (1-valued)
pixels to background (0-valued) pixels, and vice versa, this operation in effect
builds a “wall” of 0s around the hole. Because is used as an AND mask, all
we are doing here is protecting all foreground pixels (including the wall
around the hole) from changing during iteration of the procedure. Figure
9.30(c) is array formed according to Eq. (9.5-28) and Fig. 9.30(d) is dilated
with a SE whose elements are all 1s. Note that marker has a border of
1s (except at locations where is 1), so the dilation of of the marker points
starts at the border and proceeds inward. Figure 9.30(e) shows the geodesic di-
lation of using as the mask. As was just indicated, we see that all locations
in this result corresponding to foreground pixels from are 0, and that this is
true now for the hole pixels as well. Another iteration will yield the same re-
sult which, when complemented as required by Eq. (9.5-29), gives the result in
Fig. 9.30(f). As desired, the hole is now filled and the rest of image was un-
changed. The operation yields an image containing 1-valued pixels in
the locations corresponding to the holes in as Fig. 9.30(g) shows.I,

H ¨ Ic
I

I
IcF

FI
F3 * 3

FF

Ic

I
I

I

H = CRIc
D(F) D c

F(x, y) = b1 - I(x, y) if (x, y) is on the border of I
0 otherwise

1 - I;
FI(x, y)

OR
(1)(F)F

I Ic F F � B F � B � Ic H � IcH

FIGURE 9.30
Illustration of
hole filling on a
simple image.

a b c f gd e
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Figure 9.31 shows a more practical example. Figure 9.31(b) shows the com-
plement of the text image in Fig. 9.31(a), and Fig. 9.31(c) is the marker image,

generated using Eq. (9.5-28). This image has a border of 1s, except at loca-
tions corresponding to 1s in the border of the original image. Finally, Fig. 9.31(d)
shows the image with all the holes filled.

Border clearing: The extraction of objects from an image for subsequent
shape analysis is a fundamental task in automated image processing. An algo-
rithm for removing objects that touch (i.e., are connected to) the border is a
useful tool because (1) it can be used to screen images so that only complete
objects remain for further processing, or (2) it can be used as a signal that par-
tial objects are present in the field of view. As a final illustration of the con-
cepts introduced in this section, we develop a border-clearing procedure based
on morphological reconstruction. In this application, we use the original image
as the mask and the following marker image:

(9.5-30)

The border-Eclearing algorithm first computes the morphological reconstruc-
tion (which simply extracts the objects touching the border) and then
computes the difference

(9.5-31)

to obtain an image, with no objects touching the border.X,

X = I - RI
D(F)

RI
D(F)

F(x, y) = bI(x, y) if (x, y) is on the border of I
0 otherwise

F,

FIGURE 9.31
(a) Text image of
size
pixels. (b) Com-
plement of (a) for
use as a mask
image. (c) Marker
image. (d) Result
of hole-filling
using Eq. (9.5-29).

918 * 2018

a b
c d

FIGURE 9.32
Border clearing.
(a) Marker image.
(b) Image with no
objects touching
the border. The
original image is
Fig. 9.29(a).

a b
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As an example, consider the text image again. Figure 9.32(a) in the previous
page shows the reconstruction obtained using a structuring ele-
ment of all 1s (note the objects touching the boundary on the right side), and
Fig. 9.32(b) shows image computed using Eq. (9.5-31). If the task at hand
were automated character recognition, having an image in which no characters
touch the border is most useful because the problem of having to recognize
partial characters (a difficult task at best) is avoided.

9.5.10 Summary of Morphological Operations on Binary Images
Table 9.1 summarizes the morphological results developed in the preceding
sections, and Fig. 9.33 summarizes the basic types of structuring elements used
in the various morphological processes discussed thus far. The Roman numer-
als in the third column of Table 9.1 refer to the structuring elements in Fig. 9.33.

X,

3 * 3RI
D(F)

B
I

B
II

Bi  i � 1, 2, 3, 4
(rotate 90�)

III

�

�

�

�

�

Bi  i � 1, 2, . . . , 8
(rotate 45�)

IV

� �

Bi  i � 1, 2, 3, 4
(rotate 90�)

�

�

Bi  i � 5, 6, 7, 8
(rotate 90�)

V

FIGURE 9.33 Five
basic types of
structuring
elements used for
binary morphol-
ogy. The origin of
each element is at
its center and the

indicate
“don’t care”
values.

* ’s

(Continued)

Comments
(The Roman numerals refer to the 

Operation Equation structuring elements in Fig. 9.33.)

Translation Translates the origin 
of to point 

Reflection Reflects all elements of 
about the origin of this set.

Complement Set of points not in 

Difference Set of points that belong to 
but not to 

Dilation “Expands” the boundary 
of (I)

Erosion “Contracts” the boundary of 
(I)

Opening Smoothes contours, breaks 
narrow isthmuses, and 
eliminates small islands and 
sharp peaks. (I)

A � B = (A | B) { B
A.

A | B = Ez ƒ (B)z 8 AF
A.

A { B = Ez ƒ (BN z) ¨ A Z �F
B.= A ¨ Bc

AA - B = 5w ƒ w H A, w x B6
A.Ac = 5w ƒ w x A6

B
BN = 5w ƒ w = -b, for b H B6

z.Bfor b H B6
(B)z = 5w ƒ w = b + z, 

TABLE 9.1 
Summary of
morphological
operations and
their properties.
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(Continued)

Comments
(The Roman numerals refer to the 

Operation Equation structuring elements in Fig. 9.33.)

Closing Smoothes contours, fuses 
narrow breaks and long thin 
gulfs, and eliminates small 
holes. (I)

Hit-or-miss The set of points (coordinates)
transform at which, simultaneously,

found a match (“hit”) in 
and found a match in 

Boundary Set of points on the boundary 
extraction of set (I)

Hole filling Fills holes in of 
0s with a 1 in each hole. (II)

Connected Finds connected components 
components in of 0s with a 

1 in each connected 
component. (I)

Convex hull Finds the convex hull of 
set where “conv” indicates 
convergence in the sense that 

and (III)

Thinning Thins set The first two 
equations give the basic defi-
nition of thinning. The last 
equations denote thinning 
by a sequence of structuring 
elements. This method is 
normally used in practice. (IV)

Thickening Thickens set (See preceding 
comments on sequences of 
structuring elements.) Uses IV 
with 0s and 1s reversed.

Skeletons Finds the skeleton of set 
The last equation indicates 

that can be reconstructed
from its skeleton subsets 

In all three equations,

Reconstruction of is the value of the iterative
step after which the set 
erodes to the empty set. The
notation (A | kB) denotes the 
kth iteration of successive 
erosions of by (I)B.A

A = d
K

k = 0
(Sk(A) { kB)

A
KA:

Sk(A).- [(A | kB) � B]6
ASk(A) = d

K

k = 0
5(A | kB)

A.
S(A)S(A) = d

K

k = 0
Sk(A)

(( Á (A } B1) } B2 Á ) } Bn)
A } 5B6 =

A.A } B = A ´ (A ~* B)

5B6 = 5B1, B2, B3, Á , Bn6
(( Á ((A z B1) z B2) Á ) z Bn)
A z 5B6 =

= A ¨ (A ~* B)c

A.A z B = A - (A ~* B)

Di = Xi
conv

Xi
k = Xi

k - 1.Xi
0 = A;

k = 1, 2, 3, Á ;
A,i = 1, 2, 3, 4;

C(A)Xi
k = (Xi

k - 1 ~* Bi) ´ A;

X0 = arrayA;k = 1, 2, 3, Á
Xk = (Xk - 1 { B) ¨ A;

k = 1, 2, 3, Á
X0 = arrayA;Xk = (Xk - 1 { B) ¨ Ac;

A.
b(A) = A - (A | B)

AcB2

A
B1= (A | B1) - (A { BN 2)

A ~* B = (A | B1) ¨ (Ac | B2)

A • B = (A { B) | B

TABLE 9.1 
(Continued)
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Comments
(The Roman numerals refer to the 

Operation Equation structuring elements in Fig. 9.33.)

Pruning is the result of pruning set 
The number of times that the 
first equation is applied to 
obtain must be specified.
Structuring elements V are used 
for the first two equations. In 
the third equation denotes 
structuring element I.

Geodesic and are called the marker
dilation of and mask images, respectively.
size 1

Geodesic
dilation of
size

Geodesic
erosion of 
size 1

Geodesic
erosion of 
size

Morphological is such that
reconstruction
by dilation

Morphological is such that 
reconstruction
by erosion

Opening by indicates 
reconstruction erosions of by 

Closing by 
reconstruction indicates 

dilations of by 

Hole filling is equal to the input 
image but with all holes 
filled. See Eq. (9.5-28) for 
the definition of the marker 
image

Border clearing is equal to the input 
image but with all objects 
that touch (are connected 
to) the boundary removed.
See Eq. (9.5-30) for the 
definition of the marker 
image F.

I,
XX = I - RI

D(F)

F.

I,
HH = CRIc

D(F) D c
B.F
n(F { nB)CR

(n)(F) = RF
E [(F { nB)]

B.F
n(F | nB)OR
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8

k = 1
(X1 ~* Bk)

A.X4X1 = A z 5B6

TABLE 9.1 
(Continued)
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9.6 Gray-Scale Morphology

In this section, we extend to gray-scale images the basic operations of dilation,
erosion, opening, and closing. We then use these operations to develop several
basic gray-scale morphological algorithms.

Throughout the discussion that follows, we deal with digital functions of the
form and where is a gray-scale image and is a
structuring element. The assumption is that these functions are discrete in the
sense introduced in Section 2.4.2. That is, if denotes the set of real integers,
then the coordinates are integers from the Cartesian product and 
and are functions that assign an intensity value (a real number from the set
of real numbers, ) to each distinct pair of coordinates If the intensity
levels are integers also, then replaces 

Structuring elements in gray-scale morphology perform the same basic
functions as their binary counterparts: They are used as “probes” to examine a
given image for specific properties. Structuring elements in gray-scale mor-
phology belong to one of two categories: nonflat and flat. Figure 9.34 shows an
example of each. Figure 9.34(a) is a hemispherical gray-scale SE shown as an
image, and Fig. 9.34(c) is a horizontal intensity profile through its center.
Figure 9.34(b) shows a flat structuring element in the shape of a disk and
Fig. 9.34(d) is its corresponding intensity profile (the shape of this profile ex-
plains the origin of the word “flat”). The elements in Fig. 9.34 are shown as
continuous quantities for clarity; their computer implementation is based on
digital approximations (e.g., see the rightmost disk SE in Fig. 9.2). Due to a
number of difficulties discussed later in this section, gray-scale SEs are used
infrequently in practice. Finally, we mention that, as in the binary case, the ori-
gin of structuring elements must be clearly identified. Unless mentioned oth-
erwise, all the examples in this section are based on symmetrical, flat
structuring elements of unit height whose origins are at the center. The
reflection of an SE in gray-scale morphology is as defined in Section 9.1,
and we denote it in the following discussion by bN(x, y) = b(-x - y).

R.Z
(x, y).R

b
fZ2(x, y)

Z

b(x, y)f(x, y)b(x, y),f(x, y)

Nonflat SE

Intensity profile Intensity profile

Flat SE

FIGURE 9.34
Nonflat and flat
structuring
elements, and
corresponding
horizontal
intensity profiles
through their
center. All
examples in this
section are based
on flat SEs.

a b
c d
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9.6.1 Erosion and Dilation
The erosion of by a flat structuring element at any location is defined
as the minimum value of the image in the region coincident with when the
origin of is at In equation form, the erosion at of an image by
a structuring element is given by

(9.6-1)

where, in a manner similar to the correlation procedure discussed in Section
3.4.2, and are incremented through all values required so that the origin of

visits every pixel in That is, to find the erosion of by we place the ori-
gin of the structuring element at every pixel location in the image. The erosion
at any location is determined by selecting the minimum value of from all the
values of contained in the region coincident with For example, if is a
square structuring element of size obtaining the erosion at a point re-
quires finding the minimum of the nine values of contained in the re-
gion defined by when its origin is at that point.

Similarly, the dilation of by a flat structuring element at any location 
is defined as the maximum value of the image in the window outlined by when
the origin of is at That is,

(9.6-2)

where we used the fact stated earlier that The explanation of
this equation is identical to the explanation in the previous paragraph, but
using the maximum, rather than the minimum, operation and keeping in mind
that the structuring element is reflected about its origin, which we take into ac-
count by using in the argument of the function. This is analogous to
spatial convolution, as explained in Section 3.4.2.

(-s, - t)

bN = b(-x, -y).

Cf { b D(x, y) = max
(s, t)Hb

Ef(x - s, y - t)F
(x, y).bN

bN
(x, y)bf

b
3 * 3f

3 * 3,
bb.f

f

b,ff.b
yx

Cf | b D(x, y) = min
(s, t)Hb

Ef(x + s, y + t)F
b

f(x, y)(x, y).b
b

(x, y)bf

EXAMPLE 9.9:
Illustration of
gray-scale erosion
and dilation.

■ Because gray-scale erosion with a flat SE computes the minimum intensity
value of in every neighborhood of coincident with we expect in gen-
eral that an eroded gray-scale image will be darker than the original, that the
sizes (with respect to the size of the SE) of bright features will be reduced, and
that the sizes of dark features will be increased. Figure 9.35(b) shows the ero-
sion of Fig. 9.35(a) using a disk SE of unit height and a radius of two pixels.The
effects just mentioned are clearly visible in the eroded image. For instance,
note how the intensities of the small bright dots were reduced, making them
barely visible in Fig. 9.35(b), while the dark features grew in thickness. The
general background of the eroded image is slightly darker than the back-
ground of the original image. Similarly, Fig. 9.35(c) shows the result of dilation
with the same SE. The effects are the opposite of those obtained with erosion.
The bright features were thickened and the intensities of the dark features
were reduced. Note in particular how the thin black connecting wires in the
left, middle, and right, bottom of Fig. 9.35(a) are barely visible in Fig. 9.35(c).
The sizes of the dark dots were reduced as a result of dilation but, unlike the
eroded small white dots in Fig. 9.35(b), they still are easily visible in the dilated

b,(x, y)f
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image. The reason is that the black dots were originally larger than the white
dots with respect to the size of the SE. Finally, note that the background of the
dilated image is slightly lighter than that of Fig. 9.35(a). ■

Nonflat SEs have gray-scale values that vary over their domain of defini-
tion. The erosion of image by nonflat structuring element, is defined as

(9.6-3)

Here, we actually subtract values from to determine the erosion at any point.
This means that, unlike Eq. (9.6-1), erosion using a nonflat SE is not bounded
in general by the values of which can present problems in interpreting re-
sults. Gray-scale SEs are seldom used in practice because of this, in addition to
potential difficulties in selecting meaningful elements for and the added
computational burden when compared with Eq. (9.6-1).

In a similar manner, dilation using a nonflat SE is defined as

(9.6-4)

The same comments made in the previous paragraph are applicable to dilation
with nonflat SEs. When all the elements of are constant (i.e., the SE is flat),
Eqs. (9.6-3) and (9.6-4) reduce to Eqs. (9.6-1) and (9.6-2), respectively, within a
scalar constant equal to the amplitude of the SE.

As in the binary case, erosion and dilation are duals with respect to function
complementation and reflection; that is,

where and The same expression holds for non-
flat structuring elements. Except as needed for clarity, we simplify the notation
in the following discussion by omitting the arguments of all functions, in which
case the preceding equation is written as

(9.6-5)(f | b)c = (fc { bN)

bN = b(-x, -y).fc = -f(x, y)

(f | b)c(x, y) = (fc { bN)(x, y)

bN

Cf { bN D(x, y) = max
(s, t)HbN

Ef(x - s, y - t) + bN(s, t)F

bN,

f,

f

Cf | bN D(x, y) = min
(s, t)HbN

Ef(x + s, y + t) - bN(s, t)F
bN,f

FIGURE 9.35 (a) A gray-scale X-ray image of size (b) Erosion using a
flat disk SE with a radius of two pixels. (c) Dilation using the same SE. (Original image
courtesy of Lixi, Inc.)

448 * 425 pixels.
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Similarly,

(9.6-6)

Erosion and dilation by themselves are not particularly useful in gray-scale
image processing. As with their binary counterparts, these operations become
powerful when used in combination to derive higher-level algorithms, as the
material in the following sections demonstrates.

9.6.2 Opening and Closing
The expressions for opening and closing gray-scale images have the same form
as their binary counterparts. The opening of image by structuring element 
denoted is

(9.6-7)

As before, opening is simply the erosion of by followed by a dilation of the
result with Similarly, the closing of by denoted is

(9.6-8)

The opening and closing for gray-scale images are duals with respect to com-
plementation and SE reflection:

(9.6-9)

and

(9.6-10)

Because Eq. (9.6-9) can be written also as 
and similarly for Eq. (9.6-10).

Opening and closing of images have a simple geometric interpretation. Sup-
pose that an image function is viewed as a 3-D surface; that is, its inten-
sity values are interpreted as height values over the xy-plane, as in Fig. 2.18(a).
Then the opening of by can be interpreted geometrically as pushing the
structuring element up from below against the undersurface of At each lo-
cation of the origin of the opening is the highest value reached by any part
of as it pushes up against the undersurface of The complete opening is
then the set of all such values obtained by having the origin of visit every

coordinate of 
Figure 9.36 illustrates the concept in one dimension. Suppose that the

curve in Fig. 9.36(a) is the intensity profile along a single row of an image.
Figure 9.36(b) shows a flat structuring element in several positions, pushed up
against the bottom of the curve. The solid curve in Fig. 9.36(c) is the complete
opening. Because the structuring element is too large to fit completely inside
the upward peaks of the curve, the tops of the peaks are clipped by the open-
ing, with the amount removed being proportional to how far the structuring
element was able to reach into the peak. In general, openings are used to re-
move small, bright details, while leaving the overall intensity levels and larger
bright features relatively undisturbed.

f.(x, y)
b

f.b
b,

f.
bf

f(x, y)

-(f • b) = (-f � bN)fc = -f(x, y),

(f � b)c = fc • bN

(f • b)c = fc � bN

f • b = (f { b) | b

f # b,b,fb.
b,f

f � b = (f | b) { b

f � b,
b,f

(f { b)c = (fc | bN)

Although we deal with
flat SEs in the examples
in the remainder of this
section, the concepts dis-
cussed are applicable
also to nonflat structur-
ing elements.

Sometimes opening and
closing are illustrated by
rolling a circle on the
under and upper sides of
a curve. In 3-D, the cir-
cle becomes a sphere
and the resulting proce-
dures are called rolling-
ball algorithms.
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Figure 9.36(d) is a graphical illustration of closing. Observe that the struc-
turing element is pushed down on top of the curve while being translated to all
locations. The closing, shown in Fig. 9.36(e), is constructed by finding the low-
est points reached by any part of the structuring element as it slides against the
upper side of the curve.

The gray-scale opening operation satisfies the following properties:

(a) d
(b) If d then d
(c)

The notation d is used to indicate that the domain of is a subset of the do-
main of and also that for any in the domain of 

Similarly, the closing operation satisfies the following properties:

(a) d
(b) If d then d
(c)

The usefulness of these properties is similar to that of their binary counterparts.

(f • b) • b = f • b
(f2 • b)(f1 • b)f2,f1

f • bf

e.(x, y)e(x, y) … r(x, y)r,
ere

(f � b) � b = f � b
(f2 � b)(f1 � b)f2,f1

ff � b

EXAMPLE 9.10:
Illustration of
gray-scale
opening and
closing.

■ Figure 9.37 extends to 2-D the 1-D concepts illustrated in Fig. 9.36. Figure
9.37(a) is the same image we used in Example 9.9, and Fig. 9.37(b) is the opening
obtained using a disk structuring element of unit height and radius of 3 pixels.As
expected, the intensity of all bright features decreased, depending on the sizes of
the features relative to the size of the SE. Comparing this figure with Fig. 9.35(b),
we see that, unlike the result of erosion, opening had negligible effect on the dark
features of the image, and the effect on the background was negligible. Similarly,
Fig. 9.37(c) shows the closing of the image with a disk of radius 5 (the small round

Flat SE

Intensity profile

Opening

Closing

FIGURE 9.36
Opening and clos-
ing in one dimen-
sion. (a) Original
1-D signal. (b) Flat
structuring
element pushed up
underneath the
signal.
(c) Opening.
(d) Flat structuring
element pushed
down along the top
of the signal.
(e) Closing.

a
b

d
c

e
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black dots are larger than the small white dots, so a larger disk was needed to
achieve results comparable to the opening). In this image, the bright details and
background were relatively unaffected, but the dark features were attenuated,
with the degree of attenuation being dependent on the relative sizes of the fea-
tures with respect to the SE. ■

9.6.3 Some Basic Gray-Scale Morphological Algorithms
Numerous morphological techniques are based on the gray-scale morphologi-
cal concepts introduced thus far. We illustrate some of these algorithms in the
following discussion.

Morphological smoothing

Because opening suppresses bright details smaller than the specified SE, and
closing suppresses dark details, they are used often in combination as
morphological filters for image smoothing and noise removal. Consider
Fig. 9.38(a), which shows an image of the Cygnus Loop supernova taken in
the X-ray band (see Fig. 1.7 for details about this image). For purposes of the
present discussion, suppose that the central light region is the object of inter-
est and that the smaller components are noise. The objective is to remove the
noise. Figure 9.38(b) shows the result of opening the original image with a flat
disk of radius 2 and then closing the opening with an SE of the same size.
Figures 9.38(c) and (d) show the results of the same operation using SEs of
radii 3 and 5, respectively. As expected, this sequence shows progressive re-
moval of small components as a function of SE size. In the last result, we see
that the object of interest has been extracted. The noise components on the
lower side of the image could not be removed completely because of their
density.

The results in Fig. 9.38 are based on opening the original image and then
closing the opening. A procedure used sometimes is to perform alternating se-
quential filtering, in which the opening–closing sequence starts with the origi-
nal image, but subsequent steps perform the opening and closing on the results

FIGURE 9.37 (a) A gray-scale X-ray image of size (b) Opening using
a disk SE with a radius of 3 pixels. (c) Closing using an SE of radius 5.

448 * 425 pixels.

a b c
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of the previous step. This type of filtering is useful in automated image analy-
sis, in which results at each step are compared against a specified metric. Gen-
erally, this approach produces more blurring for the same size SE than the
method illustrated in Fig. 9.38.

Morphological gradient

Dilation and erosion can be used in combination with image subtraction to ob-
tain the morphological gradient of an image, denoted by where

(9.6-11)

The dilation thickens regions in an image and the erosion shrinks them. Their
difference emphasizes the boundaries between regions. Homogenous areas
are not affected (as long as the SE is relatively small) so the subtraction oper-
ation tends to eliminate them.The net result is an image in which the edges are
enhanced and the contribution of the homogeneous areas are suppressed, thus
producing a “derivative-like” (gradient) effect.

Figure 9.39 shows an example. Figure 9.39(a) is a head CT scan, and the
next two figures are the opening and closing with a SE of all 1s. Note the
thickening and shrinking just mentioned. Figure 9.39(d) is the morphological
gradient obtained using Eq. (9.6-11), in which the boundaries between regions
are clearly delineated, as expected of a 2-D derivative image.

3 * 3

g = (f { b) - (f | b)

g, See Section 3.6.4 for a
definition of the image
gradient.

FIGURE 9.38
(a)
image of the
Cygnus Loop
supernova, taken
in the X-ray band
by NASA’s
Hubble Telescope.
(b)–(d) Results of
performing
opening and
closing sequences
on the original
image with disk
structuring
elements of radii,
1, 3, and 5,
respectively.
(Original image
courtesy of
NASA.)

566 * 566
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FIGURE 9.39
(a)
image of a head
CT scan.
(b) Dilation.
(c) Erosion.
(d) Morphological
gradient, compu-
ted as the
difference be-
tween (b) and (c).
(Original image
courtesy of Dr.
David R. Pickens,
Vanderbilt
University.)

512 * 512

Top-hat and bottom-hat transformations

Combining image subtraction with openings and closings results in so-called
top-hat and bottom-hat transformations. The top-hat transformation of a gray-
scale image is defined as minus its opening:

(9.6-12)

Similarly, the bottom-hat transformation of is defined as the closing of 
minus

(9.6-13)

One of the principal applications of these transformations is in removing ob-
jects from an image by using a structuring element in the opening or closing
operation that does not fit the objects to be removed.The difference operation
then yields an image in which only the removed components remain. The top-
hat transform is used for light objects on a dark background, and the bottom-
hat transform is used for the converse. For this reason, the names white top-hat
and black top-hat, respectively, are used frequently when referring to these
two transformations.

An important use of top-hat transformations is in correcting the effects of
nonuniform illumination. As we will see in the next chapter, proper (uniform)
illumination plays a central role in the process of extracting objects from the
background. This process, called segmentation, is one of the first steps per-
formed in automated image analysis. A commonly used segmentation ap-
proach is to threshold the input image.

Bhat(f) = (f • b) - f

f:
ff

That(f) = f - (f � b)

ff

a b
c d
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To illustrate, consider Fig. 9.40(a), which shows a image of grains
of rice.This image was obtained under nonuniform lighting, as evidenced by the
darker area in the bottom, rightmost part of the image. Figure 9.40(b) shows the
result of thresholding using Otsu’s method, an optimal thresholding method
discussed in Section 10.3.3. The net result of nonuniform illumination was to
cause segmentation errors in the dark area (several grains of rice were not ex-
tracted from the background), as well as in the top left part of the image, where
parts of the background were misclassified. Figure 9.40(c) shows the opening of
the image with a disk of radius 40.This SE was large enough so that it would not
fit in any of the objects.As a result, the objects were eliminated, leaving only an
approximation of the background.The shading pattern is clear in this image. By
subtracting this image from the original (i.e., performing a top-hat transforma-
tion), the background should become more uniform. This is indeed the case, as
Fig. 9.40(d) shows.The background is not perfectly uniform, but the differences
between light and dark extremes are less, and this was enough to yield a correct

600 * 600

FIGURE 9.40 Using the top-hat transformation for shading correction. (a) Original image of size
(b) Thresholded image. (c) Image opened using a disk SE of radius 40. (d) Top-hat

transformation (the image minus its opening). (e) Thresholded top-hat image.
600 * 600 pixels.
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c ed
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FIGURE 9.41 (a) image of wood dowels. (b) Smoothed image. (c)–(f) Openings
of (b) with disks of radii equal to 10, 20, 25, and 30 pixels, respectively. (Original image
courtesy of Dr. Steve Eddins, The MathWorks, Inc.)

531 * 675

a b c
d e f

segmentation result in which all rice grains were detected, as Fig. 9.40(e) shows.
This image was obtained using Otsu’s method, as before.

Granulometry

In terms of image processing, granulometry is a field that deals with determining
the size distribution of particles in an image. In practice, particles seldom are
neatly separated, which makes particle counting by identifying individual parti-
cles a difficult task. Morphology can be used to estimate particle size distribution
indirectly, without having to identify and measure every particle in the image.

The approach is simple in principle. With particles having regular shapes
that are lighter than the background, the method consists of applying openings
with SEs of increasing size. The basic idea is that opening operations of a par-
ticular size should have the most effect on regions of the input image that con-
tain particles of similar size. For each opening, the sum of the pixel values in
the opening is computed.This sum, sometimes called the surface area, decreas-
es as a function of increasing SE size because, as we noted earlier, openings de-
crease the intensity of light features. This procedure yields a 1-D array of such
numbers, with each element in the array being equal to the sum of the pixels in
the opening for the size SE corresponding to that location in the array. To em-
phasize changes between successive openings, we compute the difference be-
tween adjacent elements of the 1-D array. To visualize the results, the
differences are plotted. The peaks in the plot are an indication of the predom-
inant size distributions of the particles in the image.

As an example, consider Fig. 9.41(a) which is an image of wood dowel plugs
of two dominant sizes. The wood grain in the dowels are likely to introduce
variations in the openings, so smoothing is a sensible pre-processing step.
Figure 9.41(b) shows the image smoothed using the morphological smoothing
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FIGURE 9.42
Differences in
surface area as a
function of SE
disk radius, The
two peaks are
indicative of two
dominant particle
sizes in the image.

r.

filter discussed earlier, with a disk of radius 5. Figures 9.41(c) through (f) show
examples of image openings with disks of radii 10, 20, 25, and 30. Note in
Fig. 9.41(d) that the intensity contribution due to the small dowels has been al-
most eliminated. In Fig. 9.41(e) the contribution of the large dowels has been sig-
nificantly reduced, and in Fig. 9.41(f) even more so. (Observe in Fig. 9.41(e) that
the large dowel near the top right of the image is much darker than the others be-
cause of its smaller size. This would be useful information if we had been at-
tempting to detect defective dowels.)

Figure 9.42 shows a plot of the difference array. As mentioned previously,
we expect significant differences (peaks in the plot) around radii at which the
SE is large enough to encompass a set of particles of approximately the same
diameter. The result in Fig. 9.42 has two distinct peaks, clearly indicating the
presence of two dominant object sizes in the image.

Textural segmentation

Figure 9.43(a) shows a noisy image of dark blobs superimposed on a light back-
ground. The image has two textural regions: a region composed on large blobs
on the right and a region on the left composed of smaller blobs. The objective is
to find a boundary between the two regions based on their textural content (we
discuss texture in Section 11.3.3).As noted earlier, the process of subdividing an
image into regions is called segmentation, which is the topic of Chapter 10.

The objects of interest are darker than the background, and we know that if
we close the image with a structuring element larger than the small blobs,
these blobs will be removed. The result in Fig. 9.43(b), obtained by closing the
input image using a disk with a radius of 30 pixels, shows that indeed this is the
case (the radius of the blobs is approximately 25 pixels). So, at this point, we
have an image with large, dark blobs on a light background. If we open this
image with a structuring element that is large relative to the separation be-
tween these blobs, the net result should be an image in which the light patches
between the blobs are removed, leaving the dark blobs and now equally dark
patches between these blobs. Figure 9.43(c) shows the result, obtained using a
disk of radius 60.

Performing a morphological gradient on this image with, say, a SE of
1s, will give us the boundary between the two regions. Figure 9.43(d) shows the
boundary obtained from the morphological gradient operation superimposed

3 * 3
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It is understood that
these expressions are
functions of We
omit the coordinates to
simplify the notation.

(x, y).

on the original image.All pixels to the right of this boundary are said to belong
to the texture region characterized by large blobs, and conversely for the pix-
els on the left of the boundary. You will find it instructive to work through this
example in more detail using the graphical analogy for opening and closing il-
lustrated in Fig. 9.36.

9.6.4 Gray-Scale Morphological Reconstruction
Gray-scale morphological reconstruction is defined basically in the same man-
ner introduced in Section 9.5.9 for binary images. Let and denote the
marker and mask images, respectively. We assume that both are gray-scale im-
ages of the same size and that The geodesic dilation of size 1 of with
respect to is defined as

(9.6-14)

where denotes the point-wise minimum operator. This equation indicates
that the geodesic dilation of size 1 is obtained by first computing the dilation
of by and then selecting the minimum between the result and at every
point The dilation is given by Eq. (9.6-2) if is a flat SE or by Eq. (9.6-4)
if it is not. The geodesic dilation of size of with respect to is defined as

(9.6-15)

with Dg
(0)(f) = f.

Dg
(n)(f) = Dg

(1)[Dg
(n - 1)(f)]

gfn
b(x,y).

gbf

¿
Dg

(1)(f) = (f { b) ¿ g

g
ff … g.

gf

FIGURE 9.43
Textural
segmentation.
(a) A 
image consisting
of two types of
blobs. (b) Image
with small blobs
removed by
closing (a).
(c) Image with
light patches
between large
blobs removed by
opening (b).
(d) Original
image with
boundary
between the two
regions in (c)
superimposed.
The boundary was
obtained using a
morphological
gradient
operation.

600 * 600

a b
c d
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Similarly, the geodesic erosion of size 1 of with respect to is defined as

(9.6-16)

where denotes the point-wise maximum operator. The geodesic erosion of
size is defined as

(9.6-17)

with
The morphological reconstruction by dilation of a gray-scale mask image,

by a gray-scale marker image, is defined as the geodesic dilation of with
respect to iterated until stability is reached; that is,

(9.6-18)

with such that The morphological reconstruction by
erosion of by is similarly defined as

(9.6-19)

with such that
As in the binary case, opening by reconstruction of gray-scale images first

erodes the input image and uses it as a marker. The opening by reconstruction
of size of an image is defined as the reconstruction by dilation of from
the erosion of size of that is,

(9.6-20)

where denotes erosions of by as explained in Section 9.5.7. Re-
call from the discussion of Eq. (9.5-27) for binary images that the objective of
opening by reconstruction is to preserve the shape of the image components
that remain after erosion.

Similarly, the closing by reconstruction of size of an image is defined as
the reconstruction by erosion of from the dilation of size of that is,

(9.6-21)

where denotes dilations of by Because of duality, the closing by
reconstruction of an image can be obtained by complementing the image, ob-
taining the opening by reconstruction, and complementing the result. Finally,
as the following example shows, a useful technique called top-hat by recon-
struction consists of subtracting from an image its opening by reconstruction.

b.fn(f { nb)
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E C(f { nb) D
f;nf
fn

b,fn(f | nb)
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(n)(f) = Rf

D C(f | nb) D
f;n

ffn

Eg
(k)(f) = Eg

(k + 1)(f).k

Rg
E(f) = Eg

(k)(f)

fg
Dg

(k)(f) = Dg
(k + 1)(f).k

Rg
D(f) = Dg

(k)(f)

g,
ff,

g,
Eg

(0)(f) = f.

Eg
(n)(f) = Eg

(1) CEg
(n - 1)(f) D

n
¡

Eg
(1)(f) = (f | b) ¡ g

gf

EXAMPLE 9.11:
Using
morphological
reconstruction to
flatten a complex
background.

■ In this example, we illustrate the use of gray-scale reconstruction in sev-
eral steps to normalize the irregular background of the image in Fig. 9.44(a),
leaving only the text on a background of constant intensity. The solution of
this problem is a good illustration of the power of morphological concepts.
We begin by suppressing the horizontal reflection on the top of the keys. The
reflections are wider than any single character in the image, so we should be
able to suppress them by performing an opening by reconstruction using a
long horizontal line in the erosion operation. This operation will yield the
background containing the keys and their reflections. Subtracting this from

See Problem 9.33 for a
list of dual relationships
between expressions in
this section.



678 Chapter 9 ■ Morphological Image Processing

FIGURE 9.44 (a) Original image of size (b) Opening by reconstruction of (a) using a
horizontal line 71 pixels long in the erosion. (c) Opening of (a) using the same line. (d) Top-hat by
reconstruction. (e) Top-hat. (f) Opening by reconstruction of (d) using a horizontal line 11 pixels long.
(g) Dilation of (f) using a horizontal line 21 pixels long. (h) Minimum of (d) and (g). (i) Final reconstruction
result. (Images courtesy of Dr. Steve Eddins, The MathWorks, Inc.)

1134 * 1360 pixels.

the original image (i.e., performing a top-hat by reconstruction) will elimi-
nate the horizontal reflections and variations in background from the origi-
nal image.

Figure 9.44(b) shows the result of opening by reconstruction of the original
image using a horizontal line of size in the erosion operation.
We could have used just an opening to remove the characters, but the result-
ing background would not have been as uniform, as Fig. 9.44(c) shows (for ex-
ample, compare the regions between the keys in the two images). Figure 9.44(d)

1 * 71 pixels

a b c
d e f
g h i
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shows the result of subtracting Fig. 9.44(b) from Fig. 9.44(a). As expected, the
horizontal reflections and variations in background were suppressed. For
comparison, Fig. 9.44(e) shows the result of performing just a top-hat trans-
formation (i.e., subtracting the “standard” opening from the image, as dis-
cussed earlier in this section). As expected from the characteristics of the
background in Fig. 9.44(c), the background in Fig. 9.44(e) is not nearly as uni-
form as in Fig. 9.44(d).

The next step is to remove the vertical reflections from the edges of keys,
which are quite visible in Fig. 9.44(d). We can do this by performing an open-
ing by reconstruction with a line SE whose width is approximately equal to
the reflections (about 11 pixels in this case). Figure 9.44(f) shows the result of
performing this operation on Fig. 9.44(d). The vertical reflections were sup-
pressed, but so were thin, vertical strokes that are valid characters (for exam-
ple, the I in SIN), so we have to find a way to restore the latter. The
suppressed characters are very close to the other characters so, if we dilate
the remaining characters horizontally, the dilated characters will overlap the
area previously occupied by the suppressed characters. Figure 9.44(g), ob-
tained by dilating Fig. 9.44(f) with a line SE of size shows that indeed
this is case.

All that remains at this point is to restore the suppressed characters. Con-
sider an image formed as the point-wise minimum between the dilated image
in Fig. 9.44(g) and the top-hat by reconstruction in Fig. 9.44(d). Figure 9.44(h)
shows the minimum image (although this result appears to be close to our ob-
jective, note that the I in SIN is still missing). By using this image as a marker
and the dilated image as the mask in gray-scale reconstruction [Eq. (9.6-18)]
we obtain the final result in Fig. 9.44(i). This image shows that all characters
were properly extracted from the original, irregular background, including
the background of the keys. The background in Fig. 9.44(i) is uniform
throughout. ■

Summary
The morphological concepts and techniques introduced in this chapter constitute a
powerful set of tools for extracting features of interest in an image. One of the most ap-
pealing aspects of morphological image processing is the extensive set-theoretic foun-
dation from which morphological techniques have evolved. A significant advantage in
terms of implementation is the fact that dilation and erosion are primitive operations
that are the basis for a broad class of morphological algorithms. As shown in the fol-
lowing chapter, morphology can be used as the basis for developing image segmenta-
tion procedures with numerous applications. As discussed in Chapter 11, morphological
techniques also play a major role in procedures for image description.

References and Further Reading
The book by Serra [1982] is a fundamental reference on morphological image process-
ing. See also Serra [1988], Giardina and Dougherty [1988], and Haralick and Shapiro
[1992]. Additional early references relevant to our discussion include Blum [1967],
Lantuéjoul [1980], Maragos [1987], and Haralick et al. [1987]. For an overview of both
binary and gray-scale morphology, see Basart and Gonzalez [1992] and Basart et al.

1 * 21,
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Detailed solutions to the
problems marked with a
star can be found in the
book Web site. The site
also contains suggested
projects based on the ma-
terial in this chapter.

[1992].This set of references provides ample basic background for the material covered
in Sections 9.1 through 9.4. For a good overview of the material in Sections 9.5 and 9.6,
see the book by Soille [2003].

Important issues of implementing morphological algorithms such as the ones
given in Section 9.5 and 9.6 are exemplified in the papers by Jones and Svalbe [1994],
Park and Chin [1995], Sussner and Ritter [1997], Anelli et al. [1998], and Shaked and
Bruckstein [1998]. A paper by Vincent [1993] is especially important in terms of prac-
tical details for implementing gray-scale morphological algorithms. See also the book
by Gonzalez, Woods, and Eddins [2004].

For additional reading on the theory and applications of morphological image pro-
cessing, see the book by Goutsias and Bloomberg [2000] and a special issue of Pattern
Recognition [2000]. See also a compilation of references by Rosenfeld [2000]. The
books by Marchand-Maillet and Sharaiha [2000] on binary image processing and by
Ritter and Wilson [2001] on image algebra also are of interest. Current work in the ap-
plication of morphological techniques for image processing is exemplified in the papers
by Kim [2005] and Evans and Liu [2006].

Problems
9.1 Digital images in this book are embedded in square grid arrangements and pix-

els are allowed to be 4-, 8-, or m-connected. However, other grid arrangements
are possible. Specifically, a hexagonal grid arrangement that leads to 6-connec-
tivity, is used sometimes (see the following figure).

(a) How would you convert an image from a square grid to a hexagonal grid?

(b) Discuss the shape invariance to rotation of objects represented in a square
grid as opposed to a hexagonal grid.

(c) Is it possible to have ambiguous diagonal configurations in a hexagonal
grid, as is the case with 8-connectivity? (See Section 2.5.2.)

9.2 (a) Give a morphological algorithm for converting an 8-connected binary
boundary to an m-connected boundary (see Section 2.5.2).You may assume
that the boundary is fully connected and that it is one pixel thick.

(b) Does the operation of your algorithm require more than one iteration with
each structuring element? Explain your reasoning.

(c) Is the performance of your algorithm independent of the order in which the
structuring elements are applied? If your answer is yes, prove it; otherwise
give an example that illustrates the dependence of your procedure on the
order of application of the structuring elements.

9.3 Erosion of a set by structuring element is a subset of as long as the origin
of is contained by Give an example in which the erosion lies outside,
or partially outside, A.

A | BB.B
ABA

�
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(a) (b) (c) (d)

9.4 The following four statements are true. Advance an argument that establish-
es the reason(s) for their validity. Part (a) is true in general. Parts (b) through
(d) are true only for digital sets. To show the validity of (b) through (d), draw
a discrete, square grid (as shown in Problem 9.1) and give an example for
each case using sets composed of points on this grid. (Hint: Keep the number
of points in each case as small as possible while still establishing the validity
of the statements.)

(a) The erosion of a convex set by a convex structuring element is a convex set.

(b) The dilation of a convex set by a convex structuring element is not necessar-
ily always convex.

(c) The points in a convex digital set are not always connected.

(d) It is possible to have a set of points in which a line joining every pair of
points in the set lies within the set but the set is not convex.

9.5 With reference to the image shown, give the structuring element and morpho-
logical operation(s) that produced each of the results shown in images (a)
through (d). Show the origin of each structuring element clearly. The dashed
lines show the boundary of the original set and are included only for reference.
Note that in (d) all corners are rounded.

9.6 Let denote the set shown shaded in the following figure. Refer to the struc-
turing elements shown (the black dots denote the origin). Sketch the result of
the following morphological operations:

(a)

(b)

(c)

(d) (A { B3) | B2

(A { B1) { B3

(A | B1) { B3

(A | B4) { B2

A

�

�

�



682 Chapter 9 ■ Morphological Image Processing

L

L/2

L/2

L/4
L/4

L/4

B1 B2 B3 B4

L

A

L

L

9.7 (a) What is the limiting effect of repeatedly dilating an image? Assume that a
trivial (one point) structuring element is not used.

(b) What is the smallest image from which you can start in order for your an-
swer in part (a) to hold?

9.8 (a) What is the limiting effect of repeatedly eroding an image? Assume that a
trivial (one point) structuring element is not used.

(b) What is the smallest image from which you can start in order for your an-
swer in part (a) to hold?

9.9 An alternative definition of erosion is

Show that this definition is equivalent to the definition in Eq. (9.2-1).

9.10 (a) Show that the definition of erosion given in Problem 9.9 is equivalent to yet
another definition of erosion:

(If is replaced with this expression is called the Minkowsky subtrac-
tion of two sets.)

(b) Show that the expression in (a) also is equivalent to the definition in 
Eq. (9.2-1).

b,-b

A | B = t
bHB

(A)-b

A | B = 5w H Z2 ƒ w + b H A, for every b H B6

�

�
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9.11 An alternative definition of dilation is

Show that this definition and the definition in Eq. (9.2-3) are equivalent.

9.12 (a) Show that the definition of dilation given in Problem 9.11 is equivalent to
yet another definition of dilation:

(This expression also is called the Minkowsky addition of two sets.)

(b) Show that the expression in (a) also is equivalent to the definition in Eq.
(9.2-3).

9.13 Prove the validity of the duality expression in Eq. (9.2-6).

9.14 Prove the validity of the duality expressions and

9.15 Prove the validity of the following expressions:

(a) is a subset (subimage) of 

(b) If is a subset of then is a subset of 

(c)

9.16 Prove the validity of the following expressions (assume that the origin of is
contained in and that Problems 9.14 and 9.15 are true):

(a) is a subset (subimage) of 

(b) If is a subset of then is a subset of 

(c)

9.17 Refer to the image and structuring element shown. Sketch what the sets 
and would look like in the following sequence of operations:

and The initial set consists of all the
image components shown in white, with the exception of the structuring ele-
ment Note that this sequence of operations is simply the opening of by 
followed by the closing of that opening by You may assume that is just
large enough to enclose each of the noise components.

BB.
B,AB.

AF = E | B.E = D { B;D = C { B;
C = A | B;FE,

D,C,

(A • B) • B = A • B.

D • B.C • BD,C

A • B.A

B
B

(A � B) � B = A � B.

D � B.C � BD,C

A.A � B

(A � B)c = (Ac • BN ).
(A • B)c = (Ac � BN )

A { B = d
bHB

(A)b

A { B = 5w H Z2 ƒ w = a + b, for some a H A and b H B6
�

�

�
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9.18 Consider the three binary images shown in the following figure. The image
on the left is composed of squares of sizes 1, 3, 5, 7, 9, and 15 pixels on the
side. The image in the middle was generated by eroding the image on the left
with a square structuring element of 1s, of size pixels, with the ob-
jective of eliminating all the squares, except the largest ones. Finally, the
image on the right is the result of dilating the image in the center with the
same structuring element, with the objective of restoring the largest squares.
You know that erosion followed by dilation is the opening of an image, and
you know also that opening generally does not restore objects to their origi-
nal form. Explain why full reconstruction of the large squares was possible in
this case.

13 * 13

Image Structuring
element

9.19 Sketch the result of applying the hit-or-miss transform to the image and struc-
turing element shown. Indicate clearly the origin and border you selected for
the structuring element.

9.20 Three features (lake, bay, and line segment) useful for differentiating thinned ob-
jects in an image are shown in the following page. Develop a morphological/logical
algorithm for differentiating among these shapes. The input to your algorithm
would be one of these three shapes. The output must be the identity of the input.
You may assume that the features are 1 pixel thick and that each is fully connected.
However, they can appear in any orientation.

�

�
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9.21 Discuss what you would expect the result to be in each of the following
cases:

(a) The starting point of the hole filling algorithm of Section 9.5.2 is a point on
the boundary of the object.

(b) The starting point in the hole filling algorithm is outside of the boundary.

(c) Sketch what the convex hull of the figure in Problem 9.6 would look like as
computed with the algorithm given in Section 9.5.4. Assume that 
pixels.

9.22 (a) Discuss the effect of using the structuring element in Fig. 9.15(c) for bound-
ary extraction, instead of the one shown in Fig. 9.13(b).

(b) What would be the effect of using a structuring element composed of
all 1s in the hole filling algorithm of Eq. (9.5-2), instead of the structuring el-
ement shown in Fig. 9.15(c)?

9.23 (a) Propose a method (using any of the techniques from Sections 9.1
through 9.5) for automating the example in Fig. 9.16. You may assume
that the spheres do not touch each other and that none touch the border
of the image.

(b) Repeat (a), but allowing the spheres to touch in arbitrary ways, including
touching the border.

9.24 The algorithm given in Section 9.5.3 for extracting connected components re-
quires that a point be known in each connected component in order to extract
them all. Suppose that you are given a binary image containing an arbitrary
(unknown) number of connected components. Propose a completely automat-
ed procedure for extracting all connected components. Assume that points be-
longing to connected components are labeled 1 and background points are
labeled 0.

9.25 Give an expression based on reconstruction by dilation capable of extracting all
the holes in a binary image.

9.26 With reference to the hole-filling algorithm in Section 9.5.9:

(a) Explain what would happen if all border points of are 1.

(b) If the result in (a) gives the result that you would expect, explain why. If it
does not, explain how you would modify the algorithm so that it works as
expected.

f

3 * 3

L = 3

Lake Bay Line segment

�

�

�
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9.27 Explain what would happen in binary erosion and dilation if the structuring ele-
ment is a single point, valued 1. Give the reason(s) for your answer.

9.28 As explained in Eq. (9.5-27) and Section 9.6.4, opening by reconstruction pre-
serves the shape of the image components that remain after erosion. What does
closing by reconstruction do?

9.29 Show that geodesic erosion and dilation (Section 9.5.9) are duals with respect
to set complementation. That is, show that and,

conversely, that Assume that the structuring ele-
ment is symmetric about its origin.

9.30 Show that reconstruction by dilation and reconstruction by erosion (Section 9.5.9)
are duals with respect to set complementation. That is, show that

and, vice versa, that Assume that the
structuring element is symmetric about its origin.

9.31 Advance an argument showing that:

(a) where indicates erosions of by 

(b)

9.32 Show that binary closing by reconstruction is the dual of opening by recon-
struction with respect to set complementation: and similarly

that Assume that the
structuring element is symmetric with respect to its origin.

9.33 Prove the validity of the following gray-scale morphology expressions. You may
assume that is a flat structuring element. Recall that and
that

(a) Duality of erosion and dilation: and 

(b) and

(c) and Assume a
symmetric structuring element.

(d) and

(e) where indicates erosions of by Also,

(f) and Assume that the structur-
ing element is symmetric with respect to its origin.

9.34 In Fig. 9.43, a boundary between distinct texture regions was established without
difficulty. Consider the image at the top of the facing page, which shows a region
of small circles enclosed by a region of larger circles.

(a) Would the method used to generate Fig. 9.43(d) work with this image as
well? Explain your reasoning, including any assumptions that you need to
make for the method to work.

(b) If your answer was yes, sketch what the boundary will look like.

CR
(n)(f) = COR

(n)(fc) D c.OR
(n)(f) = CCR

(n)(fc) D c
[(f { nb)]c = (fc | nbN).

b.fn(f | nb)[(f | nb)]c = (fc { nbN),
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E(f) = CRgc

D (fc) D c.Rg
D(f) = CRgc

E (fc) D c
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(1) CDgc

(n - 1)(fc) D D c.Dg
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(1) CDGc
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9.35 A gray-scale image, is corrupted by nonoverlapping noise spikes that
can be modeled as small, cylindrical artifacts of radii and am-
plitude

(a) Develop a morphological filtering approach for cleaning up the image.

(b) Repeat (a), but now assume that there is overlapping of, at most, four noise
spikes.

9.36 A preprocessing step in an application of microscopy is concerned with the issue
of isolating individual round particles from similar particles that overlap in
groups of two or more particles (see following image). Assuming that all parti-
cles are of the same size, propose a morphological algorithm that produces three
images consisting respectively of

(a) Only of particles that have merged with the boundary of the image.

(b) Only overlapping particles.

(c) Only nonoverlapping particles.

Amin … a … Amax.
Rmin … r … Rmax

f(x, y),

�

�
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9.37 A high-technology manufacturing plant wins a government contract to manu-
facture high-precision washers of the form shown in the following figure. The
terms of the contract require that the shape of all washers be inspected by an
imaging system. In this context, shape inspection refers to deviations from
round on the inner and outer edges of the washers. You may assume the follow-
ing: (1) A “golden” (perfect with respect to the problem) image of an acceptable
washer is available; and (2) the imaging and positioning systems ultimately used
in the system will have an accuracy high enough to allow you to ignore errors
due to digitalization and positioning. You are hired as a consultant to help spec-
ify the visual inspection part of the system. Propose a solution based on mor-
phological/logic operations. Your answer should be in the form of a block
diagram.
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Preview
The material in the previous chapter began a transition from image processing
methods whose inputs and outputs are images, to methods in which the inputs are
images but the outputs are attributes extracted from those images (in the sense
defined in Section 1.1). Segmentation is another major step in that direction.

Segmentation subdivides an image into its constituent regions or objects.The
level of detail to which the subdivision is carried depends on the problem being
solved.That is, segmentation should stop when the objects or regions of interest
in an application have been detected. For example, in the automated inspection
of electronic assemblies, interest lies in analyzing images of products with the
objective of determining the presence or absence of specific anomalies, such as
missing components or broken connection paths. There is no point in carrying
segmentation past the level of detail required to identify those elements.

Segmentation of nontrivial images is one of the most difficult tasks in image
processing. Segmentation accuracy determines the eventual success or failure
of computerized analysis procedures. For this reason, considerable care should
be taken to improve the probability of accurate segmentation. In some situa-
tions, such as in industrial inspection applications, at least some measure of
control over the environment typically is possible.The experienced image pro-
cessing system designer invariably pays considerable attention to such oppor-
tunities. In other applications, such as autonomous target acquisition, the
system designer has no control over the operating environment, and the usual

Image Segmentation10
The whole is equal to the sum of its parts.

Euclid
The whole is greater than the sum of its parts.

Max Wertheimer
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See Section 2.5.2
regarding connected sets.

approach is to focus on selecting the types of sensors most likely to enhance
the objects of interest while diminishing the contribution of irrelevant image
detail. A good example is the use of infrared imaging by the military to detect
objects with strong heat signatures, such as equipment and troops in motion.

Most of the segmentation algorithms in this chapter are based on one of two
basic properties of intensity values: discontinuity and similarity. In the first cate-
gory, the approach is to partition an image based on abrupt changes in intensity,
such as edges.The principal approaches in the second category are based on par-
titioning an image into regions that are similar according to a set of predefined
criteria. Thresholding, region growing, and region splitting and merging are ex-
amples of methods in this category. In this chapter, we discuss and illustrate a
number of these approaches and show that improvements in segmentation per-
formance can be achieved by combining methods from distinct categories, such
as techniques in which edge detection is combined with thresholding.We discuss
also image segmentation based on morphology.This approach is particularly at-
tractive because it combines several of the positive attributes of segmentation
based on the techniques presented in the first part of the chapter. We conclude
the chapter with a brief discussion on the use of motion cues for segmentation.

10.1 Fundamentals

Let represent the entire spatial region occupied by an image. We may view
image segmentation as a process that partitions into subregions,

such that

(a)

(b) is a connected set,

(c) for all and 
(d) for

(e) for any adjacent regions and 

Here, is a logical predicate defined over the points in set and is the
null set. The symbols and represent set union and intersection, respec-
tively, as defined in Section 2.6.4. Two regions and are said to be adjacent
if their union forms a connected set, as discussed in Section 2.5.2.

Condition (a) indicates that the segmentation must be complete; that is,
every pixel must be in a region. Condition (b) requires that points in a region be
connected in some predefined sense (e.g., the points must be 4- or 8-connected,
as defined in Section 2.5.2). Condition (c) indicates that the regions must be
disjoint. Condition (d) deals with the properties that must be satisfied by the
pixels in a segmented region—for example, if all pixels in 
have the same intensity level. Finally, condition (e) indicates that two adjacent
regions and must be different in the sense of predicate †Q.RjRi

RiQ(Ri) = TRUE

RjRi

¨´
�Rk,Q(Rk)

Rj.RiQ(Ri ´ Rj) = FALSE

i = 1, 2, Á , n.Q(Ri) = TRUE
j, i Z j.iRi ¨ Rj = �

i = 1, 2, Á , n.Ri

d
n

i = 1
Ri = R.

R1, R2, Á , Rn,
nR

R

†In general, can be a compound expression such as, for example, if the average inten-
sity of the pixels in is less than AND if the standard deviation of their intensity is greater than 
where and are specified constants.simi

si,mi,Ri

Q(Ri) = TRUEQ

See Sections 6.7 and
10.3.8 for a discussion of
segmentation techniques
based on more than just
gray (intensity) values.
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Thus, we see that the fundamental problem in segmentation is to partition
an image into regions that satisfy the preceding conditions. Segmentation al-
gorithms for monochrome images generally are based on one of two basic
categories dealing with properties of intensity values: discontinuity and sim-
ilarity. In the first category, the assumption is that boundaries of regions are
sufficiently different from each other and from the background to allow
boundary detection based on local discontinuities in intensity. Edge-based
segmentation is the principal approach used in this category. Region-based
segmentation approaches in the second category are based on partitioning an
image into regions that are similar according to a set of predefined criteria.

Figure 10.1 illustrates the preceding concepts. Figure 10.1(a) shows an image
of a region of constant intensity superimposed on a darker background, also of
constant intensity. These two regions comprise the overall image region. Figure
10.1(b) shows the result of computing the boundary of the inner region based
on intensity discontinuities. Points on the inside and outside of the boundary
are black (zero) because there are no discontinuities in intensity in those re-
gions.To segment the image, we assign one level (say, white) to the pixels on, or
interior to, the boundary and another level (say, black) to all points exterior to
the boundary. Figure 10.1(c) shows the result of such a procedure. We see that
conditions (a) through (c) stated at the beginning of this section are satisfied by

FIGURE 10.1 (a) Image containing a region of constant intensity. (b) Image showing the
boundary of the inner region, obtained from intensity discontinuities. (c) Result of
segmenting the image into two regions. (d) Image containing a textured region.
(e) Result of edge computations. Note the large number of small edges that are
connected to the original boundary, making it difficult to find a unique boundary using
only edge information. (f) Result of segmentation based on region properties.

a b c
d e f
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this result.The predicate of condition (d) is: If a pixel is on, or inside the boundary,
label it white; otherwise label it black.We see that this predicate is TRUE for the
points labeled black and white in Fig. 10.1(c). Similarly, the two segmented
regions (object and background) satisfy condition (e).

The next three images illustrate region-based segmentation. Figure 10.1(d)
is similar to Fig. 10.1(a), but the intensities of the inner region form a textured
pattern. Figure 10.1(e) shows the result of computing the edges of this image.
Clearly, the numerous spurious changes in intensity make it difficult to iden-
tify a unique boundary for the original image because many of the nonzero
intensity changes are connected to the boundary, so edge-based segmentation
is not a suitable approach. We note however, that the outer region is constant,
so all we need to solve this simple segmentation problem is a predicate that
differentiates between textured and constant regions. The standard deviation
of pixel values is a measure that accomplishes this, because it is nonzero in
areas of the texture region and zero otherwise. Figure 10.1(f) shows the result
of dividing the original image into subregions of size Each subregion
was then labeled white if the standard deviation of its pixels was positive (i.e.,
if the predicate was TRUE) and zero otherwise. The result has a “blocky” ap-
pearance around the edge of the region because groups of squares
were labeled with the same intensity. Finally, note that these results also satisfy
the five conditions stated at the beginning of this section.

10.2 Point, Line, and Edge Detection

The focus of this section is on segmentation methods that are based on detect-
ing sharp, local changes in intensity.The three types of image features in which
we are interested are isolated points, lines, and edges. Edge pixels are pixels at
which the intensity of an image function changes abruptly, and edges (or edge
segments) are sets of connected edge pixels (see Section 2.5.2 regarding con-
nectivity). Edge detectors are local image processing methods designed to de-
tect edge pixels. A line may be viewed as an edge segment in which the
intensity of the background on either side of the line is either much higher or
much lower than the intensity of the line pixels. In fact, as we discuss in the fol-
lowing section and in Section 10.2.4, lines give rise to so-called “roof edges.”
Similarly, an isolated point may be viewed as a line whose length and width are
equal to one pixel.

10.2.1 Background
As we saw in Sections 2.6.3 and 3.5, local averaging smooths an image. Given
that averaging is analogous to integration, it should come as no surprise that
abrupt, local changes in intensity can be detected using derivatives. For rea-
sons that will become evident shortly, first- and second-order derivatives are
particularly well suited for this purpose.

Derivatives of a digital function are defined in terms of differences. There
are various ways to approximate these differences but, as explained in
Section 3.6.1, we require that any approximation used for a first derivative
(1) must be zero in areas of constant intensity; (2) must be nonzero at the onset
of an intensity step or ramp; and (3) must be nonzero at points along an intensity

4 * 4

4 * 4.

When we refer to lines,
we are referring to thin
structures, typically just a
few pixels thick. Such
lines may correspond, for
example, to elements of a
digitized architectural
drawing or roads in a
satellite image.
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ramp. Similarly, we require that an approximation used for a second derivative
(1) must be zero in areas of constant intensity; (2) must be nonzero at the
onset and end of an intensity step or ramp; and (3) must be zero along intensi-
ty ramps. Because we are dealing with digital quantities whose values are fi-
nite, the maximum possible intensity change is also finite, and the shortest
distance over which a change can occur is between adjacent pixels.

We obtain an approximation to the first-order derivative at point of a
one-dimensional function by expanding the function into a
Taylor series about letting and keeping only the linear terms (Prob-
lem 10.1). The result is the digital difference

(10.2-1)

We used a partial derivative here for consistency in notation when we consid-
er an image function of two variables, at which time we will be dealing
with partial derivatives along the two spatial axes. Clearly,
when is a function of only one variable.

We obtain an expression for the second derivative by differentiating Eq.
(10.2-1) with respect to 

where the second line follows from Eq. (10.2-1). This expansion is about point
Our interest is on the second derivative about point so we subtract 1

from the arguments in the preceding expression and obtain the result

(10.2-2)

It easily is verified that Eqs. (10.2-1) and (10.2-2) satisfy the conditions stated
at the beginning of this section regarding derivatives of the first and second
order. To illustrate this, and also to highlight the fundamental similarities and
differences between first- and second-order derivatives in the context of
image processing, consider Fig. 10.2.

Figure 10.2(a) shows an image that contains various solid objects, a line, and a
single noise point. Figure 10.2(b) shows a horizontal intensity profile (scan line)
of the image approximately through its center, including the isolated point.Tran-
sitions in intensity between the solid objects and the background along the scan
line show two types of edges: ramp edges (on the left) and step edges (on the
right). As we discuss later, intensity transitions involving thin objects such as
lines often are referred to as roof edges. Figure 10.2(c) shows a simplification of
the profile, with just enough points to make it possible for us to analyze numeri-
cally how the first- and second-order derivatives behave as they encounter a
noise point, a line, and the edges of objects. In this simplified diagram the
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transition in the ramp spans four pixels, the noise point is a single pixel, the line
is three pixels thick, and the transition of the intensity step takes place between
adjacent pixels.The number of intensity levels was limited to eight for simplicity.

Consider the properties of the first and second derivatives as we traverse the
profile from left to right. Initially, we note that the first-order derivative is
nonzero at the onset and along the entire intensity ramp, while the second-
order derivative is nonzero only at the onset and end of the ramp. Because
edges of digital images resemble this type of transition, we conclude that first-
order derivatives produce “thick” edges and second-order derivatives much
finer ones. Next we encounter the isolated noise point. Here, the magnitude of
the response at the point is much stronger for the second- than for the first-order
derivative. This is not unexpected, because a second-order derivative is much
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FIGURE 10.2 (a) Image. (b) Horizontal intensity profile through the center of the image,
including the isolated noise point. (c) Simplified profile (the points are joined by dashes
for clarity). The image strip corresponds to the intensity profile, and the numbers in the
boxes are the intensity values of the dots shown in the profile. The derivatives were
obtained using Eqs. (10.2-1) and (10.2-2).
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more aggressive than a first-order derivative in enhancing sharp changes. Thus,
we can expect second-order derivatives to enhance fine detail (including noise)
much more than first-order derivatives.The line in this example is rather thin, so
it too is fine detail, and we see again that the second derivative has a larger mag-
nitude. Finally, note in both the ramp and step edges that the second derivative
has opposite signs (negative to positive or positive to negative) as it transitions
into and out of an edge. This “double-edge” effect is an important characteristic
that, as we show in Section 10.2.6, can be used to locate edges. The sign of the
second derivative is used also to determine whether an edge is a transition from
light to dark (negative second derivative) or from dark to light (positive second
derivative), where the sign is observed as we move into the edge.

In summary, we arrive at the following conclusions: (1) First-order derivatives
generally produce thicker edges in an image. (2) Second-order derivatives have
a stronger response to fine detail, such as thin lines, isolated points, and noise.
(3) Second-order derivatives produce a double-edge response at ramp and step
transitions in intensity. (4) The sign of the second derivative can be used to de-
termine whether a transition into an edge is from light to dark or dark to light.

The approach of choice for computing first and second derivatives at every
pixel location in an image is to use spatial filters. For the filter mask in
Fig. 10.3, the procedure is to compute the sum of products of the mask coefficients
with the intensity values in the region encompassed by the mask.That is, with ref-
erence to Eq. (3.4.3), the response of the mask at the center point of the region is

(10.2-3)

where is the intensity of the pixel whose spatial location corresponds to the
location of the kth coefficient in the mask.The details of implementing this op-
eration over all pixels in an image are discussed in detail in Sections 3.4 and
3.6. In other words, computation of derivatives based on spatial masks is spa-
tial filtering of an image with those masks, as explained in those sections.†
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FIGURE 10.3
A general 
spatial filter mask.

3 * 3

†As explained in Section 3.4.3, Eq. (10.2-3) is simplified notation either for spatial correlation, given by
Eq. (3.4-1), or spatial convolution, given by Eq. (3.4-2).Therefore, when is evaluated at all locations in
an image, the result is an array. All spatial filtering in this chapter is done using correlation. In some in-
stances, we use the term convolving a mask with an image as a matter of convention. However, we use
this terminology only when the filter masks are symmetric, in which case correlation and convolution
yield the same result.

R
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10.2.2 Detection of Isolated Points
Based on the conclusions reached in the preceding section, we know that point
detection should be based on the second derivative. From the discussion in
Section 3.6.2, this implies using the Laplacian:

(10.2-4)

where the partials are obtained using Eq. (10.2-2):

(10.2-5)

and

(10.2-6)

The Laplacian is then

(10.2-7)

As explained in Section 3.6.2, this expression can be implemented using the
mask in Fig. 3.37(a).Also, as explained in that section, we can extend Eq. (10.2-7)
to include the diagonal terms, and use the mask in Fig. 3.37(b). Using the
Laplacian mask in Fig. 10.4(a), which is the same as the mask in Fig. 3.37(b), we
say that a point has been detected at the location on which the mask is
centered if the absolute value of the response of the mask at that point exceeds
a specified threshold. Such points are labeled 1 in the output image and all
others are labeled 0, thus producing a binary image. In other words, the output
is obtained using the following expression:

(10.2-8)

where is the output image, is a nonnegative threshold, and is given by
Eq. (10.2-3). This formulation simply measures the weighted differences be-
tween a pixel and its 8-neighbors. Intuitively, the idea is that the intensity of an
isolated point will be quite different from its surroundings and thus will be eas-
ily detectable by this type of mask. The only differences in intensity that are
considered of interest are those large enough (as determined by ) to be con-
sidered isolated points. Note that, as usual for a derivative mask, the coeffi-
cients sum to zero, indicating that the mask response will be zero in areas of
constant intensity.
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EXAMPLE 10.1:
Detection of
isolated points in
an image.

■ We illustrate segmentation of isolated points in an image with the aid of
Fig. 10.4(b), which is an X-ray image of a turbine blade from a jet engine. The
blade has a porosity in the upper-right quadrant of the image, and there is a
single black pixel embedded within the porosity. Figure 10.4(c) is the result of
applying the point detector mask to the X-ray image, and Fig. 10.4(d) shows
the result of using Eq. (10.2-8) with equal to 90% of the highest absolute
pixel value of the image in Fig. 10.4(c). The single pixel is clearly visible in this
image (the pixel was enlarged manually to enhance its visibility). This type of
detection process is rather specialized, because it is based on abrupt intensity
changes at single-pixel locations that are surrounded by a homogeneous back-
ground in the area of the detector mask. When this condition is not satisfied,
other methods discussed in this chapter are more suitable for detecting inten-
sity changes. ■

10.2.3 Line Detection
The next level of complexity is line detection. Based on the discussion in
Section 10.2.1, we know that for line detection we can expect second deriva-
tives to result in a stronger response and to produce thinner lines than first
derivatives.Thus, we can use the Laplacian mask in Fig. 10.4(a) for line detection
also, keeping in mind that the double-line effect of the second derivative must
be handled properly. The following example illustrates the procedure.

T

FIGURE 10.4
(a) Point
detection
(Laplacian) mask.
(b) X-ray image
of turbine blade
with a porosity.
The porosity
contains a single
black pixel.
(c) Result of
convolving the
mask with the
image. (d) Result
of using Eq.(10.2-8)
showing a single
point (the point
was enlarged to
make it easier to
see). (Original
image courtesy of 
X-TEK Systems,
Ltd.)

a
b c d
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EXAMPLE 10.2:
Using the
Laplacian for line
detection.

FIGURE 10.5
(a) Original image.
(b) Laplacian
image; the
magnified section
shows the
positive/negative
double-line effect
characteristic of the
Laplacian.
(c) Absolute value
of the Laplacian.
(d) Positive values
of the Laplacian.

†When a mask whose coefficients sum to zero is convolved with an image, the pixels in the resulting
image will sum to zero also (Problem 3.16), implying the existence of both positive and negative pixels
in the result. Scaling so that all values are nonnegative is required for display purposes.

■ Figure 10.5(a) shows a (binary) portion of a wire-bond mask for
an electronic circuit, and Fig. 10.5(b) shows its Laplacian image. Because the
Laplacian image contains negative values,† scaling is necessary for display. As
the magnified section shows, mid gray represents zero, darker shades of gray
represent negative values, and lighter shades are positive. The double-line ef-
fect is clearly visible in the magnified region.

At first, it might appear that the negative values can be handled simply by
taking the absolute value of the Laplacian image. However, as Fig. 10.5(c)
shows, this approach doubles the thickness of the lines. A more suitable ap-
proach is to use only the positive values of the Laplacian (in noisy situations
we use the values that exceed a positive threshold to eliminate random vari-
ations about zero caused by the noise). As the image in Fig. 10.5(d) shows,
this approach results in thinner lines, which are considerably more useful.
Note in Figs. 10.5(b) through (d) that when the lines are wide with respect to
the size of the Laplacian mask, the lines are separated by a zero “valley.”

486 * 486

a b
c d
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This is not unexpected. For example, when the filter is centered on a
line of constant intensity 5 pixels wide, the response will be zero, thus pro-
ducing the effect just mentioned. When we talk about line detection, the as-
sumption is that lines are thin with respect to the size of the detector. Lines
that do not satisfy this assumption are best treated as regions and handled by
the edge detection methods discussed later in this section. ■

The Laplacian detector in Fig. 10.4(a) is isotropic, so its response is indepen-
dent of direction (with respect to the four directions of the Laplacian
mask: vertical, horizontal, and two diagonals). Often, interest lies in detecting
lines in specified directions. Consider the masks in Fig. 10.6. Suppose that an
image with a constant background and containing various lines (oriented at 0°,

and 90°) is filtered with the first mask. The maximum responses would
occur at image locations in which a horizontal line passed through the middle
row of the mask.This is easily verified by sketching a simple array of 1s with a line
of a different intensity (say, 5s) running horizontally through the array. A similar
experiment would reveal that the second mask in Fig. 10.6 responds best to lines
oriented at the third mask to vertical lines; and the fourth mask to lines in
the direction.The preferred direction of each mask is weighted with a larg-
er coefficient (i.e., 2) than other possible directions.The coefficients in each mask
sum to zero, indicating a zero response in areas of constant intensity.

Let and denote the responses of the masks in Fig. 10.6, from
left to right, where the Rs are given by Eq. (10.2-3). Suppose that an image is
filtered (individually) with the four masks. If, at a given point in the image,

for all that point is said to be more likely associated with a
line in the direction of mask For example, if at a point in the image,

for that particular point is said to be more likely asso-
ciated with a horizontal line. Alternatively, we may be interested in detecting
lines in a specified direction. In this case, we would use the mask associated
with that direction and threshold its output, as in Eq. (10.2-8). In other words,
if we are interested in detecting all the lines in an image in the direction de-
fined by a given mask, we simply run the mask through the image and thresh-
old the absolute value of the result. The points that are left are the strongest
responses which, for lines 1 pixel thick, correspond closest to the direction
defined by the mask. The following example illustrates this procedure.

j = 2, 3, 4,ƒ R1 ƒ 7 ƒ Rj ƒ
k.

j Z k,ƒ Rk ƒ 7 ƒ Rj ƒ ,

R4R1, R2, R3,

-45°
+45°;

;45°,

3 * 3

3 * 3

Recall from Section 2.4.2
that the image axis con-
vention has the origin at
the top left, with the pos-
itive x-axis pointing
down and the positive 
y-axis extending to the
right. The angles of the
lines discussed in this
section are measured
with respect to the posi-
tive x-axis. For example, a
vertical line has an angle
of 0°, and a line 
extends downward and
to the right.

+45°

�1

2

�1

Horizontal Vertical�45� �45�

�1

2

�1

�1

2

�1

2

�1

�1

�1

2

�1

�1

�1

2

�1

�1

�1

2

2

2

�1

�1

�1

�1

�1

2

�1

2

�1

2

�1

�1

FIGURE 10.6 Line detection masks. Angles are with respect to the axis system in Fig. 2.18(b).

Do not confuse our use of
R to designate mask re-
sponse with the same
symbol to denote regions
in Section 10.1.
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EXAMPLE 10.3:
Detection of lines
in specified
directions.

■ Figure 10.7(a) shows the image used in the previous example. Suppose that
we are interested in finding all the lines that are 1 pixel thick and oriented at

For this purpose, we use the second mask in Fig. 10.6. Figure 10.7(b) is
the result of filtering the image with that mask. As before, the shades darker
than the gray background in Fig. 10.7(b) correspond to negative values. There
are two principal segments in the image oriented in the direction, one at
the top left and one at the bottom right. Figures 10.7(c) and (d) show zoomed
sections of Fig. 10.7(b) corresponding to these two areas. Note how much
brighter the straight line segment in Fig. 10.7(d) is than the segment in 
Fig. 10.7(c). The reason is that the line segment in the bottom right of 
Fig. 10.7(a) is 1 pixel thick, while the one at the top left is not. The mask is
“tuned” to detect 1-pixel-thick lines in the direction, so we expect its re-
sponse to be stronger when such lines are detected. Figure 10.7(e) shows the
positive values of Fig. 10.7(b). Because we are interested in the strongest re-
sponse, we let equal the maximum value in Fig. 10.7(e). Figure 10.7(f) shows
in white the points whose values satisfied the condition where is the
image in Fig. 10.7(e). The isolated points in the figure are points that also had
similarly strong responses to the mask. In the original image, these points and
their immediate neighbors are oriented in such a way that the mask produced
a maximum response at those locations. These isolated points can be detected
using the mask in Fig. 10.4(a) and then deleted, or they can be deleted using
morphological operators, as discussed in the last chapter. ■

10.2.4 Edge Models
Edge detection is the approach used most frequently for segmenting images based
on abrupt (local) changes in intensity. We begin by introducing several ways to
model edges and then discuss a number of approaches for edge detection.

Edge models are classified according to their intensity profiles. A step edge
involves a transition between two intensity levels occurring ideally over the
distance of 1 pixel. Figure 10.8(a) shows a section of a vertical step edge and a
horizontal intensity profile through the edge. Step edges occur, for example, in
images generated by a computer for use in areas such as solid modeling and
animation. These clean, ideal edges can occur over the distance of 1 pixel, pro-
vided that no additional processing (such as smoothing) is used to make them
look “real.” Digital step edges are used frequently as edge models in algorithm
development. For example, the Canny edge detection algorithm discussed in
Section 10.2.6 was derived using a step-edge model.

In practice, digital images have edges that are blurred and noisy, with the de-
gree of blurring determined principally by limitations in the focusing mecha-
nism (e.g., lenses in the case of optical images), and the noise level determined
principally by the electronic components of the imaging system. In such situa-
tions, edges are more closely modeled as having an intensity ramp profile, such
as the edge in Fig. 10.8(b).The slope of the ramp is inversely proportional to the
degree of blurring in the edge. In this model, we no longer have a thin (1 pixel
thick) path. Instead, an edge point now is any point contained in the ramp, and
an edge segment would then be a set of such points that are connected.

gg Ú T,
T
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A third model of an edge is the so-called roof edge, having the characteris-
tics illustrated in Fig. 10.8(c). Roof edges are models of lines through a region,
with the base (width) of a roof edge being determined by the thickness and
sharpness of the line. In the limit, when its base is 1 pixel wide, a roof edge is

a b
c d
e f

FIGURE 10.7
(a) Image of a
wire-bond
template.
(b) Result of
processing with
the line
detector mask in
Fig. 10.6.
(c) Zoomed view
of the top left
region of (b).
(d) Zoomed view
of the bottom
right region of
(b). (e) The image
in (b) with all
negative values
set to zero. (f) All
points (in white)
whose values
satisfied the
condition
where g is the
image in (e). (The
points in (f) were
enlarged to make
them easier to
see.)

g Ú T,

+45°
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FIGURE 10.9 A image showing (zoomed) actual ramp (bottom, left), step
(top, right), and roof edge profiles. The profiles are from dark to light, in the areas
indicated by the short line segments shown in the small circles. The ramp and “step”
profiles span 9 pixels and 2 pixels, respectively. The base of the roof edge is 3 pixels.
(Original image courtesy of Dr. David R. Pickens, Vanderbilt University.)

1508 * 1970

†Ramp edges with a sharp slope of a few pixels often are treated as step edges in order to differentiate
them from ramps in the same image whose slopes are more gradual.

really nothing more than a 1-pixel-thick line running through a region in an
image. Roof edges arise, for example, in range imaging, when thin objects
(such as pipes) are closer to the sensor than their equidistant background
(such as walls). The pipes appear brighter and thus create an image similar to
the model in Fig. 10.8(c).As mentioned earlier, other areas in which roof edges
appear routinely are in the digitization of line drawings and also in satellite im-
ages, where thin features, such as roads, can be modeled by this type of edge.

It is not unusual to find images that contain all three types of edges. Al-
though blurring and noise result in deviations from the ideal shapes, edges in
images that are reasonably sharp and have a moderate amount of noise do
resemble the characteristics of the edge models in Fig. 10.8, as the profiles in
Fig. 10.9 illustrate.† What the models in Fig. 10.8 allow us to do is write mathe-
matical expressions for edges in the development of image processing algo-
rithms. The performance of these algorithms will depend on the differences
between actual edges and the models used in developing the algorithms.

a b c

FIGURE 10.8
From left to right,
models (ideal
representations) of
a step, a ramp, and
a roof edge, and
their corresponding
intensity profiles.
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Second
derivative

First
derivative

Horizontal intensity
profile

Zero crossing

FIGURE 10.10
(a) Two regions of
constant intensity
separated by an
ideal vertical
ramp edge.
(b) Detail near
the edge, showing
a horizontal
intensity profile,
together with its
first and second
derivatives.

Figure 10.10(a) shows the image from which the segment in Fig. 10.8(b) was
extracted. Figure 10.10(b) shows a horizontal intensity profile. This figure
shows also the first and second derivatives of the intensity profile. As in the
discussion in Section 10.2.1, moving from left to right along the intensity pro-
file, we note that the first derivative is positive at the onset of the ramp and at
points on the ramp, and it is zero in areas of constant intensity. The second de-
rivative is positive at the beginning of the ramp, negative at the end of the
ramp, zero at points on the ramp, and zero at points of constant intensity. The
signs of the derivatives just discussed would be reversed for an edge that tran-
sitions from light to dark. The intersection between the zero intensity axis and
a line extending between the extrema of the second derivative marks a point
called the zero crossing of the second derivative.

We conclude from these observations that the magnitude of the first deriva-
tive can be used to detect the presence of an edge at a point in an image. Sim-
ilarly, the sign of the second derivative can be used to determine whether an
edge pixel lies on the dark or light side of an edge. We note two additional
properties of the second derivative around an edge: (1) it produces two values
for every edge in an image (an undesirable feature); and (2) its zero crossings
can be used for locating the centers of thick edges, as we show later in this sec-
tion. Some edge models make use of a smooth transition into and out of the
ramp (Problem 10.7). However, the conclusions reached using those models
are the same as with an ideal ramp, and working with the latter simplifies theo-
retical formulations. Finally, although attention thus far has been limited to a
1-D horizontal profile, a similar argument applies to an edge of any orienta-
tion in an image. We simply define a profile perpendicular to the edge direc-
tion at any desired point and interpret the results in the same manner as for
the vertical edge just discussed.

a b
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EXAMPLE 10.4:
Behavior of the
first and second
derivatives of a
noisy edge.

■ The edges in Fig. 10.8 are free of noise. The image segments in the first
column in Fig. 10.11 show close-ups of four ramp edges that transition from a
black region on the left to a white region on the right (keep in mind that the en-
tire transition from black to white is a single edge).The image segment at the top
left is free of noise. The other three images in the first column are corrupted by
additive Gaussian noise with zero mean and standard deviation of 0.1, 1.0, and
10.0 intensity levels, respectively.The graph below each image is a horizontal in-
tensity profile passing through the center of the image.All images have 8 bits of
intensity resolution, with 0 and 255 representing black and white, respectively.

Consider the image at the top of the center column. As discussed in connec-
tion with Fig. 10.10(b), the derivative of the scan line on the left is zero in the con-
stant areas. These are the two black bands shown in the derivative image. The
derivatives at points on the ramp are constant and equal to the slope of the ramp.
These constant values in the derivative image are shown in gray. As we move
down the center column, the derivatives become increasingly different from the
noiseless case. In fact, it would be difficult to associate the last profile in the cen-
ter column with the first derivative of a ramp edge. What makes these results in-
teresting is that the noise is almost invisible in the images on the left column.
These examples are good illustrations of the sensitivity of derivatives to noise.

As expected, the second derivative is even more sensitive to noise. The sec-
ond derivative of the noiseless image is shown at the top of the right column.
The thin white and black vertical lines are the positive and negative compo-
nents of the second derivative, as explained in Fig. 10.10. The gray in these im-
ages represents zero (as discussed earlier, scaling causes zero to show as gray).
The only noisy second derivative image that barely resembles the noiseless
case is the one corresponding to noise with a standard deviation of 0.1. The re-
maining second-derivative images and profiles clearly illustrate that it would
be difficult indeed to detect their positive and negative components, which are
the truly useful features of the second derivative in terms of edge detection.

The fact that such little visual noise can have such a significant impact on
the two key derivatives used for detecting edges is an important issue to keep
in mind. In particular, image smoothing should be a serious consideration
prior to the use of derivatives in applications where noise with levels similar to
those we have just discussed is likely to be present. ■

We conclude this section by noting that there are three fundamental steps
performed in edge detection:

1. Image smoothing for noise reduction. The need for this step is amply
illustrated by the results in the second and third columns of Fig. 10.11.

2. Detection of edge points. As mentioned earlier, this is a local operation
that extracts from an image all points that are potential candidates to
become edge points.

3. Edge localization. The objective of this step is to select from the candidate
edge points only the points that are true members of the set of points com-
prising an edge.

The remainder of this section deals with techniques for achieving these objectives.

Computation of the 
derivatives for the entire
image segment is 
discussed in the following
section. For now, our 
interest lies on analyzing
just the intensity profiles.
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FIGURE 10.11 First column: Images and intensity profiles of a ramp edge corrupted by
random Gaussian noise of zero mean and standard deviations of 0.0, 0.1, 1.0, and 10.0
intensity levels, respectively. Second column: First-derivative images and intensity
profiles. Third column: Second-derivative images and intensity profiles.
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10.2.5 Basic Edge Detection
As illustrated in the previous section, detecting changes in intensity for the
purpose of finding edges can be accomplished using first- or second-order de-
rivatives.We discuss first-order derivatives in this section and work with second-
order derivatives in Section 10.2.6.

The image gradient and its properties

The tool of choice for finding edge strength and direction at location of
an image, is the gradient, denoted by and defined as the vector

(10.2-9)

This vector has the important geometrical property that it points in the direction
of the greatest rate of change of at location 

The magnitude (length) of vector denoted as where

(10.2-10)

is the value of the rate of change in the direction of the gradient vector.
Note that and are images of the same size as the original,
created when and are allowed to vary over all pixel locations in It is
common practice to refer to the latter image as the gradient image, or sim-
ply as the gradient when the meaning is clear. The summation, square, and
square root operations are array operations, as defined in Section 2.6.1.

The direction of the gradient vector is given by the angle

(10.2-11)

measured with respect to the x-axis. As in the case of the gradient image,
also is an image of the same size as the original created by the array di-

vision of image by image The direction of an edge at an arbitrary point
is orthogonal to the direction, of the gradient vector at the point.a(x, y),(x, y)

gx.gy

a(x, y)

a(x, y) = tan-1Bgy

gx
R

f.yx
M(x, y)gx, gy,

M(x, y) = mag(§f) = 2gx
2 + gy

2

M(x, y),§f,
(x, y).f

§f K grad(f) K Bgx

gy
R = D 0f

0x
0f

0y

T
§f,f,

(x, y)

For convenience, we 
repeat here some 
equations from 
Section 3.6.4.

EXAMPLE 10.5:
Properties of the
gradient.

■ Figure 10.12(a) shows a zoomed section of an image containing a straight
edge segment. Each square shown corresponds to a pixel, and we are interest-
ed in obtaining the strength and direction of the edge at the point highlighted
with a box.The pixels in gray have value 0 and the pixels in white have value 1.
We show following this example that an approach for computing the deriva-
tives in the x- and y-directions using a neighborhood centered about a
point consists simply of subtracting the pixels in the top row of the neighbor-
hood from the pixels in the bottom row to obtain the partial derivative in the
x-direction. Similarly, we subtract the pixels in the left column from the pixels
in the right column to obtain the partial derivative in the y-direction. It then

3 * 3
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x

y

Gradient vector Gradient vector

Edge direction

a
a � 90�

a

FIGURE 10.12 Using the gradient to determine edge strength and direction at a point.
Note that the edge is perpendicular to the direction of the gradient vector at the point
where the gradient is computed. Each square in the figure represents one pixel.

follows, using these differences as our estimates of the partials, that 
and at the point in question. Then,

from which we obtain at that point. Similarly, the direction of
the gradient vector at the same point follows from Eq. (10.2-11):

which is the same as 135° measured in the
positive direction with respect to the x-axis. Figure 10.12(b) shows the gradient
vector and its direction angle.

Figure 10.12(c) illustrates the important fact mentioned earlier that the
edge at a point is orthogonal to the gradient vector at that point. So the direc-
tion angle of the edge in this example is All edge points in
Fig. 10.12(a) have the same gradient, so the entire edge segment is in the same
direction. The gradient vector sometimes is called the edge normal. When the
vector is normalized to unit length by dividing it by its magnitude [Eq. (10.2-10)],
the resulting vector is commonly referred to as the edge unit normal. ■

Gradient operators

Obtaining the gradient of an image requires computing the partial derivatives
and at every pixel location in the image. We are dealing with digi-

tal quantities, so a digital approximation of the partial derivatives over a
neighborhood about a point is required. From Section 10.2.1 we know that

(10.2-12)

and

(10.2-13)gy =
0f(x, y)

0y
= f(x, y + 1) - f(x, y)

gx =
0f(x, y)

0x
= f(x + 1, y) - f(x, y)

0f>0y0f>0x

a - 90° = 45°.

a(x, y) = tan-1(gy>gx) = -45°,

M(x, y) = 222

§f = Bgx

gy
R = D 0f

0x
0f

0y

T = B -2
2
R

0f>0y = 2
0f>0x = -2 Recall from Section 2.4.2

that the origin of the
image coordinate system
is at the top left, with the
positive x- and y-axes
extending down and to
the right, respectively.

a b c
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�1

1

�1 1
FIGURE 10.13
One-dimensional
masks used to
implement Eqs.
(10.2-12) and
(10.2-13).

z1 z2 z3

z4 z5 z6

z7 z8 z9

�1 0

0 1

0 �1

1 0

�1 �1 �1

0 0 0

1 1 1

�1 0 1

�1 0 1

�1 0 1

�1 �2 �1

0 0 0

1 2 1

�1 0 1

�2 0 2

�1 0 1

Roberts

Prewitt

Sobel

FIGURE 10.14
A region of
an image (the z’s
are intensity
values) and
various masks
used to compute
the gradient at
the point labeled
z5.

3 * 3

These two equations can be implemented for all pertinent values of and by
filtering with the 1-D masks in Fig. 10.13.

When diagonal edge direction is of interest, we need a 2-D mask.The Roberts
cross-gradient operators (Roberts [1965]) are one of the earliest attempts to use
2-D masks with a diagonal preference. Consider the region in Fig. 10.14(a).
The Roberts operators are based on implementing the diagonal differences

(10.2-14)

and

(10.2-15)gy =
0f

0y
= (z8 - z6)

gx =
0f

0x
= (z9 - z5)

3 * 3

f(x, y)
yx

In the remainder of this
section we assume 
implicitly that is a 
function of two variables,
and omit the variables to
simplify the notation.

f

Filter masks used to 
compute the derivatives
needed for the gradient
are often called gradient
operators, difference 
operators, edge operators,
or edge detectors.

a
b c
d e
f g

a b
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These derivatives can be implemented by filtering an image with the masks in
Figs. 10.14(b) and (c).

Masks of size are simple conceptually, but they are not as useful for
computing edge direction as masks that are symmetric about the center point,
the smallest of which are of size These masks take into account the na-
ture of the data on opposite sides of the center point and thus carry more infor-
mation regarding the direction of an edge. The simplest digital approximations
to the partial derivatives using masks of size are given by

(10.2-16)

and

(10.2-17)

In these formulations, the difference between the third and first rows of the
region approximates the derivative in the x-direction, and the difference

between the third and first columns approximate the derivate in the y-direction.
Intuitively, we would expect these approximations to be more accurate than
the approximations obtained using the Roberts operators. Equations (10.2-16)
and (10.2-17) can be implemented over an entire image by filtering with the
two masks in Figs. 10.14(d) and (e).These masks are called the Prewitt operators
(Prewitt [1970]).

A slight variation of the preceding two equations uses a weight of 2 in the
center coefficient:

(10.2-18)

and

(10.2-19)

It can be shown (Problem 10.10) that using a 2 in the center location provides
image smoothing. Figures 10.14(f) and (g) show the masks used to implement
Eqs. (10.2-18) and (10.2-19). These masks are called the Sobel operators
(Sobel [1970]).

The Prewitt masks are simpler to implement than the Sobel masks, but,
the slight computational difference between them typically is not an issue.
The fact that the Sobel masks have better noise-suppression (smoothing)
characteristics makes them preferable because, as mentioned in the previ-
ous section, noise suppression is an important issue when dealing with de-
rivatives. Note that the coefficients of all the masks in Fig. 10.14 sum to zero,
thus giving a response of zero in areas of constant intensity, as expected of a
derivative operator.

gy =
0f

0y
= (z3 + 2z6 + z9) - (z1 + 2z4 + z7)

gx =
0f

0x
= (z7 + 2z8 + z9) - (z1 + 2z2 + z3)

f

3 * 3

gy =
0f

0y
= (z3 + z6 + z9) - (z1 + z4 + z7)

gx =
0f

0x
= (z7 + z8 + z9) - (z1 + z2 + z3)

3 * 3

3 * 3.

2 * 2

Although these 
equations encompass a
larger neighborhood, we
are still dealing with
differences between
intensity values, so the
conclusions from earlier
discussions regarding
first-order derivatives
still apply.
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0 1 1

�1 0 1

�1 �1 0

�1 �1 0

�1 0 1

0 1 1

0 1 2

�1 0 1

�2 �1 0

�2 �1 0

�1 0 1

0 1 2

Prewitt

Sobel

FIGURE 10.15
Prewitt and Sobel
masks for
detecting diagonal
edges.

The masks just discussed are used to obtain the gradient components and
at every pixel location in an image. These two partial derivatives are then

used to estimate edge strength and direction. Computing the magnitude of the
gradient requires that and be combined in the manner shown in Eq. (10.2-
10). However, this implementation is not always desirable because of the com-
putational burden required by squares and square roots. An approach used
frequently is to approximate the magnitude of the gradient by absolute values:

(10.2-20)

This equation is more attractive computationally, and it still preserves relative
changes in intensity levels. The price paid for this advantage is that the result-
ing filters will not be isotropic (invariant to rotation) in general. However, this
is not an issue when masks such as the Prewitt and Sobel masks are used to
compute and because these masks give isotropic results only for vertical
and horizontal edges. Results would be isotropic only for edges in those two
directions, regardless of which of the two equations is used. In addition, Eqs.
(10.2-10) and (10.2-20) give identical results for vertical and horizontal edges
when the Sobel or Prewitt masks are used (Problem 10.8).

It is possible to modify the masks in Fig. 10.14 so that they have their
strongest responses along the diagonal directions. Figure 10.15 shows the two
additional Prewitt and Sobel masks needed for detecting edges in the diagonal
directions.

3 * 3

gy,gx

M(x, y) L ƒ gx ƒ + ƒ gy ƒ

gygx

gy

gx

EXAMPLE 10.6:
Illustration of the
2-D gradient
magnitude and
angle.

■ Figure 10.16 illustrates the absolute value response of the two components
of the gradient, and as well as the gradient image formed from the
sum of these two components. The directionality of the horizontal and verti-
cal components of the gradient is evident in Figs. 10.16(b) and (c). Note, for
example, how strong the roof tile, horizontal brick joints, and horizontal seg-
ments of the windows are in Fig. 10.16(b) compared to other edges. By contrast,

ƒ gy ƒ ,ƒ gx ƒ

a b
c d
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FIGURE 10.16
(a) Original image
of size

pixels,
with intensity
values scaled to
the range [0, 1].
(b) the
component of the
gradient in the 
x-direction,
obtained using
the Sobel mask in
Fig. 10.14(f) to
filter the image.
(c) obtained
using the mask in
Fig. 10.14(g).
(d) The gradient
image, ƒ gx ƒ + ƒ gy ƒ .

ƒ gy ƒ ,

ƒ gx ƒ ,

834 * 1114

FIGURE 10.17
Gradient angle
image computed
using
Eq. (10.2-11).
Areas of constant
intensity in this
image indicate
that the direction
of the gradient
vector is the same
at all the pixel
locations in those
regions.

Fig. 10.16(c) favors features such as the vertical components of the façade and
windows. It is common terminology to use the term edge map when referring
to an image whose principal features are edges, such as gradient magnitude
images. The intensities of the image in Fig. 10.16(a) were scaled to the range
[0, 1]. We use values in this range to simplify parameter selection in the vari-
ous methods for edge detection discussed in this section.

Figure 10.17 shows the gradient angle image computed using Eq. (10.2-11).
In general, angle images are not as useful as gradient magnitude images for
edge detection, but they do complement the information extracted from an
image using the magnitude of the gradient. For instance, the constant intensity
areas in Fig. 10.16(a), such as the front edge of the sloping roof and top hori-
zontal bands of the front wall, are constant in Fig. 10.17, indicating that the
gradient vector direction at all the pixel locations in those regions is the same.

a b
c d



712 Chapter 10 ■ Image Segmentation

FIGURE 10.18
Same sequence as
in Fig. 10.16, but
with the original
image smoothed
using a 
averaging filter
prior to edge
detection.

5 * 5

As we show in Section 10.2.6, angle information plays a key supporting role in
the implementation of the Canny edge detection algorithm, the most ad-
vanced edge detection method we discuss in this chapter. ■

The original image in Fig. 10.16(a) is of reasonably high resolution
( pixels), and at the distance the image was acquired, the contribu-
tion made to image detail by the wall bricks is significant. This level of fine de-
tail often is undesirable in edge detection because it tends to act as noise,
which is enhanced by derivative computations and thus complicates detection
of the principal edges in an image. One way to reduce fine detail is to smooth
the image. Figure 10.18 shows the same sequence of images as in Fig. 10.16, but
with the original image smoothed first using a averaging filter (see
Section 3.5 regarding smoothing filters). The response of each mask now
shows almost no contribution due to the bricks, with the results being domi-
nated mostly by the principal edges.

It is evident in Figs. 10.16 and 10.18 that the horizontal and vertical Sobel
masks do not differentiate between edges oriented in the directions. If it
is important to emphasize edges along the diagonal directions, then one of the
masks in Fig. 10.15 should be used. Figures 10.19(a) and (b) show the absolute
responses of the 45° and Sobel masks, respectively.The stronger diagonal
response of these masks is evident in these figures. Both diagonal masks have
similar response to horizontal and vertical edges but, as expected, their response
in these directions is weaker than the response of the horizontal and vertical
masks, as discussed earlier.

-45°

;45°

5 * 5

834 * 1114

The maximum edge
strength (magnitude) of
a smoothed image 
decreases inversely as a
function of the size of the
smoothing mask (Prob-
lem 10.13).

a b
c d
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FIGURE 10.19
Diagonal edge
detection.
(a) Result of
using the mask in 
Fig. 10.15(c).
(b) Result of
using the mask in 
Fig. 10.15(d). The
input image in
both cases was 
Fig. 10.18(a).

Combining the gradient with thresholding

The results in Fig. 10.18 show that edge detection can be made more selective
by smoothing the image prior to computing the gradient. Another approach
aimed at achieving the same basic objective is to threshold the gradient image.
For example, Fig. 10.20(a) shows the gradient image from Fig. 10.16(d) thresh-
olded, in the sense that pixels with values greater than or equal to 33% of the
maximum value of the gradient image are shown in white, while pixels
below the threshold value are shown in black. Comparing this image with
Fig. 10.18(d), we see that there are fewer edges in the thresholded image,
and that the edges in this image are much sharper (see, for example, the edges
in the roof tile). On the other hand, numerous edges, such as the 45° line defining
the far edge of the roof, are broken in the thresholded image.

When interest lies both in highlighting the principal edges and on maintain-
ing as much connectivity as possible, it is common practice to use both
smoothing and thresholding. Figure 10.20(b) shows the result of thresholding
Fig. 10.18(d), which is the gradient of the smoothed image. This result shows a

FIGURE 10.20 (a) Thresholded version of the image in Fig. 10.16(d), with the threshold
selected as 33% of the highest value in the image; this threshold was just high enough to
eliminate most of the brick edges in the gradient image. (b) Thresholded version of the
image in Fig. 10.18(d), obtained using a threshold equal to 33% of the highest value in
that image.

a b

The threshold used to
generate Fig. 10.20(a)
was selected so that most
of the small edges caused
by the bricks were elimi-
nated. Recall that this
was the original objective
for smoothing the image
in Fig. 10.16 prior to
computing the gradient.

a b
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reduced number of broken edges; for instance, compare the 45° edges in Figs.
10.20(a) and (b).Of course,edges whose intensity values were severely attenuated
due to blurring (e.g., the edges in the tile roof) are likely to be totally eliminated
by thresholding.We return to the problem of broken edges in Section 10.2.7.

10.2.6 More Advanced Techniques for Edge Detection
The edge-detection methods discussed in the previous section are based sim-
ply on filtering an image with one or more masks, with no provisions being
made for edge characteristics and noise content. In this section, we discuss
more advanced techniques that make an attempt to improve on simple edge-
detection methods by taking into account factors such as image noise and the
nature of edges themselves.

The Marr-Hildreth edge detector

One of the earliest successful attempts at incorporating more sophisticated
analysis into the edge-finding process is attributed to Marr and Hildreth [1980].
Edge-detection methods in use at the time were based on using small operators
(such as the Sobel masks), as discussed in the previous section. Marr and Hildreth
argued (1) that intensity changes are not independent of image scale and so their
detection requires the use of operators of different sizes; and (2) that a sudden in-
tensity change will give rise to a peak or trough in the first derivative or, equiva-
lently, to a zero crossing in the second derivative (as we saw in Fig. 10.10).

These ideas suggest that an operator used for edge detection should have
two salient features. First and foremost, it should be a differential operator ca-
pable of computing a digital approximation of the first or second derivative at
every point in the image. Second, it should be capable of being “tuned” to act
at any desired scale, so that large operators can be used to detect blurry edges
and small operators to detect sharply focused fine detail.

Marr and Hildreth argued that the most satisfactory operator fulfilling
these conditions is the filter where, as defined in Section 3.6.2, is the
Laplacian operator, and is the 2-D Gaussian function

(10.2-21)

with standard deviation (sometimes is called the space constant). To find
an expression for we perform the following differentiations:

(10.2-22)
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0
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To convince yourself that
edge detection is not in-
dependent of scale, con-
sider, for example, the
roof edge in Fig. 10.8(c).
If the scale of the image
is reduced, the edge will
appear thinner.

It is customary for 
Eq. (10.2-21) to differ
from the definition of a
2-D Gaussian PDF by
the constant term

If an exact 
expression is desired in a
given application, then
the multiplying constant
can be appended to the
final result in 
Eq. (10.2-23).

1>2ps2.
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Collecting terms gives the final expression:

(10.2-23)

This expression is called the Laplacian of a Gaussian (LoG).
Figures 10.21(a) through (c) show a 3-D plot, image, and cross section of the

negative of the LoG function (note that the zero crossings of the LoG occur at
which defines a circle of radius centered on the origin).

Because of the shape illustrated in Fig. 10.21(a), the LoG function sometimes
is called the Mexican hat operator. Figure 10.21(d) shows a mask that
approximates the shape in Fig. 10.21(a) (in practice we would use the negative
of this mask). This approximation is not unique. Its purpose is to capture the
essential shape of the LoG function; in terms of Fig. 10.21(a), this means a pos-
itive, central term surrounded by an adjacent, negative region whose values in-
crease as a function of distance from the origin, and a zero outer region. The
coefficients must sum to zero so that the response of the mask is zero in areas
of constant intensity.

Masks of arbitrary size can be generated by sampling Eq. (10.2-23) and scal-
ing the coefficients so that they sum to zero. A more effective approach for
generating a LoG filter is to sample Eq. (10.2-21) to the desired size andn * n

5 * 5

22sx2 + y2 = 2s2,

§2G(x, y) = Bx2 + y2 - 2s2

s4 Re-
x2 + y2

2s2

Note the similarity be-
tween the cross section in
Fig. 10.21(c) and the
highpass filter in Fig.
4.37(d). Thus, we can ex-
pect the LoG to behave
as a highpass filter.

0 0 �1 0 0

0 �1 �2 �1 0

�1 �2 16 �2 �1

0 �1 �2 �1 0

0 0 �1 0 0

x y

�2G

�2G

Zero crossingZero crossing

2s2

FIGURE 10.21
(a) Three-
dimensional plot
of the negative of
the LoG. (b)
Negative of the
LoG displayed as
an image. (c)
Cross section of
(a) showing zero
crossings.
(d) mask
approximation to
the shape in (a).
The negative of
this mask would
be used in
practice.

5 * 5

a b
c d
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then convolve† the resulting array with a Laplacian mask, such as the mask in
Fig. 10.4(a). Because convolving an image array with a mask whose coeffi-
cients sum to zero yields a result whose elements also sum to zero (see Prob-
lems 3.16 and 10.14), this approach automatically satisfies the requirement
that the sum of the LoG filter coefficients be zero. We discuss the issue of se-
lecting the size of LoG filter later in this section.

There are two fundamental ideas behind the selection of the operator 
First, the Gaussian part of the operator blurs the image, thus reducing the in-
tensity of structures (including noise) at scales much smaller than Unlike
averaging of the form discussed in Section 3.5 and used in Fig. 10.18, the
Gaussian function is smooth in both the spatial and frequency domains (see
Section 4.8.3), and is thus less likely to introduce artifacts (e.g., ringing) not
present in the original image. The other idea concerns the second deriva-
tive part of the filter. Although first derivatives can be used for detecting
abrupt changes in intensity, they are directional operators. The Laplacian, on
the other hand, has the important advantage of being isotropic (invariant to
rotation), which not only corresponds to characteristics of the human visual
system (Marr [1982]) but also responds equally to changes in intensity in any
mask direction, thus avoiding having to use multiple masks to calculate the
strongest response at any point in the image.

The Marr-Hildreth algorithm consists of convolving the LoG filter with an
input image,

(10.2-24)

and then finding the zero crossings of to determine the locations of
edges in Because these are linear processes, Eq. (10.2-24) can be written
also as

(10.2-25)

indicating that we can smooth the image first with a Gaussian filter and then
compute the Laplacian of the result.These two equations give identical results.

The Marr-Hildreth edge-detection algorithm may be summarized as follows:

1. Filter the input image with an Gaussian lowpass filter obtained by
sampling Eq. (10.2-21).

2. Compute the Laplacian of the image resulting from Step 1 using, for example,
the mask in Fig. 10.4(a). [Steps 1 and 2 implement Eq. (10.2-25).]

3. Find the zero crossings of the image from Step 2.

To specify the size of the Gaussian filter, recall that about 99.7% of the volume
under a 2-D Gaussian surface lies between about the mean.Thus, as a rule;3s

3 * 3

n * n

g(x, y) = §2[G(x, y)�f(x, y)]

f(x, y).
g(x, y)

g(x, y) = [§2G(x, y)]�f(x, y)

f(x, y),

§2,

s.

§2G.

This expression is 
implemented in the 
spatial domain using 
Eq. (3.4-2). It can be 
implemented also in the
frequency domain using 
Eq. (4.7-1).

†The LoG is a symmetric filter, so spatial filtering using correlation or convolution yields the same result.
We use the convolution terminology here to indicate linear filtering for consistency with the literature
on this topic.Also, this gives you exposure to terminology that you will encounter in other contexts. It is
important that you keep in mind the comments made at the end of Section 3.4.2 regarding this topic.
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Attempting to find the
zero crossings by finding
the coordinates 
such that is
impractical because of
noise and/or 
computational
inaccuracies.

g(x, y) = 0
(x, y),

of thumb, the size of an LoG discrete filter should be such that is the
smallest odd integer greater than or equal to Choosing a filter mask small-
er than this will tend to “truncate” the LoG function, with the degree of trun-
cation being inversely proportional to the size of the mask; using a larger mask
would make little difference in the result.

One approach for finding the zero crossings at any pixel, of the filtered
image, is based on using a neighborhood centered at A zero
crossing at implies that the signs of at least two of its opposing neighboring
pixels must differ. There are four cases to test: left/right, up/down, and the two
diagonals. If the values of are being compared against a threshold (a
common approach), then not only must the signs of opposing neighbors be dif-
ferent, but the absolute value of their numerical difference must also exceed
the threshold before we can call a zero-crossing pixel. We illustrate this ap-
proach in Example 10.7 below.

Zero crossings are the key feature of the Marr-Hildreth edge-detection
method. The approach discussed in the previous paragraph is attractive be-
cause of its simplicity of implementation and because it generally gives good
results. If the accuracy of the zero-crossing locations found using this method
is inadequate in a particular application, then a technique proposed by Huertas
and Medioni [1986] for finding zero crossings with subpixel accuracy can be
employed.

p

g(x, y)

p
p.3 * 3g(x, y),

p,

6s.
nn * n

EXAMPLE 10.7:
Illustration of the
Marr-Hildreth
edge-detection
method.

■ Figure 10.22(a) shows the original building image used earlier and 
Fig. 10.22(b) is the result of Steps 1 and 2 of the Marr-Hildreth algorithm, using

(approximately 0.5% of the short dimension of the image) and 
(the smallest odd integer greater than or equal to as discussed earlier). As
in Fig. 10.5, the gray tones in this image are due to scaling. Figure 10.22(c)
shows the zero crossings obtained using the neighborhood approach
discussed above with a threshold of zero. Note that all the edges form closed
loops. This so-called “spaghetti” effect is a serious drawback of this method
when a threshold value of zero is used (Problem 10.15). We avoid closed-loop
edges by using a positive threshold.

Figure 10.22(d) shows the result of using a threshold approximately equal
to 4% of the maximum value of the LoG image. Note that the majority of the
principal edges were readily detected and “irrelevant” features, such as the
edges due to the bricks and the tile roof, were filtered out.As we show in the next
section, this type of performance is virtually impossible to obtain using the
gradient-based edge-detection techniques discussed in the previous section.
Another important consequence of using zero crossings for edge detection is
that the resulting edges are 1 pixel thick. This property simplifies subsequent
stages of processing, such as edge linking. ■

A procedure used sometimes to take into account the fact mentioned earlier
that intensity changes are scale dependent is to filter an image with various
values of The resulting zero-crossings edge maps are then combined by
keeping only the edges that are common to all maps. This approach can yield

s.

3 * 3

6s,
n = 25s = 4
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FIGURE 10.22
(a) Original image
of size 
pixels, with
intensity values
scaled to the range
[0, 1]. (b) Results
of Steps 1 and 2 of
the Marr-Hildreth
algorithm using

and
(c) Zero crossings
of (b) using a
threshold of 0
(note the closed-
loop edges).
(d) Zero crossings
found using a
threshold equal to
4% of the
maximum value of
the image in (b).
Note the thin
edges.

n = 25.s = 4

834 * 1114

The difference of 
Gaussians is a highpass
filter, as discussed in
Section 4.7.4.

useful information, but, due to its complexity, it is used in practice mostly as a
design tool for selecting an appropriate value of to use with a single filter.

Marr and Hildreth [1980] noted that it is possible to approximate the LoG
filter in Eq. (10.2-23) by a difference of Gaussians (DoG):

(10.2-26)

with Experimental results suggest that certain “channels” in the
human vision system are selective with respect to orientation and frequency,
and can be modeled using Eq. (10.2-26) with a ratio of standard deviations of
1.75:1. Marr and Hildreth suggested that using the ratio 1.6:1 preserves the
basic characteristics of these observations and also provides a closer “engi-
neering” approximation to the LoG function. To make meaningful compar-
isons between the LoG and DoG, the value of for the LoG must be selected
as in the following equation so that the LoG and DoG have the same zero
crossings (Problem 10.17):

(10.2-27)

Although the zero crossings of the LoG and DoG will be the same when this
value of is used, their amplitude scales will be different. We can make them
compatible by scaling both functions so that they have the same value at the
origin.

s

s2 =
s1

2s2
2

s1
2 - s2

2 ln Bs1
2

s2
2R
s

s1 7 s2.

DoG (x, y) =
1

2ps1
2 e-

x2 + y2

2s1
2 -

1

2ps2
2 e-

x2 + y2

2s2
2

s
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FIGURE 10.23
(a) Negatives of the
LoG (solid) and
DoG (dotted)
profiles using a
standard deviation
ratio of 1.75:1.
(b) Profiles obtained
using a ratio of 1.6:1.

The profiles in Figs. 10.23(a) and (b) were generated with standard deviation
ratios of 1:1.75 and 1:1.6, respectively (by convention, the curves shown are
inverted, as in Fig. 10.21). The LoG profiles are shown as solid lines while the
DoG profiles are dotted. The curves shown are intensity profiles through the
center of LoG and DoG arrays generated by sampling Eq. (10.2-23) (with
the constant in in front) and Eq. (10.2-26), respectively. The amplitude
of all curves at the origin were normalized to 1.As Fig. 10.23(b) shows, the ratio
1:1.6 yielded a closer approximation between the LoG and DoG functions.

Both the LoG and the DoG filtering operations can be implemented with
1-D convolutions instead of using 2-D convolutions directly (Problem 10.19).
For an image of size and a filter of size doing so reduces the
number of multiplications and additions for each convolution from being pro-
portional to for 2-D convolutions to being proportional to nMN for
1-D convolutions. This implementation difference is significant. For example, if

a 1-D implementation will require on the order of 12 times fewer
multiplication and addition operations than using 2-D convolution.

The Canny edge detector

Although the algorithm is more complex, the performance of the Canny edge
detector (Canny [1986]) discussed in this section is superior in general to the edge
detectors discussed thus far. Canny’s approach is based on three basic objectives:

1. Low error rate. All edges should be found, and there should be no spurious
responses. That is, the edges detected must be as close as possible to the
true edges.

2. Edge points should be well localized. The edges located must be as close as
possible to the true edges.That is, the distance between a point marked as an
edge by the detector and the center of the true edge should be minimum.

3. Single edge point response. The detector should return only one point for
each true edge point. That is, the number of local maxima around the true
edge should be minimum. This means that the detector should not identify
multiple edge pixels where only a single edge point exists.

The essence of Canny’s work was in expressing the preceding three criteria
mathematically and then attempting to find optimal solutions to these formu-
lations. In general, it is difficult (or impossible) to find a closed-form solution

n = 25,

n2MN

n * n,M * N

1>2ps2

a b
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Recall that white noise is
noise having a frequency
spectrum that is continu-
ous and uniform over a
specified frequency band.
White Gaussian noise is
white noise in which the
distribution of amplitude
values is Gaussian.
Gaussian white noise is a
good approximation of
many real-world situa-
tions and generates
mathematically tractable
models. It has the useful
property that its values
are statistically 
independent.

that satisfies all the preceding objectives. However, using numerical optimiza-
tion with 1-D step edges corrupted by additive white Gaussian noise led to the
conclusion that a good approximation† to the optimal step edge detector is the
first derivative of a Gaussian:

(10.2-28)

Generalizing this result to 2-D involves recognizing that the 1-D approach still
applies in the direction of the edge normal (see Fig. 10.12). Because the direc-
tion of the normal is unknown beforehand, this would require applying the
1-D edge detector in all possible directions. This task can be approximated by
first smoothing the image with a circular 2-D Gaussian function, computing
the gradient of the result, and then using the gradient magnitude and direction
to estimate edge strength and direction at every point.

Let denote the input image and denote the Gaussian function:

(10.2-29)

We form a smoothed image, by convolving and 

(10.2-30)

This operation is followed by computing the gradient magnitude and direction
(angle), as discussed in Section 10.2.5:

(10.2-31)

and

(10.2-32)

with and Any of the filter mask pairs in Fig. 10.14 can
be used to obtain and Equation (10.2-30) is implemented using an 
Gaussian mask whose size is discussed below. Keep in mind that and

are arrays of the same size as the image from which they are computed.
Because it is generated using the gradient, typically contains wide

ridges around local maxima (recall the discussion in Section 10.2.1 regarding
edges obtained using the gradient). The next step is to thin those ridges. One
approach is to use nonmaxima suppression. This can be done in several ways,
but the essence of the approach is to specify a number of discrete orientations

M(x, y)
a(x, y)

M(x, y)
n * ngy.gx

gy = 0fs>0y.gx = 0fs>0x

a(x, y) = tan-1Bgy

gx
R

M(x, y) = 2gx
2 + gy

2

fs(x, y) = G(x, y)�f(x, y)

f:Gfs(x, y),

G(x, y) = e-
x2 + y2

2s2

G(x, y)f(x, y)

d

dx
e- x2

2s2 =
-x

s2 e- x2

2s2

†Canny [1986] showed that using a Gaussian approximation proved only about 20% worse than using the
optimized numerical solution. A difference of this magnitude generally is imperceptible in most appli-
cations.
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p1 p2 p3

p4
p5 p6

p7

Edge normal

p8 p9

p1 p2 p3

p4 p5
p6

p7

Edge normal

p8 p9

Edge Edge normal
(gradient vector)

�22.5�

�157.5�

�22.5�

�157.5�

a

x

y

Vertical edge

Horizontal edge

�157.5�

�112.5�

�67.5�

�22.5�

�45�edge
�157.5�

�112.5�

�67.5�

�22.5�
0�

�45�edge

of the edge normal (gradient vector). For example, in a region we can
define four orientations† for an edge passing through the center point of the
region: horizontal, vertical, and Figure 10.24(a) shows the situation
for the two possible orientations of a horizontal edge. Because we have to
quantize all possible edge directions into four, we have to define a range of di-
rections over which we consider an edge to be horizontal. We determine edge
direction from the direction of the edge normal, which we obtain directly from
the image data using Eq. (10.2-32).As Fig. 10.24(b) shows, if the edge normal is
in the range of directions from to 22.5° or from to 157.5°, we
call the edge a horizontal edge. Figure 10.24(c) shows the angle ranges corre-
sponding to the four directions under consideration.

Let and denote the four basic edge directions just discussed for
a region: horizontal, vertical, and respectively. We can for-
mulate the following nonmaxima suppression scheme for a region cen-
tered at every point in 

1. Find the direction that is closest to 
2. If the value of is less than at least one of its two neighbors along

let (suppression); otherwise, let gN(x, y) = M(x, y)gN(x, y) = 0dk,
M(x, y)

a(x, y).dk

a(x, y):(x, y)
3 * 3

+45°,-45°,3 * 3
d4d1, d2, d3,

-157.5°-22.5°

-45°.+45°

3 * 3

†Keep in mind that every edge has two possible orientations. For example, an edge whose normal is ori-
ented at 0° and an edge whose normal is oriented at 180° are the same horizontal edge.

FIGURE 10.24
(a) Two possible
orientations of a
horizontal edge (in
gray) in a 
neighborhood.
(b) Range of values
(in gray) of the
direction angle of
the edge normal,
for a horizontal
edge. (c) The angle
ranges of the edge
normals for the
four types of edge
directions in a

neighborhood.
Each edge
direction has two
ranges, shown in
corresponding
shades of gray.

3 * 3

a,

3 * 3

a b
c
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where is the nonmaxima-suppressed image. For example, with refer-
ence to Fig. 10.24(a), letting be at and assuming a horizontal edge
through the pixels in which we would be interested in Step 2 are and 
Image contains only the thinned edges; it is equal to with the
nonmaxima edge points suppressed.

The final operation is to threshold to reduce false edge points. In
Section 10.2.5 we did this using a single threshold, in which all values below
the threshold were set to 0. If we set the threshold too low, there will still be
some false edges (called false positives). If the threshold is set too high, then
actual valid edge points will be eliminated (false negatives). Canny’s algorithm
attempts to improve on this situation by using hysteresis thresholding which, as
we discuss in Section 10.3.6, uses two thresholds: a low threshold, and a
high threshold, Canny suggested that the ratio of the high to low threshold
should be two or three to one.

We can visualize the thresholding operation as creating two additional images

(10.2-33)

and

(10.2-34)

where, initially, both and are set to 0. After thresholding,
will have fewer nonzero pixels than in general, but all the

nonzero pixels in will be contained in because the latter
image is formed with a lower threshold. We eliminate from all the
nonzero pixels from by letting

(10.2-35)

The nonzero pixels in and may be viewed as being “strong”
and “weak” edge pixels, respectively.

After the thresholding operations, all strong pixels in are assumed
to be valid edge pixels and are so marked immediately. Depending on the
value of the edges in typically have gaps. Longer edges are
formed using the following procedure:

(a) Locate the next unvisited edge pixel, in 
(b) Mark as valid edge pixels all the weak pixels in that are connected

to using, say, 8-connectivity.
(c) If all nonzero pixels in have been visited go to Step d. Else, re-

turn to Step a.
(d) Set to zero all pixels in that were not marked as valid edge pixels.

At the end of this procedure, the final image output by the Canny algorithm is
formed by appending to all the nonzero pixels from gNL(x, y).gNH(x, y)

gNL(x, y)

gNH(x, y)
p

gNL(x, y)
gNH(x, y).p,

gNH(x, y)TH,

gNH(x, y)

gNL(x, y)gNH(x, y)

gNL(x, y) = gNL(x, y) - gNH(x, y)

gNH(x, y)
gNL(x, y)

gNL(x, y)gNH(x, y)
gNL(x, y)gNH(x, y)

gNL(x, y)gNH(x, y)

gNL(x, y) = gN(x, y) Ú TL

gNH(x, y) = gN(x, y) Ú TH

TH.
TL,

gN(x, y)

M(x, y)gN(x, y)
p8.p2p5,

p5(x, y)
gN(x, y)
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We used two additional images, and to simplify the
discussion. In practice, hysteresis thresholding can be implemented directly
during nonmaxima suppression, and thresholding can be implemented directly
on by forming a list of strong pixels and the weak pixels connected to
them.

Summarizing, the Canny edge detection algorithm consists of the following
basic steps:

1. Smooth the input image with a Gaussian filter.
2. Compute the gradient magnitude and angle images.
3. Apply nonmaxima suppression to the gradient magnitude image.
4. Use double thresholding and connectivity analysis to detect and link

edges.

Although the edges after nonmaxima suppression are thinner than raw gradi-
ent edges, edges thicker than 1 pixel can still remain. To obtain edges 1 pixel
thick, it is typical to follow Step 4 with one pass of an edge-thinning algorithm
(see Section 9.5.5).

As mentioned earlier, smoothing is accomplished by convolving the input
image with a Gaussian mask whose size, must be specified. We can use
the approach discussed in the previous section in connection with the Marr-
Hildreth algorithm to determine a value of That is, a filter mask generated
by sampling Eq. (10.2-29) so that is the smallest odd integer greater than or
equal to provides essentially the “full” smoothing capability of the Gaussian
filter. If practical considerations require a smaller filter mask, then the tradeoff
is less smoothing for smaller values of 

Some final comments on implementation:As noted earlier in the discussion
of the Marr-Hildreth edge detector, the 2-D Gaussian function in Eq. (10.2-29)
is separable into a product of two 1-D Gaussians. Thus, Step 1 of the Canny
algorithm can be formulated as 1-D convolutions that operate on the rows
(columns) of the image one at a time and then work on the columns (rows) of
the result. Furthermore, if we use the approximations in Eqs. (10.2-12) and
(10.2-13), we can also implement the gradient computations required for Step 2
as 1-D convolutions (Problem 10.20).

n.

6s
n

n.

n * n,

gN(x, y)

gNL(x, y),gNH(x, y)

EXAMPLE 10.8:
Illustration of the
Canny
edge-detection
method.

■ Figure 10.25(a) shows the familiar building image. For comparison, Figs.
10.25(b) and (c) show, respectively, the results obtained earlier in Fig. 10.20(b)
using the thresholded gradient and Fig. 10.22(d) using the Marr-Hildreth
detector. Recall that the parameters used in generating those two images were
selected to detect the principal edges while attempting to reduce “irrelevant”
features, such as the edges due to the bricks and the tile roof.

Figure 10.25(d) shows the result obtained with the Canny algorithm using
the parameters (2.5 times the value of the low threshold),

and a mask of size which corresponds to the smallest odd inte-
ger greater than These parameters were chosen interactively to achieve
the objectives stated in the previous paragraph for the gradient and Marr-
Hildreth images. Comparing the Canny image with the other two images, we

6s.
25 * 25,s = 4
TH = 0.10TL = 0.04,
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FIGURE 10.25
(a) Original image
of size 
pixels, with
intensity values
scaled to the range
[0, 1].
(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using the
Marr-Hildreth
algorithm.
(d) Image
obtained using the
Canny algorithm.
Note the
significant
improvement of
the Canny image
compared to the
other two.

834 * 1114

The threshold values
given here should be
considered only in 
relative terms.
Implementation of most
algorithms involves 
various scaling steps,
such as scaling the range
of values of the input
image to the range [0, 1].
Different scaling
schemes obviously would
require different values
of thresholds from those
used in this example.

see significant improvements in detail of the principal edges and, at the same
time, more rejection of irrelevant features in the Canny result. Note, for exam-
ple, that both edges of the concrete band lining the bricks in the upper section
of the image were detected by the Canny algorithm, whereas the thresholded
gradient lost both of these edges and the Marr-Hildreth image contains only
the upper one. In terms of filtering out irrelevant detail, the Canny image does
not contain a single edge due to the roof tiles; this is not true in the other two
images. The quality of the lines with regard to continuity, thinness, and
straightness is also superior in the Canny image. Results such as these have
made the Canny algorithm a tool of choice for edge detection. ■

EXAMPLE 10.9:
Another
illustration of the
three principal
edge detection
methods
discussed in this
section.

■ As another comparison of the three principal edge-detection methods
discussed in this section, consider Fig. 10.26(a) which shows a head
CT image. Our objective in this example is to extract the edges of the outer
contour of the brain (the gray region in the image), the contour of the spinal
region (shown directly behind the nose, toward the front of the brain), and the
outer contour of the head. We wish to generate the thinnest, continuous con-
tours possible, while eliminating edge details related to the gray content in the
eyes and brain areas.

Figure 10.26(b) shows a thresholded gradient image that was first smoothed
with a averaging filter.The threshold required to achieve the result shown
was 15% of the maximum value of the gradient image. Figure 10.26(c) shows the
result obtained with the Marr-Hildreth edge-detection algorithm with a thresh-
old of 0.002, and a mask of size pixels. Figure 10.26(d) was
obtained using the Canny algorithm with (3 times theTL = 0.05, TH = 0.15

19 * 19s = 3,

5 * 5

512 * 512

a b
c d



10.2 ■ Point, Line, and Edge Detection 725

FIGURE 10.26
(a) Original head
CT image of size

pixels,
with intensity
values scaled to
the range [0, 1].
(b) Thresholded
gradient of
smoothed image.
(c) Image
obtained using
the Marr-Hildreth
algorithm.
(d) Image
obtained using
the Canny
algorithm.
(Original image
courtesy of Dr.
David R. Pickens,
Vanderbilt
University.)

512 * 512

value of the low threshold), and a mask of size which, as in the
Marr-Hildreth case, corresponds to the smallest odd integer greater than 

The results in Fig. 10.26 correspond closely to the results and conclusions in
the previous example in terms of edge quality and the ability to eliminate irrel-
evant detail. Note also that the Canny algorithm was the only procedure capa-
ble of yielding a totally unbroken edge for the posterior boundary of the brain.
It was also the only procedure capable of finding the best contours while elimi-
nating all the edges associated with the gray matter in the original image. ■

As might be expected, the price paid for the improved performance of the
Canny algorithm is a more complex implementation than the two approaches
discussed earlier, requiring also considerably more execution time. In some ap-
plications, such as real-time industrial image processing, cost and speed require-
ments usually dictate the use of simpler techniques, principally the thresholded
gradient approach. When edge quality is the driving force, then the Marr-
Hildreth and Canny algorithms, especially the latter, offer superior alternatives.

10.2.7 Edge Linking and Boundary Detection
Ideally, edge detection should yield sets of pixels lying only on edges. In practice,
these pixels seldom characterize edges completely because of noise, breaks in the
edges due to nonuniform illumination, and other effects that introduce spurious
discontinuities in intensity values. Therefore, edge detection typically is followed
by linking algorithms designed to assemble edge pixels into meaningful edges
and/or region boundaries. In this section, we discuss three fundamental ap-
proaches to edge linking that are representative of techniques used in practice.

6s.
13 * 13,s = 2,

a b
c d
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The first requires knowledge about edge points in a local region (e.g., a 
neighborhood); the second requires that points on the boundary of a region be
known; and the third is a global approach that works with an entire edge image.

Local processing

One of the simplest approaches for linking edge points is to analyze the charac-
teristics of pixels in a small neighborhood about every point that has been
declared an edge point by one of the techniques discussed in the previous section.
All points that are similar according to predefined criteria are linked, forming an
edge of pixels that share common properties according to the specified criteria.

The two principal properties used for establishing similarity of edge pixels
in this kind of analysis are (1) the strength (magnitude) and (2) the direction
of the gradient vector. The first property is based on Eq. (10.2-10). Let de-
note the set of coordinates of a neighborhood centered at point in an
image.An edge pixel with coordinates in is similar in magnitude to the
pixel at if

(10.2-36)

where is a positive threshold.
The direction angle of the gradient vector is given by Eq. (10.2-11).An edge

pixel with coordinates in has an angle similar to the pixel at if

(10.2-37)

where is a positive angle threshold. As noted in Section 10.2.5, the direction
of the edge at is perpendicular to the direction of the gradient vector at
that point.

A pixel with coordinates in is linked to the pixel at if both
magnitude and direction criteria are satisfied.This process is repeated at every
location in the image. A record must be kept of linked points as the center of
the neighborhood is moved from pixel to pixel. A simple bookkeeping proce-
dure is to assign a different intensity value to each set of linked edge pixels.

The preceding formulation is computationally expensive because all neigh-
bors of every point have to be examined. A simplification particularly well
suited for real time applications consists of the following steps:

1. Compute the gradient magnitude and angle arrays, and of
the input image,

2. Form a binary image, whose value at any pair of coordinates is
given by:

where is a threshold, is a specified angle direction, and defines a
“band” of acceptable directions about A.

;TAATM

g(x, y) = b1 if M(x, y) 7 TM AND a(x, y) = A ; TA

0 otherwise
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3. Scan the rows of and fill (set to 1) all gaps (sets of 0s) in each row that do
not exceed a specified length, Note that, by definition, a gap is bound-
ed at both ends by one or more 1s. The rows are processed individually,
with no memory between them.

4. To detect gaps in any other direction, rotate by this angle and apply
the horizontal scanning procedure in Step 3. Rotate the result back by 

When interest lies in horizontal and vertical edge linking, Step 4 becomes a
simple procedure in which is rotated ninety degrees, the rows are scanned,
and the result is rotated back. This is the application found most frequently in
practice and, as the following example shows, this approach can yield good re-
sults. In general, image rotation is an expensive computational process so,
when linking in numerous angle directions is required, it is more practical to
combine Steps 3 and 4 into a single, radial scanning procedure.

g

-u.
gu,

K.
g

EXAMPLE 10.10:
Edge linking
using local
processing.

■ Figure 10.27(a) shows an image of the rear of a vehicle.The objective of this
example is to illustrate the use of the preceding algorithm for finding rectan-
gles whose sizes makes them suitable candidates for license plates. The forma-
tion of these rectangles can be accomplished by detecting strong horizontal
and vertical edges. Figure 10.27(b) shows the gradient magnitude image,

and Figs. 10.27(c) and (d) show the result of Steps (3) and (4) of the
algorithm obtained by letting equal to 30% of the maximum gradient value,TM

M(x, y),

FIGURE 10.27 (a) A image of the rear of a vehicle. (b) Gradient magnitude
image. (c) Horizontally connected edge pixels. (d) Vertically connected edge pixels.
(e) The logical OR of the two preceding images. (f) Final result obtained using
morphological thinning. (Original image courtesy of Perceptics Corporation.)

534 * 566

a b c
d e f



728 Chapter 10 ■ Image Segmentation

A

B

C

A

B

C

D

E

T

A

D

C

E

F

D

C

E

F

B B

A

FIGURE 10.28
Illustration of the
iterative
polygonal fit
algorithm.

and filling in all gaps of 25 or fewer pixels (approximately
5% of the image width). Use of a large range of allowable angle directions was
required to detect the rounded corners of the license plate enclosure, as well as
the rear windows of the vehicle. Figure 10.27(e) is the result of forming the
logical OR of the two preceding images, and Fig. 10.27(f) was obtained by thin-
ning 10.27(e) with the thinning procedure discussed in Section 9.5.5. As Fig.
10.16(f) shows, the rectangle corresponding to the license plate was clearly de-
tected in the image. It would be a simple matter to isolate the license plate
from all the rectangles in the image using the fact that the width-to-height
ratio of license plates in the U.S. has a distinctive 2:1 proportion. ■

Regional processing

Often, the location of regions of interest in an image are known or can be de-
termined.This implies that knowledge is available regarding the regional mem-
bership of pixels in the corresponding edge image. In such situations, we can
use techniques for linking pixels on a regional basis, with the desired result
being an approximation to the boundary of the region. One approach to this
type of processing is functional approximation, where we fit a 2-D curve to the
known points. Typically, interest lies in fast-executing techniques that yield an
approximation to essential features of the boundary, such as extreme points
and concavities. Polygonal approximations are particularly attractive because
they can capture the essential shape features of a region while keeping the rep-
resentation of the boundary (i.e., the vertices of the polygon) relatively simple.
In this section, we develop and illustrate an algorithm suitable for this purpose.

Before stating the algorithm, we discuss the mechanics of the procedure
using a simple example. Figure 10.28 shows a set of points representing an
open curve in which the end points have been labeled and These twoB.A

A = 90°, TA = 45°,

a b
c d
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points are by definition vertices of the polygon. We begin by computing the
parameters of a straight line passing through and Then, we compute the
perpendicular distance from all other points in the curve to this line and se-
lect the point that yielded the maximum distance (ties are resolved arbitrar-
ily). If this distance exceeds a specified threshold, the corresponding
point, labeled is declared a vertex, as Fig. 10.28(a) shows. Lines from to

and from to are then established, and distances from all points be-
tween and to line are obtained. The point corresponding to the
maximum distance is declared a vertex, if the distance exceeds other-
wise no new vertices are declared for that segment. A similar procedure is
applied to the points between and Figure 10.28(b) shows the result and
Fig. 10.28(c) shows the next step. This iterative procedure is continued until
no points satisfy the threshold test. Figure 10.28(d) shows the final result
which, as you can see, is a reasonable approximation to the shape of a curve
fitting the given points.

Two important requirements are implicit in the procedure just explained.
First, two starting points must be specified; second, all the points must be or-
dered (e.g., in a clockwise or counterclockwise direction). When an arbitrary
set of points in 2-D does not form a connected path (as is typically the case in
edge images) it is not always obvious whether the points belong to a boundary
segment (open curve) or a boundary (closed curve). Given that the points are
ordered, we can infer whether we are dealing with an open or closed curve by
analyzing the distances between points. A large distance between two consec-
utive points in the ordered sequence relative to the distance between other
points as we traverse the sequence of points is a good indication that the curve
is open. The end points are then used to start the procedure. If the separation
between points tends to be uniform, then we are most likely dealing with a
closed curve. In this case, we have several options for selecting the two starting
points. One approach is to choose the rightmost and leftmost points in the set.
Another is to find the extreme points of the curve (we discuss a way to do this
in Section 11.2.1). An algorithm for finding a polygonal fit to open and closed
curves may be stated as follows:

1. Let be a sequence of ordered, distinct, 1-valued points of a binary
image. Specify two starting points, and These are the two starting ver-
tices of the polygon.

2. Specify a threshold, and two empty stacks, OPEN and CLOSED.
3. If the points in correspond to a closed curve, put into OPEN and put

into OPEN and into CLOSED. If the points correspond to an open
curve, put into OPEN and into CLOSED.

4. Compute the parameters of the line passing from the last vertex in
CLOSED to the last vertex in OPEN.

5. Compute the distances from the line in Step 4 to all the points in whose
sequence places them between the vertices from Step 4. Select the point,

with the maximum distance, (ties are resolved arbitrarily).
6. If place at the end of the OPEN stack as a new vertex. Go

to Step 4.
VmaxDmax 7 T,

DmaxVmax,

P

BA
B

AP
T,

B.A
P

B.C

T;D,
ACCA

BCC
AC,

T,

B.A

The use of OPEN and
CLOSED for the stack
names is not related to
open and closed curves.
The stack names indicate
simply a stack to store
final (CLOSED) vertices
or vertices that are in
transition (OPEN).

See Section 11.1.1 for an
algorithm that creates or-
dered point sequences.
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7. Else, remove the last vertex from OPEN and insert it as the last vertex of
CLOSED.

8. If OPEN is not empty, go to Step 4.
9. Else, exit. The vertices in CLOSED are the vertices of the polygonal fit to

the points in 

The mechanics of the algorithm are illustrated in the following two examples.

P.

EXAMPLE 10.11:
Edge linking
using a polygonal
approximation.

FIGURE 10.29 (a) A set of points in a clockwise path (the points labeled and were chosen as the starting
vertices). (b) The distance from point to the line passing through and is the largest of all the points
between and and also passed the threshold test, so C is a new vertex. (d)–(g) Various stages of the
algorithm. (h) The final vertices, shown connected with straight lines to form a polygon. Table 10.1 shows
step-by-step details.

BA
BAC

BA

a b c
e f g

d
h

■ Consider the set of points, in Fig. 10.29(a). Assume that these points
belong to a closed curve, that they are ordered in a clockwise direction (note
that some of the points are not adjacent), and that and are selected to be
the leftmost and rightmost points in respectively. These are the starting ver-
tices, as Table 10.1 shows. Select the first point in the sequence to be the left-
most point, Figure 10.29(b) shows the only point (labeled ) in the upper
curve segment between and that satisfied Step 6 of the algorithm, so it is
designated as a new vertex and added to the vertices in the OPEN stack. The
second row in Table 10.1 shows being detected, and the third row shows it
being added as the last vertex in OPEN.The threshold, in Fig. 10.29(b) is ap-
proximately equal to 1.5 subdivisions in the figure grid.

Note in Fig. 10.29(b) that there is a point below line that also satisfies
Step 6. However, because the points are ordered, only one subset of the points
between these two vertices is detected at one time. The other point in the
lower segment will be detected later, as Fig. 10.29(e) shows. The key is always
to follow the points in the order in which they are given.

AB

T,
C

BA
CA.

P,
BA

P,
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CLOSED OPEN Curve segment Vertex
processed generated

—

—
—

—
—

Empty — —B, C, A, D, B
(DB)BB, C, A, D
(AD)B, DB, C, A

D(AB)BB, C, A
(CA)B, AB, C
(BC)B, A, CB

C(BA)B, AB
A, BB, AB

TABLE 10.1 
Step-by-step
details of the
mechanics in
Example 10.11.

Table 10.1 shows the individual steps leading to the solution in Fig. 10.29(h).
Four vertices were detected, and the figure shows them connected with straight
line segments to form a polygon approximating the given boundary points. Note
in the table that the vertices detected, are in the counterclockwise
direction, even though the points were followed in a clockwise direction to gen-
erate the vertices. Had the input been an open curve, the vertices would have
been in a clockwise order.The reason for the discrepancy is the way in which the
OPEN and CLOSED stacks are initialized. The difference in which stack
CLOSED is formed for open and closed curves also leads to the first and last
vertices in a closed curve being repeated. This is consistent with how one would
differentiate between open and closed polygons given only the vertices. ■

B, C, A, D, B

EXAMPLE 10.12:
Polygonal fitting
of an image
boundary.

■ Figure 10.30 shows a more practical example of polygonal fitting. The
input image in Fig. 10.30(a) is a X-ray image of a human tooth
with intensities scaled to the interval [0, 1]. The objective of this example is
to extract the boundary of the tooth, a process useful in areas such as match-
ing against a database for forensics purposes. Figure 10.30(b) is a gradient
image obtained using the Sobel masks and thresholded with (10% of
the maximum intensity).As expected for an X-ray image, the noise content is
high, so the first step is noise reduction. Because the image is binary, mor-
phological techniques are well suited for this purpose. Figure 10.30(c) shows
the result of majority filtering, which sets a pixel to 1 if five or more pixels in
its neighborhood are 1 and sets the pixel to 0 otherwise. Although the
noise was reduced, some noise points are still clearly visible. Figure 10.30(d)
shows the result of morphological shrinking, which further reduced the noise
to isolated points. These were eliminated [Fig. 10.30(e)] by morphological fil-
tering in the manner described in Example 9.4. At this point, the image con-
sists of thick boundaries, which can be thinned by obtaining the
morphological skeleton, as Fig. 10.30(f) shows. Finally, Fig. 10.30(g) shows the
last step in preprocessing using spur reduction, as discussed in Section 9.5.8.

Next, we fit the points in Fig. 10.30(g) with a polygon. Figures 10.30(h)–(j)
show the result of using the polygon fitting algorithm with thresholds equal to
0.5%, 1%, and 2% of the image width ( 6, and 12). The first two results
are good approximations to the boundary, but the third is marginal. Excessive
jaggedness in all three cases clearly indicates that boundary smoothing is

T = 3,

3 * 3

T = 0.1

550 * 566
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FIGURE 10.30 (a) A X-ray image of a human tooth. (b) Gradient image. (c) Result of majority
filtering. (d) Result of morphological shrinking. (e) Result of morphological cleaning. (f) Skeleton. (g) Spur
reduction. (h)–(j) Polygonal fit using thresholds of approximately 0.5%, 1%, and 2% of image width (
6, and 12). (k) Boundary in (j) smoothed with a 1-D averaging filter of size (approximately 5% of
image width). (l) Boundary in (h) smoothed with the same filter.

1 * 31
T = 3,

550 * 566

required. Figures 10.30(k) and (l) show the result of convolving a 1-D averag-
ing mask with the boundaries in (j) and (h), respectively. The mask used was a

array of 1s, corresponding approximately to 5% of the image width. As
expected, the result in Fig. 10.30(k) again is marginal in terms of preserving
important shape features (e.g., the right side is severely distorted). On the
other hand, the result in Fig. 10.30(l) shows significant boundary smoothing
and reasonable preservation of shape features. For example, the roundness of
the left-upper cusp and the details of the right-upper cusp were preserved with
reasonable fidelity. ■

The results in the preceding example are typical of what can be achieved with
the polygon fitting algorithm discussed in this section. The advantage of this

1 * 31

a b c
e f g

d
h

i j k l
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algorithm is that it is simple to implement and yields results that generally are
quite acceptable. In Section 11.1.3, we discuss a more sophisticated procedure
capable of yielding closer fits by computing minimum-perimeter polygons.

Global processing using the Hough transform

The methods discussed in the previous two sections are applicable in situations
where knowledge about pixels belonging to individual objects is at least partially
available. For example, in regional processing, it makes sense to link a given set of
pixels only if we know that they are part of the boundary of a meaningful region.
Often, we have to work with unstructured environments in which all we have is
an edge image and no knowledge about where objects of interest might be. In
such situations, all pixels are candidates for linking and thus have to be accepted
or eliminated based on predefined global properties. In this section, we develop
an approach based on whether sets of pixels lie on curves of a specified shape.
Once detected, these curves form the edges or region boundaries of interest.

Given points in an image, suppose that we want to find subsets of these
points that lie on straight lines. One possible solution is to find first all lines de-
termined by every pair of points and then find all subsets of points that are close
to particular lines. This approach involves finding lines and 
then performing comparisons of every point to all lines.
This is a computationally prohibitive task in all but the most trivial applications.

Hough [1962] proposed an alternative approach, commonly referred to as the
Hough transform. Consider a point in the xy-plane and the general equa-
tion of a straight line in slope-intercept form, Infinitely many lines
pass through but they all satisfy the equation for varying val-
ues of and However, writing this equation as and considering
the ab-plane (also called parameter space) yields the equation of a single line for a
fixed pair Furthermore, a second point also has a line in parameter
space associated with it, and, unless they are parallel, this line intersects the line as-
sociated with at some point where is the slope and the inter-
cept of the line containing both and in the xy-plane. In fact, all the
points on this line have lines in parameter space that intersect at Figure 10.31
illustrates these concepts.

In principle, the parameter-space lines corresponding to all points in
the xy-plane could be plotted, and the principal lines in that plane could be found
by identifying points in parameter space where large numbers of parameter-space
lines intersect. A practical difficulty with this approach, however, is that a
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FIGURE 10.31
(a) xy-plane.
(b) Parameter
space.
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(the slope of a line) approaches infinity as the line approaches the vertical direc-
tion. One way around this difficulty is to use the normal representation of a line:

(10.2-38)

Figure 10.32(a) illustrates the geometrical interpretation of the parameters
and A horizontal line has with being equal to the positive x-

intercept. Similarly, a vertical line has with being equal to the posi-
tive y-intercept, or with being equal to the negative y-intercept.
Each sinusoidal curve in Figure 10.32(b) represents the family of lines that
pass through a particular point in the xy-plane. The intersection point

in Fig. 10.32(b) corresponds to the line that passes through both 
and in Fig. 10.32(a).

The computational attractiveness of the Hough transform arises from sub-
dividing the parameter space into so-called accumulator cells, as Fig.
10.32(c) illustrates, where and are the expected ranges
of the parameter values: and where is the
maximum distance between opposite corners in an image. The cell at coordi-
nates with accumulator value corresponds to the square associat-
ed with parameter-space coordinates Initially, these cells are set to zero.
Then, for every non-background point in the xy-plane, we let equal
each of the allowed subdivision values on the -axis and solve for the corre-
sponding using the equation The resulting values
are then rounded off to the nearest allowed cell value along the axis. If a
choice of results in solution then we let At the 
end of this procedure, a value of in means that points in the xy-
plane lie on the line The number of subdivisions in the 

determines the accuracy of the colinearity of these points. It can be
shown (Problem 10.24) that the number of computations in the method just
discussed is linear with respect to the number of non-background points in
the xy-plane.

n,
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FIGURE 10.32 (a) parameterization of line in the xy-plane. (b) Sinusoidal curves in the the
point of intersection corresponds to the line passing through points and in the xy-plane.
(c) Division of the into accumulator cells.ru-plane
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EXAMPLE 10.13:
An illustration of
basic Hough
transform
properties.

■ Figure 10.33 illustrates the Hough transform based on Eq. (10.2-38).
Figure 10.33(a) shows an image of size pixels with five labeled
points, and Fig. 10.33(b) shows each of these points mapped onto the

using subdivisions of one unit for the and axes. The range of
values is and the range of the axis is where is the dis-
tance between corners in the image. As Fig. 10.33(c) shows, each curve has
a different sinusoidal shape. The horizontal line resulting from the map-
ping of point 1 is a special case of a sinusoid with zero amplitude.

The points labeled (not to be confused with accumulator values) and in
Fig. 10.33(b) show the colinearity detection property of the Hough transform.

BA
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FIGURE 10.33
(a) Image of size

pixels,
containing five
points.
(b) Corresponding
parameter space.
(The points in (a)
were enlarged to
make them easier
to see.)
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Point denotes the intersection of the curves corresponding to points 1, 3, and
5 in the image plane. The location of point indicates that these three
points lie on a straight line passing through the origin and oriented at

[see Fig. 10.32(a)]. Similarly, the curves intersecting at point in the para-
meter space indicate that points 2, 3, and 4 lie on a straight line oriented at ,
and whose distance from the origin is (one-half the diagonal distance
from the origin of the image to the opposite corner, rounded to the nearest in-
teger value). Finally, the points labeled and in Fig. 10.33(b) illustrate the
fact that the Hough transform exhibits a reflective adjacency relationship at the
right and left edges of the parameter space. This property is the result of the
manner in which  and  change sign at the   boundaries. ■

Although the focus thus far has been on straight lines, the Hough trans-
form is applicable to any function of the form where v is a vector
of coordinates and c is a vector of coefficients. For example, points lying on
the circle

(10.2-39)

can be detected by using the basic approach just discussed. The difference is
the presence of three parameters which results in a 3-D para-
meter space with cube-like cells and accumulators of the form The
procedure is to increment and solve for the that satisfies Eq. (10.2-39),
and update the accumulator cell associated with the triplet Clearly,
the complexity of the Hough transform depends on the number of coordinates
and coefficients in a given functional representation. Further generalizations
of the Hough transform to detect curves with no simple analytic representa-
tions are possible, as is the application of the transform to gray-scale images.
Several references dealing with these extensions are included at the end of this
chapter.

We return now to the edge-linking problem. An approach based on the
Hough transform is as follows:

1. Obtain a binary edge image using any of the techniques discussed earlier
in this section.

2. Specify subdivisions in the 
3. Examine the counts of the accumulator cells for high pixel concentrations.
4. Examine the relationship (principally for continuity) between pixels in a

chosen cell.

Continuity in this case usually is based on computing the distance between
disconnected pixels corresponding to a given accumulator cell. A gap in a line
associated with a given cell is bridged if the length of the gap is less than a
specified threshold. Note that the mere fact of being able to group lines based
on direction is a global concept applicable over the entire image, requiring
only that we examine pixels associated with specific accumulator cells.This is a
significant advantage over the methods discussed in the previous two sections.
The following example illustrates these concepts.

ru-plane.
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FIGURE 10.34 (a) A aerial image of an airport. (b) Edge image obtained using Canny’s algorithm.
(c) Hough parameter space (the boxes highlight the points associated with long vertical lines). (d) Lines in
the image plane corresponding to the points highlighted by the boxes). (e) Lines superimposed on the
original image.

502 * 564

■ Figure 10.34(a) shows an aerial image of an airport. The objective of this
example is to use the Hough transform to extract the two edges of the principal
runway. A solution to such a problem might be of interest, for instance, in
applications involving autonomous navigation of air vehicles.

The first step is to obtain an edge image. Figure 10.34(b) shows the edge
image obtained using Canny’s algorithm with the same parameters and proce-
dure used in Example 10.9. For the purpose of computing the Hough transform,
similar results can be obtained using any of the edge-detection techniques dis-
cussed in Sections 10.2.5 or 10.2.6. Figure 10.34(c) shows the Hough parameter
space obtained using 1° increments for and 1 pixel increments for 

The runway of interest is oriented approximately off the north direction,
so we select the cells corresponding to and containing the highest count
because the runways are the longest lines oriented in these directions. The
small white boxes on the edges of Fig. 10.34(c) highlight these cells. As men-
tioned earlier in connection with Fig. 10.33(b), the Hough transform exhibits
adjacency at the edges. Another way of interpreting this property is that a line
oriented at and a line oriented at are equivalent (i.e., they are both
vertical). Figure 10.34(d) shows the lines corresponding to the two accumulator
cells just discussed, and Fig. 10.34(e) shows the lines superimposed on the

-90°+90°

;90°
1°

r.u

EXAMPLE 10.14:
Using the Hough
transform for
edge linking.
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c d e
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Although we follow 
convention in using 0 
intensity for the 
background and 1 for 
object pixels, any two 
distinct values can be
used in Eq. (10.3-1).

original image. The lines were obtained by joining all gaps not exceeding
20% of the image height (approximately 100 pixels). These lines clearly corre-
spond to the edges of the runway of interest.

Note that the only key knowledge needed to solve this problem was the ori-
entation of the runway and the observer’s position relative to it. In other
words, a vehicle navigating autonomously would know that if the runway of in-
terest faces north, and the vehicle’s direction of travel also is north, the runway
should appear vertically in the image. Other relative orientations are handled
in a similar manner. The orientations of runways throughout the world are
available in flight charts, and direction of travel is easily obtainable using GPS
(Global Positioning System) information. This information also could be used
to compute the distance between the vehicle and the runway, thus allowing es-
timates of parameters such as expected length of lines relative to image size, as
we did in this example. ■

10.3 Thresholding

Because of its intuitive properties, simplicity of implementation, and computa-
tional speed, image thresholding enjoys a central position in applications of
image segmentation. Thresholding was introduced in Section 3.1.1, and we
have used it in various discussions since then. In this section, we discuss thresh-
olding in a more formal way and develop techniques that are considerably
more general than what has been presented thus far.

10.3.1 Foundation
In the previous section, regions were identified by first finding edge segments
and then attempting to link the segments into boundaries. In this section, we
discuss techniques for partitioning images directly into regions based on inten-
sity values and/or properties of these values.

The basics of intensity thresholding

Suppose that the intensity histogram in Fig. 10.35(a) corresponds to an image,
composed of light objects on a dark background, in such a way that ob-

ject and background pixels have intensity values grouped into two dominant
modes. One obvious way to extract the objects from the background is to se-
lect a threshold, that separates these modes. Then, any point in the
image at which is called an object point; otherwise, the point is
called a background point. In other words, the segmented image, is
given by

(10.3-1)

When is a constant applicable over an entire image, the process given in this
equation is referred to as global thresholding. When the value of changes
over an image, we use the term variable thresholding. The term local or
regional thresholding is used sometimes to denote variable thresholding in

T
T

g(x, y) = b1 if f(x, y) 7 T

0 if f(x, y) … T

g(x, y),
f(x, y) 7 T

(x, y)T,

f(x, y),
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T T1 T2

FIGURE 10.35
Intensity
histograms that
can be partitioned
(a) by a single
threshold, and 
(b) by dual
thresholds.

which the value of at any point in an image depends on properties of
a neighborhood of (for example, the average intensity of the pixels in
the neighborhood). If depends on the spatial coordinates themselves,
then variable thresholding is often referred to as dynamic or adaptive thresh-
olding. Use of these terms is not universal, and one is likely to see them used
interchangeably in the literature on image processing.

Figure 10.35(b) shows a more difficult thresholding problem involving a
histogram with three dominant modes corresponding, for example, to two
types of light objects on a dark background. Here, multiple thresholding classi-
fies a point as belonging to the background if to one ob-
ject class if and to the other object class if 
That is, the segmented image is given by

(10.3-2)

where and are any three distinct intensity values.We discuss dual thresh-
olding in Section 10.3.6. Segmentation problems requiring more than two
thresholds are difficult (often impossible) to solve, and better results usually
are obtained using other methods, such as variable thresholding, as discussed
in Section 10.3.7, or region growing, as discussed in Section 10.4.

Based on the preceding discussion, we may infer intuitively that the success
of intensity thresholding is directly related to the width and depth of the val-
ley(s) separating the histogram modes. In turn, the key factors affecting the
properties of the valley(s) are: (1) the separation between peaks (the further
apart the peaks are, the better the chances of separating the modes); (2) the
noise content in the image (the modes broaden as noise increases); (3) the rel-
ative sizes of objects and background; (4) the uniformity of the illumination
source; and (5) the uniformity of the reflectance properties of the image.

The role of noise in image thresholding

As an illustration of how noise affects the histogram of an image, consider
Fig. 10.36(a).This simple synthetic image is free of noise, so its histogram consists
of two “spike” modes, as Fig. 10.36(d) shows. Segmenting this image into two
regions is a trivial task involving a threshold placed anywhere between the two

cb,a,

g(x, y) = c a if f(x, y) 7 T2

b if T1 6 f(x, y) … T2

c if f(x, y) … T1

f(x, y) 7 T2.T1 6 f(x, y)… T2,
f(x, y) … T1,(x, y)

(x, y)T
(x, y)

(x, y)T
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191 25563 1270 191 25563 1270 191 25563 1270

FIGURE 10.36 (a) Noiseless 8-bit image. (b) Image with additive Gaussian noise of mean 0 and standard
deviation of 10 intensity levels. (c) Image with additive Gaussian noise of mean 0 and standard deviation of
50 intensity levels. (d)–(f) Corresponding histograms.

modes. Figure 10.36(b) shows the original image corrupted by Gaussian noise
of zero mean and a standard deviation of 10 intensity levels. Although the cor-
responding histogram modes are now broader [Fig. 10.36(e)], their separation
is large enough so that the depth of the valley between them is sufficient to
make the modes easy to separate.A threshold placed midway between the two
peaks would do a nice job of segmenting the image. Figure 10.36(c) shows the
result of corrupting the image with Gaussian noise of zero mean and a stan-
dard deviation of 50 intensity levels. As the histogram in Fig. 10.36(f) shows,
the situation is much more serious now, as there is no way to differentiate be-
tween the two modes. Without additional processing (such as the methods dis-
cussed in Sections 10.3.4 and 10.3.5) we have little hope of finding a suitable
threshold for segmenting this image.

The role of illumination and reflectance

Figure 10.37 illustrates the effect that illumination can have on the histogram of
an image. Figure 10.37(a) is the noisy image from Fig. 10.36(b), and Fig. 10.37(d)
shows its histogram. As before, this image is easily segmentable with a single
threshold.We can illustrate the effects of nonuniform illumination by multiply-
ing the image in Fig. 10.37(a) by a variable intensity function, such as the in-
tensity ramp in Fig. 10.37(b), whose histogram is shown in Fig. 10.37(e).
Figure 10.37(c) shows the product of the image and this shading pattern. As 
Fig. 10.37(f) shows, the deep valley between peaks was corrupted to the point

a b c
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FIGURE 10.37 (a) Noisy image. (b) Intensity ramp in the range [0.2, 0.6]. (c) Product of (a) and (b).
(d)–(f) Corresponding histograms.

In theory, the histogram
of a ramp image is uni-
form. In practice, achiev-
ing perfect uniformity
depends on the size of
the image and number of
intensity bits. For exam-
ple, a 256-
level ramp image has a
uniform histogram, but a

ramp image
with the same number of
intensities does not.

256 * 257

256 * 256,

where separation of the modes without additional processing (see Sections
10.3.4 and 10.3.5) is no longer possible. Similar results would be obtained if the
illumination was perfectly uniform, but the reflectance of the image was not,
due, for example, to natural reflectivity variations in the surface of objects
and/or background.

The key point in the preceding paragraph is that illumination and reflectance
play a central role in the success of image segmentation using thresholding or
other segmentation techniques. Therefore, controlling these factors when it is
possible to do so should be the first step considered in the solution of a seg-
mentation problem. There are three basic approaches to the problem when
control over these factors is not possible. One is to correct the shading pattern
directly. For example, nonuniform (but fixed) illumination can be corrected by
multiplying the image by the inverse of the pattern, which can be obtained by
imaging a flat surface of constant intensity. The second approach is to attempt
to correct the global shading pattern via processing using, for example, the
top-hat transformation introduced in Section 9.6.3. The third approach is to
“work around” nonuniformities using variable thresholding, as discussed in
Section 10.3.7.

10.3.2 Basic Global Thresholding
As noted in the previous section, when the intensity distributions of objects
and background pixels are sufficiently distinct, it is possible to use a single
(global) threshold applicable over the entire image. In most applications, there

a b c
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is usually enough variability between images that, even if global thresholding
is a suitable approach, an algorithm capable of estimating automatically the
threshold value for each image is required. The following iterative algorithm
can be used for this purpose:

1. Select an initial estimate for the global threshold,
2. Segment the image using in Eq. (10.3-1).This will produce two groups of

pixels: consisting of all pixels with intensity values and consist-
ing of pixels with values 

3. Compute the average (mean) intensity values and for the pixels in
and respectively.

4. Compute a new threshold value:

5. Repeat Steps 2 through 4 until the difference between values of in suc-
cessive iterations is smaller than a predefined parameter 

This simple algorithm works well in situations where there is a reasonably
clear valley between the modes of the histogram related to objects and back-
ground. Parameter is used to control the number of iterations in situations
where speed is an important issue. In general, the larger is, the fewer itera-
tions the algorithm will perform. The initial threshold must be chosen greater
than the minimum and less than maximum intensity level in the image (Prob-
lem 10.28). The average intensity of the image is a good initial choice for T.

¢T
¢T

¢T.
T

T =
1
2

(m1 + m2)

G2,G1

m2m1

… T.
G27 T,G1

T
T.

EXAMPLE 10.15:
Global
thresholding.

■ Figure 10.38 shows an example of segmentation based on a threshold esti-
mated using the preceding algorithm. Figure 10.38(a) is the original image, and
Fig. 10.38(b) is the image histogram, showing a distinct valley.Application of the
preceding iterative algorithm resulted in the threshold after three it-
erations, starting with (the average image intensity), and using 
Figure 10.38(c) shows the result obtained using to segment the original
image.As expected from the clear separation of modes in the histogram, the seg-
mentation between object and background was quite effective. ■

The preceding algorithm was stated in terms of successively thresholding
the input image and calculating the means at each step because it is more intu-
itive to introduce it in this manner. However, it is possible to develop a more
efficient procedure by expressing all computations in the terms of the image
histogram, which has to be computed only once (Problem 10.26).

10.3.3 Optimum Global Thresholding Using Otsu’s Method
Thresholding may be viewed as a statistical-decision theory problem whose
objective is to minimize the average error incurred in assigning pixels to two
or more groups (also called classes). This problem is known to have an elegant
closed-form solution known as the Bayes decision rule (see Section 12.2.2).
The solution is based on only two parameters: the probability density function
(PDF) of the intensity levels of each class and the probability that each class
occurs in a given application. Unfortunately, estimating PDFs is not a trivial

T = 125
¢T = 0.T = m

T = 125.4
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FIGURE 10.38 (a) Noisy fingerprint. (b) Histogram. (c) Segmented result using a global threshold (the border
was added for clarity). (Original courtesy of the National Institute of Standards and Technology.)

matter, so the problem usually is simplified by making workable assumptions
about the form of the PDFs, such as assuming that they are Gaussian functions.
Even with simplifications, the process of implementing solutions using these as-
sumptions can be complex and not always well-suited for practical applications.

The approach discussed in this section, called Otsu’s method (Otsu [1979]), is
an attractive alternative. The method is optimum in the sense that it maximizes
the between-class variance, a well-known measure used in statistical discrimi-
nant analysis. The basic idea is that well-thresholded classes should be distinct
with respect to the intensity values of their pixels and, conversely, that a thresh-
old giving the best separation between classes in terms of their intensity values
would be the best (optimum) threshold. In addition to its optimality, Otsu’s
method has the important property that it is based entirely on computations
performed on the histogram of an image, an easily obtainable 1-D array.

Let denote the distinct intensity levels in a digital image
of size pixels, and let denote the number of pixels with intensity The
total number, of pixels in the image is 
The normalized histogram (see Section 3.3) has components from
which it follows that

(10.3-3)

Now, suppose that we select a threshold and use it
to threshold the input image into two classes, and where consists of
all the pixels in the image with intensity values in the range [0, ] and con-
sists of the pixels with values in the range Using this threshold,
the probability, that a pixel is assigned to (i.e., thresholded into) class 
is given by the cumulative sum

C1P1(k),
[k + 1, L - 1].

C2k
C1C2,C1

T(k) = k, 0 6 k 6 L - 1,

a
L - 1

i = 0
pi = 1, pi Ú 0

pi = ni>MN,
MN = n0 + n1 + n2 + Á + nL - 1.MN,

i.niM * N
L50, 1, 2, Á , L - 16

a b c
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(10.3-4)

Viewed another way, this is the probability of class occurring. For example,
if we set , the probability of class having any pixels assigned to it is
zero. Similarly, the probability of class occurring is

(10.3-5)

From Eq. (3.3-18), the mean intensity value of the pixels assigned to class is

(10.3-6)

where is given in Eq. (10.3-4). The term in the first line of 
Eq. (10.3-6) is the probability of value given that comes from class The
second line in the equation follows from Bayes’ formula:

The third line follows from the fact that the probability of given 
is 1 because we are dealing only with values of from class Also, is the
probability of the ith value, which is simply the ith component of the his-
togram, Finally, is the probability of class which we know from
Eq. (10.3-4) is equal to 

Similarly, the mean intensity value of the pixels assigned to class is

(10.3-7)

The cumulative mean (average intensity) up to level is given by

(10.3-8)

and the average intensity of the entire image (i.e., the global mean) is given by

(10.3-9)mG = a
L - 1

i = 0
ipi

m(k) = a
k

i = 0
ipi

k

=
1

P2(k) a
L - 1

i = k + 1
ipi

m2(k) = a
L - 1

i = k + 1
iP(i>C2)

C2

P1(k).
C1,P(C1)pi.

P(i)C1.i
i,C1P(C1>i),

P(A>B) = P(B>A)P(A)>P(B)

C1.ii,
P(i>C1)P1(k)

=
1

P1(k) a
k

i = 0
ipi

= a
k

i = 0
iP(C1>i)P(i)>P(C1)

m1(k) = a
k

i = 0
iP(i>C1)

C1

P2(k) = a
L - 1

i = k + 1
pi = 1 - P1(k)

C2

C1k = 0
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P1(k) = a
k
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The validity of the following two equations can be verified by direct substitution
of the preceding results:

(10.3-10)

and

(10.3-11)

where we have omitted the ks temporarily in favor of notational clarity.
In order to evaluate the “goodness” of the threshold at level we use the

normalized, dimensionless metric

(10.3-12)

where is the global variance [i.e., the intensity variance of all the pixels in
the image, as given in Eq. (3.3-19)],

(10.3-13)

and is the between-class variance, defined as

(10.3-14)

This expression can be written also as

(10.3-15)

where and are as stated earlier. The first line of this equation follows
from Eqs. (10.3-14), (10.3-10), and (10.3-11). The second line follows from
Eqs. (10.3-5) through (10.3-9). This form is slightly more efficient computa-
tionally because the global mean, is computed only once, so only two pa-
rameters, and need to be computed for any value of 

We see from the first line in Eq. (10.3-15) that the farther the two means 
and are from each other the larger will be, indicating that the between-
class variance is a measure of separability between classes. Because is a
constant, it follows that also is a measure of separability, and maximizing this
metric is equivalent to maximizing The objective, then, is to determine the
threshold value, that maximizes the between-class variance, as stated at the
beginning of this section. Note that Eq. (10.3-12) assumes implicitly that

This variance can be zero only when all the intensity levels in the
image are the same, which implies the existence of only one class of pixels.This
in turn means that for a constant image since the separability of a single
class from itself is zero.

h = 0
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2 7 0.

k,
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2 .
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The second step in 
Eq. (10.3-15) makes
sense only if is greater
than 0 and less than 1,
which, in view of 
Eq. (10.3-11), implies
that must satisfy the
same condition.
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Although our interest is
in the value of at the
optimum threshold,
this inequality holds in
general for any value of

in the range [0, ].L - 1k

k*,
h

Reintroducing we have the final results:

(10.3-16)

and

(10.3-17)

Then, the optimum threshold is the value, that maximizes 

(10.3-18)

In other words, to find we simply evaluate Eq. (10.3-18) for all integer values
of (such that the condition holds) and select that value of 
that yielded the maximum If the maximum exists for more than one
value of it is customary to average the various values of for which is
maximum. It can be shown (Problem 10.33) that a maximum always exists,
subject to the condition that Evaluating Eqs. (10.3-17) and
(10.3-18) for all values of is a relatively inexpensive computational proce-
dure, because the maximum number of integer values that can have is 

Once has been obtained, the input image is segmented as before:

(10.3-19)

for and Note that all the quan-
tities needed to evaluate Eq. (10.3-17) are obtained using only the histogram
of In addition to the optimum threshold, other information regarding
the segmented image can be extracted from the histogram. For example,

and the class probabilities evaluated at the optimum threshold,
indicate the portions of the areas occupied by the classes (groups of pixels) in
the thresholded image. Similarly, the means and are estimates
of the average intensity of the classes in the original image.

The normalized metric evaluated at the optimum threshold value,
can be used to obtain a quantitative estimate of the separability of classes,
which in turn gives an idea of the ease of thresholding a given image.This mea-
sure has values in the range

(10.3-20)

The lower bound is attainable only by images with a single, constant intensity
level, as mentioned earlier. The upper bound is attainable only by 2-valued
images with intensities equal to 0 and (Problem 10.34).L - 1

0 … h(k*) … 1
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Polymersomes are cells
artificially engineered
using polymers. Polymor-
somes are invisible to the
human immune system
and can be used, for ex-
ample, to deliver medica-
tion to targeted regions
of the body.

Otsu’s algorithm may be summarized as follows:

1. Compute the normalized histogram of the input image. Denote the com-
ponents of the histogram by 

2. Compute the cumulative sums, for using 
Eq. (10.3-4).

3. Compute the cumulative means, for using
Eq. (10.3-8).

4. Compute the global intensity mean, using (10.3-9).
5. Compute the between-class variance, for 

using Eq. (10.3-17).
6. Obtain the Otsu threshold, as the value of for which is maxi-

mum. If the maximum is not unique, obtain by averaging the values of
corresponding to the various maxima detected.

7. Obtain the separability measure, by evaluating Eq. (10.3-16) at

The following example illustrates the preceding concepts.

k = k*.
h*,

k
k*

sB
2 (k)kk*,

k = 0, 1, 2, Á , L - 1,sB
2 (k),

mG,

k = 0, 1, 2, Á , L - 1,m(k),

k = 0, 1, 2, Á , L - 1,P1(k),
pi, i = 0, 1, 2, Á , L - 1.

EXAMPLE 10.16:
Optimum global
thresholding using
Otsu’s method.

■ Figure 10.39(a) shows an optical microscope image of polymersome cells,
and Fig. 10.39(b) shows its histogram. The objective of this example is to seg-
ment the molecules from the background. Figure 10.39(c) is the result of using
the basic global thresholding algorithm developed in the previous section. Be-
cause the histogram has no distinct valleys and the intensity difference be-
tween the background and objects is small, the algorithm failed to achieve the
desired segmentation. Figure 10.39(d) shows the result obtained using Otsu’s
method. This result obviously is superior to Fig. 10.39(c). The threshold value
computed by the basic algorithm was 169, while the threshold computed by
Otsu’s method was 181, which is closer to the lighter areas in the image defin-
ing the cells. The separability measure was 0.467.

As a point of interest, applying Otsu’s method to the fingerprint image in
Example 10.15 yielded a threshold of 125 and a separability measure of 0.944.
The threshold is identical to the value (rounded to the nearest integer) ob-
tained with the basic algorithm. This is not unexpected, given the nature of the
histogram. In fact, the separability measure is high due primarily to the rela-
tively large separation between modes and the deep valley between them. ■

10.3.4 Using Image Smoothing to Improve Global Thresholding
As noted in Fig. 10.36, noise can turn a simple thresholding problem into an
unsolvable one.When noise cannot be reduced at the source, and thresholding
is the segmentation method of choice, a technique that often enhances perfor-
mance is to smooth the image prior to thresholding.We illustrate the approach
with an example.

Figure 10.40(a) is the image from Fig. 10.36(c), Fig. 10.40(b) shows its his-
togram, and Fig. 10.40(c) is the image thresholded using Otsu’s method. Every
black point in the white region and every white point in the black region is a

h
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0 63 127 191 255

FIGURE 10.39
(a) Original
image.
(b) Histogram
(high peaks were
clipped to
highlight details in
the lower values).
(c) Segmentation
result using the
basic global
algorithm from
Section 10.3.2.
(d) Result
obtained using
Otsu’s method.
(Original image
courtesy of
Professor Daniel
A. Hammer, the
University of
Pennsylvania.)

thresholding error, so the segmentation was highly unsuccessful. Figure 10.40(d)
shows the result of smoothing the noisy image with an averaging mask of size

(the image is of size pixels), and Fig. 10.40(e) is its histogram.
The improvement in the shape of the histogram due to smoothing is evident, and
we would expect thresholding of the smoothed image to be nearly perfect. As
Fig. 10.40(f) shows, this indeed was the case.The slight distortion of the boundary
between object and background in the segmented, smoothed image was caused
by the blurring of the boundary. In fact, the more aggressively we smooth an
image, the more boundary errors we should anticipate in the segmented result.

Next we consider the effect of reducing the size of the region in Fig. 10.40(a)
with respect to the background. Figure 10.41(a) shows the result. The noise in
this image is additive Gaussian noise with zero mean and a standard deviation
of 10 intensity levels (as opposed to 50 in the previous example).As Fig. 10.41(b)
shows, the histogram has no clear valley, so we would expect segmentation to fail,
a fact that is confirmed by the result in Fig. 10.41(c). Figure 10.41(d) shows the
image smoothed with an averaging mask of size and Fig. 10.40(e) is the
corresponding histogram. As expected, the net effect was to reduce the
spread of the histogram, but the distribution still is unimodal. As Fig.
10.40(f) shows, segmentation failed again. The reason for the failure can
be traced to the fact that the region is so small that its contribution to the
histogram is insignificant compared to the intensity spread caused by noise. In

5 * 5,

651 * 8145 * 5
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FIGURE 10.40 (a) Noisy image from Fig. 10.36 and (b) its histogram. (c) Result obtained using Otsu’s method.
(d) Noisy image smoothed using a averaging mask and (e) its histogram. (f) Result of thresholding using
Otsu’s method.

5 * 5

situations such as this, the approach discussed in the following section is more
likely to succeed.

10.3.5 Using Edges to Improve Global Thresholding
Based on the discussion in the previous four sections, we conclude that the
chances of selecting a “good” threshold are enhanced considerably if the his-
togram peaks are tall, narrow, symmetric, and separated by deep valleys. One ap-
proach for improving the shape of histograms is to consider only those pixels that
lie on or near the edges between objects and the background.An immediate and
obvious improvement is that histograms would be less dependent on the relative
sizes of objects and the background. For instance, the histogram of an image com-
posed of a small object on a large background area (or vice versa) would be dom-
inated by a large peak because of the high concentration of one type of pixels.We
saw in the previous section that this can lead to failure in thresholding.

If only the pixels on or near the edges between objects and background
were used, the resulting histogram would have peaks of approximately the
same height. In addition, the probability that any of those pixels lies on an object
would be approximately equal to the probability that it lies on the back-
ground, thus improving the symmetry of the histogram modes. Finally, as indi-
cated in the following paragraph, using pixels that satisfy some simple
measures based on gradient and Laplacian operators has a tendency to deepen
the valley between histogram peaks.

a b c
d e f
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FIGURE 10.41 (a) Noisy image and (b) its histogram. (c) Result obtained using Otsu’s method. (d) Noisy
image smoothed using a averaging mask and (e) its histogram. (f) Result of thresholding using Otsu’s
method. Thresholding failed in both cases.

5 * 5

It is possible to modify
this algorithm so that
both the magnitude of
the gradient and the 
absolute value of the
Laplacian images are
used. In this case, we
would specify a threshold
for each image and form
the logical OR of the two
results to obtain the
marker image. This 
approach is useful when
more control is desired
over the points deemed
to be valid edge points.

The approach just discussed assumes that the edges between objects and
background are known.This information clearly is not available during segmen-
tation, as finding a division between objects and background is precisely what
segmentation is all about. However, with reference to the discussion in Section
10.2, an indication of whether a pixel is on an edge may be obtained by comput-
ing its gradient or Laplacian. For example, the average value of the Laplacian is
0 at the transition of an edge (see Fig. 10.10), so the valleys of histograms formed
from the pixels selected by a Laplacian criterion can be expected to be sparsely
populated. This property tends to produce the desirable deep valleys discussed
above. In practice, comparable results typically are obtained using either the
gradient or Laplacian images, with the latter being favored because it is compu-
tationally more attractive and is also an isotropic edge detector.

The preceding discussion is summarized in the following algorithm, where
is the input image:

1. Compute an edge image as either the magnitude of the gradient, or ab-
solute value of the Laplacian, of using any of the methods dis-
cussed in Section 10.2.

2. Specify a threshold value,
3. Threshold the image from Step 1 using the threshold from Step 2 to produce

a binary image, This image is used as a mask image in the following
step to select pixels from corresponding to “strong” edge pixels.f(x, y)

gT(x, y).

T.

f(x, y)

f(x, y)
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The nth percentile is the
smallest number that is
greater than of the
numbers in a given set.
For example, if you re-
ceived a 95 in a test and
this score was greater
than 85% of all the stu-
dents taking the test,
then you would be in the
85th percentile with re-
spect to the test scores.

n%

4. Compute a histogram using only the pixels in that correspond to
the locations of the 1-valued pixels in 

5. Use the histogram from Step 4 to segment globally using, for ex-
ample, Otsu’s method.

If is set to the maximum value of the edge image then, according to Eq. (10.3-1),
will consist of all 0s, implying that all pixels of will be used to com-

pute the image histogram. In this case, the preceding algorithm becomes global
thresholding in which the histogram of the original image is used without modifi-
cation. It is customary to specify the value of corresponding to a percentile,
which typically is set high (e.g., in the high 90s) so that few pixels in the gradi-
ent/Laplacian image will be used in the computation. The following examples il-
lustrate the concepts just discussed. The first example uses the gradient and the
second uses the Laplacian. Similar results can be obtained in both examples using
either approach. The important issue is to generate a suitable derivative image.

T

f(x, y)gT(x, y)
T

f(x, y)
gT(x, y).

f(x, y)

EXAMPLE 10.17:
Using edge
information based
on the gradient to
improve global
thresholding.

■ Figures 10.42(a) and (b) show the image and histogram from Fig. 10.41.You
saw that this image could not be segmented by smoothing followed by thresh-
olding. The objective of this example is to solve the problem using edge infor-
mation. Figure 10.42(c) is the gradient magnitude image thresholded at the

0 63 127 191 255

630 127 191 255

FIGURE 10.42 (a) Noisy image from Fig. 10.41(a) and (b) its histogram. (c) Gradient magnitude image
thresholded at the 99.7 percentile. (d) Image formed as the product of (a) and (c). (e) Histogram of the
nonzero pixels in the image in (d). (f) Result of segmenting image (a) with the Otsu threshold based on the
histogram in (e).The threshold was 134, which is approximately midway between the peaks in this histogram.
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99.7 percentile. Figure 10.42(d) is the image formed by multiplying this (mask)
image by the input image. Figure 10.42(e) is the histogram of the nonzero ele-
ments in Fig. 10.42(d). Note that this histogram has the important features dis-
cussed earlier; that is, it has reasonably symmetrical modes separated by a
deep valley. Thus, while the histogram of the original noisy image offered no
hope for successful thresholding, the histogram in Fig. 10.42(e) indicates that
thresholding of the small object from the background is indeed possible. The
result in Fig. 10.42(f) shows that indeed this is the case. This image was ob-
tained by using Otsu’s method to obtain a threshold based on the histogram in
Fig. 10.42(e) and then applying this threshold globally to the noisy image in
Fig. 10.42(a). The result is nearly perfect. ■

EXAMPLE 10.18:
Using edge
information based
on the Laplacian
to improve global
thresholding.

■ In this example we consider a more complex thresholding problem. Figure
10.43(a) shows an 8-bit image of yeast cells in which we wish to use global
thresholding to obtain the regions corresponding to the bright spots. As a
starting point, Fig. 10.43(b) shows the image histogram, and Fig. 10.43(c) is the
result obtained using Otsu’s method directly on the image, using the histogram
shown. We see that Otsu’s method failed to achieve the original objective of
detecting the bright spots, and, although the method was able to isolate some
of the cell regions themselves, several of the segmented regions on the right
are not disjoint. The threshold computed by the Otsu method was 42 and the
separability measure was 0.636.

Figure 10.43(d) shows the image obtained by computing the absolute
value of the Laplacian image and then thresholding it with set to 115 on an
intensity scale in the range [0, 255]. This value of corresponds approximately
to the 99.5 percentile of the values in the absolute Laplacian image, so thresh-
olding at this level should result in a sparse set of pixels, as Fig. 10.43(d) shows.
Note in this image how the points cluster near the edges of the bright spots, as
expected from the preceding discussion. Figure 10.43(e) is the histogram of the
nonzero pixels in the product of (a) and (d). Finally, Fig. 10.43(f) shows the re-
sult of globally segmenting the original image using Otsu’s method based on
the histogram in Fig. 10.43(e). This result agrees with the locations of the
bright spots in the image. The threshold computed by the Otsu method was
115 and the separability measure was 0.762, both of which are higher than the
values obtained by using the original histogram.

By varying the percentile at which the threshold is set we can even improve
on the segmentation of the cell regions. For example, Fig. 10.44 shows the re-
sult obtained using the same procedure as in the previous paragraph, but with
the threshold set at 55, which is approximately 5% of the maximum value of
the absolute Laplacian image. This value is at the 53.9 percentile of the values
in that image. This result clearly is superior to the result in Fig. 10.43(c)
obtained using Otsu’s method with the histogram of the original image. ■

10.3.6 Multiple Thresholds
Thus far, we have focused attention on image segmentation using a single global
threshold. The thresholding method introduced in Section 10.3.3 can be ex-
tended to an arbitrary number of thresholds, because the separability measure

T
T

gT(x, y)
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0 63 127 191 255

0 63 127 191 255

FIGURE 10.43 (a) Image of yeast cells. (b) Histogram of (a). (c) Segmentation of (a) with Otsu’s method
using the histogram in (b). (d) Thresholded absolute Laplacian. (e) Histogram of the nonzero pixels in the
product of (a) and (d). (f) Original image thresholded using Otsu’s method based on the histogram in (e).
(Original image courtesy of Professor Susan L. Forsburg, University of Southern California.)

FIGURE 10.44
Image in 
Fig. 10.43(a)
segmented using
the same
procedure as
explained in 
Figs. 10.43(d)–(f),
but using a lower
value to threshold
the absolute
Laplacian image.

a b c
d e f
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Thresholding with two
thresholds sometimes is
referred to as hysteresis
thresholding.

on which it is based also extends to an arbitrary number of classes (Fukunaga
[1972]). In the case of classes, the between-class variance gen-
eralizes to the expression

(10.3-21)

where

(10.3-22)

(10.3-23)

and is the global mean given in Eq. (10.3-9).The classes are separated by
thresholds whose values, are the values that maximize

Eq. (10.3-21):

(10.3-24)

Although this result is perfectly general, it begins to lose meaning as the num-
ber of classes increases, because we are dealing with only one variable (inten-
sity). In fact, the between-class variance usually is cast in terms of multiple
variables expressed as vectors (Fukunaga [1972]). In practice, using multiple
global thresholding is considered a viable approach when there is reason to
believe that the problem can be solved effectively with two thresholds. Appli-
cations that require more than two thresholds generally are solved using more
than just intensity values. Instead, the approach is to use additional descriptors
(e.g., color) and the application is cast as a pattern recognition problem, as ex-
plained in Section 10.3.8.

For three classes consisting of three intensity intervals (which are separated
by two thresholds) the between-class variance is given by:

(10.3-25)

where

(10.3-26)
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and

(10.3-27)

As in Eqs. (10.3-10) and (10.3-11), the following relationships hold:

(10.3-28)

and

(10.3-29)

We see that the and terms and, therefore are functions of and 
The two optimum threshold values, and are the values that maximize

In other words, as in the single-threshold case discussed in Section
10.3.3, we find the optimum thresholds by finding

(10.3-30)

The procedure starts by selecting the first value of (that value is 1 because
looking for a threshold at 0 intensity makes no sense; also, keep in mind that the
increment values are integers because we are dealing with intensities). Next,
is incremented through all its values greater than and less than (i.e.,

). Then is incremented to its next value and is in-
cremented again through all its values greater than This procedure is re-
peated until The result of this process is a 2-D array,
and the last step is to look for the maximum value in this array.The values of 
and corresponding to that maximum are the optimum thresholds, and 
If there are several maxima, the corresponding values of and are averaged
to obtain the final thresholds. The thresholded image is then given by

(10.3-31)

where and are any three valid intensity values.
Finally, we note that the separability measure defined in Section 10.3.3 for

one threshold extends directly to multiple thresholds:

(10.3-32)
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0 63 127 191 255

FIGURE 10.45 (a) Image of iceberg. (b) Histogram. (c) Image segmented into three regions using dual Otsu
thresholds. (Original image courtesy of NOAA.)

EXAMPLE 10.19:
Multiple global
thresholding.

■ Figure 10.45(a) shows an image of an iceberg. The objective of this exam-
ple is to segment the image into three regions: the dark background, the illu-
minated area of the iceberg, and the area in shadows. It is evident from the
image histogram in Fig. 10.45(b) that two thresholds are required to solve
this problem. The procedure discussed above resulted in the thresholds

and which we note from Fig. 10.45(b) are near the centers
of the two histogram valleys. Figure 10.45(c) is the segmentation that result-
ed using these two thresholds in Eq. (10.3-31). The separability measure was
0.954. The principal reason this example worked out so well can be traced to
the histogram having three distinct modes separated by reasonably wide,
deep valleys. ■

10.3.7 Variable Thresholding
As discussed in Section 10.3.1, factors such as noise and nonuniform illumina-
tion play a major role in the performance of a thresholding algorithm. We
showed in Sections 10.3.4 and 10.3.5 that image smoothing and using edge in-
formation can help significantly. However, it frequently is the case that this
type of preprocessing is either impractical or simply ineffective in improving
the situation to the point where the problem is solvable by any of the methods
discussed thus far. In such situations, the next level of thresholding complexity
involves variable thresholding. In this section, we discuss various techniques
for choosing variable thresholds.

Image partitioning

One of the simplest approaches to variable thresholding is to subdivide an
image into nonoverlapping rectangles. This approach is used to compensate
for non-uniformities in illumination and/or reflectance. The rectangles are
chosen small enough so that the illumination of each is approximately uni-
form. We illustrate this approach with an example.

k2
… = 177,k1

… = 80

a b c



10.3 ■ Thresholding 757

EXAMPLE 10.20:
Variable
thresholding via
image
partitioning.

■ Figure 10.46(a) shows the image from Fig. 10.37(c), and Fig. 10.46(b) shows
its histogram. When discussing Fig. 10.37(c) we concluded that this image
could not be segmented with a global threshold, a fact confirmed by Figs.
10.46(c) and (d), which show the results of segmenting the image using the it-
erative scheme discussed in Section 10.3.2 and Otsu’s method, respectively.
Both methods produced comparable results, in which numerous segmentation
errors are visible.

Figure 10.46(e) shows the original image subdivided into six rectangular
regions, and Fig. 10.46(f) is the result of applying Otsu’s global method to each
subimage. Although some errors in segmentation are visible, image subdivi-
sion produced a reasonable result on an image that is quite difficult to seg-
ment. The reason for the improvement is explained easily by analyzing the
histogram of each subimage. As Fig. 10.47 shows, each subimage is character-
ized by a bimodal histogram with a deep valley between the modes, a fact that
we know will lead to effective global thresholding.

Image subdivision generally works well when the objects of interest and the
background occupy regions of reasonably comparable size, as in Fig. 10.46.
When this is not the case, the method typically fails because of the likelihood
of subdivisions containing only object or background pixels. Although this sit-
uation can be addressed by using additional techniques to determine when a
subdivision contains both types of pixels, the logic required to address different

0 63 127 191 255

FIGURE 10.46 (a) Noisy, shaded image and (b) its histogram. (c) Segmentation of (a) using the iterative
global algorithm from Section 10.3.2. (d) Result obtained using Otsu’s method. (e) Image subdivided into six
subimages. (f) Result of applying Otsu’s method to each subimage individually.

a b c
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FIGURE 10.47
Histograms of the
six subimages in
Fig. 10.46(e).

scenarios can get complicated. In such situations, methods such as those
discussed in the remainder of this section typically are preferable. ■

Variable thresholding based on local image properties

A more general approach than the image subdivision method discussed in the
previous section is to compute a threshold at every point, in the image
based on one or more specified properties computed in a neighborhood of

Although this may seem like a laborious process, modern algorithms
and hardware allow for fast neighborhood processing, especially for common
functions such as logical and arithmetic operations.

We illustrate the basic approach to local thresholding using the standard
deviation and mean of the pixels in a neighborhood of every point in an image.
These two quantities are quite useful for determining local thresholds because
they are descriptors of local contrast and average intensity. Let and de-
note the standard deviation and mean value of the set of pixels contained in a
neighborhood, centered at coordinates in an image (see Section
3.3.4 regarding computation of the local mean and standard deviation). The
following are common forms of variable, local thresholds:

(10.3-33)

where and are nonnegative constants, and

(10.3-34)

where is the global image mean. The segmented image is computed as

(10.3-35)

where is the input image. This equation is evaluated for all pixel loca-
tions in the image, and a different threshold is computed at each location

using the pixels in the neighborhood Sxy.(x, y)

f(x, y)

g(x, y) = b1 if f(x, y) 7 Txy

0 if f(x, y) … Txy

mG

Txy = asxy + bmG

ba

Txy = asxy + bmxy

(x, y)Sxy,

mxysxy

(x, y).

(x, y),
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Significant power (with a modest increase in computation) can be added to
local thresholding by using predicates based on the parameters computed in
the neighborhoods of 

(10.3-36)

where is a predicate based on parameters computed using the pixels in
neighborhood For example, consider the following predicate,
based on the local mean and standard deviation:

(10.3-37)

Note that Eq. (10.3-35) is a special case of Eq. (10.3-36), obtained by letting 
be true if and false otherwise. In this case, the predicate is based
simply on the intensity at a point.

f(x, y) 7 Txy

Q

Q(sxy, mxy) = b true if f(x, y) 7 asxy AND f(x, y) 7 bmxy

false otherwise

Q(sxy, mxy),Sxy.
Q

g(x, y) = b1 if Q(local parameters) is true
0 if Q(local parameters) is false

(x, y):

EXAMPLE 10.21:
Variable
thresholding
based on local
image properties.

■ Figure 10.48(a) shows the yeast image from Example 10.18. This image has
three predominant intensity levels, so it is reasonable to assume that perhaps
dual thresholding could be a good segmentation approach. Figure 10.48(b) is
the result of using the dual thresholding method explained in Section 10.3.6.
As the figure shows, it was possible to isolate the bright areas from the back-
ground, but the mid-gray regions on the right side of the image were not seg-
mented properly (recall that we encountered a similar problem with Fig. 10.43(c)
in Example 10.18).To illustrate the use of local thresholding, we computed the
local standard deviation for all in the input image using a neighbor-
hood of size Figure 10.48(c) shows the result. Note how the faint outer
lines correctly delineate the boundaries of the cells. Next, we formed a predi-
cate of the form shown in Eq. (10.3-37) but using the global mean instead of

Choosing the global mean generally gives better results when the back-
ground is nearly constant and all the object intensities are above or below the
background intensity. The values and were used in completing
the specification of the predicate (these values were determined experimen-
tally, as is usually the case in applications such as this).The image was then seg-
mented using Eq. (10.3-36). As Fig. 10.48(d) shows, the result agrees quite
closely with the two types of intensity regions prevalent in the input image.
Note in particular that all the outer regions were segmented properly and that
most of the inner, brighter regions were isolated correctly. ■

Using moving averages

A special case of the local thresholding method just discussed is based on
computing a moving average along scan lines of an image.This implementation
is quite useful in document processing, where speed is a fundamental require-
ment. The scanning typically is carried out line by line in a zigzag pattern to

b = 1.5a = 30

mxy.

3 * 3.
(x, y)sxy
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The first expression is
valid for 
When is less than

averages are
formed with the 
available points.
Similarly, the second 
expression is valid for
k Ú n + 1.

n - 1,
k

k Ú n - 1.

reduce illumination bias. Let denote the intensity of the point encountered
in the scanning sequence at step The moving average (mean intensity)
at this new point is given by

(10.3-38)

where denotes the number of points used in computing the average and
This initial value is not strictly correct because the average of a single

point is the value of the point itself. However, we use so that no spe-
cial computations are required when Eq. (10.3-38) first starts up. Another way of
viewing it is that this is the value we would obtain if the border of the image were
padded with zeros. The algorithm is initialized only once, not at every row.
Because a moving average is computed for every point in the image, segmentation
is implemented using Eq. (10.3-35) with where is constant and
is the moving average from Eq. (10.3-38) at point in the input image.(x, y)

mxybTxy = bmxy
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m(1) = z1>n
m(1) = z1>n.
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FIGURE 10.48
(a) Image from
Fig. 10.43.
(b) Image
segmented using
the dual
thresholding
approach
discussed in
Section 10.3.6.
(c) Image of local
standard
deviations.
(d) Result
obtained using
local thresholding.

a b
c d
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FIGURE 10.49 (a) Text image corrupted by spot shading. (b) Result of global thresholding using Otsu’s
method. (c) Result of local thresholding using moving averages.

EXAMPLE 10.22:
Document
thresholding using
moving averages.

■ Figure 10.49(a) shows an image of handwritten text shaded by a spot intensity
pattern. This form of intensity shading is typical of images obtained with a
photographic flash. Figure 10.49(b) is the result of segmentation using the
Otsu global thresholding method. It is not unexpected that global thresholding
could not overcome the intensity variation. Figure 10.49(c) shows successful
segmentation with local thresholding using moving averages. A rule of thumb
is to let equal 5 times the average stroke width. In this case, the average
width was 4 pixels, so we let in Eq. (10.3-38) and used 

As another illustration of the effectiveness of this segmentation approach
we used the same parameters as in the previous paragraph to segment the
image in Fig. 10.50(a), which is corrupted by a sinusoidal intensity variation
typical of the variation that may occur when the power supply in a document
scanner is not grounded properly. As Figs. 10.50(b) and (c) show, the segmen-
tation results are comparable to those in Fig. 10.49.

It is of interest to note that successful segmentation results were obtained in
both cases using the same values for and which shows the relative rugged-
ness of the approach. In general, thresholding based on moving averages
works well when the objects of interest are small (or thin) with respect to the
image size, a condition satisfied by images of typed or handwritten text. ■

10.3.8 Multivariable Thresholding
Thus far, we have been concerned with thresholding based on a single variable:
gray-scale intensity. In some cases, a sensor can make available more than one
variable to characterize each pixel in an image, and thus allow multivariable
thresholding. A notable example is color imaging, where red (R), green (G),
and blue (B) components are used to form a composite color image (see
Chapter 6). In this case, each “pixel” is characterized by three values, and can
be represented as a 3-D vector, whose components are the
RGB colors at a point. These 3-D points often are referred to as voxels, to de-
note volumetric elements, as opposed to image elements.

z = (z1, z2, z3)
T,

b,n

b = 0.5.n = 20
n

a b c
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FIGURE 10.50 (a) Text image corrupted by sinusoidal shading. (b) Result of global thresholding using Otsu’s
method. (c) Result of local thresholding using moving averages.

As discussed in some detail in Section 6.7, multivariable thresholding may
be viewed as a distance computation. Suppose that we want to extract from a
color image all regions having a specified color range: say, reddish hues. Let a
denote the average reddish color in which we are interested. One way to seg-
ment a color image based on this parameter is to compute a distance measure,

between an arbitrary color point, z, and the average color, a. Then, we
segment the input image as follows:

(10.3-39)

where is a threshold, and it is understood that the distance computation is
performed at all coordinates in the input image to generate the corresponding
segmented values in Note that the inequalities in this equation are the op-
posite of the inequalities we used in Eq. (10.3-1) for thresholding a single vari-
able.The reason is that the equation defines a volume (see Fig. 6.43)
and it is more intuitive to think of segmented pixel values as being contained
within the volume and background pixel values as being on the surface or out-
side the volume. Equation (10.3-39) reduces to Eq. (10.3-1) by letting

Observe that the condition basically says that the Euclidean
distance between the value of and the origin of the real line exceeds the
value of Thus, thresholding is based on the computation of a distance mea-
sure, and the form of Eq. (10.3-39) depends on the measure used. If, in gener-
al, z in an n-dimensional vector, we know from Section 2.6.6 that the
n-dimensional Euclidean distance is defined as

(10.3-40)

= C(z - a)T(z - a) D 12
D(z, a) = 7z - a 7

T.
f
f(x, y) 7 T

D(z, a) = -f(x, y).

D(z, a) = T

g.

T

g = b1 if D(z, a) 6 T

0 otherwise

D(z, a),

a b c
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The equation describes a sphere (called a hypersphere) in n-
dimensional Euclidean space (Fig. 6.43 shows a 3-D example).A more powerful
distance measure is the so-called Mahalanobis distance, defined as

(10.3-41)

where C is the covariance matrix of the zs, as discussed Section 12.2.2.
describes an n-dimensional hyperellipse (Fig. 6.43 shows a 3-D

example). This expression reduces to Eq. (10.3-40) when the identity
matrix.

We gave a detailed example in Section 6.7 regarding the use of these expres-
sions. We also discuss in Section 12.2 the problem of segmenting regions out of
an image using pattern recognition techniques based on decision functions,
which may be viewed as a multiclass, multivariable thresholding problem.

10.4 Region-Based Segmentation

As discussed in Section 10.1, the objective of segmentation is to partition an
image into regions. In Section 10.2, we approached this problem by attempting to
find boundaries between regions based on discontinuities in intensity levels,
whereas in Section 10.3, segmentation was accomplished via thresholds based on
the distribution of pixel properties, such as intensity values or color. In this sec-
tion, we discuss segmentation techniques that are based on finding the regions
directly.

10.4.1 Region Growing
As its name implies, region growing is a procedure that groups pixels or subre-
gions into larger regions based on predefined criteria for growth.The basic ap-
proach is to start with a set of “seed” points and from these grow regions by
appending to each seed those neighboring pixels that have predefined properties
similar to the seed (such as specific ranges of intensity or color).

Selecting a set of one or more starting points often can be based on the
nature of the problem, as shown later in Example 10.23. When a priori infor-
mation is not available, the procedure is to compute at every pixel the same set
of properties that ultimately will be used to assign pixels to regions during the
growing process. If the result of these computations shows clusters of values,
the pixels whose properties place them near the centroid of these clusters can
be used as seeds.

The selection of similarity criteria depends not only on the problem under
consideration, but also on the type of image data available. For example, the
analysis of land-use satellite imagery depends heavily on the use of color. This
problem would be significantly more difficult, or even impossible, to solve
without the inherent information available in color images. When the images
are monochrome, region analysis must be carried out with a set of descriptors
based on intensity levels and spatial properties (such as moments or texture).
We discuss descriptors useful for region characterization in Chapter 11.

C = I,
D(z, a) = T

D(z, a) = C(z - a)TC-1(z - a) D 12

D(z, a) = T

You should review the
terminology introduced
in Section 10.1 before
proceeding.
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See Sections 2.5.2 and
9.5.3 regarding connected
components, and Section
9.2.1 regarding erosion.

Descriptors alone can yield misleading results if connectivity properties are
not used in the region-growing process. For example, visualize a random
arrangement of pixels with only three distinct intensity values. Grouping pixels
with the same intensity level to form a “region” without paying attention to
connectivity would yield a segmentation result that is meaningless in the con-
text of this discussion.

Another problem in region growing is the formulation of a stopping rule.
Region growth should stop when no more pixels satisfy the criteria for inclu-
sion in that region. Criteria such as intensity values, texture, and color are local
in nature and do not take into account the “history” of region growth. Addi-
tional criteria that increase the power of a region-growing algorithm utilize
the concept of size, likeness between a candidate pixel and the pixels grown so
far (such as a comparison of the intensity of a candidate and the average in-
tensity of the grown region), and the shape of the region being grown. The use
of these types of descriptors is based on the assumption that a model of ex-
pected results is at least partially available.

Let: denote an input image array; denote a seed array con-
taining 1s at the locations of seed points and 0s elsewhere; and denote a
predicate to be applied at each location Arrays and are assumed to
be of the same size. A basic region-growing algorithm based on 8-connectivity
may be stated as follows.

1. Find all connected components in and erode each connected com-
ponent to one pixel; label all such pixels found as 1. All other pixels in 
are labeled 0.

2. Form an image such that, at a pair of coordinates let 
if the input image satisfies the given predicate, at those coordinates;
otherwise, let 

3. Let be an image formed by appending to each seed point in all the
1-valued points in that are 8-connected to that seed point.

4. Label each connected component in with a different region label (e.g.,
). This is the segmented image obtained by region growing.

We illustrate the mechanics of this algorithm by an example.

1, 2, 3, Á
g

fQ

Sg
fQ (x, y) = 0.

Q,
fQ(x, y) = 1(x, y),fQ

S
S(x, y)

Sf(x, y).
Q

S(x, y)f(x, y)

EXAMPLE 10.23:
Segmentation by
region growing.

■ Figure 10.51(a) shows an 8-bit X-ray image of a weld (the horizontal dark
region) containing several cracks and porosities (the bright regions running
horizontally through the center of the image). We illustrate the use of region
growing by segmenting the defective weld regions. These regions could be
used in applications such as weld inspection, for inclusion in a database of his-
torical studies, or for controlling an automated welding system.

The first order of business is to determine the seed points. From the physics
of the problem, we know that cracks and porosities will attenuate X-rays con-
siderably less than solid welds, so we expect the regions containing these types
of defects to be significantly brighter than other parts of the X-ray image. We
can extract the seed points by thresholding the original image, using a thresh-
old set at a high percentile. Figure 10.51(b) shows the histogram of the image
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0 63 127 191 255

0 63 127 191 255

FIGURE 10.51 (a) X-ray image of a defective weld. (b) Histogram. (c) Initial seed image. (d) Final seed image
(the points were enlarged for clarity). (e) Absolute value of the difference between (a) and (c). (f) Histogram
of (e). (g) Difference image thresholded using dual thresholds. (h) Difference image thresholded with the
smallest of the dual thresholds. (i) Segmentation result obtained by region growing. (Original image courtesy
of X-TEK Systems, Ltd.)

a b c
d e f
g h i

and Fig. 10.51(c) shows the thresholded result obtained with a threshold equal
to the 99.9 percentile of intensity values in the image, which in this case was
254 (see Section 10.3.5 regarding percentiles). Figure 10.51(d) shows the result
of morphologically eroding each connected component in Fig. 10.51(c) to a
single point.

Next, we have to specify a predicate. In this example, we are interested in
appending to each seed all the pixels that (a) are 8-connected to that seed and
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(b) are “similar” to it. Using intensity differences as a measure of similarity,
our predicate applied at each location is

where is a specified threshold. Although this predicate is based on intensity
differences and uses a single threshold, we could specify more complex
schemes in which a different threshold is applied to each pixel, and properties
other than differences are used. In this case, the preceding predicate is suffi-
cient to solve the problem, as the rest of this example shows.

From the previous paragraph, we know that the smallest seed value is 255
because the image was thresholded with a threshold of 254. Figure 10.51(e)
shows the absolute value of the difference between the images in Figs.
10.51(a) and (c). The image in Fig. 10.51(e) contains all the differences need-
ed to compute the predicate at each location Figure 10.51(f) shows the
corresponding histogram. We need a threshold to use in the predicate to
establish similarity. The histogram has three principal modes, so we can start
by applying to the difference image the dual thresholding technique dis-
cussed in Section 10.3.6. The resulting two thresholds in this case were

and which we see correspond closely to the valleys of the
histogram. (As a brief digression, we segmented the image using these two
thresholds. The result in Fig. 10.51(g) shows that the problem of segmenting
the defects cannot be solved using dual thresholds, even though the thresh-
olds are in the main valleys.)

Figure 10.51(h) shows the result of thresholding the difference image with
only The black points are the pixels for which the predicate was TRUE; the
others failed the predicate. The important result here is that the points in the
good regions of the weld failed the predicate, so they will not be included in
the final result.The points in the outer region will be considered by the region-
growing algorithm as candidates. However, Step 3 will reject the outer points,
because they are not 8-connected to the seeds. In fact, as Fig. 10.51(i) shows,
this step resulted in the correct segmentation, indicating that the use of con-
nectivity was a fundamental requirement in this case. Finally, note that in Step 4
we used the same value for all the regions found by the algorithm. In this case,
it was visually preferable to do so. ■

10.4.2 Region Splitting and Merging
The procedure discussed in the last section grows regions from a set of seed
points. An alternative is to subdivide an image initially into a set of arbitrary,
disjoint regions and then merge and/or split the regions in an attempt to satis-
fy the conditions of segmentation stated in Section 10.1. The basics of splitting
and merging are discussed next.

T1.

T2 = 126,T1 = 68

(x, y).

T

Q = c TRUE if the absolute difference of the intensities
between the seed and the pixel at (x, y) is … T

FALSE otherwise

(x, y)
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FIGURE 10.52
(a) Partitioned
image.
(b)
Corresponding
quadtree.
represents the
entire image
region.

R

Let represent the entire image region and select a predicate One
approach for segmenting is to subdivide it successively into smaller and
smaller quadrant regions so that, for any region We start
with the entire region. If we divide the image into quadrants.
If is FALSE for any quadrant, we subdivide that quadrant into subquad-
rants, and so on. This particular splitting technique has a convenient represen-
tation in the form of so-called quadtrees, that is, trees in which each node has
exactly four descendants, as Fig. 10.52 shows (the images corresponding to the
nodes of a quadtree sometimes are called quadregions or quadimages). Note
that the root of the tree corresponds to the entire image and that each node
corresponds to the subdivision of a node into four descendant nodes. In this
case, only was subdivided further.

If only splitting is used, the final partition normally contains adjacent re-
gions with identical properties. This drawback can be remedied by allowing
merging as well as splitting. Satisfying the constraints of segmentation outlined
in Section 10.1 requires merging only adjacent regions whose combined pixels
satisfy the predicate That is, two adjacent regions and are merged
only if 

The preceding discussion can be summarized by the following procedure in
which, at any step, we

1. Split into four disjoint quadrants any region for which 
2. When no further splitting is possible, merge any adjacent regions and

for which 
3. Stop when no further merging is possible.

It is customary to specify a minimum quadregion size beyond which no further
splitting is carried out.

Numerous variations of the preceding basic theme are possible. For example,
a significant simplification results if in Step 2 we allow merging of any two ad-
jacent regions and if each one satisfies the predicate individually.This re-
sults in a much simpler (and faster) algorithm, because testing of the predicate
is limited to individual quadregions. As the following example shows, this sim-
plification is still capable of yielding good segmentation results.

RjRi

Q(Rj ´ Rk) = TRUE.Rk

Rj

Q(Ri) = FALSE.Ri

Q(Rj ´ Rk) = TRUE.
RkRjQ.

R4

Q
Q(R) = FALSE,

Ri, Q(Ri) = TRUE.
R

Q.R

a b

See Section 2.5.2
regarding region 
adjacency.
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FIGURE 10.53
(a) Image of the
Cygnus Loop
supernova, taken
in the X-ray band
by NASA’s
Hubble Telescope.
(b)–(d) Results of
limiting the
smallest allowed
quadregion to
sizes of

and pixels,
respectively.
(Original image
courtesy of
NASA.)

8 * 8
32 * 32, 16 * 16,

■ Figure 10.53(a) shows a X-ray band image of the Cygnus Loop.
The objective of this example is to segment out of the image the “ring” of less
dense matter surrounding the dense center. The region of interest has some
obvious characteristics that should help in its segmentation. First, we note that
the data in this region has a random nature, indicating that its standard devia-
tion should be greater than the standard deviation of the background (which is
near 0) and of the large central region, which is fairly smooth. Similarly, the
mean value (average intensity) of a region containing data from the outer ring
should be greater than the mean of the darker background and less than the
mean of the large, lighter central region. Thus, we should be able to segment
the region of interest using the following predicate:

where and are the mean and standard deviation of the pixels in a quadre-
gion, and and are constants.

Analysis of several regions in the outer area of interest revealed that the
mean intensity of pixels in those regions did not exceed 125 and the standard
deviation was always greater than 10. Figures 10.53(b) through (d) show the
results obtained using these values for and and varying the minimum size
allowed for the quadregions from 32 to 8. The pixels in a quadregion whose

b,a

ba
sm

Q = bTRUE if s 7 a  AND  0 6 m 6 b

FALSE otherwise

566 * 566EXAMPLE 10.24:
Segmentation by
region splitting
and merging.

a b
c d
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pixels satisfied the predicate were set to white; all others in that region were set
to black.The best result in terms of capturing the shape of the outer region was
obtained using quadregions of size The black squares in Fig. 10.53(d)
are quadregions of size whose pixels did not satisfied the predicate. Using
smaller quadregions would result in increasing numbers of such black regions.
Using regions larger than the one illustrated here results in a more “block-
like” segmentation. Note that in all cases the segmented regions (white pixels)
completely separate the inner, smoother region from the background. Thus,
the segmentation effectively partitioned the image into three distinct areas
that correspond to the three principal features in the image: background,
dense, and sparse regions. Using any of the white regions in Fig. 10.53 as a
mask would make it a relatively simple task to extract these regions from the
original image (Problem 10.40). As in Example 10.23, these results could not
have been obtained using edge- or threshold-based segmentation. ■

As used in the preceding example, properties based on the mean and standard
deviation of pixel intensities in a region attempt to quantify the texture of the
region (see Section 11.3.3 for a discussion on texture). The concept of texture
segmentation is based on using measures of texture in the predicates. In other
words, we can perform texture segmentation by any of the methods discussed
in this section simply by specifying predicates based on texture content.

10.5 Segmentation Using Morphological Watersheds

Thus far, we have discussed segmentation based on three principal concepts:
(a) edge detection, (b) thresholding, and (c) region growing. Each of these ap-
proaches was found to have advantages (for example, speed in the case of
global thresholding) and disadvantages (for example, the need for post-
processing, such as edge linking, in edge-based segmentation). In this section
we discuss an approach based on the concept of so-called morphological
watersheds. As will become evident in the following discussion, segmentation
by watersheds embodies many of the concepts of the other three approaches
and, as such, often produces more stable segmentation results, including con-
nected segmentation boundaries. This approach also provides a simple frame-
work for incorporating knowledge-based constraints (see Fig. 1.23) in the
segmentation process.

10.5.1 Background
The concept of watersheds is based on visualizing an image in three dimen-
sions: two spatial coordinates versus intensity, as in Fig. 2.18(a). In such a
“topographic” interpretation, we consider three types of points: (a) points be-
longing to a regional minimum; (b) points at which a drop of water, if placed at
the location of any of those points, would fall with certainty to a single mini-
mum; and (c) points at which water would be equally likely to fall to more
than one such minimum. For a particular regional minimum, the set of points
satisfying condition (b) is called the catchment basin or watershed of that

8 * 8
16 * 16.
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FIGURE 10.54
(a) Original image.
(b) Topographic
view. (c)–(d) Two
stages of flooding.

minimum. The points satisfying condition (c) form crest lines on the topo-
graphic surface and are termed divide lines or watershed lines.

The principal objective of segmentation algorithms based on these concepts
is to find the watershed lines. The basic idea is simple, as the following analogy
illustrates. Suppose that a hole is punched in each regional minimum and that
the entire topography is flooded from below by letting water rise through the
holes at a uniform rate. When the rising water in distinct catchment basins is
about to merge, a dam is built to prevent the merging. The flooding will even-
tually reach a stage when only the tops of the dams are visible above the water
line. These dam boundaries correspond to the divide lines of the watersheds.
Therefore, they are the (connected) boundaries extracted by a watershed seg-
mentation algorithm.

These ideas can be explained further with the aid of Fig. 10.54. Figure 10.54(a)
shows a gray-scale image and Fig. 10.54(b) is a topographic view, in which the
height of the “mountains” is proportional to intensity values in the input
image. For ease of interpretation, the backsides of structures are shaded. This
is not to be confused with intensity values; only the general topography of the
three-dimensional representation is of interest. In order to prevent the rising
water from spilling out through the edges of the image, we imagine the

a b
c d
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perimeter of the entire topography (image) being enclosed by dams of height
greater than the highest possible mountain, whose value is determined by the
highest possible intensity value in the input image.

Suppose that a hole is punched in each regional minimum [shown as dark
areas in Fig. 10.54(b)] and that the entire topography is flooded from below by
letting water rise through the holes at a uniform rate. Figure 10.54(c) shows the
first stage of flooding, where the “water,” shown in light gray, has covered only
areas that correspond to the very dark background in the image. In Figs. 10.54(d)
and (e) we see that the water now has risen into the first and second catchment
basins, respectively. As the water continues to rise, it will eventually overflow
from one catchment basin into another. The first indication of this is shown in
10.54(f). Here, water from the left basin actually overflowed into the basin on
the right and a short “dam” (consisting of single pixels) was built to prevent
water from merging at that level of flooding (the details of dam building are dis-
cussed in the following section).The effect is more pronounced as water continues
to rise, as shown in Fig. 10.54(g).This figure shows a longer dam between the two
catchment basins and another dam in the top part of the right basin. The latter
dam was built to prevent merging of water from that basin with water from areas
corresponding to the background. This process is continued until the maximum

FIGURE 10.54
(Continued)
(e) Result of
further flooding.
(f) Beginning of
merging of water
from two
catchment basins
(a short dam was
built between
them). (g) Longer
dams. (h) Final
watershed
(segmentation)
lines.
(Courtesy of Dr. S.
Beucher,
CMM/Ecole des
Mines de Paris.)

e f
g h
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level of flooding (corresponding to the highest intensity value in the image) is
reached. The final dams correspond to the watershed lines, which are the de-
sired segmentation result. The result for this example is shown in Fig.
10.54(h) as dark, 1-pixel-thick paths superimposed on the original image.
Note the important property that the watershed lines form connected paths,
thus giving continuous boundaries between regions.

One of the principal applications of watershed segmentation is in the ex-
traction of nearly uniform (bloblike) objects from the background. Regions
characterized by small variations in intensity have small gradient values. Thus,
in practice, we often see watershed segmentation applied to the gradient of an
image, rather than to the image itself. In this formulation, the regional minima
of catchment basins correlate nicely with the small value of the gradient corre-
sponding to the objects of interest.

10.5.2 Dam Construction
Before proceeding, let us consider how to construct the dams or watershed
lines required by watershed segmentation algorithms. Dam construction is
based on binary images, which are members of 2-D integer space (see
Section 2.4.2). The simplest way to construct dams separating sets of binary
points is to use morphological dilation (see Section 9.2.2).

The basics of how to construct dams using dilation are illustrated in Fig. 10.55.
Figure 10.55(a) shows portions of two catchment basins at flooding step 
and Fig. 10.55(b) shows the result at the next flooding step, The water has
spilled from one basin to the other and, therefore, a dam must be built to keep
this from happening. In order to be consistent with notation to be introduced
shortly, let and denote the sets of coordinates of points in two regional
minima. Then let the set of coordinates of points in the catchment basin associ-
ated with these two minima at stage of flooding be denoted by 
and respectively. These are the two gray regions in Fig. 10.55(a).

Let denote the union of these two sets. There are two connected
components in Fig. 10.55(a) (see Section 2.5.2 regarding connected compo-
nents) and only one connected component in Fig. 10.55(b). This connected
component encompasses the earlier two components, shown dashed. The fact
that two connected components have become a single component indicates
that water between the two catchment basins has merged at flooding step 
Let this connected component be denoted Note that the two components
from step can be extracted from by performing the simple AND oper-
ation We note also that all points belonging to an individual
catchment basin form a single connected component.

Suppose that each of the connected components in Fig. 10.55(a) is dilated
by the structuring element shown in Fig. 10.55(c), subject to two conditions:
(1) The dilation has to be constrained to (this means that the center of the
structuring element can be located only at points in during dilation), and (2)
the dilation cannot be performed on points that would cause the sets being di-
lated to merge (become a single connected component). Figure 10.55(d) shows
that a first dilation pass (in light gray) expanded the boundary of each original
connected component. Note that condition (1) was satisfied by every point

q
q

q ¨ C[n - 1].
qn - 1

q.
n.

C[n - 1]
Cn - 1(M2),

Cn - 1(M1)n - 1

M2M1

n.
n - 1
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Origin
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First dilation

Second dilation

Dam pointsa
b
d c

FIGURE 10.55 (a) Two partially flooded catchment basins at stage of flooding.
(b) Flooding at stage showing that water has spilled between basins. (c) Structuring
element used for dilation. (d) Result of dilation and dam construction.
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n - 1
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during dilation, and condition (2) did not apply to any point during the dila-
tion process; thus the boundary of each region was expanded uniformly.

In the second dilation (shown in black), several points failed condition (1)
while meeting condition (2), resulting in the broken perimeter shown in the fig-
ure. It also is evident that the only points in that satisfy the two conditions
under consideration describe the 1-pixel-thick connected path shown crossed-
hatched in Fig. 10.55(d). This path constitutes the desired separating dam at
stage of flooding. Construction of the dam at this level of flooding is complet-
ed by setting all the points in the path just determined to a value greater than the
maximum intensity value of the image. The height of all dams is generally set at
1 plus the maximum allowed value in the image. This will prevent water from
crossing over the part of the completed dam as the level of flooding is increased.
It is important to note that dams built by this procedure, which are the desired
segmentation boundaries, are connected components. In other words, this
method eliminates the problems of broken segmentation lines.

Although the procedure just described is based on a simple example, the
method used for more complex situations is exactly the same, including the use
of the symmetric structuring element shown in Fig. 10.55(c).

10.5.3 Watershed Segmentation Algorithm
Let be sets denoting the coordinates of the points in the 
regional minima of an image As indicated at the end of Section 10.5.1,
this typically will be a gradient image. Let be a set denoting the coordi-
nates of the points in the catchment basin associated with regional minimum

(recall that the points in any catchment basin form a connected component).
The notation min and max will be used to denote the minimum and maximum
values of Finally, let represent the set of coordinates for
which That is,

(10.5-1)

Geometrically, is the set of coordinates of points in lying below
the plane 

The topography will be flooded in integer flood increments, from
to At any step of the flooding process, the algo-

rithm needs to know the number of points below the flood depth. Conceptual-
ly, suppose that the coordinates in that are below the plane 
are “marked” black, and all other coordinates are marked white. Then when
we look “down” on the xy-plane at any increment of flooding, we will see a
binary image in which black points correspond to points in the function that
are below the plane This interpretation is quite useful in helping
clarify the following discussion.

Let denote the set of coordinates of points in the catchment basin
associated with minimum that are flooded at stage With reference to the
discussion in the previous paragraph, may be viewed as a binary image
given by

Cn(Mi)
n.Mi
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(10.5-2)

In other words, at location if AND
otherwise The geometrical interpretation of this re-

sult is straightforward. We are simply using the AND operator to isolate at
stage of flooding the portion of the binary image in that is associated
with regional minimum 

Next, we let denote the union of the flooded catchment basins at stage 

(10.5-3)

Then is the union of all catchment basins:

(10.5-4)

It can be shown (Problem 10.41) that the elements in both and are
never replaced during execution of the algorithm, and that the number of ele-
ments in these two sets either increases or remains the same as increases.
Thus, it follows that is a subset of According to Eqs. (10.5-2)
and (10.5-3), is a subset of so it follows that is a subset of

From this we have the important result that each connected component
of is contained in exactly one connected component of 

The algorithm for finding the watershed lines is initialized with
The algorithm then proceeds recursively, computing

from A procedure for obtaining from is as fol-
lows. Let denote the set of connected components in Then, for each
connected component there are three possibilities:

1. is empty.
2. contains one connected component of 
3. contains more than one connected component of 

Construction of from depends on which of these three conditions
holds. Condition 1 occurs when a new minimum is encountered, in which case
connected component is incorporated into to form Condition 2
occurs when lies within the catchment basin of some regional minimum, in
which case is incorporated into to form Condition 3 occurs
when all, or part, of a ridge separating two or more catchment basins is en-
countered. Further flooding would cause the water level in these catchment
basins to merge. Thus a dam (or dams if more than two catchment basins are
involved) must be built within to prevent overflow between the catchment
basins.As explained in the previous section, a one-pixel-thick dam can be con-
structed when needed by dilating with a structuring ele-
ment of 1s, and constraining the dilation to 

Algorithm efficiency is improved by using only values of that correspond
to existing intensity values in we can determine these values, as well as
the values of min and max, from the histogram of g(x, y).
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■ Consider the image and its gradient in Figs. 10.56(a) and (b), respectively.
Application of the watershed algorithm just described yielded the watershed
lines (white paths) of the gradient image in Fig. 10.56(c). These segmentation
boundaries are shown superimposed on the original image in Fig. 10.56(d). As
noted at the beginning of this section, the segmentation boundaries have the
important property of being connected paths. ■

10.5.4 The Use of Markers
Direct application of the watershed segmentation algorithm in the form 
discussed in the previous section generally leads to oversegmentation due to
noise and other local irregularities of the gradient. As Fig. 10.57 shows, over-
segmentation can be serious enough to render the result of the algorithm vir-
tually useless. In this case, this means a large number of segmented regions. A
practical solution to this problem is to limit the number of allowable regions
by incorporating a preprocessing stage designed to bring additional knowl-
edge into the segmentation procedure.

An approach used to control oversegmentation is based on the concept of
markers. A marker is a connected component belonging to an image. We have
internal markers, associated with objects of interest, and external markers, as-
sociated with the background. A procedure for marker selection typically will
consist of two principal steps: (1) preprocessing; and (2) definition of a set of
criteria that markers must satisfy. To illustrate, consider Fig. 10.57(a) again.

FIGURE 10.56
(a) Image of blobs.
(b) Image gradient.
(c) Watershed lines.
(d) Watershed lines
superimposed on
original image.
(Courtesy of Dr.
S. Beucher,
CMM/Ecole des
Mines de Paris.)

a b
c d

EXAMPLE 10.25:
Illustration of the
watershed
segmentation
algorithm.
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FIGURE 10.57
(a) Electrophoresis
image. (b) Result
of applying the
watershed
segmentation
algorithm to the
gradient image.
Oversegmentation
is evident.
(Courtesy of Dr.
S. Beucher,
CMM/Ecole des
Mines de Paris.)

FIGURE 10.58 (a) Image showing internal markers (light gray regions) and external
markers (watershed lines). (b) Result of segmentation. Note the improvement over Fig.
10.47(b). (Courtesy of Dr. S. Beucher, CMM/Ecole des Mines de Paris.)

Part of the problem that led to the oversegmented result in Fig. 10.57(b) is the
large number of potential minima. Because of their size, many of these minima
are irrelevant detail. As has been pointed out several times in earlier discus-
sions, an effective method for minimizing the effect of small spatial detail is to
filter the image with a smoothing filter. This is an appropriate preprocessing
scheme in this particular case.

Suppose that we define an internal marker as (1) a region that is surround-
ed by points of higher “altitude”; (2) such that the points in the region form a
connected component; and (3) in which all the points in the connected com-
ponent have the same intensity value. After the image was smoothed, the in-
ternal markers resulting from this definition are shown as light gray, bloblike
regions in Fig. 10.58(a). Next, the watershed algorithm was applied to the

a b

a b



778 Chapter 10 ■ Image Segmentation

smoothed image, under the restriction that these internal markers be the only
allowed regional minima. Figure 10.58(a) shows the resulting watershed lines.
These watershed lines are defined as the external markers. Note that the
points along the watershed line pass along the highest points between neigh-
boring markers.

The external markers in Fig. 10.58(a) effectively partition the image into 
regions, with each region containing a single internal marker and part of the
background. The problem is thus reduced to partitioning each of these regions
into two: a single object and its background. We can bring to bear on this sim-
plified problem many of the segmentation techniques discussed earlier in this
chapter. Another approach is simply to apply the watershed segmentation
algorithm to each individual region. In other words, we simply take the gradient
of the smoothed image [as in Fig. 10.56(b)] and then restrict the algorithm to
operate on a single watershed that contains the marker in that particular re-
gion. The result obtained using this approach is shown in 10.58(b). The im-
provement over the image in 10.57(b) is evident.

Marker selection can range from simple procedures based on intensity 
values and connectivity, as was just illustrated, to more complex descriptions in-
volving size, shape, location, relative distances, texture content, and so on (see
Chapter 11 regarding descriptors).The point is that using markers brings a priori
knowledge to bear on the segmentation problem. The reader is reminded that
humans often aid segmentation and higher-level tasks in everyday vision by
using a priori knowledge, one of the most familiar being the use of context.Thus,
the fact that segmentation by watersheds offers a framework that can make ef-
fective use of this type of knowledge is a significant advantage of this method.

10.6 The Use of Motion in Segmentation

Motion is a powerful cue used by humans and many other animals to extract
objects or regions of interest from a background of irrelevant detail. In imag-
ing applications, motion arises from a relative displacement between the sens-
ing system and the scene being viewed, such as in robotic applications,
autonomous navigation, and dynamic scene analysis. In the following sections
we consider the use of motion in segmentation both spatially and in the fre-
quency domain.

10.6.1 Spatial Techniques
Basic approach

One of the simplest approaches for detecting changes between two image
frames and taken at times and respectively, is to com-
pare the two images pixel by pixel. One procedure for doing this is to form a
difference image. Suppose that we have a reference image containing only sta-
tionary components. Comparing this image against a subsequent image of the
same scene, but including a moving object, results in the difference of the two
images canceling the stationary elements, leaving only nonzero entries that
correspond to the nonstationary image components.

tj,tif(x, y, tj)f(x, y, ti)
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A difference image between two images taken at times and may be de-
fined as

(10.6-1)

where is a specified threshold. Note that has a value of 1 at spatial 
coordinates only if the intensity difference between the two images is
appreciably different at those coordinates, as determined by the specified
threshold It is assumed that all images are of the same size. Finally, we note
that the values of the coordinates in Eq. (10.6-1) span the dimensions of
these images, so that the difference image is of the same size as the
images in the sequence.

In dynamic image processing, all pixels in with value 1 are considered
the result of object motion.This approach is applicable only if the two images are
registered spatially and if the illumination is relatively constant within the bounds
established by In practice, 1-valued entries in may arise as a result of
noise. Typically, these entries are isolated points in the difference image, and a
simple approach to their removal is to form 4- or 8-connected regions of 1s in

and then ignore any region that has less than a predetermined number
of elements.Although it may result in ignoring small and/or slow-moving objects,
this approach improves the chances that the remaining entries in the difference
image actually are the result of motion.

Accumulative differences

Consider a sequence of image frames and
let be the reference image. An accumulative difference image (ADI)
is formed by comparing this reference image with every subsequent image in
the sequence. A counter for each pixel location in the accumulative image is
incremented every time a difference occurs at that pixel location between the
reference and an image in the sequence. Thus when the kth frame is being
compared with the reference, the entry in a given pixel of the accumulative
image gives the number of times the intensity at that position was different [as
determined by in Eq. (10.6-1)] from the corresponding pixel value in the ref-
erence image.

Consider the following three types of accumulative difference images:
absolute, positive, and negative ADIs. Assuming that the intensity values of
the moving objects are larger than the background, these three types of
ADIs are defined as follows. Let denote the reference image and, to
simplify the notation, let denote so that We as-
sume that Then, for any and keeping in mind
that the values of the ADIs are counts, we define the following for all relevant
values of 

(10.6-2)Ak(x, y) = bAk - 1(x, y) + 1 if ƒ R(x, y) - f(x, y, k) ƒ 7 T

Ak - 1(x, y) otherwise

(x, y):

k 7 1,R(x, y) = f(x, y, 1).
f(x, y, k) = f(x, y, tk).tk,k

R(x, y)

T

f(x, y, t1)
f(x, y, t1), f(x, y, t2), Á , f(x, y, tn)

dij(x, y)

dij(x, y)T.

dij(x, y)

dij(x, y)
(x, y)

T.

(x, y)
dij(x, y)T

dij(x, y) = b1 if ƒ f(x, y, ti) - f(x, y, tj) ƒ 7 T

0 otherwise

tjti
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FIGURE 10.59 ADIs of a rectangular object moving in a southeasterly direction. (a) Absolute ADI.
(b) Positive ADI. (c) Negative ADI.

a b c

(10.6-3)

and

(10.6-4)

where and are the absolute, positive, and negative
ADIs, respectively, after the kth image in the sequence is encountered.

It is understood that these ADIs start out with all zero values (counts).
Note also that the ADIs are of the same size as the images in the sequence.
Finally, we note that the order of the inequalities and signs of the thresholds in
Eqs. (10.6-3) and (10.6-4) are reversed if the intensity values of the back-
ground pixels are greater than the values of the moving objects.

Nk(x, y)Ak(x, t), Pk(x, y),

Nk(x, y) = bNk - 1(x, y) + 1 if CR(x, y) - f(x, y, k) D 6 -T

Nk - 1(x, y) otherwise

Pk(x, y) = bPk - 1(x, y) + 1 if CR(x, y) - f(x, y, k) D 7 T

Pk - 1(x, y) otherwise

EXAMPLE 10.26:
Computation of
the absolute,
positive, and
negative
accumulative
difference images.

■ Figure 10.59 shows the three ADIs displayed as intensity images for a
rectangular object of dimension pixels that is moving in a southeast-
erly direction at a speed of pixels per frame. The images are of size

pixels. We note the following: (1) The nonzero area of the positive
ADI is equal to the size of the moving object. (2) The location of the positive
ADI corresponds to the location of the moving object in the reference frame.
(3) The number of counts in the positive ADI stops increasing when the mov-
ing object is displaced completely with respect to the same object in the refer-
ence frame. (4) The absolute ADI contains the regions of the positive and
negative ADI. (5) The direction and speed of the moving object can be deter-
mined from the entries in the absolute and negative ADIs. ■

Establishing a reference image

A key to the success of the techniques discussed in the preceding two sections
is having a reference image against which subsequent comparisons can be

256 * 256
522

75 * 50
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FIGURE 10.60 Building a static reference image. (a) and (b) Two frames in a sequence.
(c) Eastbound automobile subtracted from (a) and the background restored from the
corresponding area in (b). (Jain and Jain.)

a b c

made. The difference between two images in a dynamic imaging problem has
the tendency to cancel all stationary components, leaving only image elements
that correspond to noise and to the moving objects.

In practice,obtaining a reference image with only stationary elements is not always
possible, and building a reference from a set of images containing one or more
moving objects becomes necessary.This applies particularly to situations describ-
ing busy scenes or in cases where frequent updating is required. One procedure
for generating a reference image is as follows. Consider the first image in a se-
quence to be the reference image. When a nonstationary component has moved
completely out of its position in the reference frame, the corresponding back-
ground in the present frame can be duplicated in the location originally occupied
by the object in the reference frame. When all moving objects have moved com-
pletely out of their original positions, a reference image containing only stationary
components will have been created. Object displacement can be established by
monitoring the changes in the positive ADI, as indicated in the preceding section.

EXAMPLE 10.27:
Building a
reference image.

■ Figures 10.60(a) and (b) show two image frames of a traffic intersection.
The first image is considered the reference, and the second depicts the same
scene some time later. The objective is to remove the principal moving objects
in the reference image in order to create a static image. Although there are
other smaller moving objects, the principal moving feature is the automobile
at the intersection moving from left to right. For illustrative purposes we focus
on this object. By monitoring the changes in the positive ADI, it is possible to
determine the initial position of a moving object, as explained previously.
Once the area occupied by this object is identified, the object can be removed
from the image by subtraction. By looking at the frame in the sequence at
which the positive ADI stopped changing, we can copy from this image the
area previously occupied by the moving object in the initial frame. This area
then is pasted onto the image from which the object was cut out, thus restoring
the background of that area. If this is done for all moving objects, the result is
a reference image with only static components against which we can compare
subsequent frames for motion detection. The result of removing the east-
bound moving vehicle in this case is shown in Fig. 10.60(c). ■



782 Chapter 10 ■ Image Segmentation

10.6.2 Frequency Domain Techniques
In this section we consider the problem of determining motion via a Fourier
transform formulation. Consider a sequence of 
digital image frames of size generated by a stationary camera.We begin
the development by assuming that all frames have a homogeneous background
of zero intensity. The exception is a single, 1-pixel object of unit intensity that is
moving with constant velocity. Suppose that for frame one the object is
at location and that the image plane is projected onto the 
x-axis; that is, the pixel intensities are summed across the columns in the image.
This operation yields a 1-D array with entries that are zero, except at which
is the x-coordinate of the single-point object. If we now multiply all the compo-
nents of the 1-D array by the quantity for 

and sum the results, we obtain the single term In this
notation, is a positive integer, and is the time interval between frames.

Suppose that in frame two the object has moved to coordinates
that is, it has moved 1 pixel parallel to the x-axis. Then repeating

the projection procedure discussed in the previous paragraph yields the sum
If the object continues to move 1 pixel location per

frame, then, at any integer instant of time, the result is 
which, using Euler’s formula, may be expressed as

(10.6-5)

for In other words, this procedure yields a complex sinu-
soid with frequency If the object were moving pixels (in the x-direction)
between frames, the sinusoid would have frequency Because varies
between 0 and in integer increments, restricting to integer values
causes the discrete Fourier transform of the complex sinusoid to have two
peaks—one located at frequency and the other at This latter
peak is the result of symmetry in the discrete Fourier transform, as discussed
in Section 4.6.4, and may be ignored. Thus a peak search in the Fourier spec-
trum yields Division of this quantity by yields which is the velocity
component in the x-direction, as the frame rate is assumed to be known. A
similar argument would yield the component of velocity in the y-direction.

A sequence of frames in which no motion takes place produces identical ex-
ponential terms, whose Fourier transform would consist of a single peak at a
frequency of 0 (a single dc term). Therefore, because the operations discussed
so far are linear, the general case involving one or more moving objects in an
arbitrary static background would have a Fourier transform with a peak at dc
corresponding to static image components and peaks at locations proportion-
al to the velocities of the objects.

These concepts may be summarized as follows. For a sequence of digital
images of size the sum of the weighted projections onto the axis at
any integer instant of time is

(10.6-6)gx(t, a1) = a
M - 1

x = 0
a

N - 1

y = 0
f(x, y, t)e j2pa1x¢t t = 0, 1, Á , K - 1

xM * N,
K

V2,

V1,a1V1a1.

K - V1a1.V1a1

a1K - 1
tV1a1.

V1a1.
t = 0, 1, Á , K - 1.

e j2pa1(x¿ + t) ¢t = cos [2pa1(x¿ + t) ¢t] + j sin [2pa1(x¿ + t) ¢t]

exp[ j2pa1(x¿ + t) ¢t],t,
exp [ j2pa1(x¿ + 1) ¢t].

(x¿ + 1, y¿);
(t = 1)

¢ta1

exp[ j2pa1x¿¢t].M - 1
x = 0, 1, 2, Á ,exp [ j2pa1x ¢t]

x¿,M

(x¿, y¿)
(t = 0),

M * N
Kf(x, y, t), t = 0, 1, Á , K - 1,
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Similarly, the sum of the projections onto the y-axis is

(10.6-7)

where, as noted already, and are positive integers.
The 1-D Fourier transforms of Eqs. (10.6-6) and (10.6-7), respectively, are

(10.6-8)

and

(10.6-9)

In practice, computation of these transforms is carried out using an FFT algo-
rithm, as discussed in Section 4.11.

The frequency-velocity relationship is

(10.6-10)

and

(10.6-11)

In this formulation the unit of velocity is in pixels per total frame time. For ex-
ample, is interpreted as a motion of 10 pixels in frames. For frames
that are taken uniformly, the actual physical speed depends on the frame rate
and the distance between pixels.Thus if the frame rate is two
images per second, and the distance between pixels is 0.5 m, then the actual
physical speed in the x-direction is

The sign of the x-component of the velocity is obtained by computing

(10.6-12)

and

(10.6-13)

Because is sinusoidal, it can be shown (Problem 10.47) that and will
have the same sign at an arbitrary point in time, if the velocity component 
is positive. Conversely, opposite signs in and indicate a negative com-
ponent. If either or is zero, we consider the next closest point in time,

Similar comments apply to computing the sign of V2.t = n ; ¢t.
S2xS1x

S2xS1x

V1n,
S2xS1xgx

S2x =
d2Im Cgx(t, a1) D

dt2 `
t = n

S1x =
d2Re Cgx(t, a1) D

dt2 `
t = n

= 1>3 m>s
V1 = (10 pixels)(0.5 m>pixel)(2 frames>s)>(30 frames)

V1 = 10, K = 30,

KV1 = 10

u2 = a2V2

u1 = a1V1

Gy(u2, a2) = a
K - 1

t = 0
gy(t, a2)e-j2pu2t/K u2 = 0, 1, Á , K - 1

Gx(u1, a1) = a
K - 1

t = 0
gx(t, a1)e-j2pu1t/K u1 = 0, 1, Á , K - 1

a2a1

gy(t, a2) = a
N - 1

y = 0
a

M - 1

x = 0
f(x, y, t)e j2pa2y ¢t t = 0, 1, Á , K - 1
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FIGURE 10.61
LANDSAT frame.
(Cowart, Snyder,
and Ruedger.)

y

x

FIGURE 10.62
Intensity plot of
the image in Fig.
10.61, with the
target circled.
(Rajala, Riddle,
and Snyder.)

EXAMPLE 10.28:
Detection of a
small moving
object via the
frequency
domain.

■ Figures 10.61 through 10.64 illustrate the effectiveness of the approach just
derived. Figure 10.61 shows one of a 32-frame sequence of LANDSAT images
generated by adding white noise to a reference image. The sequence contains
a superimposed target moving at 0.5 pixel per frame in the x-direction and 1
pixel per frame in the y-direction. The target, shown circled in Fig. 10.62, has a
Gaussian intensity distribution spread over a small (9-pixel) area and is not
easily discernible by eye. Figures 10.63 and 10.64 show the results of comput-
ing Eqs. (10.6-8) and (10.6-9) with and respectively.The peak at

in Fig. 10.63 yields from Eq. (10.6-10). Similarly, the peak at
in Fig. 10.64 yields  from Eq. (10.6-11). ■

Guidelines for the selection of and can be explained with the aid of
Figs. 10.63 and 10.64. For instance, suppose that we had used instead of

In that case the peaks in Fig. 10.64 would now be at and 17 be-
cause which would be a seriously aliased result. As discussed in Section
4.5.4,aliasing is caused by undersampling (too few frames in the present discussion,
as the range of is determined by ). Because one possibility is to selectu = aV,Ku

V2 = 1.0,
u2 = 15a2 = 4.
a2 = 15

a2a1

V2 = 1.0u2 = 4
V1 = 0.5u1 = 3

a2 = 4,a1 = 6
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Spectrum of Eq.
(10.6-8) showing a
peak at 
(Rajala, Riddle,
and Snyder.)

u1 = 3.
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FIGURE 10.64
Spectrum of Eq.
(10.6-9) showing a
peak at 
(Rajala, Riddle,
and Snyder.)

u2 = 4.

as the integer closest to where is the aliasing frequency limi-
tation established by and is the maximum expected object velocity.

Summary
Image segmentation is an essential preliminary step in most automatic pictorial pattern
recognition and scene analysis applications. As indicated by the range of examples pre-
sented in the previous sections, the choice of one segmentation technique over another
is dictated mostly by the peculiar characteristics of the problem being considered. The
methods discussed in this chapter, although far from exhaustive, are representative of
techniques commonly used in practice. The following references can be used as the
basis for further study of this topic.

References and Further Reading
Because of its central role in autonomous image processing, segmentation is a topic cov-
ered in most books dealing with image processing, image analysis, and computer vision.
The following books provide complementary and/or supplementary reading for our cov-
erage of this topic: Umbaugh [2005]; Davies [2005]; Gonzalez,Woods, and Eddins [2004];
Shapiro and Stockman [2001]; Sonka et al. [1999]; and Petrou and Bosdogianni [1999].

Work dealing with the use of masks to detect intensity discontinuities (Section 10.2)
has a long history. Numerous masks have been proposed over the years: Roberts [1965],
Prewitt [1970], Kirsh [1971], Robinson [1976], Frei and Chen [1977], and Canny [1986]. A
review article by Fram and Deutsch [1975] contains numerous masks and an evaluation of

VmaxK
umaxa = umax>Vmax,a
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their performance.The issue of mask performance, especially for edge detection, still is an
area of considerable interest, as exemplified by Qian and Huang [1996],Wang et al. [1996],
Heath et al. [1997, 1998], and Ando [2000]. Edge detection on color images has been
increasing in popularity for a number of multisensing applications. See, for example, Salinas,
Abidi, and Gonzalez [1996]; Zugaj and Lattuati [1998]; Mirmehdi and Petrou [2000]; and
Plataniotis and Venetsanopoulos [2000]. The interplay between image characteristics and
mask performance also is a topic of current interest, as exemplified by Ziou [2001]. Our
presentation of the zero-crossing properties of the Laplacian is based on a paper by Marr
and Hildredth [1980] and on the book by Marr [1982]. See also a paper by Clark [1989] on
authenticating edges produced by zero-crossing algorithms. (Corrections of parts of the
Clark paper are given by Piech [1990].) As mentioned in Section 10.2, zero crossing via the
Laplacian of a Gaussian is an important approach whose relative performance is still an
active topic of research (Gunn [1998, 1999]). As the name implies, the Canny edge detec-
tor discussed in Section 10.2.6 is due to Canny [1986]. For an example of work on this topic
twenty years later, see Zhang and Rockett [2006].

The Hough transform (Hough [1962]) is a practical method for global pixel linking
and curve detection. Numerous generalizations to the basic transform discussed in this
chapter have been proposed over the years. For example, Lo and Tsai [1995] discuss an
approach for detecting thick lines, Guil et al. [1995, 1997] deal with fast implementa-
tions of the Hough transform and detection of primitive curves, Daul at al. [1998] dis-
cuss further generalizations for detecting elliptical arcs, and Shapiro [1996] deals with
implementation of the Hough transform for gray-scale images.

As mentioned at the beginning of Section 10.3, thresholding techniques enjoy a sig-
nificant degree of popularity because they are simple to implement. It is not surprising
that there is a considerable body of work reported in the literature on this topic.A good
appreciation of the extent of this literature can be gained from the review papers by
Sahoo et al. [1988] and by Lee et al. [1990]. In addition to the techniques discussed in this
chapter, other approaches used to deal with the effects of illumination and reflectance
(Section 10.3.1) are illustrated by the work of Perez and Gonzalez [1987], Parker [1991],
Murase and Nayar [1994], Bischsel [1998], Drew et al. [1999], and Toro and Funt [2007].
For additional reading on the material in Section 10.3.2, see Jain et al. [1995].

Early work on optimal global thresholding (Section 10.3.3) is exemplified in the classic
paper by Chow and Kaneko [1972] (we discuss this method in Section 12.2.2 in the more
general context of object recognition).Although it is optimal in theory, applications of this
method in intensity thresholding are limited because of the need to estimate probability
density functions. The optimum approach we developed in Section 10.3.3, due to Otsu
[1979], has gained much more acceptance because it combines excellent performance with
simplicity of implementation, requiring only estimation of image histograms. The basic
idea of using preprocessing (Sections 10.3.4 and 10.3.5) dates back to an early paper by
White and Rohrer [1983]), which combined thresholding, the gradient, and the Laplacian
in the solution of a difficult segmentation problem. It is interesting to compare the funda-
mental similarities in terms of image segmentation capability between the methods dis-
cussed in the preceding three articles and work on thresholding done almost twenty years
later by Cheriet et al. [1998], Sauvola and Pietikainen [2000]), Liang et al. [2000], and Chan
et al. [2000]. For additional reading on multiple thresholding (Section 10.3.6), see Yin and
Chen [1997], Liao et al. [2001], and Zahara et al. [2005]. For additional reading on variable
thresholding (Section 10.3.7), see Parker [1997]. See also Delon et al. [2007].

See Fu and Mui [1981] for an early survey on the topic of region-oriented segmenta-
tion. The work of Haddon and Boyce [1990] and of Pavlidis and Liow [1990] are among
the earliest efforts to integrate region and boundary information for the purpose of seg-
mentation. A newer region-growing approach proposed by Hojjatoleslami and Kittler
[1998] also is of interest. For current basic coverage of region-oriented segmentation
concepts, see Shapiro and Stockman [2001] and Sonka et al. [1999].



Segmentation by watersheds was shown in Section 10.5 to be a powerful concept. Early
references dealing with segmentation by watersheds are Serra [1988], Beucher [1990], and
Beucher and Meyer [1992].The paper by Baccar et al. [1996] discusses segmentation based
on data fusion and morphological watersheds. Progress ten years later is evident in a spe-
cial issue of Pattern Recognition [2000], devoted entirely to this topic. As indicated in our
discussion in Section 10.5, one of the key issues with watersheds is the problem of over seg-
mentation.The papers by Najmanand and Schmitt [1996],Haris et al. [1998],and Bleau and
Leon [2000] are illustrative of approaches for dealing with this problem. Bieniek and Moga
[2000] discuss a watershed segmentation algorithm based on connected components.

The material in Section 10.6.1 is from Jain, R. [1981]. See also Jain, Kasturi, and
Schunck [1995]. The material in Section 10.6.2 is from Rajala, Riddle, and Snyder
[1983]. See also the papers by Shariat and Price [1990] and by Cumani et al. [1991]. The
books by Sonka et al. [1999], Shapiro and Stockman [2001], Snyder and Qi [2004], and
Davies [2005] provide additional reading on motion estimation. See also Alexiadis and
Sergiadis [2007].

Problems
10.1 Prove the validity of Eq. (10.2-1). (Hint: Use a Taylor series expansion and keep

only the linear terms.)

10.2 A binary image contains straight lines oriented horizontally, vertically, at 45°,
and at Give a set of masks that can be used to detect 1-pixel breaks
in these lines. Assume that the intensities of the lines and background are 1 and
0, respectively.

10.3 Propose a technique for detecting gaps of length ranging between 1 and pix-
els in line segments of a binary image. Assume that the lines are 1 pixel thick.
Base your technique on 8-neighbor connectivity analysis, rather than attempting
to construct masks for detecting the gaps.

10.4 Refer to Fig. 10.7 in answering the following questions.

(a) Some of the lines joining the pads and center element in Fig. 10.7(e) are sin-
gle lines, while others are double lines. Explain why.

(b) Propose a method for eliminating the components in Fig. 10.7(f) that are not
part of the line oriented at 

10.5 Refer to the edge models in Fig. 10.8.

(a) Suppose that we compute the gradient magnitude of each of these models
using the Prewitt operators in Fig. 10.14. Sketch what a horizontal profile
through the center of each gradient image would look like.

(b) Sketch a horizontal profile for each corresponding angle image.

(Note: Answer this question without generating the gradient and angle images.
Simply provide sketches of the profiles that show what you would expect the
profiles of the magnitude and angle images to look like.)

10.6 Consider a horizontal intensity profile through the middle of a binary image that
contains a step edge running vertically through the center of the image. Draw what
the profile would look like after the image has been blurred by an averaging mask
of size with coefficients equal to For simplicity, assume that the image
was scaled so that its intensity levels are 0 on the left of the edge and 1 on its right.
Also, assume that the size of the mask is much smaller than the image, so that image
border effects are not a concern near the center of the horizontal intensity profile.

10.7 Suppose that we had used the edge models shown in the next page, instead of
the ramp model in Fig. 10.10. Sketch the gradient and Laplacian of each profile.

1>n2.n * n,

-45°.

K

3 * 3-45°.
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10.8 Refer to Fig. 10.14 in answering the following questions.

(a) Assume that the Sobel masks are used to obtain and Show that in this
case the magnitude of the gradient computed using Eqs. (10.2-10) and (10.2-20)
give identical results.

(b) Show that this is true also for the Prewitt masks.

10.9 Show that the Sobel and Prewitt masks in Figs. 10.14 and 10.15 give isotropic results
only for horizontal and vertical edges and for edges oriented at respectively.

10.10 The results obtained by a single pass through an image of some 2-D masks can
be achieved also by two passes using 1-D masks. For example, the same result of
using a smoothing mask with coefficients can be obtained by a pass of
the mask [1 1 1] through an image. The result of this pass is then followed by a
pass of the mask

The final result is then scaled by . Show that the response of Sobel masks
(Fig. 10.14) can be implemented similarly by one pass of the differencing mask

(or its vertical counterpart) followed by the smoothing mask [1 2 1] (or
its vertical counterpart).

10.11 The so-called compass gradient operators of size are designed to measure
gradients of edges oriented in eight directions: E, NE, N, NW,W, SW, S, and SE.

(a) Give the form of these eight operators using coefficients valued 0, 1, or 

(b) Specify the gradient vector direction of each mask, keeping in mind that the
gradient direction is orthogonal to the edge direction.

10.12 The rectangle in the binary image in the next page is of size pixels.

(a) What would the magnitude of the gradient of this image look like based on
using the approximation given in Eq. (10.2-20)? Assume that and are
obtained using the Sobel operators. Show all relevant different pixel values
in the gradient image.

(b) Sketch the histogram of edge directions computed using Eq. (10.2-11). Be
precise in labeling the height of each component of the histogram.

(c) What would the Laplacian of this image look like based on using the ap-
proximation in Eq. (10.2-7)? Show all relevant different pixel values in the
Laplacian image.

gygx

m * n

-1.

3 * 3

[-1 0 1]

1>9

C1
1
1
S

1>93 * 3

;45°,

gy.gx
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10.13 Suppose that an image is convolved with a mask of size (with co-
efficients ) to produce a smoothed image 

(a) Derive an expression for edge strength (edge magnitude) of the smoothed
image as a function of mask size. Assume for simplicity that is odd and that
edges are obtained using the partial derivatives

(b) Show that the ratio of the maximum edge strength of the smoothed image
to the maximum edge strength of the original image is In other words,
edge strength is inversely proportional to the size of the smoothing mask.

10.14 With reference to Eq. (10.2-23):

(a) Show that the average value of the Laplacian of a Gaussian operator,
is zero.

(b) Show that the average value of any image convolved with this operator also
is zero. (Hint: Consider solving this problem in the frequency domain, using
the convolution theorem and the fact that the average value of a function is
proportional to its Fourier transform evaluated at the origin.)

(c) Would (b) be true in general if we (1) used the mask in Fig. 10.4(a) to com-
pute the Laplacian of a Gaussian lowpass filter using a Laplacian mask of
size and (2) convolved this result with any image? Explain. (Hint:
Refer to Problem 3.16.)

10.15 Refer to Fig. 10.22(c).

(a) Explain why the edges form closed contours.

(b) Does the zero-crossing method for finding edge location always result in
closed contours? Explain.

10.16 One often finds in the literature a derivation of the Laplacian of a Gaussian
(LoG) that starts with the expression

where The LoG is then found by taking the second partial derivative:
Finally, is substituted for to get the (incorrect) result

Derive this result and explain the reason for the difference between this expres-
sion and Eq. (10.2-23).

10.17 (a) Derive Eq. (10.2-27).
(b) Let denote the standard deviation ratio discussed in connection

with the DoG function. Express Eq. (10.2-27) in terms of and s2.k
k = s1>s2

§2G(x, y) = C(x2 + y2 - s2)>s4 D exp C- (x2 + y2)> 2s2 D
r2x2 + y2§2G(r) = 02G>0r2.

r2 = x2 + y2.

G(r) = e-r2/2s2

3 * 3,

§2G(x, y),

1>n.

0f>0x = f(x + 1, y) - f(x, y)  and  0f>0y = f(x, y + 1) - f(x, y).

n

f(x, y).1>n2
n * nf(x, y)
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10.18 In the following, assume that and are discrete arrays of size and
respectively.

(a) Show that the 2-D convolution of the Gaussian function in Eq.(10.2-21)
with an image can be expressed as a 1-D convolution along the rows
(columns) of followed by a 1-D convolution along the columns (rows)
of the result. (See Section 3.4.2 regarding discrete convolution.)

(b) Derive an expression for the computational advantage of using the 1-D con-
volution approach in (a) as opposed to implementing the 2-D convolution
directly. Assume that is sampled to produce an array of size 
and that is of size The computational advantage is the ratio
of the number of multiplications required for 2-D convolution to the num-
ber required for 1-D convolution.

10.19 (a) Show that Steps 1 and 2 of the Marr-Hildreth algorithm can be implement-
ed using four, 1-D convolutions. (Hints: Refer to Problem 10.18(a) and ex-
press the Laplacian operator as the sum of two partial derivatives, given by
Eqs. (10.2-5) and (10.2-6), and implement each derivative using a 1-D mask,
as in Problem 10.10.)

(b) Derive an expression for the computational advantage of using the 1-D con-
volution approach in (a) as opposed to implementing the 2-D convolution
directly. Assume that is sampled to produce an array of size 
and that is of size The computational advantage is the ratio
of the number of multiplications required for 2-D convolution to the num-
ber required for 1-D convolution (see Problem 10.18).

10.20 (a) Formulate Step 1 and the gradient magnitude image computation in Step 2
of the Canny algorithm using 1-D instead of 2-D convolutions.

(b) What is the computational advantage of using the 1-D convolution ap-
proach as opposed to implementing a 2-D convolution.Assume that the 2-D
Gaussian filter in Step 1 is sampled into an array of size and the input
image is of size Express the computational advantage as the ratio
of the number of multiplications required by each method.

10.21 Refer to the three vertical edge models and corresponding profiles in Fig. 10.8.

(a) Suppose that we compute the gradient magnitude of each of the three edge
models using the Sobel masks. Sketch the horizontal intensity profiles of the
three gradient images.

(b) Sketch the horizontal intensity profiles of the three Laplacian images, as-
suming that the Laplacian is computed using the mask in Fig. 10.4(a).

(c) Repeat for an image generated using only the first two steps of the Marr-
Hildreth edge detector.

(d) Repeat for the first two steps of the Canny edge detector. You may ignore
the angle images.

(e) Sketch the horizontal profile of the angle images for the Canny edge detector.

(Note:Answer this question without generating the images. Simply provide sketch-
es of the profiles that show what you would expect the profiles of the images to
look like.)

10.22 Refer to the Hough transform discussed in Section 10.2.7.
(a) Develop a general procedure for obtaining the normal representation of a

line from its slope-intercept form,
(b) Find the normal representation of the line y = -2x + 1.

y = ax + b.

3 * 3

M * N.
n * n

M * N.f(x, y)
n * nG(x, y)

M * N.f(x, y)
n * nG(x, y)

f(x, y)
f(x, y)

G(x, y)
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�

�

�

�

�

�



10.23 Refer to the Hough transform discussed in Section 10.2.7.
(a) Explain why the Hough mapping of point 1 in Fig. 10.33(a) is a straight line

in Fig. 10.33(b).
(b) Is this the only point that would produce that result? Explain.
(c) Explain the reflective adjacency relationship illustrated by, for example, the

curve labeled in Fig. 10.33(b).
10.24 Show that the number of operations required to implement the accumulator-

cell approach discussed in Section 10.2.7 is linear in the number of non-
background points in the image plane (i.e., the xy-plane).

10.25 An important area of application for image segmentation techniques is in 
processing images resulting from so-called bubble chamber events. These images
arise from experiments in high-energy physics in which a beam of particles of
known properties is directed onto a target of known nuclei. A typical event con-
sists of incoming tracks, any one of which, in the event of a collision, branches out
into secondary tracks of particles emanating from the point of collision. Propose
a segmentation approach for detecting all tracks that contain at least 100 pixels
and are angled at any of the following six directions off the horizontal:

and The allowed estimation error in any of these six directions
is For a track to be valid it must be at least 100 pixels long and not have
more than three gaps, any of which cannot exceed 10 pixels.You may assume that
the images have been preprocessed so that they are binary and that all tracks are
1 pixel wide, except at the point of collision from which they emanate. Your pro-
cedure should be able to differentiate between tracks that have the same direc-
tion but different origins. (Hint: Base your solution on the Hough transform.)

10.26 Restate the basic global thresholding algorithm in Section 10.3.2 so that it uses
the histogram of an image instead of the image itself.

10.27 Prove that the basic global thresholding algorithm in Section 10.3.2 converges in a
finite number of steps. (Hint: Use the histogram formulation from Problem 10.26.)

10.28 Give an explanation why the initial threshold in the basic global thresholding al-
gorithm in Section 10.3.2 must be between the minimum and maximum values
in the image. (Hint: Construct an example that shows the algorithm failing for a
threshold value selected outside this range.)

10.29 Is the threshold obtained with the basic global thresholding algorithm in
Section 10.3.2 independent of the starting point? If your answer is yes, prove it.
If your answer is no, give an example.

10.30 You may assume in both of the following cases that the threshold value during
iteration is bounded in the open interval 
(a) Prove that if the histogram of an image is uniform over all possible intensity

levels, the basic global thresholding algorithm in Section 10.3.2 converges to
the average intensity of the image,

(b) Prove that if the histogram of an image is bimodal, with identical modes that
are symmetric about their means, then the basic global algorithm will con-
verge to the point halfway between the means of the modes.

10.31 Refer to the thresholding algorithm in Section 10.3.2. Assume that in a given
problem the histogram is bimodal with modes that are Gaussian curves of the
form and Assume that

and that the initial T is between the max and min image intensities.
Give conditions (in terms of the parameters of these curves) for the following to
be true when the algorithm converges:

m1 7 m2

A2 exp[-(z - m2)
2>2s2

2].A1 exp[-(z - m1)
2>2s1

2]

(L - 1)>2.

(0, L - 1).

;5°.
;75°.;25°, ;50°,
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10.37 Refer to the intensity ramp image in Fig. 10.37(b) and the moving-average algo-
rithm discussed in Section 10.3.7. Assume that the image is of size 
pixels and that its minimum and maximum values are 0 and 1, where 0s are con-
tained only in the first column.

(a) What would be the result of segmenting this image with the moving-average
algorithm using and an arbitrary value for Explain what the image
would look like.

n.b = 0

500 * 700
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(a) The threshold is equal to 
(b) The threshold is to the left of 
(c) The threshold is in the interval 
If it is not possible for any of these conditions to exist, so state, and give a reason.

10.32 (a) Show how the first line in Eq. (10.3-15) follows from Eqs. (10.3-14),
(10.3-10), and (10.3-11).

(b) Show how the second line in Eq. (10.3-15) follows from the first.
10.33 Show that a maximum value for Eq. (10.3-18) always exists for in the range

10.34 With reference to Eq. (10.3-20), advance an argument that establishes that
for in the range where the minimum is

achievable only by images with constant intensity, and the maximum occurs only
for 2-valued images with values 0 and 

10.35 (a) Suppose that the intensities of an image are in the range [0, 1] and
that a threshold, successfully segmented the image into objects and back-
ground. Show that the threshold will successfully segment the
negative of into the same regions. The term negative is used here in
the sense defined in Section 3.2.1.

(b) The intensity transformation function in (a) that maps an image into its neg-
ative is a linear function with negative slope. State the conditions that an ar-
bitrary intensity transformation function must satisfy for the segmentability
of the original image with respect to a threshold, to be preserved. What
would be the value of the threshold after the intensity transformation?

10.36 The objects and background in the image shown have a mean intensity of 170
and 60, respectively, on a [0, 255] scale.The image is corrupted by Gaussian noise
with 0 mean and a standard deviation of 10 intensity levels. Propose a thresh-
olding method capable of yielding a correct segmentation rate of 90% or higher.
(Recall that 99.7% of the area of a Gaussian curve lies in a interval about
the mean, where is the standard deviation.)s

;3s

T,

f(x, y)
T¿ = 1 - T

T,
f(x, y)

L - 1.

0 … k … L - 1,k0 … h(k) … 1,
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(b) Now reverse the direction of the ramp so that its leftmost value is 1 and the
rightmost value is 0 and repeat (a).

(c) Repeat (a) but with and 

(d) Repeat (a) but with and 

10.38 Propose a region-growing algorithm to segment the image in Problem 10.36.

10.39 Segment the image shown by using the split and merge procedure discussed in
Section 10.4.2. Let if all pixels in have the same intensity.
Show the quadtree corresponding to your segmentation.

RiQ(Ri) = TRUE

b = 1.n = 100

b = 1.n = 2

�

N

N

10.40 Consider the region of 1s resulting from the segmentation of the sparse regions
in the image of the Cygnus Loop in Example 10.24. Propose a technique for
using this region as a mask to isolate the three main components of the image:
(1) background, (2) dense inner region, and (3) sparse outer region.

10.41 Refer to the discussion in Section 10.5.3.
(a) Show that the elements of and are never replaced during exe-

cution of the watershed segmentation algorithm.
(b) Show that the number of elements in sets and either increases

or remains the same as increases.
10.42 The boundaries illustrated in Section 10.5, obtained using the watershed seg-

mentation algorithm, form closed loops (for example, see Figs. 10.56 and 10.58).
Advance an argument that establishes whether or not closed boundaries always
result from application of this algorithm.

10.43 Give a step-by-step implementation of the dam-building procedure for the one-
dimensional intensity cross section shown. Show a drawing of the cross section
at each step, showing “water” levels and dams constructed.

n
T[n]Cn(Mi)

T[n]Cn(Mi)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
x0

1
2
3
4
5
6
7

10.44 What would the negative ADI image in Fig. 10.59(c) look like if we tested
against (instead of testing against ) in Eq. (10.6-4)?

10.45 Are the following statements true or false? Explain the reason for your answer
in each.

(a) The nonzero entries in the absolute ADI continue to grow in dimension,
provided that the object is moving.
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(b) The nonzero entries in the positive ADI always occupy the same area, re-
gardless of the motion undergone by the object.

(c) The nonzero entries in the negative ADI continue to grow in dimension,
provided that the object is moving.

10.46 Suppose that in Example 10.28 motion along the x-axis is set to zero.The object now
moves only along the y-axis at 1 pixel per frame for 32 frames and then (instanta-
neously) reverses direction and moves in exactly the opposite direction for another
32 frames.What would Figs. 10.63 and 10.64 look like under these conditions?

10.47 Advance an argument that demonstrates that when the signs of and in
Eqs. (10.6-12) and (10.6-13) are the same, the velocity component is positive.

10.48 An automated pharmaceutical plant uses image processing in measuring the
shapes of medication tablets for the purpose of quality control. The segmenta-
tion stage of the system is based on Otsu’s method. The speed of the inspection
lines is so high that a very high rate flash illumination is required to “stop” mo-
tion. When new, the illumination lamps project a uniform pattern of light. How-
ever, as the lamps age, the illumination pattern deteriorates as a function of time
and spatial coordinates according to the equation

where is the center of the viewing area and is time measured in in-
crements of months. The lamps are experimental and the behavior of is not
fully understood by the manufacturer. All that is known is that, during the life of
the lamps, is always greater than the negative component in the preceding
equation because illumination cannot be negative. It has been observed that
Otsu’s algorithm works well when the lamps are new, and their pattern of illumi-
nation is nearly constant over the entire image. However, segmentation perfor-
mance deteriorates with time. Being experimental, the lamps are exceptionally
expensive, so you are employed as a consultant to help solve the problem compu-
tationally and thus extend the useful life of the lamps. You are given flexibility to
install any special markers or other visual cues near the edges of the viewing area
of the imaging cameras. Propose a solution in sufficient detail that the engineering
plant manager can understand your approach. (Hint: Review the image model dis-
cussed in Section 2.3.4 and consider using a small target of known reflectivity.)

10.49 The speed of a bullet in flight is to be estimated by using high-speed imaging
techniques.The method of choice involves the use of a TV camera and flash that
exposes the scene for s. The bullet is 2.5 cm long, 1 cm wide, and its range of
speed is The camera optics produce an image in which the bullet
occupies 10% of the horizontal resolution of a digital image.

(a) Determine the maximum value of that will guarantee that the blur from
motion does not exceed 1 pixel.

(b) Determine the minimum number of frames per second that would have to
be acquired in order to guarantee that at least two complete images of the
bullet are obtained during its path through the field of view of the camera.

(c) Propose a segmentation procedure for automatically extracting the bullet
from a sequence of frames.

(d) Propose a method for automatically determining the speed of the bullet.

K

256 * 256
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Well, but reflect; have we not several times
acknowledged that names rightly given are the
likenesses and images of the things which they
name?

Socrates
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Preview
After an image has been segmented into regions by methods such as those dis-
cussed in Chapter 10, the resulting aggregate of segmented pixels usually is rep-
resented and described in a form suitable for further computer processing.
Basically, representing a region involves two choices: (1) We can represent the
region in terms of its external characteristics (its boundary), or (2) we can repre-
sent it in terms of its internal characteristics (the pixels comprising the region).
Choosing a representation scheme, however, is only part of the task of making
the data useful to a computer. The next task is to describe the region based on
the chosen representation. For example, a region may be represented by its
boundary, and the boundary described by features such as its length, the orienta-
tion of the straight line joining its extreme points, and the number of concavities
in the boundary.

An external representation is chosen when the primary focus is on shape
characteristics. An internal representation is selected when the primary focus
is on regional properties, such as color and texture. Sometimes it may be nec-
essary to use both types of representation. In either case, the features selected
as descriptors should be as insensitive as possible to variations in size, transla-
tion, and rotation. For the most part, the descriptors discussed in this chapter
satisfy one or more of these properties.

Representation 
and Description11
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†As you will see later in this chapter, the uppermost, leftmost point in a boundary has the important
property that a polygonal approximation to the boundary has a convex vertex at that location.Also, the
left and north neighbors of the point are guaranteed to be background points. These properties make it
a good “standard” point at which to start boundary-following algorithms.

11.1 Representation

The segmentation techniques discussed in Chapter 10 yield raw data in the
form of pixels along a boundary or pixels contained in a region. It is stan-
dard practice to use schemes that compact the segmented data into repre-
sentations that facilitate the computation of descriptors. In this section, we
discuss various representation approaches.

11.1.1 Boundary (Border) Following
Several of the algorithms discussed in this chapter require that the points in
the boundary of a region be ordered in a clockwise (or counterclockwise) di-
rection. Consequently, we begin our discussion by introducing a boundary-
following algorithm whose output is an ordered sequence of points.We assume
(1) that we are working with binary images in which object and background
points are labeled 1 and 0, respectively, and (2) that images are padded with a
border of 0s to eliminate the possibility of an object merging with the image
border. For convenience, we limit the discussion to single regions.The approach is
extended to multiple, disjoint regions by processing the regions individually.

Given a binary region or its boundary, an algorithm for following the bor-
der of or the given boundary, consists of the following steps:

1. Let the starting point, be the uppermost, leftmost point† in the image
that is labeled 1. Denote by the west neighbor of [see Fig. 11.1(b)].
Clearly, always is a background point. Examine the 8-neighbors of

starting at and proceeding in a clockwise direction. Let denote
the first neighbor encountered whose value is 1, and let be the (back-
ground) point immediately preceding in the sequence. Store the loca-
tions of and for use in Step 5.

2. Let and [see Fig. 11.1(c)].
3. Let the 8-neighbors of starting at and proceeding in a clockwise direc-

tion, be denoted by Find the first labeled 1.nkn1, n2, Á , n8.
cb,

c = c1b = b1

b1b0

b1

c1

b1c0b0,
c0

b0c0

b0,

R,
R

You will find it helpful to
review Sections 2.5.2 and
9.5.3 before proceeding.
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FIGURE 11.1 Illustration of the first few steps in the boundary-following algorithm.The
point to be processed next is labeled in black, the points yet to be processed are gray,
and the points found by the algorithm are labeled as gray squares.
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4. Let and 
5. Repeat Steps 3 and 4 until and the next boundary point found is 

The sequence of points found when the algorithm stops constitutes the
set of ordered boundary points.

Note that in Step 4 always is a background point because is the first 1-valued
point found in the clockwise scan.This algorithm sometimes is referred to as the
Moore boundary tracking algorithm after Moore [1968]. The stopping rule in
Step 5 of the algorithm frequently is found stated incorrectly in the literature as
stopping the first time that is encountered again. As you will see shortly, this
can lead to erroneous results.

Figure 11.1 shows the first few steps of the boundary-following algo-
rithm just discussed. It easily is verified that continuing with this procedure
will yield the correct boundary shown in Fig. 11.1(e), whose points are a
clockwise-ordered sequence.

To examine the need for the stopping rule as stated in Step 5 of the algo-
rithm, consider the boundary in Fig. 11.2.The segment on the upper side of the
boundary could arise, for example, from incomplete spur removal (see Section
9.5.8 regarding spurs). Starting at the topmost leftmost point results in the
steps shown.We see in Fig. 11.2(c) that the algorithm has returned to the start-
ing point. If the procedure were stopped because we have reached the starting
point again, it is evident that the rest of the boundary would not be found.
Using the stopping rule in Step 5 allows the algorithm to continue, and it is a
simple matter to show that the entire boundary in Fig. 11.2 would be found.

The boundary-following algorithm works equally well if a region, rather
than its boundary (as in the preceding illustrations), is given. That is, the pro-
cedure extracts the outer boundary of a binary region. If the objective is to find
the boundaries of holes in a region (these are called the inner boundaries of
the region), a simple approach is to extract the holes (see Section 9.5.9) and
treat them as 1-valued regions on a background of 0s. Applying the boundary-
following algorithm to these regions will yield the inner boundaries of the
original region.

We could have stated the algorithm just as easily based on following a
boundary in the counterclockwise direction. In fact, you will encounter algo-
rithms formulated on the assumption that boundary points are ordered in that

b0

nkc

b
b1.b = b0

c = nk - 1.b = nk
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FIGURE 11.2 Illustration of an erroneous result when the stopping rule is such that
boundary-following stops when the starting point, is encountered again.b0,
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direction. We use both directions interchangeably (but consistently) in the fol-
lowing sections to help you build familiarity with both approaches.

11.1.2 Chain Codes
Chain codes are used to represent a boundary by a connected sequence of
straight-line segments of specified length and direction. Typically, this repre-
sentation is based on 4- or 8-connectivity of the segments. The direction of
each segment is coded by using a numbering scheme, as in Fig. 11.3. A bound-
ary code formed as a sequence of such directional numbers is referred to as a
Freeman chain code.

Digital images usually are acquired and processed in a grid format with
equal spacing in the and y-directions, so a chain code can be generated by
following a boundary in, say, a clockwise direction and assigning a direction to
the segments connecting every pair of pixels. This method generally is unac-
ceptable for two principal reasons: (1) The resulting chain tends to be quite
long and (2) any small disturbances along the boundary due to noise or imper-
fect segmentation cause changes in the code that may not be related to the
principal shape features of the boundary.

An approach frequently used to circumvent these problems is to resample
the boundary by selecting a larger grid spacing, as Fig. 11.4(a) shows.Then, as
the boundary is traversed, a boundary point is assigned to each node of the
large grid, depending on the proximity of the original boundary to that node,
as in Fig. 11.4(b). The resampled boundary obtained in this way then can be
represented by a 4- or 8-code. Figure 11.4(c) shows the coarser boundary
points represented by an 8-directional chain code. It is a simple matter to
convert from an 8-code to a 4-code, and vice versa (see Problems 2.12 and 2.13).
The starting point in Fig. 11.4(c) is (arbitrarily) at the topmost, leftmost point
of the boundary, which gives the chain code As might be expected,
the accuracy of the resulting code representation depends on the spacing of
the sampling grid.

The chain code of a boundary depends on the starting point. However, the
code can be normalized with respect to the starting point by a straightfor-
ward procedure: We simply treat the chain code as a circular sequence of di-
rection numbers and redefine the starting point so that the resulting
sequence of numbers forms an integer of minimum magnitude. We can nor-
malize also for rotation (in angles that are integer multiples of the directions
in Fig. 11.3) by using the first difference of the chain code instead of the code
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FIGURE 11.3
Direction
numbers for 
(a) 4-directional
chain code, and
(b) 8-directional
chain code.
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FIGURE 11.4
(a) Digital
boundary with
resampling grid
superimposed.
(b) Result of
resampling.
(c) 8-directional
chain-coded
boundary.

itself. This difference is obtained by counting the number of direction
changes (in a counterclockwise direction in Fig. 11.3) that separate two adja-
cent elements of the code. For instance, the first difference of the 4-direction
chain code 10103322 is 3133030. If we treat the code as a circular sequence to
normalize with respect to the starting point, then the first element of the dif-
ference is computed by using the transition between the last and first com-
ponents of the chain. Here, the result is 33133030. Size normalization can be
achieved by altering the size of the resampling grid.

These normalizations are exact only if the boundaries themselves are in-
variant to rotation (again, in angles that are integer multiples of the directions
in Fig. 11.3) and scale change, which seldom is the case in practice. For in-
stance, the same object digitized in two different orientations will have differ-
ent boundary shapes in general, with the degree of dissimilarity being
proportional to image resolution.This effect can be reduced by selecting chain
elements that are long in proportion to the distance between pixels in the dig-
itized image and/or by orienting the resampling grid along the principal axes
of the object to be coded, as discussed in Section 11.2.2, or along its eigen axes,
as discussed in Section 11.4.

EXAMPLE 11.1:
Freeman chain
code and some of
its variations.

■ Figure 11.5(a) shows a 8-bit gray-scale image of a circular
stroke embedded in small specular fragments.The objective of this example is
to obtain the Freeman chain code, the integer of minimum magnitude, and
the first difference of the outer boundary of the largest object in Fig. 11.5(a).
Because the object of interest is embedded in small fragments, extracting its
boundary would result is a noisy curve that would not be descriptive of the
general shape of the object. Smoothing is a routine process when working
with noisy boundaries. Figure 11.5(b) shows the original image smoothed
with an averaging mask of size and Fig. 11.5(c) is the result of thresh-
olding this image with a global threshold obtained using Otsu’s method. Note
that the number of regions has been reduced to two (one of which is a dot),
significantly simplifying the problem.

Figure 11.5(d) is the outer boundary of the largest region in Fig. 11.5(c).
Obtaining the chain code of this boundary directly would result in a long se-
quence with small variations that are not representative of the shape of the

9 * 9,

570 * 570,
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FIGURE 11.5 (a) Noisy image. (b) Image smoothed with a averaging mask. (c) Smoothed image,
thresholded using Otsu’s method. (d) Longest outer boundary of (c). (e) Subsampled boundary (the points
are shown enlarged for clarity). (f) Connected points from (e).

9 * 9

boundary. As mentioned earlier in this section, it is customary to resample a
boundary before obtaining its chain code in order to reduce variability.
Figure 11.5(e) is the result of resampling the boundary in a grid with nodes
50 pixels apart (approximately 10% of the image width) and Fig. 11.5(f) is the
result of joining the resulting vertices by straight lines. This simpler approxi-
mation retained the principal features of the original boundary.

The 8-directional Freeman chain code of the simplified boundary is

0 0 0 0 6 0 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2 4 2 2 2 2 2 0 2 2 0 2

The starting point of the boundary is at coordinates (2, 5) in the subsampled grid.
This is the uppermost leftmost point in Fig. 11.5(f).The integer of minimum mag-
nitude of the code happens in this case to be the same as the chain code:

0 0 0 0 6 0 6 6 6 6 6 6 6 6 4 4 4 4 4 4 2 4 2 2 2 2 2 0 2 2 0 2

The first difference of either code is

0 0 0 6 2 6 0 0 0 0 0 0 0 6 0 0 0 0 0 6 2 6 0 0 0 0 6 2 0 6 2 6

a b c
d e f
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Using any of these codes to represent the boundary results in a significant
reduction in the amount of data needed to store the boundary. In addition,
working with code numbers offers a unified way to analyze the shape of a
boundary, as we discuss in Section 11.2. Finally, keep in mind that the subsampled
boundary can be recovered from any of the preceding codes. ■

11.1.3 Polygonal Approximations Using Minimum-Perimeter
Polygons

A digital boundary can be approximated with arbitrary accuracy by a polygon.
For a closed boundary, the approximation becomes exact when the number of
segments of the polygon is equal to the number of points in the boundary so that
each pair of adjacent points defines a segment of the polygon. The goal of a
polygonal approximation is to capture the essence of the shape in a given bound-
ary using the fewest possible number of segments. This problem is not trivial in
general and can turn into a time-consuming iterative search. However, approxi-
mation techniques of modest complexity are well suited for image processing
tasks. Among these, one of the most powerful is representing a boundary by a
minimum-perimeter polygon (MPP), as defined in the following discussion.

Foundation

An intuitively appealing approach for generating an algorithm to compute
MPPs is to enclose a boundary [Fig. 11.6(a)] by a set of concatenated cells, as
in Fig. 11.6(b). Think of the boundary as a rubber band. As it is allowed to
shrink, the rubber band will be constrained by the inner and outer walls of

FIGURE 11.6 (a) An object boundary (black curve). (b) Boundary enclosed by cells (in gray). (c) Minimum-
perimeter polygon obtained by allowing the boundary to shrink. The vertices of the polygon are created by
the corners of the inner and outer walls of the gray region.

a b c
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the bounding region defined by the cells. Ultimately, this shrinking produces
the shape of a polygon of minimum perimeter (with respect to this geometri-
cal arrangement) that circumscribes the region enclosed by the cell strip, as
Fig. 11.6(c) shows. Note in this figure that all the vertices of the MPP coin-
cide with corners of either the inner or the outer wall.

The size of the cells determines the accuracy of the polygonal approxima-
tion. In the limit, if the size of each (square) cell corresponds to a pixel in the
boundary, the error in each cell between the boundary and the MPP approxi-
mation at most would be where is the minimum possible distance be-
tween pixels (i.e., the distance between pixels established by the resolution of
the original sampled boundary). This error can be reduced in half by forcing
each cell in the polygonal approximation to be centered on its corresponding
pixel in the original boundary. The objective is to use the largest possible cell
size acceptable in a given application, thus producing MPPs with the fewest
number of vertices. Our objective in this section is to formulate a procedure
for finding these MPP vertices.

The cellular approach just described reduces the shape of the object en-
closed by the original boundary to the area circumscribed by the gray wall in
Fig. 11.6(b). Figure 11.7(a) shows this shape in dark gray.We see that its boundary
consists of 4-connected straight line segments. Suppose that we traverse this
boundary in a counterclockwise direction. Every turn encountered in the traversal
will be either a convex or a concave vertex, with the angle of a vertex being an
interior angle of the 4-connected boundary. Convex and concave vertices are

d22d,

FIGURE 11.7 (a) Region (dark gray) resulting from enclosing the original boundary by cells (see Fig. 11.6).
(b) Convex (white dots) and concave (black dots) vertices obtained by following the boundary of the dark
gray region in the counterclockwise direction. (c) Concave vertices (black dots) displaced to their diagonal
mirror locations in the outer wall of the bounding region; the convex vertices are not changed. The MPP
(black boundary) is superimposed for reference.

a b c
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shown, respectively, as white and black dots in Fig. 11.7(b). Note that these
vertices are the vertices of the inner wall of the light-gray bounding region in Fig.
11.7(b), and that every concave (black) vertex in the dark gray region has a cor-
responding “mirror” vertex in the light gray wall, located diagonally opposite the
vertex. Figure 11.7(c) shows the mirrors of all the concave vertices, with the MPP
from Fig. 11.6(c) superimposed for reference. We see that the vertices of the
MPP coincide either with convex vertices in the inner wall (white dots) or with
the mirrors of the concave vertices (black dots) in the outer wall.A little thought
will reveal that only convex vertices of the inner wall and concave vertices of the
outer wall can be vertices of the MPP.Thus, our algorithm needs to focus attention
on only these vertices.

MPP algorithm

The set of cells enclosing a digital boundary, described in the previous para-
graphs, is called a cellular complex. We assume that the boundaries under con-
sideration are not self intersecting, which leads to simply connected cellular
complexes. Based on these assumptions, and letting white and black
denote convex and mirrored concave vertices, respectively, we state the follow-
ing observations:

1. The MPP bounded by a simply connected cellular complex is not self-
intersecting.

2. Every convex vertex of the MPP is a vertex, but not every vertex of
a boundary is a vertex of the MPP.

3. Every mirrored concave vertex of the MPP is a vertex, but not every 
vertex of a boundary is a vertex of the MPP.

4. All vertices are on or outside the MPP, and all vertices are on or in-
side the MPP.

5. The uppermost, leftmost vertex in a sequence of vertices contained in a
cellular complex is always a vertex of the MPP.

These assertions can be proved formally (Sklansky et al. [1972], Sloboda et al.
[1998], and Klette and Rosenfeld [2004]). However, their correctness is evi-
dent for our purposes (Fig. 11.7), so we do not dwell on the proofs here. Unlike
the angles of the vertices of the dark gray region in Fig. 11.7, the angles sus-
tained by the vertices of the MPP are not necessarily multiples of 90°.

In the discussion that follows, we will need to calculate the orientation of
triplets of points. Consider the triplet of points, and let the coordi-
nates of these points be and If we
arrange these points as the rows of the matrix

(11.1-1)

then it follows from elementary matrix analysis that

A = Cx1 y1 1
x2 y2 1
x3 y3 1

S
c = (x3, y3).a = (x1, y1), b = (x2, y2),

(a, b, c),

W

WB

BB

WW

(B)(W)

A convex vertex is the
center point of a triplet
of points that define an
angle in the range

similarly,
angles of a concave ver-
tex are in the range

An
angle of 180° defines a
degenerate vertex (a
straight line) which can-
not be an MPP-vertex.
Angles equal to 0° or
360° involve retracing a
path, an invalid condition
in this discussion.

180° 6 u 6 360°.

0° 6 u 6 180°;
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†Vertices of a boundary can be ordered by tracking the boundary using, for example, the algorithm de-
scribed in Section 11.1.1.

(11.1-2)

where det(A) is the determinant of A. In terms of this equation, movement in a
counterclockwise or clockwise direction is with respect to a right-handed coor-
dinate system (see the footnote in Section 2.4.2). For example, using this image
coordinate system (Fig. 2.18), in which the origin is at the top left, the positive
x-axis extends vertically downward, and the positive y-axis extends horizontally
to the right, the sequence and is in the counter-
clockwise direction and would give when substituted into Eq. (11.1-2).
It is notationally convenient when describing the algorithm to define

(11.1-3)

so that for a counterclockwise sequence, for a
clockwise sequence, and when the points are collinear. Geo-
metrically, indicates that point lies on the positive side of
pair (i.e., lies on the positive side of the line passing through points 
and ). If point lies on the negative side of that line. Equa-
tions (11.1-2) and (11.1-3) give the same result if the sequence or

is used because the direction of travel in the sequence is the same as
for However, the geometrical interpretation is different. For example,

indicates that point lies on the positive side of the line
through points and 

To prepare the data for the MPP algorithm, we form a list whose rows are
the coordinates of each vertex and an additional element denoting whether
the vertex is or It is important that the concave vertices be mirrored, as
in Fig. 11.7(c), that the vertices be in sequential order,† and that the first vertex
be the uppermost leftmost vertex, which we know from property 5 is a ver-
tex of the MPP. Let denote this vertex. We assume that the vertices are
arranged in the counterclockwise direction. The algorithm for finding MPPs
uses two “crawler” points: a white crawler and a black crawler.
crawls along convex vertices, and crawls along mirrored concave 
vertices. These two crawler points, the last MPP vertex found, and the vertex
being examined are all that is necessary to implement the procedure.

The algorithm starts by setting (recall that is an MPP-
vertex). Then, at any step in the algorithm, let denote the last MPP vertex
found, and let denote the current vertex being examined. One of three condi-
tions can exist between and the two crawler points:

(a) lies to the positive side of the line through pair that is,

(b) lies on the negative side of the line though pair or is collinear
with it; that is At the same time, lies to the positiveVksgn(VL, WC, Vk) … 0.

(VL, WC)Vk

sgn(VL, WC, Vk) 7 0.
(VL, WC);Vk

VL, Vk,
Vk

VL

V0WC = BC = V0

(B)BC(W)
WC(BC)(WC)

V0

W

B.W

a.c
bsgn(c, a, b) 7 0

(a, b, c).
(b, c, a)

(c, a, b)
csgn(a, b, c) 6 0,b

ac(a, b)
csgn(a, b, c) 7 0

sgn(a, b, c) = 0
sgn(a, b, c) 6 0sgn(a, b, c) 7 0

sgn(a, b, c) K det(A)

det(A) 7 0
c = (3, 2)a = (3, 4), b = (2, 3),

det(A) = c 7  0 if (a, b, c) is a counterclockwise sequence
=  0 if the points are collinear
6  0 if (a, b, c) is a clockwise sequence

Assuming the coordinate
system defined in 
Fig. 2.18(b), when tra-
versing the boundary of a
polygon in a counter-
clockwise direction, all
points to the right of the
direction of travel are
outside the polygon. All
points to the left of the
direction of travel are
inside the polygon.
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side of the line through or is collinear with it; that is,

(c) lies on the negative side of the line though pair that is,

If condition (a) holds, the next MPP vertex is and we let then
we reinitialize the algorithm by setting and continue with the
next vertex after 

If condition (b) holds, becomes a candidate MPP vertex. In this case, we
set if is convex (i.e., it is a vertex); otherwise we set 
We then continue with the next vertex in the list.

If condition (c) holds, the next MPP vertex is and we let then
we reinitialize the algorithm by setting and continue with the
next vertex after 

The algorithm terminates when it reaches the first vertex again, and thus
has processed all the vertices in the polygon. The vertices found by the al-
gorithm are the vertices of the MPP. It has been proved that this algorithm
finds all the MPP vertices of a polygon enclosed by a simply connected cel-
lular complex (Sloboda et al. [1998]; Klette and Rosenfeld [2004]).

VL

VL.
WC = BC = VL

VL = BC;BC

BC = Vk.WVkWC = Vk

Vk

VL.
WC = BC = VL,

VL = WC;WC,

sgn(VL, BC, Vk) 6 0.
(VL, BC);Vk

BC, Vk) Ú 0.
sgn(VL,(VL, BC)

EXAMPLE 11.2:
Illustration of the
MPP algorithm.

■ A manual example will help clarify the preceding concepts. Consider the
vertices in Fig. 11.7(c). In our image coordinate system, the top left point of the
grid is at coordinates (0, 0). Assuming that the grid divisions are unity, the first
few rows of the (counterclockwise) vertex list are:

The first element of the list is always our first MPP, so we start by letting
The next vertex is Evaluating the

sgn function gives and so condition
(b) holds. We let because is a (concave) vertex. re-
mains unchanged. At this stage, crawler is at (1, 4), crawler is at (2, 3)
and is still at (1, 4) because no new MPP-vertex was found.

Next, we look at The values of the sgn function are:
and so condition (b) of the algorithm

holds again. Because is a (convex) vertex, we let At this
stage, the crawlers are at and remains un-
changed.

VLBC = (2, 3);WC = (3, 3)
WC = V2 = (3, 3).WV2

sgn(VL, BC, V2) = 1,sgn(VL, WC, V2) = 0,
V2 = (3, 3).

VL

BCWC

WCBV1BC = V1 = (2, 3)
sgn(VL, BC, V1) = 0,sgn(VL, WC, V1) = 0

V1 = (2, 3).WC = BC = V0 = VL = (1, 4).

V0 (1, 4) W

V1 (2, 3) B

V2 (3, 3) W

V3 (3, 2) B

V4 (4, 1) W

V5 (7, 1) W

V6 (8, 2) B

V7 (9, 2) B
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The next vertex is The values of the sgn function are
and so condition (b) holds again.

Because is a vertex, we update the black crawler, Crawler 
remains unchanged, as does 

The next vertex is and we have and
so condition (b) holds yet again. Because is a white

vertex, we update the white crawler, Black crawler remains at
(3, 2), and is still back at (1, 4).

The next vertex is and so condition (a)
holds, and we set Because a new MPP vertex was found, we
reinitialize the algorithm by setting and start again with the
next vertex being the vertex after the newly found The next vertex is so
we visit it again.

With and the new values of and we obtain
and so condition (b) holds. There-

fore, we let because is a vertex.
The next vertex is and so condition (a)

holds. Thus, we let and reinitialize the algorithm by setting

Because of the reinitialization at (7, 1), the next vertex considered is again
Continuing as above with this and the remaining vertices yields

the MPP vertices in Fig. 11.7(c). As mentioned earlier, the mirrored vertices
at (2, 3), (3, 2) and on the lower-right side at (13, 10), while being on the bound-
ary of the MPP, are collinear and therefore are not considered vertices of the
MPP. Appropriately, the algorithm did not detect them as such. ■

B
V6 = (8, 2).

WC = BC = VL.
VL = WC = (7, 1)

sgn(VL, WC, V6) = 3,V6 = (8, 2)
WV5WC = V5 = (7, 1)

sgn(VL, BC, V5) = 0,sgn(VL, WC, V5) = 0
BC,VL, WC,V5 = (7, 1)

V5,VL.
WC = BC = VL

VL = WC = (4, 1).
sgn(VL, WC, V5) = 9,V5 = (7, 1)

VL

BCWC = (4, 1).
V4sgn(VL, BC, V4) = 0

sgn(VL, WC, V4) = -3V4 = (4, 1)
VL.

WCBC = (3, 2).BV3

sgn(VL, BC, V3) = 0,sgn(VL, WC, V3) = -2
V3 = (3, 2).

EXAMPLE 11.3:
Applying the
MPP algorithm.

■ Figure 11.8(a) is a binary image of a maple leaf and Fig. 11.8(b)
is its 8-connected boundary. The sequence in Figs. 11.8(c) through (i) shows
MMP representations of this boundary using square cellular complex cells of
sizes 2, 3, 4, 6, 8, 16, and 32, respectively (the vertices in each figure were con-
nected with straight lines to form a closed boundary). The leaf has two major
features: a stem and three main lobes. The stem begins to be lost for cell sizes
greater than as Fig. 11.8(f) shows. The three main lobes are preserved
reasonably well, even for a cell size of as Fig. 11.8(h) shows. However,
we see in Fig. 11.8(i) that by the time the cell size is increased to this
distinctive feature has been nearly lost.

The number of points in the original boundary [Fig. 11.8(b)] is 1900. The
numbers of vertices in Figs. 11.8(c) through (i) are 206, 160, 127, 92, 66, 32, and
13, respectively. Figure 11.8(e), which has 127 vertices, retained all the major
features of the original boundary while achieving a data reduction of over
90%. So here we see a significant advantage of MMPs for representing a
boundary. Another important advantange is that MPPs perform boundary
smoothing. As explained in the previous section, this is a usual requirement
when representing a boundary by a chain code. ■

32 * 32
16 * 16,

4 * 4,

566 * 566
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FIGURE 11.8
(a)
binary image.
(b) 8-connected
boundary.
(c) through (i),
MMPs obtained
using square cells
of sizes 2, 3, 4, 6, 8,
16, and 32,
respectively (the
vertices were
joined by straight
lines for display).
The number of
boundary points
in (b) is 1900. The
numbers of
vertices in (c)
through (i) are
206, 160, 127, 92,
66, 32, and 13,
respectively.

566 * 566

11.1.4 Other Polygonal Approximation Approaches
At times, approaches that are conceptually simpler than the MPP algorithm
discussed in the previous section can be used for polygonal approximations. In
this section, we discuss two such approaches.

Merging techniques

Merging techniques based on average error or other criteria have been applied
to the problem of polygonal approximation. One approach is to merge points
along a boundary until the least square error line fit of the points merged so far
exceeds a preset threshold. When this condition occurs, the parameters of the
line are stored, the error is set to 0, and the procedure is repeated, merging new
points along the boundary until the error again exceeds the threshold. At the
end of the procedure the intersections of adjacent line segments form the ver-
tices of the polygon. One of the principal difficulties with this method is that
vertices in the resulting approximation do not always correspond to inflections
(such as corners) in the original boundary, because a new line is not started

a b c
d e f
g h i
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until the error threshold is exceeded. If, for instance, a long straight line were
being tracked and it turned a corner, a number (depending on the threshold) of
points past the corner would be absorbed before the threshold was exceeded.
However, splitting (discussed next) along with merging can be used to alleviate
this difficulty.

Splitting techniques

One approach to boundary segment splitting is to subdivide a segment suc-
cessively into two parts until a specified criterion is satisfied. For instance, a
requirement might be that the maximum perpendicular distance from a
boundary segment to the line joining its two end points not exceed a preset
threshold. If it does, the point having the greatest distance from the line be-
comes a vertex, thus subdividing the initial segment into two subsegments.
This approach has the advantage of seeking prominent inflection points. For a
closed boundary, the best starting points usually are the two farthest points
in the boundary. For example, Fig. 11.9(a) shows an object boundary, and
Fig. 11.9(b) shows a subdivision of this boundary about its farthest points.
The point marked is the farthest point (in terms of perpendicular distance)
from the top boundary segment to line Similarly, point is the farthest
point in the bottom segment. Figure 11.9(c) shows the result of using the split-
ting procedure with a threshold equal to 0.25 times the length of line As
no point in the new boundary segments has a perpendicular distance (to its
corresponding straight-line segment) that exceeds this threshold, the proce-
dure terminates with the polygon in Fig. 11.9(d).

11.1.5 Signatures
A signature is a 1-D functional representation of a boundary and may be gen-
erated in various ways. One of the simplest is to plot the distance from the cen-
troid to the boundary as a function of angle, as illustrated in Fig. 11.10.
Regardless of how a signature is generated, however, the basic idea is to re-
duce the boundary representation to a 1-D function that presumably is easier
to describe than the original 2-D boundary.

ab.

dab.
c

a

b

c

d

a

b

c

d

a

b

c

d

FIGURE 11.9
(a) Original
boundary.
(b) Boundary
divided into
segments based
on extreme
points. (c) Joining
of vertices.
(d) Resulting
polygon.

a b
c d
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FIGURE 11.10
Distance-versus-
angle signatures.
In (a) is
constant. In 
(b), the signature
consists of
repetitions of the
pattern

for
and
for

p>4 6 u … p>2.
r(u) = A csc u
0 … u … p>4r(u) = A sec u

r(u)

Signatures generated by the approach just described are invariant to trans-
lation, but they do depend on rotation and scaling. Normalization with respect
to rotation can be achieved by finding a way to select the same starting point
to generate the signature, regardless of the shape’s orientation. One way to do
so is to select the starting point as the point farthest from the centroid, assum-
ing that this point is unique for each shape of interest.Another way is to select
the point on the eigen axis (see Section 11.4) that is farthest from the centroid.
This method requires more computation but is more rugged because the di-
rection of the eigen axis is determined by using all contour points. Yet another
way is to obtain the chain code of the boundary and then use the approach dis-
cussed in Section 11.1.2, assuming that the coding is coarse enough so that ro-
tation does not affect its circularity.

Based on the assumptions of uniformity in scaling with respect to both axes,
and that sampling is taken at equal intervals of changes in size of a shape re-
sult in changes in the amplitude values of the corresponding signature. One
way to normalize for this is to scale all functions so that they always span the
same range of values, e.g., [0, 1]. The main advantage of this method is simplic-
ity, but it has the potentially serious disadvantage that scaling of the entire
function depends on only two values: the minimum and maximum. If the
shapes are noisy, this dependence can be a source of significant error from ob-
ject to object. A more rugged (but also more computationally intensive) ap-
proach is to divide each sample by the variance of the signature, assuming that
the variance is not zero—as in the case of Fig. 11.10(a)—or so small that it cre-
ates computational difficulties. Use of the variance yields a variable scaling
factor that is inversely proportional to changes in size and works much as au-
tomatic gain control does. Whatever the method used, keep in mind that the
basic idea is to remove dependency on size while preserving the fundamental
shape of the waveforms.

u,

a b
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Distance versus angle is not the only way to generate a signature. For ex-
ample, another way is to traverse the boundary and, corresponding to each
point on the boundary, plot the angle between a line tangent to the bound-
ary at that point and a reference line. The resulting signature, although
quite different from the curves in Fig. 11.10, would carry information
about basic shape characteristics. For instance, horizontal segments in the
curve would correspond to straight lines along the boundary, because the
tangent angle would be constant there. A variation of this approach is to
use the so-called slope density function as a signature. This function is a his-
togram of tangent-angle values. Because a histogram is a measure of con-
centration of values, the slope density function responds strongly to
sections of the boundary with constant tangent angles (straight or nearly
straight segments) and has deep valleys in sections producing rapidly vary-
ing angles (corners or other sharp inflections).

r(u)

EXAMPLE 11.4:
Signatures of two
simple objects.

■ Figures 11.11(a) and (b) show two binary objects and Figs. 11.11(c) and (d)
are their boundaries. The corresponding signatures in Figs. 11.11(e) and
(f) range from 0° to 360° in increments of 1°. The number of prominent peaks
in the signatures is sufficient to differentiate between the shapes of the two
objects. ■

11.1.6 Boundary Segments
Decomposing a boundary into segments is often useful. Decomposition re-
duces the boundary’s complexity and thus simplifies the description process.
This approach is particularly attractive when the boundary contains one or
more significant concavities that carry shape information. In this case, use of
the convex hull of the region enclosed by the boundary is a powerful tool for
robust decomposition of the boundary.

As defined in Section 9.5.4, the convex hull of an arbitrary set is the
smallest convex set containing The set difference is called the
convex deficiency of the set To see how these concepts might be used to
partition a boundary into meaningful segments, consider Fig. 11.12(a), which
shows an object (set ) and its convex deficiency (shaded regions). The region
boundary can be partitioned by following the contour of and marking the
points at which a transition is made into or out of a component of the convex
deficiency. Figure 11.12(b) shows the result in this case. Note that, in principle,
this scheme is independent of region size and orientation.

In practice, digital boundaries tend to be irregular because of digitization,
noise, and variations in segmentation.These effects usually result in convex defi-
ciencies that have small, meaningless components scattered randomly through-
out the boundary. Rather than attempt to sort out these irregularities by
postprocessing, a common approach is to smooth a boundary prior to partition-
ing. There are a number of ways to do so. One way is to traverse the boundary
and replace the coordinates of each pixel by the average coordinates of of its
neighbors along the boundary.This approach works for small irregularities, but it
is time-consuming and difficult to control. Large values of can result in ex-
cessive smoothing, whereas small values of might not be sufficient in somek

k

k

S
S

S.D
H - SS.

SH

r(u)
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FIGURE 11.11
Two binary regions,
their external
boundaries, and
their corresponding

signatures.The
horizontal axes in
(e) and (f) corre-
spond to angles
from 0° to 360°, in
increments of 1°.

r(u)

S

FIGURE 11.12
(a) A region,
and its convex
deficiency
(shaded).
(b) Partitioned
boundary.

S,

a
c
e

b
d
f

a b

segments of the boundary. A more rugged technique is to use a polygonal ap-
proximation prior to finding the convex deficiency of a region. Most digital
boundaries of interest are simple polygons (recall from Section 11.1.3 that
these are polygons without self-intersection). Graham and Yao [1983] give an
algorithm for finding the convex hull of such polygons.
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The concepts of a convex hull and its deficiency are equally useful for de-
scribing an entire region, as well as just its boundary. For example, description
of a region might be based on its area and the area of its convex deficiency, the
number of components in the convex deficiency, the relative location of these
components, and so on. Recall that a morphological algorithm for finding the
convex hull was developed in Section 9.5.4. References cited at the end of this
chapter contain other formulations.

11.1.7 Skeletons
An important approach to representing the structural shape of a plane region
is to reduce it to a graph.This reduction may be accomplished by obtaining the
skeleton of the region via a thinning (also called skeletonizing) algorithm.
Thinning procedures play a central role in a broad range of problems in image
processing, ranging from automated inspection of printed circuit boards to
counting of asbestos fibers in air filters. We already discussed in Section 9.5.7
the basics of skeletonizing using morphology. However, as noted in that sec-
tion, the procedure discussed there made no provisions for keeping the skele-
ton connected. The algorithm developed here corrects that problem.

The skeleton of a region may be defined via the medial axis transformation
(MAT) proposed by Blum [1967]. The MAT of a region with border is as
follows. For each point in we find its closest neighbor in If has more
than one such neighbor, it is said to belong to the medial axis (skeleton) of 
The concept of “closest” (and the resulting MAT) depend on the definition of
a distance (see Section 2.5.3). Figure 11.13 shows some examples using the Eu-
clidean distance. The same results would be obtained with the maximum disk
of Section 9.5.7.

The MAT of a region has an intuitive definition based on the so-called
“prairie fire concept.” Consider an image region as a prairie of uniform, dry
grass, and suppose that a fire is lit along its border. All fire fronts will advance
into the region at the same speed. The MAT of the region is the set of points
reached by more than one fire front at the same time.

Although the MAT of a region yields an intuitively pleasing skeleton, di-
rect implementation of this definition is expensive computationally. Imple-
mentation potentially involves calculating the distance from every interior

R.
pB.R,p

BR

FIGURE 11.13
Medial axes
(dashed) of three
simple regions.

a b c
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point to every point on the boundary of a region. Numerous algorithms have
been proposed for improving computational efficiency while at the same time
attempting to produce a medial axis representation of a region. Typically,
these are thinning algorithms that iteratively delete boundary points of a re-
gion subject to the constraints that deletion of these points (1) does not re-
move end points, (2) does not break connectivity, and (3) does not cause
excessive erosion of the region.

In this section we present an algorithm for thinning binary regions. Region
points are assumed to have value 1 and background points to have value 0.The
method consists of successive passes of two basic steps applied to the border
points of the given region, where, based on the definition given in Section
2.5.2, a border point is any pixel with value 1 and having at least one neighbor
valued 0. With reference to the 8-neighborhood notation in Fig. 11.14, Step 1
flags a contour point for deletion if the following conditions are satisfied:

(a)
(b)
(c)
(d) (11.1-4)

where is the number of nonzero neighbors of that is,

(11.1-5)

where is either 0 or 1, and is the number of 0–1 transitions in the or-
dered sequence For example, and 
in Fig. 11.15.

In Step 2, conditions (a) and (b) remain the same, but conditions (c) and (d)
are changed to

(11.1-6)p2
# p6

# p8 = 0(dœ)
p2

# p4
# p8 = 0(cœ)

T(p1) = 3N(p1) = 4p2, p3, Á , p8, p9, p2.
T(p1)pi

N(p1) = p2 + p3 + Á + p8 + p9

p1;N(p1)

p4
# p6

# p8 = 0
p2

# p4
# p6 = 0

T(p1) = 1
2 … N(p1) … 6

p1

0 0 1

1 p1 0

1 0 1

FIGURE 11.15
Illustration of
conditions (a) and
(b) in Eq. (11.1-4).
In this case

and
T(p1) = 3.
N(p1) = 4

p9 p2 p3

p8 p1 p4

p7 p6 p5

FIGURE 11.14
Neighborhood
arrangement used
by the thinning
algorithm.
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Step 1 is applied to every border pixel in the binary region under consider-
ation. If one or more of conditions (a)–(d) are violated, the value of the point
in question is not changed. If all conditions are satisfied, the point is flagged
for deletion. However, the point is not deleted until all border points have
been processed. This delay prevents changing the structure of the data during
execution of the algorithm. After Step 1 has been applied to all border points,
those that were flagged are deleted (changed to 0). Then Step 2 is applied to
the resulting data in exactly the same manner as Step 1.

Thus, one iteration of the thinning algorithm consists of (1) applying Step 1 to
flag border points for deletion; (2) deleting the flagged points; (3) applying Step 2
to flag the remaining border points for deletion; and (4) deleting the flagged
points.This basic procedure is applied iteratively until no further points are delet-
ed, at which time the algorithm terminates, yielding the skeleton of the region.

Condition (a) is violated when contour point has only one or seven 
8-neighbors valued 1. Having only one such neighbor implies that is the end
point of a skeleton stroke and obviously should not be deleted. Deleting if it
had seven such neighbors would cause erosion into the region. Condition (b) is
violated when it is applied to points on a stroke 1 pixel thick. Hence this condi-
tion prevents breaking segments of a skeleton during the thinning operation.
Conditions (c) and (d) are satisfied simultaneously by the minimum set of val-
ues: or Thus with reference to the
neighborhood arrangement in Fig. 11.14, a point that satisfies these conditions,
as well as conditions (a) and (b), is an east or south boundary point or a north-
west corner point in the boundary. In either case, is not part of the skeleton
and should be removed. Similarly, conditions and are satisfied simulta-
neously by the following minimum set of values: or

These correspond to north or west boundary points, or a
southeast corner point. Note that northeast corner points have and

and thus satisfy conditions (c) and (d), as well as and The same
is true for southwest corner points, which have and p8 = 0.p6 = 0

(d¿).(c¿)p4 = 0
p2 = 0

(p4 = 0 and p6 = 0).
(p2 = 0 or p8 = 0)

(d¿)(c¿)
p1

(p2 = 0 and p8 = 0).(p4 = 0 or p6 = 0)

p1

p1

p1

FIGURE 11.16
Human leg bone
and skeleton of
the region shown
superimposed.
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EXAMPLE 11.5:
The skeleton of a
region.

■ Figure 11.16 shows a segmented image of a human leg bone and, superim-
posed, the skeleton of the region. For the most part, the skeleton looks intu-
itively correct. There is a double branch on the right side of the “shoulder” of
the bone that at first glance one would expect to be a single branch, as on the
corresponding left side. Note, however, that the right shoulder is somewhat
broader (in the long direction) than the left shoulder. That is what caused the
branch to be created by the algorithm. This type of unpredictable behavior is
not unusual in skeletonizing algorithms. ■

11.2 Boundary Descriptors

In this section, we consider several approaches to describing the boundary of a
region, and in Section 11.3 we focus on regional descriptors. Parts of Sections 11.4
and 11.5 are applicable to both boundaries and regions.

11.2.1 Some Simple Descriptors
The length of a boundary is one of its simplest descriptors. The number of pix-
els along a boundary gives a rough approximation of its length. For a chain-
coded curve with unit spacing in both directions, the number of vertical and
horizontal components plus times the number of diagonal components
gives its exact length.

The diameter of a boundary is defined as

(11.2-1)

where is a distance measure (see Section 2.5.3) and and are points on
the boundary. The value of the diameter and the orientation of a line segment
connecting the two extreme points that comprise the diameter (this line is
called the major axis of the boundary) are useful descriptors of a boundary.
The minor axis of a boundary is defined as the line perpendicular to the major
axis, and of such length that a box passing through the outer four points of in-
tersection of the boundary with the two axes completely encloses the bound-
ary.† The box just described is called the basic rectangle, and the ratio of the
major to the minor axis is called the eccentricity of the boundary. This also is a
useful descriptor.

Curvature is defined as the rate of change of slope. In general, obtaining reli-
able measures of curvature at a point in a digital boundary is difficult because
these boundaries tend to be locally “ragged.” However, using the difference be-
tween the slopes of adjacent boundary segments (which have been represented
as straight lines) as a descriptor of curvature at the point of intersection of the
segments sometimes proves useful. For example, the vertices of boundaries
such as those shown in Fig. 11.6(c) lend themselves well to curvature descrip-
tions. As the boundary is traversed in the clockwise direction, a vertex point 
is said to be part of a convex segment if the change in slope at is nonnegative;p

p

pjpiD

Diam(B) = max
i, j
CD(pi, pj) D

B

22

†Do not confuse this definition of major and minor axes with the eigen axes defined in Section 11.4.
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otherwise, is said to belong to a segment that is concave. The description of
curvature at a point can be refined further by using ranges in the change of
slope. For instance, could be part of a nearly straight segment if the change is
less than 10° or a corner point if the change exceeds 90°.These descriptors must
be used with care because their interpretation depends on the length of the in-
dividual segments relative to the overall length of the boundary.

11.2.2 Shape Numbers
As explained in Section 11.1.2, the first difference of a chain-coded boundary
depends on the starting point. The shape number of such a boundary, based on
the 4-directional code of Fig. 11.3(a), is defined as the first difference of small-
est magnitude. The order of a shape number is defined as the number of dig-
its in its representation. Moreover, is even for a closed boundary, and its
value limits the number of possible different shapes. Figure 11.17 shows all the
shapes of order 4, 6, and 8, along with their chain-code representations, first
differences, and corresponding shape numbers. Note that the first difference is
computed by treating the chain code as a circular sequence, as discussed in
Section 11.1.2. Although the first difference of a chain code is independent of
rotation, in general the coded boundary depends on the orientation of the
grid. One way to normalize the grid orientation is by aligning the chain-code
grid with the sides of the basic rectangle defined in the previous section.

In practice, for a desired shape order, we find the rectangle of order 
whose eccentricity (defined in the previous section) best approximates that of
the basic rectangle and use this new rectangle to establish the grid size. For

n

n
n

p

p

Order 4

Chain code: 0  3  2  1

Difference: 3  3  3  3

Shape no.: 3  3  3  3

Order 6

0  0  3  2  2  1

3  0  3  3  0  3

0  3  3  0  3  3

Chain code: 0  0  3  3  2  2  1  1

Difference: 3  0  3  0  3  0  3  0

Shape no.:

Order 8

0  3  0  3  2  2  1  1

3  3  1  3  3  0  3  0

0  3  0  3  3  1  3  3

0  0  0  3  2  2  2  1

3  0  0  3  3  0  0  3

0  0  3  3  0  0  3  30  3  0  3  0  3  0  3

FIGURE 11.17
All shapes of
order 4, 6, and 8.
The directions are
from Fig. 11.3(a),
and the dot
indicates the
starting point.
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example, if all the rectangles of order 12 (that is, those whose perime-
ter length is 12) are and If the eccentricity of the 
rectangle best matches the eccentricity of the basic rectangle for a given
boundary, we establish a grid centered on the basic rectangle and use
the procedure outlined in Section 11.1.2 to obtain the chain code. The shape
number follows from the first difference of this code. Although the order of
the resulting shape number usually equals because of the way the grid spac-
ing was selected, boundaries with depressions comparable to this spacing
sometimes yield shape numbers of order greater than In this case, we spec-
ify a rectangle of order lower than and repeat the procedure until the re-
sulting shape number is of order n.

n
n.

n

2 * 4

2 * 41 * 5.2 * 4, 3 * 3,
n = 12,

EXAMPLE 11.6:
Computing shape
numbers.

■ Suppose that is specified for the boundary in Fig. 11.18(a). To ob-
tain a shape number of this order requires following the steps just dis-
cussed. The first step is to find the basic rectangle, as shown in Fig. 11.18(b).
The closest rectangle of order 18 is a rectangle, requiring subdivision
of the basic rectangle as shown in Fig. 11.18(c), where the chain-code direc-
tions are aligned with the resulting grid. The final step is to obtain the chain
code and use its first difference to compute the shape number, as shown in
Fig. 11.18(d). ■

3 * 6

n = 18

Chain code: 0  0  0  0  3  0  0  3  2  2  3  2  2  2  1  2  1  1

Difference: 3  0  0  0  3  1  0  3  3  0  1  3  0  0  3  1  3  0

Shape no.: 0  0  0  3  1  0  3  3  0  1  3  0  0  3  1  3  0  3

1

3
0

2

FIGURE 11.18
Steps in the
generation of a
shape number.

a b
c d
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y0
y1

x1
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FIGURE 11.19
A digital
boundary and its
representation as
a complex
sequence. The
points and

shown are
(arbitrarily) the
first two points in
the sequence.

(x1, y1)
(x0, y0)

11.2.3 Fourier Descriptors
Figure 11.19 shows a K-point digital boundary in the xy-plane. Starting at
an arbitrary point coordinate pairs 

are encountered in traversing the boundary, say, in the counter-
clockwise direction. These coordinates can be expressed in the form 
and With this notation, the boundary itself can be represented as the
sequence of coordinates for More-
over, each coordinate pair can be treated as a complex number so that

(11.2-2)

for That is, the x-axis is treated as the real axis and the
y-axis as the imaginary axis of a sequence of complex numbers. Although the
interpretation of the sequence was recast, the nature of the boundary itself
was not changed. Of course, this representation has one great advantage: It re-
duces a 2-D to a 1-D problem.

From Eq. (4.4-6), the discrete Fourier transform (DFT) of is

(11.2-3)

for The complex coefficients are called the
Fourier descriptors of the boundary.The inverse Fourier transform of these co-
efficients restores That is, from Eq. (4.4-7),

(11.2-4)

for Suppose, however, that instead of all the Fourier
coefficients, only the first coefficients are used. This is equivalent to setting

for in Eq. (11.2-4). The result is the following
approximation to

(11.2-5)sN(k) =
1
P a

P - 1

u = 0
a(u)e j2puk>P

s(k):
u 7 P - 1a(u) = 0

P
k = 0, 1, 2, Á , K - 1.

s(k) =
1
K a

K - 1

u = 0
a(u)e j2puk>K

s(k).

a(u)u = 0, 1, 2, Á , K - 1.

a(u) = a
K - 1

k = 0
s(k)e-j2puk>K

s(k)

k = 0, 1, 2, Á , K - 1.

s(k) = x(k) + jy(k)

k = 0, 1, 2, Á , K - 1.s(k) = [x(k), y(k)],
y(k) = yk.

x(k) = xk

(xK - 1, yK - 1)
(x0, y0), (x1, y1), (x2, y2), Á ,(x0, y0),
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for Although only terms are used to obtain each
component of still ranges from 0 to That is, the same number of
points exists in the approximate boundary, but not as many terms are used in
the reconstruction of each point. Recall from discussions of the Fourier trans-
form in Chapter 4 that high-frequency components account for fine detail, and
low-frequency components determine global shape. Thus, the smaller be-
comes, the more detail that is lost on the boundary, as the following example
demonstrates.

P

K - 1.ksN(k),
Pk = 0, 1, 2, Á , K - 1.

EXAMPLE 11.7:
Using Fourier
descriptors.

■ Figure 11.20(a) shows the boundary of a human chromosome, consisting of
2868 points.The corresponding 2868 Fourier descriptors were obtained for this
boundary using Eq. (11.2-3). The objective of this example is to examine the
effects of reconstructing the boundary based on decreasing the number of
Fourier descriptors. Figure 11.20(b) shows the boundary reconstructed using
one-half of the 2868 descriptors. It is interesting to note that there is no per-
ceptible difference between this boundary and the original. Figures 11.20(c)
through (h) show the boundaries reconstructed with the number of Fourier

FIGURE 11.20 (a) Boundary of human chromosome (2868 points). (b)–(h) Boundaries reconstructed using
1434, 286, 144, 72, 36, 18, and 8 Fourier descriptors, respectively.These numbers are approximately 50%, 10%,
5%, 2.5%, 1.25%, 0.63%, and 0.28% of 2868, respectively.

a b
e f

c d
g h
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Transformation Boundary Fourier Descriptor

Identity
Rotation
Translation
Scaling
Starting point ap(u) = a(u)e-j2pk0 u>Ksp(k) = s(k - k0)

as(u) = aa(u)ss(k) = as(k)
at(u) = a(u) + ¢xyd(u)st(k) = s(k) + ¢xy

ar(u) = a(u)e jusr(k) = s(k)e ju
a(u)s(k)

TABLE 11.1 
Some basic
properties of
Fourier
descriptors.

descriptors being 10%, 5%, 2.5%, 1.25%, 0.63% and 0.28% of 2868, respectively.
These percentages are equal approximately to 286, 144, 72, 36, 18, and 8 de-
scriptors, respectively, where the numbers were rounded to the nearest even in-
teger. The important point here is that 18 descriptors, a mere six-tenths of one
percent of the original 2868 descriptors, were sufficient to retain the principal
shape features of the original boundary: four long protrusions and two deep
bays. Figure 11.20(h), obtained with 8 descriptors, is an unacceptable result be-
cause the principal features are lost. Further reductions to 4 and 2 descriptors
would result in an ellipse and a circle, respectively (Problem 11.13). ■

As the preceding example demonstrates, a few Fourier descriptors can be used
to capture the gross essence of a boundary. This property is valuable, because
these coefficients carry shape information.Thus they can be used as the basis for
differentiating between distinct boundary shapes, as we discuss in Chapter 12.

We have stated several times that descriptors should be as insensitive as possi-
ble to translation, rotation, and scale changes. In cases where results depend on
the order in which points are processed, an additional constraint is that descrip-
tors should be insensitive to the starting point. Fourier descriptors are not direct-
ly insensitive to these geometrical changes, but changes in these parameters can
be related to simple transformations on the descriptors. For example, consider ro-
tation, and recall from basic mathematical analysis that rotation of a point by an
angle about the origin of the complex plane is accomplished by multiplying the
point by Doing so to every point of rotates the entire sequence about the
origin.The rotated sequence is whose Fourier descriptors are

(11.2-6)

for Thus rotation simply affects all coefficients equally
by a multiplicative constant term

Table 11.1 summarizes the Fourier descriptors for a boundary sequence 
that undergoes rotation, translation, scaling, and changes in starting point. The
symbol is defined as so the notation 
indicates redefining (translating) the sequence as

(11.2-7)st(k) = [x(k) + ¢x] + j[y(k) + ¢y]

st(k) = s(k) + ¢xy¢xy = ¢x + j¢y,¢xy

s(k)
e ju.

u = 0, 1, 2, Á , K - 1.

= a(u)eju

ar(u) = a
K - 1

k = 0
s(k)e jue-j2puk>K

s(k)e ju,
s(k)e ju.

u
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†Recall from Chapter 4 that the Fourier transform of a constant is an impulse located at the origin.
Recall also that the impulse is zero everywhere else.

In other words, translation consists of adding a constant displacement to all co-
ordinates in the boundary. Note that translation has no effect on the descrip-
tors, except for which has the impulse † Finally, the expression

means redefining the sequence as

(11.2-8)

which merely changes the starting point of the sequence to from
The last entry in Table 11.1 shows that a change in starting point affects

all descriptors in a different (but known) way, in the sense that the term multi-
plying depends on 

11.2.4 Statistical Moments
The shape of boundary segments (and of signature waveforms) can be described
quantitatively by using statistical moments, such as the mean, variance, and higher-
order moments.To see how this can be accomplished, consider Fig. 11.21(a), which
shows the segment of a boundary, and Fig. 11.21(b), which shows the segment
represented as a 1-D function of an arbitrary variable This function is ob-
tained by connecting the two end points of the segment and rotating the line
segment until it is horizontal. The coordinates of the points are rotated by the
same angle.

Let us treat the amplitude of as a discrete random variable and form
an amplitude histogram where is the number
of discrete amplitude increments in which we divide the amplitude scale.
Then, keeping in mind that is an estimate of the probability of value 
occurring, it follows from Eq. (3.3-17) that the nth moment of about its
mean is

(11.2-9)

where

(11.2-10)m = a
A - 1

i = 0
vip(vi)

mn(v) = a
A - 1

i = 0
(vi - m)np(vi)

v
vip(vi)

Ap(vi), i = 0, 1, 2, Á , A - 1,
vg

r.g(r)

u.a(u)

k = 0.
k = k0

sp = x(k - k0) + jy(k - k0)

sp(k) = s(k - k0)
d(u).u = 0,

g(r)

r

FIGURE 11.21
(a) Boundary
segment.
(b) Representation
as a 1-D function.

a b

Consult the book Web site
for a brief review of prob-
ability theory.
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The quantity is recognized as the mean or average value of and as its
variance. Generally, only the first few moments are required to differentiate
between signatures of clearly distinct shapes.

An alternative approach is to normalize to unit area and treat it as a
histogram. In other words, is now treated as the probability of value oc-
curring. In this case, is treated as the random variable and the moments are

(11.2-11)

where

(11.2-12)

In this notation, is the number of points on the boundary, and is di-
rectly related to the shape of For example, the second moment 
measures the spread of the curve about the mean value of and the third mo-
ment measures its symmetry with reference to the mean.

Basically, what we have accomplished is to reduce the description task to
that of describing 1-D functions. Although moments are by far the most popu-
lar method, they are not the only descriptors used for this purpose. For in-
stance, another method involves computing the 1-D discrete Fourier
transform, obtaining its spectrum, and using the first components of the
spectrum to describe The advantage of moments over other techniques is
that implementation of moments is straightforward and they also carry a
“physical” interpretation of boundary shape.The insensitivity of this approach
to rotation is clear from Fig. 11.21. Size normalization, if desired, can be
achieved by scaling the range of values of and 

11.3 Regional Descriptors

In this section we consider various approaches for describing image regions.
Keep in mind that it is common practice to use both boundary and regional
descriptors combined.

11.3.1 Some Simple Descriptors
The area of a region is defined as the number of pixels in the region. The
perimeter of a region is the length of its boundary. Although area and perime-
ter are sometimes used as descriptors, they apply primarily to situations in
which the size of the regions of interest is invariant. A more frequent use of
these two descriptors is in measuring compactness of a region, defined as

A slightly different (within a scalar multiplier) descriptor
of compactness is the circularity ratio, defined as the ratio of the area of a re-
gion to the area of a circle (the most compact shape) having the same perime-
ter. The area of a circle with perimeter length is Therefore, theP2>4p.P

(perimeter)2>area.

r.g

g(r).
q

m3(r)
r

m2(r)g(r).
mn(r)K

m = a
K - 1

i = 0
rig(ri)

mn(r) = a
K - 1

i = 0
(ri - m)ng(ri)

r
rig(ri)

g(r)

m2vm
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circularity ratio, is given by the expression

(11.3-1)

where is the area of the region in question and is the length of its perime-
ter. The value of this measure is 1 for a circular region and for a square.
Compactness is a dimensionless measure and thus is insensitive to uniform
scale changes; it is insensitive also to orientation, ignoring, of course, computa-
tional errors that may be introduced in resizing and rotating a digital region.

Other simple measures used as region descriptors include the mean and
median of the intensity levels, the minimum and maximum intensity values,
and the number of pixels with values above and below the mean.

p>4PA

Rc =
4pA

P2

Rc,

EXAMPLE 11.8:
Using area
computations
to extract
information from
images.

■ Even a simple region descriptor such as normalized area can be quite use-
ful in extracting information from images. For instance, Fig. 11.22 shows a
satellite infrared image of the Americas. As discussed in Section 1.3.4, images
such as these provide a global inventory of human settlements. The sensor
used to collect these images has the capability to detect visible and near in-
frared emissions, such as lights, fires, and flares. The table alongside the images
shows (by region from top to bottom) the ratio of the area occupied by white
(the lights) to the total light area in all four regions. A simple measurement
like this can give, for example, a relative estimate by region of electrical ener-
gy consumed. The data can be refined by normalizing it with respect to land
mass per region, with respect to population numbers, and so on. ■

11.3.2 Topological Descriptors
Topological properties are useful for global descriptions of regions in the
image plane. Simply defined, topology is the study of properties of a figure that
are unaffected by any deformation, as long as there is no tearing or joining of
the figure (sometimes these are called rubber-sheet distortions). For example,
Fig. 11.23 shows a region with two holes. Thus if a topological descriptor is de-
fined by the number of holes in the region, this property obviously will not be
affected by a stretching or rotation transformation. In general, however, the
number of holes will change if the region is torn or folded. Note that, as
stretching affects distance, topological properties do not depend on the notion
of distance or any properties implicitly based on the concept of a distance
measure.

Another topological property useful for region description is the number of
connected components. A connected component of a region was defined in
Section 2.5.2. Figure 11.24 shows a region with three connected components. (See
Section 9.5.3 regarding an algorithm for computing connected components.)

The number of holes and connected components in a figure can be
used to define the Euler number

(11.3-2)E = C - H

E:
CH
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Region no. 
(from top)

Ratio of lights per
region to total lights

0.204
0.640
0.049
0.107

1
2
3
4

FIGURE 11.22 Infrared images of the Americas at night. (Courtesy of NOAA.)
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FIGURE 11.23
A region with 
two holes.

FIGURE 11.24
A region with
three connected
components.

The Euler number is also a topological property.The regions shown in Fig. 11.25,
for example, have Euler numbers equal to 0 and respectively, because the
“A” has one connected component and one hole and the “B” one connected
component but two holes.

Regions represented by straight-line segments (referred to as polygonal
networks) have a particularly simple interpretation in terms of the Euler num-
ber. Figure 11.26 shows a polygonal network. Classifying interior regions of
such a network into faces and holes is often important. Denoting the number
of vertices by the number of edges by and the number of faces by gives
the following relationship, called the Euler formula:

which, in view of Eq. (11.3-2), is equal to the Euler number:

(11.3-3)

The network in Fig. 11.26 has 7 vertices, 11 edges, 2 faces, 1 connected region,
and 3 holes; thus the Euler number is 

Topological descriptors provide an additional feature that is often useful in
characterizing regions in a scene.

7 - 11 + 2 = 1 - 3 = -2

-2:

= E

V - Q + F = C - H

V - Q + F = C - H

FQ,V,

-1,
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Vertex

Face

Hole
Edge

FIGURE 11.26 A
region containing
a polygonal
network.

EXAMPLE 11.9:
Use of connected
components for
extracting the
largest features in
a segmented
image.

■ Figure 11.27(a) shows a 8-bit image of Washington, D.C. taken
by a NASA LANDSAT satellite. This particular image is in the near infrared
band (see Fig. 1.10 for details). Suppose that we want to segment the river
using only this image (as opposed to using several multispectral images, which
would simplify the task). Since the river is a rather dark, uniform region of the
image, thresholding is an obvious thing to try. The result of thresholding the
image with the highest possible threshold value before the river became a dis-
connected region is shown in Fig. 11.27(b). The threshold was selected manu-
ally to illustrate the point that it would be impossible in this case to segment
the river by itself without other regions of the image also appearing in the
thresholded result.The objective of this example is to illustrate how connected
components can be used to “finish” the segmentation.

The image in Fig. 11.27(b) has 1591 connected components (obtained
using 8-connectivity) and its Euler number is 1552, from which we deduce
that the number of holes is 39. Figure 11.27(c) shows the connected compo-
nent with the largest number of elements (8479). This is the desired result,
which we already know cannot be segmented by itself from the image using
a threshold. Note how clean this result is. If we wanted to perform measure-
ments, like the length of each branch of the river, we could use the skeleton
of the connected component [Fig. 11.27(d)] to do so. In other words, the

512 * 512,

FIGURE 11.25
Regions with
Euler numbers
equal to 0 and 
respectively.

-1,

a b
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FIGURE 11.27
(a) Infrared 
image of the
Washington,
D.C. area.
(b) Thresholded
image. (c) The
largest connected
component of 
(b). Skeleton 
of (c).

length of each branch in the skeleton would be a reasonably close approxi-
mation to the length of the river branch it represents. ■

11.3.3 Texture
An important approach to region description is to quantify its texture content.
Although no formal definition of texture exists, intuitively this descriptor pro-
vides measures of properties such as smoothness, coarseness, and regularity
(Fig. 11.28 shows some examples). The three principal approaches used in
image processing to describe the texture of a region are statistical, structural,
and spectral. Statistical approaches yield characterizations of textures as
smooth, coarse, grainy, and so on. Structural techniques deal with the arrange-
ment of image primitives, such as the description of texture based on regularly
spaced parallel lines. Spectral techniques are based on properties of the Fouri-
er spectrum and are used primarily to detect global periodicity in an image by
identifying high-energy, narrow peaks in the spectrum.

a b
c d
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FIGURE 11.28
The white squares
mark, from left to
right, smooth,
coarse, and
regular textures.
These are optical
microscope
images of a
superconductor,
human
cholesterol, and a
microprocessor.
(Courtesy of Dr.
Michael W.
Davidson, Florida
State University.)

Statistical approaches

One of the simplest approaches for describing texture is to use statistical moments
of the intensity histogram of an image or region. Let be a random variable de-
noting intensity and let be the corresponding his-
togram, where is the number of distinct intensity levels. From Eq. (3.3-17), the
nth moment of about the mean is

(11.3-4)

where is the mean value of (the average intensity):

(11.3-5)

Note from Eq. (11.3-4) that and The second moment [the
variance ] is of particular importance in texture description. It is
a measure of intensity contrast that can be used to establish descriptors of rel-
ative smoothness. For example, the measure

(11.3-6)

is 0 for areas of constant intensity (the variance is zero there) and approaches
1 for large values of Because variance values tend to be large for gray-
scale images with values, for example, in the range 0 to 255, it is a good idea to
normalize the variance to the interval [0, 1] for use in Eq. (11.3-6). This is done
simply by dividing by in Eq. (11.3-6). The standard deviation,

also is used frequently as a measure of texture because values of the
standard deviation tend to be more intuitive to many people.
s(z),

(L - 1)2s2(z)

s2(z).

R(z) = 1 -
1

1 + s2(z)

s2(z) = m2(z)
m1 = 0.m0 = 1

m = a
L - 1

i = 0
zip(zi)

zm

mn(z) = a
L - 1

i = 0
(zi - m)np(zi)

z
L

p(zi), i = 0, 1, 2, Á , L - 1,
z

a b c
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The third moment,

(11.3-7)

is a measure of the skewness of the histogram while the fourth moment is a
measure of its relative flatness. The fifth and higher moments are not so easily
related to histogram shape, but they do provide further quantitative discrimi-
nation of texture content. Some useful additional texture measures based on
histograms include a measure of “uniformity,” given by

(11.3-8)

and an average entropy measure, which, you will recall from basic information
theory, is defined as

(11.3-9)

Because the ps have values in the range [0, 1] and their sum equals 1, measure
is maximum for an image in which all intensity levels are equal (maximally

uniform), and decreases from there. Entropy is a measure of variability and is
0 for a constant image.

U

e(z) = -a
L - 1

i = 0
p(zi) log2 p(zi)

U(z) = a
L - 1

i = 0
p2(zi)

m3(z) = a
L - 1

i = 0
(zi - m)3p(zi)

EXAMPLE 11.10:
Texture measures
based on
histograms.

■ Table 11.2 summarizes the values of the preceding measures for the three
types of textures highlighted in Fig. 11.28.The mean just tells us the average in-
tensity of each region and is useful only as a rough idea of intensity, not really
texture. The standard deviation is much more informative; the numbers clear-
ly show that the first texture has significantly less variability in intensity levels
(it is smoother) than the other two textures.The coarse texture shows up clear-
ly in this measure. As expected, the same comments hold for because it
measures essentially the same thing as the standard deviation. The third mo-
ment generally is useful for determining the degree of symmetry of histograms
and whether they are skewed to the left (negative value) or the right (positive
value). This gives a rough idea of whether the intensity levels are biased to-
ward the dark or light side of the mean. In terms of texture, the information
derived from the third moment is useful only when variations between mea-
surements are large. Looking at the measure of uniformity, we again conclude

R,

Standard Third
Texture Mean deviation R (normalized) moment Uniformity Entropy

Smooth 82.64 11.79 0.002 0.026 5.434
Coarse 143.56 74.63 0.079 0.005 7.783
Regular 99.72 33.73 0.017 0.750 0.013 6.674

-0.151
-0.105

TABLE 11.2 
Texture measures
for the subimages
shown in Fig. 11.28.
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FIGURE 11.29
How to generate
a co-occurrence
matrix.

that the first subimage is smoother (more uniform than the rest) and that the
most random (lowest uniformity) corresponds to the coarse texture.This is not
surprising. Finally, the entropy values are in the opposite order and thus lead
us to the same conclusions as the uniformity measure did. The first subimage
has the lowest variation in intensity levels and the coarse image the most. The
regular texture is in between the two extremes with respect to both these
measures. ■

Measures of texture computed using only histograms carry no informa-
tion regarding the relative position of pixels with respect to each other. This
is important when describing texture, and one way to incorporate this type
of information into the texture-analysis process is to consider not only the
distribution of intensities, but also the relative positions of pixels in an
image.

Let be an operator that defines the position of two pixels relative to
each other, and consider an image, with possible intensity levels. Let G
be a matrix whose element is the number of times that pixel pairs with
intensities and occur in in the position specified by where

A matrix formed in this manner is referred to as a gray-level
(or intensity) co-occurrence matrix. When the meaning is clear, G is referred
to simply as a co-occurrence matrix.

Figure 11.29 shows an example of how to construct a co-occurrence matrix
using and a position operator defined as “one pixel immediately to
the right” (i.e., the neighbor of a pixel is defined as the pixel immediately to
its right). The array on the left is a small image under consideration and the
array on the right is matrix G. We see that element (1, 1) of G is 1, because
there is only one occurrence in of a pixel valued 1 having a pixel valued 1
immediately to its right. Similarly, element (6, 2) of G is 3, because there are
three occurrences in of a pixel with a value of 6 having a pixel valued 2 im-
mediately to its right. The other elements of G are computed in this manner.
If we had defined as, say, “one pixel to the right and one pixel above,” thenQ

f

f

QL = 8

1 … i, j … L.
Q,fzjzi

gij

Lf,
Q

Note that we are using
the intensity range 
instead of our usual

This is done
so that intensity values
will correspond with
“traditional” matrix in-
dexing (i.e., intensity
value 1 corresponds to
the first row and column
indices of G).

[0, L - 1].

[1, L]
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position (1, 1) in G would have been 0, because there are no instances in of
a 1 with another 1 in the position specified by On the other hand, positions
(1, 3), (1, 5), and (1, 7) in G would all be 1s because intensity value 1 occurs in

with neighbors valued 3, 5, and 7 in the position specified by one time
each. As an exercise, you should compute all the elements of G using this de-
finition of 

The number of possible intensity levels in the image determines the size of
matrix G. For an 8-bit image (256 possible levels) G will be of size 
This is not a problem when working with one matrix, but as Example 11.11
shows, co-occurrence matrices sometimes are used in sequences. In order to
reduce computation load, an approach used frequently is to quantize the in-
tensities into a few bands in order to keep the size of matrix G manageable.
For example, in the case of 256 intensities we can do this by letting the first 32
intensity levels equal to 1, the next 32 equal to 2, and so on.This will result in a
co-occurrence matrix of size 

The total number, of pixel pairs that satisfy is equal to the sum of the
elements of G ( in the preceding example). Then, the quantity

is an estimate of the probability that a pair of points satisfying will have val-
ues These probabilities are in the range [0, 1] and their sum is 1:

where is the row (or column) dimension of square matrix G.
Because G depends on the presence of intensity texture patterns can be

detected by choosing an appropriate position operator and analyzing the ele-
ments of G.A set of descriptors useful for characterizing the contents of G are
listed in Table 11.3. The quantities used in the correlation descriptor (second
row in the table) are defined as follows:

and

sc
2 = a

K

j = 1
(j - mc)

2a
K

i = 1
pij

sr
2 = a

K

i = 1
(i - mr)

2a
K

j = 1
pij

mc = a
K

j = 1
ja

K

i = 1
pij

mr = a
K

i = 1
ia

K

j = 1
pij

Q,
K

a
K

i = 1
a
K

j = 1
pij = 1

(zi, zj).
Q

pij = gij>n
n = 30

Qn,
8 * 8.

256 * 256.

Q.

Q,f

Q.
f
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Descriptor Explanation Formula

Maximum Measures the strongest response of
probability G. The range of values is [0, 1].

Correlation A measure of how correlated a 
pixel is to its neighbor over the 
entire image. Range of values is
1 to corresponding to perfect
positive and perfect negative 
correlations. This measure is not 
defined if either standard deviation 
is zero.

Contrast A measure of intensity contrast 
between a pixel and its neighbor over 
the entire image. The range of values 
is 0 (when G is constant) to 

Uniformity A measure of uniformity in the range 
(also called [0, 1]. Uniformity is 1 for a constant 
Energy) image.

Homogeneity Measures the spatial closeness of the 
distribution of elements in G to the 
diagonal. The range of values is [0, 1],
with the maximum being achieved 
when G is a diagonal matrix.

Entropy Measures the randomness of the 
elements of G. The entropy is 0 when 
all are 0 and is maximum when 
all are equal. The maximum 
value is (See Eq. (11.3-9) 
regarding entropy).

2 log2 K.
pij’s
pij’s

-a
K

i = 1
a
K

i = 1
pij log2 pij

a
K

i = 1
a
K

i = 1

pij

1 + ƒ i - j ƒ

a
K

i = 1
a
K

j = 1
pi

2
j

(K - 1)2.

a
K

i = 1
a
K

j = 1
(i - j)2pij

sr Z 0; sc Z 0-1,

a
K

i = 1
a
K

j = 1

(i - mr)(j - mc)pij

srsc

max
i,j

(pij)

TABLE 11.3 
Descriptors used
for characterizing
co-occurrence
matrices of size

The term
is the ijth term

of G divided by
the sum of the
elements of G.

pij

K * K.

If we let

and

then the preceding equations can be written as

mc = a
K

j = 1
jP(j)

mr = a
K

i = 1
iP(i)

P(j) = a
K

i = 1
pij

P(i) = a
K

j = 1
pij
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With reference to Eqs. (11.3-4), (11.3-5), and to their explanation, we see
that is in the form of a mean computed along rows of the normalized G
and is a mean computed along the columns. Similarly, and are in the
form of standard deviations (square roots of the variances) computed along
rows and columns respectively. Each of these terms is a scalar, independently
of the size of G.

Keep in mind when studying Table 11.3 that “neighbors” are with respect to
the way in which is defined (i.e., neighbors do not necessarily have to be ad-
jacent), and also that the are nothing more than normalized counts of the 
number of times that pixels having that intensities and occur in relative
to the position specified in Thus, all we are doing here is trying to find pat-
terns (texture) in those counts.

Q.
fzjzi

pij’s
Q

scsrmc

mr

sc
2 = a

K

j = 1
(j - mc)

2P(j)

sr
2 = a

K

i = 1
(i - mr)

2P(i)

EXAMPLE 11.11:
Using descriptors
to characterize co-
occurrence
matrices.

■ Figures 11.30(a) through (c) show images consisting of random, horizontal-
ly periodic (sine), and mixed pixel patterns, respectively. This example has two
objectives: (1) to show values of the descriptors in Table 11.3 for the three co-
occurrence matrices, and corresponding (from top to bottom) to
these images, and (2) to illustrate how sequences of co-occurrence matrices
can be used to detect texture patterns in an image.

Figure 11.31 shows co-occurrence matrices and displayed as im-
ages. These matrices were obtained using and the position operator
“one pixel immediately to the right.” The value at coordinates in these(i, j)

L = 256
G3G1, G2,

G3G1, G2,

FIGURE 11.30
Images whose
pixels have 
(a) random,
(b) periodic, and
(c) mixed texture
patterns. Each
image is of size

pixels.263 * 800

a
b
c
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FIGURE 11.31
co-

occurrence
matrices,
and
corresponding
from left to right
to the images in
Fig. 11.30.

G3,
G1, G2,

256 * 256

DescriptorNormalized
Co-occurrence Max 

Matrix Probability Correlation Contrast Uniformity Homogeneity Entropy

0.00006 10838 0.00002 0.0366 15.75
0.01500 0.9650 570 0.01230 0.0824 6.43
0.06860 0.8798 1356 0.00480 0.2048 13.58G3>n3

G2>n2

-0.0005G1>n1

TABLE 11.4 
Descriptors
evaluated using
the co-occurrence
matrices displayed
in Fig. 11.31.

images is the number of times that pixels pairs with intensities and occur 
in in the position specified by so it is not surprising that Fig. 11.31(a) is a
random image, given the nature of the image from which it was obtained.

Figure 11.31(b) is more interesting. The first obvious feature is the symme-
try about the main diagonal. Due to the symmetry of the sine wave, the num-
ber of counts for a pair is the same as for the pair which
produces a symmetric co-occurrence matrix. The non-zero elements of are
sparse because value differences between horizontally adjacent pixels in a
horizontal sine wave are relatively small. It helps to remember in interpreting
these concepts that a digitized sine wave is a staircase, with the height and
width of each step depending on frequency and the number of amplitude lev-
els used in representing the function.

The structure of co-occurrence matrix in Fig. 11.31(c) is more complex.
High count values are grouped along the main diagonal also, but their distrib-
ution is more dense than for a property that is indicative of an image with
a rich variation in intensity values, but few large jumps in intensity between
adjacent pixels. Examining Fig. 11.30(c), we see that there are large areas char-
acterized by low variability in intensities. The high transitions in intensity
occur at object boundaries, but these counts are low with respect to the mod-
erate intensity transitions over large areas, so they are obscured by the ability
of an image display to show high and low values simultaneously, as we dis-
cussed in Chapter 3.

The preceding observations are qualitative. To quantify the “content” of co-
occurrence matrices we need descriptors such as those in Table 11.3. Table 11.4
shows values of these descriptors computed for the three co-occurrence matrices

G2,

G3

G2

(zj, zi),(zi, zj)

Q,f
zjzi

a b c
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in Fig. 11.31. Note that to use these descriptors the co-occurrence matrices must
be normalized by dividing them by the sum of their elements, as discussed earlier.
The entries in Table 11.4 agree with what one would expect from looking at the
images in Fig. 11.30 and their corresponding co-occurrence matrices in Fig. 11.31.
For example, consider the Maximum Probability column in Table 11.4.The high-
est probability corresponds to the third co-occurrence matrix, which tells us that
this matrix has the highest number of counts (largest number of pixel pairs oc-
curring in the image relative to the positions in ) than the other two matrices.
This agrees with our earlier analysis of The second column indicates that
the highest correlation corresponds to which in turn tells us that the inten-
sities in the second image are highly correlated. The repetitiveness of the sinu-
soidal pattern over and over again in Fig. 11.30(b) reveals why this is so. Note
that the correlation for is essentially zero, indicating virtually no correlation
between adjacent pixels, a characteristic of random images, such as the image in
Fig. 11.30(a).

The contrast descriptor is highest for and lowest for Thus, we see
that the less random an image is, the lower its contrast tends to be. We can see
the reason by studying the matrices displayed in Fig. 11.31. The terms
are differences of integers for so they are the same for any G.
Therefore, the probabilities in the elements of the normalized co-occurrence
matrices are the factors that determine the value of contrast. Although has
the lowest maximum probability, the other two matrices have many more zero
or near zero probabilities (the dark areas in Fig. 11.31). Keeping in mind that
the sum of the values of is 1, it is easy to see why the contrast descriptor
tends to increase as a function of randomness.

The remaining three descriptors are explained in a similar manner. Unifor-
mity increases as a function of the values of the probabilities squared.Thus the
less randomness there is in an image, the higher the uniformity descriptor will
be, as the fifth column in Table 11.4 shows. Homogeneity measures the con-
centration of values of G with respect to the main diagonal. The values of the
denominator term are the same for all three co-occurrence ma-
trices, and they decrease as and become closer in value (i.e., closer to the
main diagonal). Thus, the matrix with the highest values of probabilities (nu-
merator terms) near the main diagonal will have the highest value of homo-
geneity.As we discussed earlier, such a matrix will correspond to images with a
“rich” gray-level content and areas of slowly varying intensity values. The en-
tries in the sixth column of Table 11.4 are consistent with this interpretation.

The entries in the last column of the table are measures of randomness in
co-occurrence matrices, which in turn translate into measures of randomness
in the corresponding images. As expected, had the highest value because
the image from which it was derived was totally random. The other two en-
tries are self-explanatory. Note that the entropy measure for is near the
theoretical maximum of 16 The image in Fig. 11.30(a) is
composed of uniform noise, so each intensity level has approximately an
equal probability of occurrence, which is the condition stated in Table 11.3 for
maximum entropy.

(2 log2 256 = 16).
G1

G1

ji
(1 + ƒ i - j ƒ )

G>n

G1

1 … i, j … L
(i - j)2

G2.G1

G1

G2,
G3.
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FIGURE 11.32 Values of the correlation descriptor as a function of offset (distance between “adjacent”
pixels) corresponding to the (a) noisy, (b) sinusoidal, and (c) circuit board images in Fig. 11.30.

Thus far, we have dealt with single images and their co-occurrence matrices.
Suppose that we want to “discover” (without looking at the images) if there are
any sections in these images that contain repetitive components (i.e., periodic
textures). One way to accomplish this goal is to examine the correlation de-
scriptor for sequences of co-occurrence matrices, derived from these images by
increasing the distance between neighbors.As mentioned earlier, it is customary
when working with sequences of co-occurrence matrices to quantize the number
of intensities in order to reduce matrix size and corresponding computational
load. The following results were obtained using 

Figure 11.32 shows plots of the correlation descriptors as a function of hor-
izontal “offset” (i.e., horizontal distance between neighbors) from 1 (for adja-
cent pixels) to 50. Figure 11.32(a) shows that all correlation values are near 0,
indicating that no such patterns were found in the random image.The shape of
the correlation in Fig. 11.32(b) is a clear indication that the input image is si-
nusoidal in the horizontal direction. Note that the correlation function starts at
a high value and then decreases as the distance between neighbors increases,
and then repeats itself.

Figure 11.32(c) shows that the correlation descriptor associated with the cir-
cuit board image decreases initially, but has a strong peak for an offset distance of
16 pixels.Analysis of the image in Fig. 11.30(c) shows that the upper solder joints
form a repetitive pattern approximately 16 pixels apart (see Fig. 11.33).The next
major peak is at 32, caused by the same pattern, but the amplitude of the peak is
lower because the number of repetitions at this distance is less than at 16 pixels.A
similar observation explains the even smaller peak at an offset of 48 pixels. ■

Structural approaches

As mentioned at the beginning of this section, a second category of texture
description is based on structural concepts. Suppose that we have a rule of
the form which indicates that the symbol may be rewritten as 
(for example, three applications of this rule would yield the string ). If aaaaS

aSSS: aS,

L = 8.

There are other 
repetitive patterns in the
image, but they were 
obscured by the coarse
quantization of 256 
intensity levels into 8.

a b c
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16 pixels FIGURE 11.33
A zoomed section
of the circuit
board image
showing
periodicity of
components.

represents a circle [Fig. 11.34(a)] and the meaning of “circles to the right” is
assigned to a string of the form the rule allows generation of
the texture pattern shown in Fig. 11.34(b).

Suppose next that we add some new rules to this scheme:
where the presence of a means “circle

down” and the presence of a means “circle to the left.” We can now generate
a string of the form aaabccbaa that corresponds to a matrix of circles.
Larger texture patterns, such as the one in Fig. 11.34(c), can be generated eas-
ily in the same way. (Note, however, that these rules can also generate struc-
tures that are not rectangular.)

The basic idea in the foregoing discussion is that a simple “texture primi-
tive” can be used to form more complex texture patterns by means of some
rules that limit the number of possible arrangements of the primitive(s).These
concepts lie at the heart of relational descriptions, a topic that we treat in more
detail in Section 11.5.

Spectral approaches

As discussed in Section 5.4, the Fourier spectrum is ideally suited for describing
the directionality of periodic or almost periodic 2-D patterns in an image. These
global texture patterns are easily distinguishable as concentrations of high-energy
bursts in the spectrum. Here, we consider three features of the Fourier spectrum
that are useful for texture description: (1) Prominent peaks in the spectrum give

3 * 3
c

bA: cA, A: c, A: bS, S: a,
S: bA,

S: aSaaa Á ,

. . .

. . .

. .
 .

FIGURE 11.34
(a) Texture
primitive.
(b) Pattern
generated by the
rule
(c) 2-D texture
pattern generated
by this and other
rules.

S: aS.

a
b
c
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the principal direction of the texture patterns. (2) The location of the peaks in
the frequency plane gives the fundamental spatial period of the patterns.
(3) Eliminating any periodic components via filtering leaves nonperiodic image
elements, which can then be described by statistical techniques. Recall that the
spectrum is symmetric about the origin, so only half of the frequency plane
needs to be considered. Thus for the purpose of analysis, every periodic pattern
is associated with only one peak in the spectrum, rather than two.

Detection and interpretation of the spectrum features just mentioned often
are simplified by expressing the spectrum in polar coordinates to yield a func-
tion where is the spectrum function and and are the variables in this
coordinate system. For each direction may be considered a 1-D func-
tion Similarly, for each frequency is a 1-D function. Analyzing

for a fixed value of yields the behavior of the spectrum (such as the pres-
ence of peaks) along a radial direction from the origin, whereas analyzing 
for a fixed value of yields the behavior along a circle centered on the origin.

A more global description is obtained by integrating (summing for discrete
variables) these functions:

(11.3-10)

and

(11.3-11)

where is the radius of a circle centered at the origin.
The results of Eqs. (11.3-10) and (11.3-11) constitute a pair of values

for each pair of coordinates By varying these coordinates,
we can generate two 1-D functions, and that constitute a spectral-
energy description of texture for an entire image or region under considera-
tion. Furthermore, descriptors of these functions themselves can be computed
in order to characterize their behavior quantitatively. Descriptors typically
used for this purpose are the location of the highest value, the mean and vari-
ance of both the amplitude and axial variations, and the distance between the
mean and the highest value of the function.

S(u),S(r)
(r, u).[S(r), S(u)]

R0

S(u) = a
R0

r = 1
Sr(u)

S(r) = a
p

u= 0
Su(r)

r
Sr(u)

uSu(r)
r, Sr(u)Su(r).

u, S(r, u)
urSS(r, u),

EXAMPLE 11.12:
Spectral texture.

■ Figure 11.35(a) shows an image containing randomly distributed matches
and Fig. 11.35(b) shows an image in which these objects are arranged periodi-
cally. Figures 11.35(c) and (d) show the corresponding Fourier spectra.The pe-
riodic bursts of energy extending quadrilaterally in two dimensions in both
Fourier spectra are due to the periodic texture of the coarse background ma-
terial on which the matches rest. The other dominant components in the spec-
tra in Fig. 11.35(c) are caused by the random orientation of the object edges in
Fig. 11.35(a). On the other hand, the main energy in Fig. 11.35(d) not associat-
ed with the background is along the horizontal axis, corresponding to the
strong vertical edges in Fig. 11.35(b).
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FIGURE 11.35
(a) and (b) Images
of random and
ordered objects.
(c) and (d) Corres-
ponding Fourier
spectra. All images
are of size

pixels.600 * 600

Figures 11.36(a) and (b) are plots of and for the random matches
and similarly in (c) and (d) for the ordered matches. The plot of for the
random matches shows no strong periodic components (i.e., there are no dom-
inant peaks in the spectrum besides the peak at the origin, which is the dc com-
ponent). Conversely, the plot of for the ordered matches shows a strong
peak near and a smaller one near corresponding to the peri-
odic horizontal repetition of the light (matches) and dark (background) re-
gions in Fig. 11.35(b). Similarly, the random nature of the energy bursts in
Fig. 11.35(c) is quite apparent in the plot of in Fig. 11.36(b). By contrast,
the plot in Fig. 11.36(d) shows strong energy components in the region near
the origin and at 90° and 180°. This is consistent with the energy distribution
of the spectrum in Fig. 11.35(d). ■

11.3.4 Moment Invariants
The 2-D moment of order of a digital image of size is
defined as

(11.3-12)mpq = a
M - 1

x = 0
a

N - 1

y = 0
xpyqf(x, y)

M * Nf(x, y)(p + q)

S(u)

r = 25,r = 15
S(r)

S(r)
S(u)S(r)

a b
c d
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FIGURE 11.36
Plots of (a) 
and (b) for
Fig. 11.35(a).
(c) and (d) are
plots of and

for Fig.
11.35(b). All
vertical axes are
*10 5.

S(u)
S(r)

S(u)
S(r)

where and are integers. The corresponding
central moment of order is defined as

(11.3-13)

for and where

(11.3-14)

The normalized central moments, denoted are defined as

(11.3-15)

where

(11.3-16)

for
A set of seven invariant moments can be derived from the second and third

moments.†

p + q = 2, 3, Á .

g =
p + q

2
+ 1

hpq =
mpq

m
g
00

hpq,

x =
m10

m00
   and y =

m01

m00

q = 0, 1, 2, Á ,p = 0, 1, 2, Á

mpq = a
M - 1

x = 0
a

N - 1

y = 0
(x - x)p(y - y)qf(x, y)

(p + q)
q = 0, 1, 2, Áp = 0, 1, 2, Á

†Derivation of these results involves concepts that are beyond the scope of this discussion. The book by
Bell [1965] and the paper by Hu [1962] contain detailed discussions of these concepts. For generating
moment invariants of order higher than 7, see Flusser [2000]. Moment invariants can be generalized to

dimensions (Mamistvalov [1998]).n

a b
c d
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(11.3-17)

(11.3-18)

(11.3-19)

(11.3-20)

(11.3-21)

(11.3-22)

(11.3-23)

This set of moments is invariant to translation, scale change, mirroring (within
a minus sign) and rotation.

[3(h30 + h12)
2 - (h21 + h03)

2]

-  3(h21 + h03)
2] + (3h12 - h30)(h21 + h03)

f7 = (3h21 - h03)(h30 + h12)[(h30 + h12)
2

+  4h11(h30 + h12)(h21 + h03)

f6 = (h20 - h02)[(h30 + h12)
2 - (h21 + h03)

2]

[3(h30 + h12)
2 - (h21 + h03)

2]

-  3(h21 + h03)
2] + (3h21 - h03)(h21 + h03)

f5 = (h30 - 3h12)(h30 + h12)[(h30 + h12)
2

f4 = (h30 + h12)
2 + (h21 + h03)

2

f3 = (h30 - 3h12)
2 + (3h21 - h03)

2

f2 = (h20 - h02)
2 + 4h2

11

f1 = h20 + h02

EXAMPLE 11.13:
Moment
invariants.

■ The objective of this example is to compute and compare the preceding
moment invariants using the image in Fig. 11.37(a). The black (0) border
was added to make all images in this example be of the same size; the zeros
do not affect computation of the moment invariants. Figures 11.37(b) through
(f) show the original image translated, scaled by 0.5 in both spatial dimensions,
mirrored, rotated by 45° and rotated by 90°, respectively. Table 11.5 summa-
rizes the values of the seven moment invariants for these six images. To re-
duce dynamic range and thus simplify interpretation, the values shown are

The absolute value is needed because many of the values
are fractional and/or negative; the sgn function preserves the sign (interest
here is on the invariance and relative signs of the moments, not on their ac-
tual values). The two key points in Table 11.5 are (1) the closeness of the
values of the moments, independent of translation, scale change, mirroring
and rotation; and (2) the fact that the sign of is different for the mirrored
image (a property used in practice to detect whether an image has been
mirrored). ■

f7

sgn(fi) log10( ƒfi ƒ ).



Moment Original
Invariant Image Translated Half Size Mirrored Rotated 45° Rotated 90°

2.8662 2.8662 2.8664 2.8662 2.8661 2.8662
7.1265 7.1265 7.1257 7.1265 7.1266 7.1265

10.4109 10.4109 10.4047 10.4109 10.4115 10.4109
10.3742 10.3742 10.3719 10.3742 10.3742 10.3742
21.3674 21.3674 21.3924 21.3674 21.3663 21.3674
13.9417 13.9417 13.9383 13.9417 13.9417 13.9417

20.7809 -20.7809-20.7813-20.7724-20.7809-20.7809f7

f6

f5

f4

f3

f2

f1
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FIGURE 11.37 (a) Original image. (b)–(f) Images translated, scaled by one-half, mirrored, rotated by 45° and
rotated by 90°, respectively.

TABLE 11.5 
Moment
invariants for 
the images in 
Fig. 11.37.

11.4 Use of Principal Components for Description

The material discussed in this section is applicable to boundaries and regions.
In addition, it can be used as the basis for describing sets of images that are
registered spatially, but whose corresponding pixel values are different (e.g.,
the three component images of an RGB image). Suppose that we are given the

Consult the book Web
site for a brief review of
vectors and matrices.

a b
d e

c
f
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three component images of such a color image. The three images can be treat-
ed as a unit by expressing each group of three corresponding pixels as a vector.
For example, let and respectively, be the values of a pixel in each of
the three RGB component images. These three elements can be expressed in
the form of a 3-D column vector, x, where

This vector represents one common pixel in all three images. If the images are
of size there will be a total of 3-D vectors after all the pix-
els are represented in this manner. If we have registered images, the vectors
will be n-dimensional:

(11.4-1)

Throughout this section, the assumption is that all vectors are column vectors
(i.e., matrices of order ). We can write them on a line of text simply by
expressing them as where indicates transpose.

We can treat the vectors as random quantities, just like we did when con-
structing an intensity histogram. The only difference is that, instead of talking
about quantities like the mean and variance of the random variables, we now
talk about mean vectors and covariance matrices of the random vectors. The
mean vector of the population is defined as

(11.4-2)

where is the expected value of the argument,and the subscript denotes that
m is associated with the population of x vectors. Recall that the expected value of
a vector or matrix is obtained by taking the expected value of each element.

The covariance matrix of the vector population is defined as

(11.4-3)

Because x is dimensional, and are matrices of order
Element of is the variance of the ith component of the x vec-

tors in the population, and element of is the covariance† between ele-
ments and of these vectors. The matrix is real and symmetric. If
elements and are uncorrelated, their covariance is zero and, therefore,

All these definitions reduce to their familiar one-dimensional
counterparts when n = 1.
cij = cji = 0.

xjxi

Cxxjxi

Cxcij

xi,Cxciin * n.
(x - mx)(x - mx)

TCxn

Cx = EE(x - mx)(x - mx)
TF

E5 # 6
mx = E5x6

“T”x = (x1, x2, Á , xn)T,
n * 1

x = Dx1

x2

o
xn

T
n

K = MNM * N,

x = Cx1

x2

x3

S
x3,x1, x2,

†Recall that the variance of a random variable with mean can be defined as The covari-
ance of two random variables and is defined as E5(xi - mi)(xj - mj)6.xjxi

E5(x - m)26.mx
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For vector samples from a random population, the mean vector can be
approximated from the samples by using the familiar averaging expression

(11.4-4)

Similarly, by expanding the product and using Eqs.
(11.4-2) and (11.4-4) we would find that the covariance matrix can be approx-
imated from the samples as follows:

(11.4-5)Cx =
1
K a

K

k = 1
xkxT

k - mxmx
T

(x - mx)(x - mx)
T

mx =
1
K a

K

k = 1
xk

K

EXAMPLE 11.14:
Computation of
the mean vector
and covariance
matrix.

■ To illustrate the mechanics of Eqs. (11.4-4) and (11.4-5), consider the four
vectors and Ap-
plying Eq. (11.4-4) yields the following mean vector:

Similarly, using Eq. (11.4-5) yields the following covariance matrix:

All the elements along the main diagonal are equal, which indicates that the
three components of the vectors in the population have the same variance.
Also, elements and as well as and are positively correlated; ele-
ments and are negatively correlated. ■

Because is real and symmetric, finding a set of orthonormal eigenvec-
tors always is possible (Noble and Daniel [1988]). Let and 
be the eigenvectors and corresponding eigenvalues of † arranged (for conve-
nience) in descending order so that for Let A be
a matrix whose rows are formed from the eigenvectors of ordered so that
the first row of A is the eigenvector corresponding to the largest eigenvalue,
and the last row is the eigenvector corresponding to the smallest eigenvalue.

Suppose that we use A as a transformation matrix to map the xs into vec-
tors denoted by ys, as follows:

(11.4-6)y = A(x - mx)

Cx,
j = 1, 2, Á , n - 1.lj Ú lj + 1

Cx,
li, i = 1, 2, Á , n,ei

nCx

x3x2

x3,x1x2,x1

Cx =
1

16
C3 1 1

1 3 -1
1 -1 3

S
mx =

1
4
C3

1
1
S

x4 = (1, 0, 1)T.x1 = (0, 0, 0)T, x2 = (1, 0, 0)T, x3 = (1, 1, 0)T,

†By definition, the eigenvectors and eigenvalues of an matrix, C, satisfy the relation for
i = 1, 2, Á , n.

Cei = liei,n * n
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This expression is called the Hotelling transform, which, as will be shown
shortly, has some interesting and useful properties.

It is not difficult to show that the mean of the y vectors resulting from this
transformation is zero; that is,

(11.4-7)

It follows from basic matrix theory that the covariance matrix of the ys is given
in terms of A and by the expression

(11.4-8)

Furthermore, because of the way A was formed, is a diagonal matrix whose
elements along the main diagonal are the eigenvalues of ; that is,

(11.4-9)

The off-diagonal elements of this covariance matrix are 0, so the elements of the
y vectors are uncorrelated. Keep in mind that the are the eigenvalues of 
and that the elements along the main diagonal of a diagonal matrix are its eigen-
values (Noble and Daniel [1988]). Thus and have the same eigenvalues.

Another important property of the Hotelling transform deals with the re-
construction of x from y. Because the rows of A are orthonormal vectors, it fol-
lows that and any vector x can be recovered from its corresponding
y by using the expression

(11.4-10)

Suppose, however, that instead of using all the eigenvectors of we form ma-
trix from the eigenvectors corresponding to the largest eigenvalues,
yielding a transformation matrix of order The y vectors would then be

dimensional, and the reconstruction given in Eq. (11.4-10) would no longer
be exact (this is somewhat analogous to the procedure we used in Section
11.2.3 to describe a boundary with a few Fourier coefficients).

The vector reconstructed by using is

(11.4-11)

It can be shown that the mean square error between x and is given by the ex-
pression

(11.4-12)= a
n

j = k + 1
lj

ems = a
n

j = 1
lj - a

k

j = 1
lj

xN

xN = AT
ky + mx

Ak

k
k * n.

kkAk

Cx

x = ATy + mx

A-1 = AT,

CyCx

Cxlj’s

Cy = Dl1 0
l2

∞
0 ln

T
Cx

Cy

Cy = ACxA
T

Cx

my = E5y6 = 0

The Hotelling transform
is the same as the dis-
crete Karhunen-Loève
transform (Karhunen
[1947]), so the two names
are used interchangeably
in the literature.
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FIGURE 11.38 Multispectral images in the (a) visible blue, (b) visible green, (c) visible red, (d) near infrared,
(e) middle infrared, and (f) thermal infrared bands. (Images courtesy of NASA.)

The first line of Eq. (11.4-12) indicates that the error is zero if (that is,
if all the eigenvectors are used in the transformation). Because the de-
crease monotonically, Eq. (11.4-12) also shows that the error can be mini-
mized by selecting the eigenvectors associated with the largest
eigenvalues. Thus the Hotelling transform is optimal in the sense that it min-
imizes the mean square error between the vectors x and their approxima-
tions Due to this idea of using the eigenvectors corresponding to the
largest eigenvalues, the Hotelling transform also is known as the principal
components transform.

xN .

k

lj’s
k = n

EXAMPLE 11.15:
Using principal
components for
image description.

■ Figure 11.38 shows six multispectral satellite images corresponding to six
spectral bands: visible blue (450–520 nm), visible green (520–600 nm), visible
red (630–690 nm), near infrared (760–900 nm), middle infrared (1550–1750
nm), and thermal infrared (10,400–12500 nm). The objective of this example
is to illustrate how to use principal components for image description.

a b c
d e f
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Spectral band 1

Spectral band 2

Spectral band 3

Spectral band 4

Spectral band 5

Spectral band 6

x

x1

x2

x3

x4

x5

x6

�

FIGURE 11.39
Formation of a
vector from
corresponding
pixels in six
images.

Organizing the images as in Fig. 11.39 leads to the formation of a six-element
vector from each set of corresponding pixels in the images,
as discussed at the beginning of this section. The images in this example are of
size pixels, so the population consisted of vectors
from which the mean vector, covariance matrix, and corresponding eigenvalues
and eigenvectors were computed. The eigenvectors were then used as the rows
of matrix A, and a set of y vectors were obtained using Eq. (11.4-6). Similarly,
we used Eq. (11.4-8) to obtain Table 11.6 shows the eigenvalues of this ma-
trix. Note the dominance of the first two eigenvalues.

A set of principal component images was generated using the y vectors
mentioned in the previous paragraph (images are constructed from vectors by
applying Fig. 11.39 in reverse). Figure 11.40 shows the results. Figure 11.40(a)
was formed from the first component of the 318,096 y vectors, Fig. 11.40(b)
from the second component of these vectors, and so on, so these images are of
the same size as the original images in Fig. 11.38. The most obvious feature in
the principal component images is that a significant portion of the contrast de-
tail is contained in the first two images, and it decreases rapidly from there.
The reason can be explained by looking at the eigenvalues. As Table 11.6
shows, the first two eigenvalues are much larger than the others. Because the
eigenvalues are the variances of the elements of the y vectors and variance is a
measure of intensity contrast, it is not unexpected that the images formed
from the vector components corresponding to the largest eigenvalues would
exhibit the highest contrast. In fact, the first two images in Fig. 11.40 account

Cy.

(564)2 = 318,096564 * 564

x = (x1, x2, Á x6)
T

10344 2966 1401 203 94 31

L6L5L4L3L2L1
TABLE 11.6 
Eigenvalues of
the covariance
matrices obtained
from the images
in Fig. 11.38.
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FIGURE 11.40 The six principal component images obtained from vectors computed using Eq. (11.4-6).
Vectors are converted to images by applying Fig. 11.39 in reverse.

for about 89% of the total variance. The other four images have low contrast
detail because they account for only the remaining 11%.

According to Eqs. (11.4-11) and (11.4-12), if we used all the eigenvectors in
matrix A we could reconstruct the original images (vectors) from the principal
component images (vectors) with zero error between the original and recon-
structed images. That is, the original and reconstructed images would be iden-
tical. If the objective were to store and/or transmit the principal component
images and the transformation matrix for later reconstruction of the original
images, it would make no sense to store and/or transmit all the principal com-
ponent images because nothing would be gained. Suppose, however, that we
keep and/or transmit only the two principal component images (they have
most of the contrast detail). Then there would be a significant savings in stor-
age and/or transmission (matrix A would be of size so its impact would
be negligible).

Figure 11.41 shows the results of reconstructing the six multispectral images
from the two principal component images corresponding the largest eigenvalues.
The first five images are quite close in appearance to the originals in Fig. 11.38,

2 * 6,

When referring to im-
ages, we use the term
“vectors” interchange-
ably because there is a
one-to-one correspon-
dence between the two in
the present context.

a b c
d e f
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but this is not true for the sixth image.The reason is that the original sixth image
is actually blurry, but the two principal component images used in the reconstruc-
tion are sharp, therefore, the blurry “detail” is lost. Figure 11.42 shows the differ-
ences between the original and reconstructed images. The images in Fig. 11.42
were enhanced to highlight the differences between them. If they were shown
without enhancement, the first five images would appear almost all black.As ex-
pected, the sixth difference image shows the most variability. ■

EXAMPLE 11.16:
Using principal
components for
normalizing with
respect to
variations in size,
translation, and
rotation.

■ As mentioned earlier in this chapter, representation and description should
be as independent as possible with respect to size, translation, and rotation.
Principal components provide a convenient way to normalize boundaries
and/or regions for variations in these three parameters. Consider the object in
Fig. 11.43, and assume that its size, location, and orientation (rotation) are ar-
bitrary. The points in the region (or its boundary) may be treated as two di-
mensional vectors, where and are the coordinate values of
any point along the and respectively. All the points in the region orx2-axis,x1-

x2x1x = (x1, x2)
T,

FIGURE 11.41 Multispectral images reconstructed using only the two principal component images
corresponding to the two principal component images with the largest eigenvalues (variance). Compare
these images with the originals in Fig. 11.38.

a b c
d e f
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FIGURE 11.42 Differences between the original and reconstructed images. All difference images were
enhanced by scaling them to the full [0, 255] range to facilitate visual analysis.

boundary constitute a 2-D vector population which can be used to compute
the covariance matrix and mean vector as before. One eigenvector of

points in the direction of maximum variance (data spread) of the popula-
tion, while the second eigenvector is perpendicular to the first, as Fig. 11.43(b)
shows. In terms of the present discussion, the principal components transform
in Eq. (11.4-6) accomplishes two things: (1) It establishes the center of the
transformed coordinates system at the center of gravity (mean) of the popula-
tion because is subtracted from each x; and (2) the y coordinates (vectors)
it generates are rotated versions of the x’s, so that the data align with the
eigenvectors. If we define a axis system so that is along the first
eigenvector and along the second, then the geometry that results is as illus-
trated in Fig. 11.43(c). That is, the dominant data directions are aligned with
the axis system.The same result will be obtained regardless of the size, transla-
tion, or rotation of the object, provided that all points in the region or bound-
ary undergo the same changes. If we wished to size-normalize the transformed
data, we would divide the coordinates by the corresponding eigenvalues.

Observe in Fig. 11.43(c) that the points in the y-axes system can have both
positive and negative values. To convert all coordinates to positive values, we

y2

y1(y1, y2)

mx

Cx

mx,Cx

The y-axis system could
be in a direction 180° op-
posite to the direction
shown in Fig. 11.43(c),
depending on the orien-
tation of the original ob-
ject. For example, if the
nose of the airplane in
Fig. 11.43(a) had been
pointing in the opposite
direction, the resulting
eigenvectors would point
to the left and down.

a b c
d e f
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simply subtract the vector from all the y vectors. To displace the
resulting points so that they are all greater than 0, as in Fig. 11.43(d), we add to
them a vector where and are greater than 0.

Although the preceding discussion is straightforward in principle, the me-
chanics are a frequent source of confusion. Thus, we conclude this example
with a simple manual illustration. Figure 11.44(a) shows four points with coor-
dinates (1, 1), (2, 4), (4, 2), and (5, 5). The mean vector, covariance matrix, and
normalized (unit length) eigenvectors of this population are

and

e1 = B0.707
0.707

R , e2 = B -0.707
0.707

R
Cx = B3.333 2.00

2.00 3.333
R

mx = B3
3
R

ba(a, b)T

(y1 min, y2 min)T

x2

x1

Direction perpendicular
to the direction of max
variance

Direction of
max variance

e2
e1

y2

y1

x2

x1

Centroid

y2

y1

FIGURE 11.43
(a) An object.
(b) Object
showing
eigenvectors of its
covariance matrix.
(c) Transformed
object, obtained
using Eq. (11.4-6).
(d) Object
translated so that
all its coordinate
values are greater
than 0.

a b
c d
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x2

x10
0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

x2

e2 e1

x10
0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

y2

y10
0 1 2 3 4 5 6 7

7

6

5

4

3

2

1

y2

y1
�3 �2 �1 1 2 3

3

2

1

�1

�2

�3

FIGURE 11.44
A manual
example.
(a) Original
points.
(b) Eigenvectors
of the covariance
matrix of the
points in (a).
(c) Transformed
points obtained
using Eq. (11.4-6).
(d) Points from
(c), rounded and
translated so that
all coordinate
values are
integers greater
than 0. The
dashed lines are
included to
facilitate viewing.
They are not part
of the data.

The corresponding eigenvalues are and Figure 11.44(b)
shows the eigenvectors superimposed on the data. From Eq. (11.4-6), the trans-
formed points (the ys) are (0, 1.414), and (2.828, 0).
These points are plotted in Fig. 11.44(c). Note that they are aligned with the y-
axes and that they have fractional values. When working with images, values
generally are integers, making it necessary to round all fractions to their nearest
integer value. Figure 11.44(d) shows the points rounded to the nearest integer
values and their location shifted so that all coordinate values are integers
greater than 0, as in the original figure. ■

11.5 Relational Descriptors

We introduced in Section 11.3.3 the concept of rewriting rules for describing
texture. In this section, we expand that concept in the context of relational de-
scriptors. These apply equally well to boundaries or regions, and their main
purpose is to capture in the form of rewriting rules basic repetitive patterns in
a boundary or region.

Consider the simple staircase structure shown in Fig. 11.45(a).Assume that
this structure has been segmented out of an image and that we want to de-
scribe it in some formal way. By defining the two primitive elements and
shown, we may code Fig. 11.45(a) in the form shown in Fig. 11.45(b).The most
obvious property of the coded structure is the repetitiveness of the elements

ba

(0, -1.414),(-2.828, 0),

l2 = 1.333.l1 = 5.333

a b
c d
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a

a
b

b

b

b

a

a

a

a

…a

b

…

…

… …

FIGURE 11.45
(a) A simple
staircase
structure.
(b) Coded
structure.

and Therefore, a simple description approach is to formulate a recursive
relationship involving these primitive elements. One possibility is to use the
rewriting rules:

(1)
(2) and
(3)

where and are variables and the elements and are constants correspond-
ing to the primitives just defined. Rule 1 indicates that called the starting sym-
bol, can be replaced by primitive and variable This variable, in turn, can be
replaced by and or by alone. Replacing with leads back to the first
rule and the procedure can be repeated. Replacing with terminates the pro-
cedure, because no variables remain in the expression. Figure 11.46 illustrates
some sample derivations of these rules, where the numbers below the structures
represent the order in which rules 1, 2, and 3 were applied. The relationship be-
tween and is preserved, because these rules force an always to be followed
by a Notably, these three simple rewriting rules can be used to generate (or de-
scribe) infinitely many “similar” structures.

Because strings are 1-D structures, their application to image description
requires establishing an appropriate method for reducing 2-D positional re-
lations to 1-D form. Most applications of strings to image description are
based on the idea of extracting connected line segments from the objects of
interest. One approach is to follow the contour of an object and code the re-
sult with segments of specified direction and/or length. Figure 11.47 illus-
trates this procedure.

Another, somewhat more general, approach is to describe sections of an
image (such as small homogeneous regions) by directed line segments, which

b.
aba

bA
bS,AbSb

A.a
S,

baAS

A: b,
A: bS,
S: aA,

b.a

b
(1, 3)

(1, 2, 1, 3)

(1, 2, 1, 2, 1, 3)

a

b

a

b

a
b

a

b

a

b

a

FIGURE 11.46
Sample
derivations for
the rules

and A: b.
S: aA, A: bS,

a b
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Boundary

Starting
point

Region

FIGURE 11.47
Coding a region
boundary with
directed line
segments.

can be joined in other ways besides head-to-tail connections. Figure 11.48(a)
illustrates this approach, and Fig. 11.48(b) shows some typical operations
that can be defined on abstracted primitives. Figure 11.48(c) shows a set of
specific primitives consisting of line segments defined in four directions, and

Abstracted
primitive

Abstracted
primitive

ba

a � b (a � b) * c {d � [c � (~d)]} * [(a � b) * c]

t
h

t h t h

c � (~d) d � [c � (~d)]

c d

a � b

a * ba � b

a � ba

a a

b
b

b

Tail
Tail

Head Head

FIGURE 11.48
(a) Abstracted
primitives.
(b) Operations
among primitives.
(c) A set of
specific primitives.
(d) Steps in
building a
structure.

a b
c
d
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Fig. 11.48(d) shows a step-by-step generation of a specific shape, where 
indicates the primitive with its direction reversed. Note that each compos-
ite structure has a single head and a single tail. The result of interest is the
last string, which describes the complete structure.

String descriptions are best suited for applications in which connectivity of
primitives can be expressed in a head-to-tail or other continuous manner.
Sometimes regions that are similar in terms of texture or other descriptor may
not be contiguous, and techniques are required for describing such situations.
One of the most useful approaches for doing so is to use tree descriptors.

A tree is a finite set of one or more nodes for which

(a) there is a unique node $ designated the root, and
(b) the remaining nodes are partitioned into disjointed sets each

of which in turn is a tree called a subtree of

The tree frontier is the set of nodes at the bottom of the tree (the leaves), taken
in order from left to right. For example, the tree shown in Fig. 11.49 has root $
and frontier 

Generally, two types of information in a tree are important: (1) information
about a node stored as a set of words describing the node, and (2) information
relating a node to its neighbors, stored as a set of pointers to those neighbors.
As used in image description, the first type of information identifies an image
substructure (e.g., region or boundary segment), whereas the second type de-
fines the physical relationship of that substructure to other substructures. For
example, Fig. 11.50(a) can be represented by a tree by using the relationship
“inside of.” Thus, if the root of the tree is denoted $, Fig. 11.50(a) shows that
the first level of complexity involves and inside $, which produces two
branches emanating from the root, as shown in Fig. 11.50(b). The next level in-
volves inside and and inside Finally, inside completes the tree.efc.eda,b
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FIGURE 11.49 A
simple tree with
root $ and
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Summary
The representation and description of objects or regions that have been segmented out
of an image are early steps in the operation of most automated processes involving im-
ages. These descriptions, for example, constitute the input to the object recognition
methods developed in the following chapter. As indicated by the range of description
techniques covered in this chapter, the choice of one method over another is deter-
mined by the problem under consideration. The objective is to choose descriptors that
“capture” essential differences between objects, or classes of objects, while maintaining
as much independence as possible to changes in location, size, and orientation.

References and Further Reading
The boundary-following algorithm in Section 11.1.1 was first proposed by Moore
[1968]. The chain-code representation discussed in Section 11.1.2 was first proposed by
Freeman [1961, 1974]. For current work using chain codes, see Bribiesca [1999], who
also has extended chain codes to 3-D (Bribiesca [2000]). For a detailed discussion and
algorithm to compute minimum-perimeter polygons (Section 11.1.3), see Klette and
Rosenfeld [2004]. See also Sloboda et al. [1998] and Coeurjolly and Klette [2004]. Ad-
ditional topics of interest for the material in Section 11.1.4 include invariant polygonal
fitting (Voss and Suesse [1997]), methods for evaluating the performance of polygonal
approximation algorithms (Rosin [1997]), generic implementations (Huang and Sun
[1999]), and computational speed (Davis [1999]).

References for the discussion of signatures (Section 11.1.5) are Ballard and Brown
[1982] and Gupta and Srinath [1988]. See Preparata and Shamos [1985] regarding fun-
damental formulations for finding the convex hull and convex deficiency (Section
11.1.6). See also the paper by Liu-Yu and Antipolis [1993]. Katzir et al. [1994] discuss
the detection of partially occluded curves. Zimmer et al. [1997] discuss an improved al-
gorithm for computing the convex hull, and Latecki and Lakämper [1999] discuss a
convexity rule for shape decomposition.

The skeletonizing algorithm discussed in Section 11.1.7 is based on Zhang and Suen
[1984]. Some useful additional comments on the properties and implementation of this
algorithm are included in a paper by Lu and Wang [1986]. A paper by Jang and Chin
[1990] provides an interesting tie between the discussion in Section 11.1.7 and the mor-
phological concept of thinning introduced in Section 9.5.5. For thinning approaches in
the presence of noise, see Shi and Wong [1994] and Chen and Yu [1996]. Shaked and
Bruckstein [1998] discuss a pruning algorithm useful for removing spurs from a skele-
ton. Fast computation of the medial axis transform is discussed by Sahni and Jenq
[1992] and by Ferreira and Ubéda [1999]. The survey paper by Loncaric [1998] is of in-
terest regarding many of the approaches discussed in Section 11.1.

Freeman and Shapira [1975] give an algorithm for finding the basic rectangle of a closed,
chain-coded curve (Section 11.2.1). The discussion on shape numbers in Section 11.2.2 is
based on the work of Bribiesca and Guzman [1980] and Bribiesca [1981]. For additional
reading on Fourier descriptors (Section 11.2.3), see the early papers by Zahn and Roskies
[1972] and by Persoon and Fu [1977]. See also Aguado et al. [1998] and Sonka et al. [1999].
Reddy and Chatterji [1996] discuss an interesting approach using the FFT to achieve in-
variance to translation, rotation, and scale change.The material in Section 11.2.4 is based on
elementary probability theory (see, for example, Peebles [1993] and Popoulis [1991]).

For additional reading on Section 11.3.2, see Rosenfeld and Kak [1982] and Ballard
and Brown [1982]. For an excellent introduction to texture (Section 11.3.3), see Haral-
ick and Shapiro [1992]. For an early survey on texture, see Wechsler [1980]. The papers
by Murino et al. [1998] and Garcia [1999], and the discussion by Shapiro and Stockman
[2001], are representative of current work in this field.
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The moment-invariant approach discussed in Section 11.3.4 is from Hu [1962]. Also
see Bell [1965].To get an idea of the range of applications of moment invariants, see Hall
[1979] regarding image matching and Cheung and Teoh [1999] regarding the use of mo-
ments for describing symmetry. Moment invariants were generalized to dimensions by
Mamistvalov [1998]. For generating moments of arbitrary order, see Flusser [2000].

Hotelling [1933] was the first to derive and publish the approach that transforms
discrete variables into uncorrelated coefficients. He referred to this technique as the
method of principal components. His paper gives considerable insight into the method
and is worth reading. Hotelling’s transformation was rediscovered by Kramer and
Mathews [1956] and by Huang and Schultheiss [1963]. Principal components are still a
basic tool for image description used in numerous applications, as exemplified by Swets
and Weng [1996] and by Duda, Heart, and Stork [2001]. References for the material in
Section 11.5 are Gonzalez and Thomason [1978] and Fu [1982]. See also Sonka et al.
[1999]. For additional reading on the topics of this chapter with a focus on implementa-
tion, see Nixon and Aguado [2002] and Gonzalez, Woods, and Eddins [2004].

Problems
11.1 (a) Show that redefining the starting point of a chain code so that the resulting

sequence of numbers forms an integer of minimum magnitude makes the
code independent of the initial starting point on the boundary.

(b) Find the normalized starting point of the code 11076765543322.
11.2 (a) Show that the first difference of a chain code normalizes it to rotation, as ex-

plained in Section 11.1.2.
(b) Compute the first difference of the code 0101030303323232212111.

11.3 (a) Show that the rubber-band polygonal approximation approach discussed in
Section 11.1.3 yields a polygon with minimum perimeter.

(b) Show that if each cell corresponds to a pixel on the boundary, the maximum
possible error in that cell is where is the minimum possible hori-
zontal or vertical distance between adjacent pixels (i.e., the distance between
lines in the sampling grid used to produce the digital image).

11.4 Explain how the MPP algorithm in Section 11.1.3 behaves under the following
conditions:
(a) 1-pixel wide, 1-pixel deep indentations.
(b) 1-pixel wide, 2-or-more pixel deep indentations.
(c) 1-pixel wide, 1-pixel long protrusions.
(d) 1-pixel wide, n-pixel long protrusions.

11.5 (a) Discuss the effect on the resulting polygon if the error threshold is set to
zero in the merging method discussed in Section 11.1.4.

(b) What would be the effect on the splitting method?
11.6 (a) Plot the signature of a square boundary using the tangent angle method dis-

cussed in Section 11.1.5.
(b) Repeat for the slope density function.
Assume that the square is aligned with the and y-axes, and let the x-axis be
the reference line. Start at the corner closest to the origin.

11.7 Find an expression for the signature of each of the following boundaries, and
plot the signatures.
(a) An equilateral triangle
(b) A rectangle
(c) An ellipse
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11.11 (a) What is the order of the shape number for the figure shown?

(b) Obtain the shape number.

11.10 With reference to the skeletonizing algorithm in Section 11.1.7, what would the
figure shown look like after

(a) One pass of Step 1 of the algorithm?

(b) One pass of Step 2 (on the result of Step 1, not the original image)?

11.8 Draw the medial axis of

(a) A circle
(b) A square
(c) A rectangle
(d) An equilateral triangle

11.9 For each of the figures shown,

(a) Discuss the action taken at point by Step 1 of the skeletonizing algo-
rithm presented in Section 11.1.7.

(b) Repeat for Step 2 of the algorithm. Assume that in all cases.p = 1

p
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11.12 The procedure discussed in Section 11.2.3 for using Fourier descriptors consists of
expressing the coordinates of a contour as complex numbers, taking the DFT
of these numbers,and keeping only a few components of the DFT as descriptors of
the boundary shape. The inverse DFT is then an approximation to the original
contour. What class of contour shapes would have a DFT consisting of real num-
bers and how would the axis system in Fig. 11.19 have to be set up to obtain these
real numbers?

11.13 Show that if you use only two Fourier descriptors to recon-
struct a boundary with Eq. (11.2-5), the result will always be a circle. (Hint: Use

(u = 0 and u = 1)
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the parametric representation of a circle in the complex plane and express the
equation of a circle in polar coordinates.)

11.14 Give the smallest number of statistical moment descriptors needed to differen-
tiate between the signatures of the figures shown in Fig. 11.10.

11.15 Give two boundary shapes that have the same mean and third statistical mo-
ment descriptors, but different second moments.

11.16 Propose a set of descriptors capable of differentiating between the shapes of the
characters 0, 1, 8, 9, and (Hint: Use topological descriptors in conjunction
with the convex hull.)

11.17 Consider a binary image of size pixels, with a vertical black band ex-
tending from columns 1 to 99 and a vertical white band extending from columns
100 to 200.

(a) Obtain the co-occurrence matrix of this image using the position operator
“one pixel to the right.”

(b) Normalize this matrix so that its elements become probability estimates, as
explained in Section 11.3.1.

(c) Use your matrix from (b) to compute the six descriptors in Table 11.3.

11.18 Consider a checkerboard image composed of alternating black and white
squares, each of size Give a position operator that would yield a diago-
nal co-occurrence matrix.

11.19 Obtain the gray-level co-occurrence matrix of a image composed of a
checkerboard of alternating 1 s and 0s if

(a) the position operator is defined as “one pixel to the right,” and
(b) the position operator is defined as “two pixels to the right.”

Assume that the top left pixel has value 0.

11.20 Prove the validity of Eqs. (11.4-7), (11.4-8), and (11.4-9).

11.21 It was mentioned in Example 11.13 that a credible job could be done of recon-
structing approximations to the six original images by using only the two princi-
pal-component images associated with the largest eigenvalues. What would be
the mean square error incurred in doing so? Express your answer as a percent-
age of the maximum possible error.

11.22 For a set of images of size assume that the covariance matrix given in
Eq. (11.4-9) turns out to be the identity matrix. What would be the mean square
error between the original images and images reconstructed using Eq. (11.4-11)
with only half of the original eigenvectors?

11.23 Under what conditions would you expect the major axes of a boundary, defined
in Section 11.2.1, to be equal to the eigen axes of that boundary?

11.24 Give a spatial relationship and corresponding tree representation for a checker-
board pattern of black and white squares. Assume that the top left element is
black and that the root of the tree corresponds to that element. Your tree can
have no more than two branches emanating from each node.

11.25 You are contracted to design an image processing system for detecting imperfec-
tions on the inside of certain solid plastic wafers. The wafers are examined using
an X-ray imaging system, which yields 8-bit images of size . In the ab-
sence of imperfections, the images appear “bland,” having a mean intensity of 100
and variance of 400.The imperfections appear as bloblike regions in which about
70% of the pixels have excursions in intensity of 50 intensity levels or less about a
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mean of 100.A wafer is considered defective if such a region occupies an area ex-
ceeding pixels in size. Propose a system based on texture analysis.

11.26 A company that bottles a variety of industrial chemicals has heard of your suc-
cess solving imaging problems and hires you to design an approach for detecting
when bottles are not full. The bottles appear as shown in the following figure as
they move along a conveyor line past an automatic filling and capping station.A
bottle is considered imperfectly filled when the level of the liquid is below the
midway point between the bottom of the neck and the shoulder of the bottle.
The shoulder is defined as the region of the bottle where the sides and slanted
portion of the bottle intersect. The bottles are moving, but the company has an
imaging system equipped with a illumination flash front end that effectively
stops motion, so you will be given images that look very close to the sample
shown here. Based on the material you have learned up to this point, propose a
solution for detecting bottles that are not filled properly. State clearly all as-
sumptions that you make and that are likely to impact the solution you propose.

20 * 20

11.27 Having heard about your success with the bottling problem, you are contacted
by a fluids company that wishes to automate bubble-counting in certain process-
es for quality control.The company has solved the imaging problem and can ob-
tain 8-bit images of size pixels, such as the one shown. Each image
represents an area of The company wishes to do two things with each
image: (1) Determine the ratio of the area occupied by bubbles to the total area
of the image, and (2) count the number of distinct bubbles. Based on the mater-
ial you have learned up to this point, propose a solution to this problem. In your
solution, make sure to state the physical dimensions of the smallest bubble your
solution can detect. State clearly all assumptions that you make and that are
likely to impact the solution you propose.

7 cm2.
700 * 700



Object Recognition

One of the most interesting aspects of the 
world is that it can be considered to be
made up of patterns.
A pattern is essentially an arrangement. It is
characterized by the order of the elements of 
which it is made, rather than by the intrinsic 
nature of these elements.

Norbert Wiener

861

Preview
We conclude our coverage of digital image processing with an introduction to
techniques for object recognition. As noted in Section 1.1, we have defined the
scope covered by our treatment of digital image processing to include recogni-
tion of individual image regions, which in this chapter we call objects or patterns.

The approaches to pattern recognition developed in this chapter are divided
into two principal areas: decision-theoretic and structural. The first category
deals with patterns described using quantitative descriptors, such as length, area,
and texture. The second category deals with patterns best described by qualita-
tive descriptors, such as the relational descriptors discussed in Section 11.5.

Central to the theme of recognition is the concept of “learning” from sam-
ple patterns. Learning techniques for both decision-theoretic and structural
approaches are developed and illustrated in the material that follows.

12.1 Patterns and Pattern Classes

A pattern is an arrangement of descriptors, such as those discussed in
Chapter 11. The name feature is used often in the pattern recognition liter-
ature to denote a descriptor. A pattern class is a family of patterns that
share some common properties. Pattern classes are denoted 
where is the number of classes. Pattern recognition by machine involvesW

v1, v2, Á , vW,

12
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techniques for assigning patterns to their respective classes—automatically
and with as little human intervention as possible.

Three common pattern arrangements used in practice are vectors (for quanti-
tative descriptions) and strings and trees (for structural descriptions). Pattern vec-
tors are represented by bold lowercase letters, such as x,y, and z, and take the form

(12.1-1)

where each component, represents the ith descriptor and is the total num-
ber of such descriptors associated with the pattern. Pattern vectors are repre-
sented as columns (that is, matrices). Hence a pattern vector can be
expressed in the form shown in Eq. (12.1-1) or in the equivalent form

where indicates transposition. You will recognize this
notation from Section 11.4.

The nature of the components of a pattern vector x depends on the ap-
proach used to describe the physical pattern itself. Let us illustrate with an ex-
ample that is both simple and gives a sense of history in the area of
classification of measurements. In a classic paper, Fisher [1936] reported the
use of what then was a new technique called discriminant analysis (discussed
in Section 12.2) to recognize three types of iris flowers (Iris setosa, virginica,
and versicolor) by measuring the widths and lengths of their petals (Fig. 12.1).

Tx = (x1, x2, Á , xn)T,

n * 1

nxi,

x = Dx1

x2

o
xn

T
Consult the book Web site
for a brief review of vec-
tors and matrices.
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FIGURE 12.1
Three types of iris
flowers described
by two
measurements.
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In our present terminology, each flower is described by two measurements,
which leads to a 2-D pattern vector of the form

(12.1-2)

where and correspond to petal length and width, respectively. The three
pattern classes in this case, denoted and correspond to the varieties
setosa, virginica, and versicolor, respectively.

Because the petals of flowers vary in width and length, the pattern vectors
describing these flowers also will vary, not only between different classes, but
also within a class. Figure 12.1 shows length and width measurements for sev-
eral samples of each type of iris. After a set of measurements has been select-
ed (two in this case), the components of a pattern vector become the entire
description of each physical sample. Thus each flower in this case becomes a
point in 2-D Euclidean space. We note also that measurements of petal width
and length in this case adequately separated the class of Iris setosa from the
other two but did not separate as successfully the virginica and versicolor
types from each other. This result illustrates the classic feature selection prob-
lem, in which the degree of class separability depends strongly on the choice of
descriptors selected for an application. We say considerably more about this
issue in Sections 12.2 and 12.3.

Figure 12.2 shows another example of pattern vector generation. In this
case, we are interested in different types of noisy shapes, a sample of which is
shown in Fig. 12.2(a). If we elect to represent each object by its signature (see
Section 11.1.5), we would obtain 1-D signals of the form shown in Fig. 12.2(b).
Suppose that we elect to describe each signature simply by its sampled ampli-
tude values; that is, we sample the signatures at some specified interval values
of denoted Then we can form pattern vectors by letting

These vectors become points in n-
dimensional Euclidean space, and pattern classes can be imagined to be
“clouds” in dimensions.

Instead of using signature amplitudes directly, we could compute, say,
the first statistical moments of a given signature (Section 11.2.4) and use
these descriptors as components of each pattern vector. In fact, as may be
evident by now, pattern vectors can be generated in numerous other ways.

n

n

x1 = r(u1), x2 = r(u2), Á , xn = r(un).
u1, u2, Á , un.u,

v3,v1, v2,
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FIGURE 12.2
A noisy object
and its
corresponding
signature.
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We present some of them throughout this chapter. For the moment, the
key concept to keep in mind is that selecting the descriptors on which to
base each component of a pattern vector has a profound influence on the
eventual performance of object recognition based on the pattern vector
approach.

The techniques just described for generating pattern vectors yield pattern
classes characterized by quantitative information. In some applications, pat-
tern characteristics are best described by structural relationships. For example,
fingerprint recognition is based on the interrelationships of print features
called minutiae. Together with their relative sizes and locations, these features
are primitive components that describe fingerprint ridge properties, such as
abrupt endings, branching, merging, and disconnected segments. Recognition
problems of this type, in which not only quantitative measures about each fea-
ture but also the spatial relationships between the features determine class
membership, generally are best solved by structural approaches. This subject
was introduced in Section 11.5. We revisit it briefly here in the context of pat-
tern descriptors.

Figure 12.3(a) shows a simple staircase pattern. This pattern could be sam-
pled and expressed in terms of a pattern vector, similar to the approach used in
Fig. 12.2. However, the basic structure, consisting of repetitions of two simple
primitive elements, would be lost in this method of description. A more mean-
ingful description would be to define the elements and and let the pattern
be the string of symbols as shown in Fig. 12.3(b). The
structure of this particular class of patterns is captured in this description by
requiring that connectivity be defined in a head-to-tail manner, and by allow-
ing only alternating symbols. This structural construct is applicable to staircas-
es of any length but excludes other types of structures that could be generated
by other combinations of the primitives and 

String descriptions adequately generate patterns of objects and other en-
tities whose structure is based on relatively simple connectivity of primitives,
usually associated with boundary shape. A more powerful approach for
many applications is the use of tree descriptions, as defined in Section 11.5.
Basically, most hierarchical ordering schemes lead to tree structures. For ex-
ample, Fig. 12.4 is a satellite image of a heavily built downtown area and sur-
rounding residential areas. Let us define the entire image area by the symbol $.
The (upside down) tree representation shown in Fig. 12.5 was obtained by

b.a
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FIGURE 12.4
Satellite image of
a heavily built
downtown area
(Washington,
D.C.) and
surrounding
residential areas.
(Courtesy of
NASA.)

Buildings

Downtown Residential

Image
$

Highways Highways

SingleSmall
structures

Low
density

MultipleHigh
densitity

Large
structures

LoopsNumerous
intersections Wooded

areas
Few

intersections

Housing Shopping
malls

FIGURE 12.5 A tree description of the image in Fig. 12.4.

using the structural relationship “composed of.” Thus the root of the tree
represents the entire image. The next level indicates that the image is com-
posed of a downtown and residential area. The residential area, in turn is
composed of housing, highways, and shopping malls. The next level down
further describes the housing and highways. We can continue this type of
subdivision until we reach the limit of our ability to resolve different regions
in the image.

We develop in the following sections recognition approaches for objects de-
scribed by the techniques discussed in the preceding paragraphs.
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12.2 Recognition Based on Decision-Theoretic Methods

Decision-theoretic approaches to recognition are based on the use of decision
(or discriminant) functions. Let represent an n-dimensional
pattern vector, as discussed in Section 12.1. For pattern classes

the basic problem in decision-theoretic pattern recognition is
to find decision functions with the property that, if a
pattern x belongs to class then

(12.2-1)

In other words, an unknown pattern x is said to belong to the ith pattern class
if, upon substitution of x into all decision functions, yields the largest nu-
merical value. Ties are resolved arbitrarily.

The decision boundary separating class from is given by values of x for
which or, equivalently, by values of x for which

(12.2-2)

Common practice is to identify the decision boundary between two classes by
the single function Thus for patterns of
class and for patterns of class The principal objective of the
discussion in this section is to develop various approaches for finding decision
functions that satisfy Eq. (12.2-1).

12.2.1 Matching
Recognition techniques based on matching represent each class by a prototype
pattern vector.An unknown pattern is assigned to the class to which it is closest
in terms of a predefined metric.The simplest approach is the minimum distance
classifier, which, as its name implies, computes the (Euclidean) distance be-
tween the unknown and each of the prototype vectors. It chooses the smallest
distance to make a decision. We also discuss an approach based on correlation,
which can be formulated directly in terms of images and is quite intuitive.

Minimum distance classifier

Suppose that we define the prototype of each pattern class to be the mean vec-
tor of the patterns of that class:

(12.2-3)

where is the number of pattern vectors from class and the summation is
taken over these vectors. As before, is the number of pattern classes. One
way to determine the class membership of an unknown pattern vector x is to
assign it to the class of its closest prototype, as noted previously. Using the Eu-
clidean distance to determine closeness reduces the problem to computing the
distance measures:

(12.2-4)Dj(x) = 7x - mj 7 j = 1, 2, Á , W

W
vjNj

mj =
1
Nj
a

xHvj

xj j = 1, 2, Á , W

vj.dij(x) 6 0vi

dij(x) 7 0dij(x) = di(x) - dj(x) = 0.

di(x) - dj(x) = 0

di(x) = dj(x)
vjvi

di(x)

di(x) 7 dj(x) j = 1, 2, Á , W; j Z i

vi,
d1(x), d2(x), Á , dW(x)W

v1, v2, Á , vW,
W

x = (x1, x2, Á , xn)T
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where is the Euclidean norm. We then assign x to class if
is the smallest distance. That is, the smallest distance implies the best

match in this formulation. It is not difficult to show (Problem 12.2) that select-
ing the smallest distance is equivalent to evaluating the functions

(12.2-5)

and assigning x to class if yields the largest numerical value.This formu-
lation agrees with the concept of a decision function, as defined in Eq. (12.2-1).

From Eqs. (12.2-2) and (12.2-5), the decision boundary between classes 
and for a minimum distance classifier is

(12.2-6)

The surface given by Eq. (12.2-6) is the perpendicular bisector of the line seg-
ment joining and (see Problem 12.3). For the perpendicular bi-
sector is a line, for it is a plane, and for it is called a hyperplane.n 7 3n = 3

n = 2,mjmi

= xT(mi - mj) -
1
2

(mi - mj)
T(mi + mj) = 0

dij(x) = di(x) - dj(x)

vj

vi

di(x)vi

dj(x) = xTmj -
1
2

mj
Tmj j = 1, 2, Á , W

Di(x)
vi7a 7 = (aTa)1>2

EXAMPLE 12.1:
Illustration of the
minimum distance
classifier.

■ Figure 12.6 shows two pattern classes extracted from the iris samples in
Fig. 12.1. The two classes, Iris versicolor and Iris setosa, denoted and re-
spectively, have sample mean vectors and 
From Eq. (12.2-5), the decision functions are

= 4.3x1 + 1.3x2 - 10.1

d1(x) = xTm1 -
1
2

m1
Tm1
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Decision
boundary of
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and

From Eq. (12.2-6), the equation of the boundary is

Figure 12.6 shows a plot of this boundary (note that the axes are not to the same
scale). Substitution of any pattern vector from class would yield 
Conversely, any pattern from class would yield In other words,
given an unknown pattern belonging to one of these two classes, the sign of

would be sufficient to determine the pattern’s class membership. ■

In practice, the minimum distance classifier works well when the distance
between means is large compared to the spread or randomness of each class
with respect to its mean. In Section 12.2.2 we show that the minimum distance
classifier yields optimum performance (in terms of minimizing the average
loss of misclassification) when the distribution of each class about its mean is
in the form of a spherical “hypercloud” in n-dimensional pattern space.

The simultaneous occurrence of large mean separations and relatively
small class spread occur seldomly in practice unless the system designer con-
trols the nature of the input. An excellent example is provided by systems de-
signed to read stylized character fonts, such as the familiar American Banker’s
Association E-13B font character set. As Fig. 12.7 shows, this particular font
set consists of 14 characters that were purposely designed on a grid in
order to facilitate their reading. The characters usually are printed in ink that
contains finely ground magnetic material. Prior to being read, the ink is sub-
jected to a magnetic field, which accentuates each character to simplify detec-
tion. In other words, the segmentation problem is solved by artificially
highlighting the key characteristics of each character.

The characters typically are scanned in a horizontal direction with a single-
slit reading head that is narrower but taller than the characters. As the head
moves across a character, it produces a 1-D electrical signal (a signature) that
is conditioned to be proportional to the rate of increase or decrease of the
character area under the head. For example, consider the waveform associat-
ed with the number 0 in Fig. 12.7. As the reading head moves from left to
right, the area seen by the head begins to increase, producing a positive de-
rivative (a positive rate of change). As the head begins to leave the left leg of
the 0, the area under the head begins to decrease, producing a negative deriv-
ative. When the head is in the middle zone of the character, the area remains
nearly constant, producing a zero derivative. This pattern repeats itself as the
head enters the right leg of the character. The design of the font ensures
that the waveform of each character is distinct from that of all others. It also

9 * 7

d12(x)

d12(x) 6 0.v2

d12(x) 7 0.v1

= 2.8x1 + 1.0x2 - 8.9 = 0

d12(x) = d1(x) - d2(x)

= 1.5x1 + 0.3x2 - 1.17

d2(x) = xTm2 -
1
2

m2
Tm2
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FIGURE 12.7
American
Bankers
Association
E-13B font
character set and
corresponding
waveforms.

ensures that the peaks and zeros of each waveform occur approximately on
the vertical lines of the background grid on which these waveforms are dis-
played, as shown in Fig. 12.7. The E-13B font has the property that sampling
the waveforms only at these points yields enough information for their prop-
er classification. The use of magnetized ink aids in providing clean wave-
forms, thus minimizing scatter.

Designing a minimum distance classifier for this application is straightfor-
ward. We simply store the sample values of each waveform and let each set of
samples be represented as a prototype vector When an
unknown character is to be classified, the approach is to scan it in the manner
just described, express the grid samples of the waveform as a vector, x, and
identify its class by selecting the class of the prototype vector that yields the
highest value in Eq. (12.2-5). High classification speeds can be achieved with
analog circuits composed of resistor banks (see Problem 12.4).

Matching by correlation

We introduced the basic idea of spatial correlation in Section 3.4.2 and used it
extensively for spatial filtering in that section. We also mentioned the correla-
tion theorem briefly in Section 4.6.7 and Table 4.3. From Eq. (3.4-1), we know
that correlation of a mask of size with an image may be
expressed in the form

f(x, y)m * n,w(x, y)

mj, j = 1, 2, Á , 14.

To be formal, we should
refer to correlation as
crosscorrelation when the
functions are different
and as autocorrelation
when they are same.
However, it is customary
to use the generic term
correlation when it is
clear whether the two
functions in a given ap-
plication are equal or 
different.
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(12.2-7a)

where the limits of summation are taken over the region shared by and 
This equation is evaluated for all values of the displacement variables and 
so that all elements of visit every pixel of where is assumed to be larger
than Just as spatial convolution is related to the Fourier transform of the
functions via the convolution theorem, spatial correlation is related to the
transforms of the functions via the correlation theorem:

(12.2-7b)

where indicates spatial convolution and is the complex conjugate of 
The other half of the correlation theorem stated in Table 4.3 is of no interest in
the present discussion. Equation (12.2-7b) is a Fourier transform pair whose
interpretation is identical to the discussion of Eq. (4.6-24), except that we use
the complex conjugate of one of the functions. The inverse Fourier transform
of Eq. (12.2-7b) yields a two-dimensional circular correlation analogous to
Eq. (4.6-23), and the padding issues discussed in Section 4.6.6 regarding con-
volution are applicable also to correlation.

We do not dwell on either of the preceding equations because they are both
sensitive to scale changes in and Instead, we use the following normalized
correlation coefficient

(12.2-8)

where the limits of summation are taken over the region shared by and 
is the average value of the mask (computed only once), and is
the average value of in the region coincident with Often, is referred to
as a template and correlation is referred to as template matching. It can be
shown (Problem 12.7) that has values in the range and is thus
normalized to changes in the amplitudes of and The maximum value of

occurs when the normalized and the corresponding normalized re-
gion in are identical. This indicates maximum correlation (i.e., the best possi-
ble match). The minimum occurs with the two normalized functions exhibit
the least similarity in the sense of Eq. (12.2-8). The correlation coefficient can-
not be computed using the Fourier transform because of the nonlinear terms
in the equation (division and squares).

Figure 12.8 illustrates the mechanics of the procedure just described. The bor-
der around is the padding necessary to provide for the situation when the center
of is on the border of as explained in Section 3.4.2. (In template matching,val-
ues of correlation when the center of the template is past the border of the image
generally are of no interest, so the padding is limited to half the mask width.) As
usual, we limit attention to templates of odd size for notational convenience.
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You will find it helpful to
review Section 3.4.2 re-
garding the mechanics of
spatial correlation.
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(x, y)
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FIGURE 12.8
The mechanics of
template
matching.

Figure 12.8 shows a template of size whose center is at an arbitrary
location The correlation at this point is obtained by applying Eq. (12.2-8).
Then the center of the template is incremented to an adjacent location and the
procedure is repeated.The complete correlation coefficient is obtained
by moving the center of the template (i.e., by incrementing and ) so that the
center of visits every pixel in At the end of the procedure, we look for the
maximum in to find where the best match occurred. It is possible to
have multiple locations in with the same maximum value, indicating
several matches between and f.w

g(x, y)
g(x, y)

f.w
yx

g(x, y)

(x, y).
m * n

EXAMPLE 12.2:
Matching by
correlation.

■ Figure 12.9(a) shows a satellite image of Hurricane Andrew, in
which the eye of the storm is clearly visible. As an example of correlation we
wish to find the location of the best match in (a) of the template in Fig. 12.9(b),
which is a small subimage of the eye of the storm. Figure 12.9(c)
shows the result of computing the correlation coefficient in Eq. (12.2-8). The
original size of this image was pixels due to padding (see Fig. 12.8),
but we cropped it to the size of the original image for display purposes. Inten-
sity in this image is proportional to correlation value, and all negative correla-
tions were clipped at 0 (black) to simplify the visual analysis of the image. The
brightest point of the correlation image is clearly visible near the eye of the
storm. Figure 12.9(d) shows as a white dot the location of the maximum corre-
lation (in this case there was a unique match whose maximum value was 1),
which we see corresponds closely with the location of the eye in Fig. 12.9(a).■

The preceding discussion shows that it is possible to normalize correla-
tion for changes in intensity values of the functions being processed. Nor-
malizing for size and rotation is a more complicated problem. Normalizing
for size involves spatial scaling, which, as explained in Sections 2.6.5 and
4.5.4, is image resampling. In order for resampling to make sense, the size to
which an image should be rescaled must be known. In some situations, this
can become a difficult issue unless spatial cues are available. For example,
in a remote sensing application, if the viewing geometry of the imaging sensors

943 * 943

(31 * 31)

913 * 913
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FIGURE 12.9
(a) Satellite image
of Hurricane
Andrew, taken on
August 24, 1992.
(b) Template of
the eye of the
storm. (c) Corre-
lation coefficient
shown as an
image (note the
brightest point).
(d) Location of
the best match.
This point is a
single pixel, but
its size was
enlarged to make
it easier to see.
(Original image
courtesy of
NOAA.)

is known (which typically is the case), then knowing the altitude of the sen-
sor with respect to the area being imaged may be sufficient to be able to
normalize image size, assuming a fixed viewing angle. Normalizing for rota-
tion similarly requires that the angle to which images should be rotated be
known. This again requires spatial cues. In the remote sensing example just
given, the direction of flight may be sufficient to be able to rotate the sensed
images into a standard orientation. In unconstrained situations, normalizing
for size and orientation can become a truly challenging task, requiring the
automated detection of images features (as discussed in Chapter 11) that
can be used as spatial cues.

12.2.2 Optimum Statistical Classifiers
In this section we develop a probabilistic approach to recognition.As is true in
most fields that deal with measuring and interpreting physical events, proba-
bility considerations become important in pattern recognition because of the
randomness under which pattern classes normally are generated. As shown in
the following discussion, it is possible to derive a classification approach that is

a b
c d
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optimal in the sense that, on average, its use yields the lowest probability of
committing classification errors (see Problem 12.10).

Foundation

The probability that a particular pattern x comes from class is denoted
If the pattern classifier decides that x came from when it actually

came from it incurs a loss, denoted As pattern x may belong to any one
of classes under consideration, the average loss incurred in assigning x to
class is

(12.2-9)

This equation often is called the conditional average risk or loss in decision-
theory terminology.

From basic probability theory, we know that 
Using this expression, we write Eq. (12.2-9) in the form

(12.2-10)

where is the probability density function of the patterns from class 
and is the probability of occurrence of class (sometimes these proba-
bilities are referred to as a priori, or simply prior, probabilities). Because 
1 p(x) is positive and common to all the it can be
dropped from Eq. (12.2-10) without affecting the relative order of these func-
tions from the smallest to the largest value.The expression for the average loss
then reduces to

(12.2-11)

The classifier has possible classes to choose from for any given unknown
pattern. If it computes for each pattern x and assigns the
pattern to the class with the smallest loss, the total average loss with respect to
all decisions will be minimum. The classifier that minimizes the total average
loss is called the Bayes classifier. Thus the Bayes classifier assigns an unknown
pattern x to class if for In other words, x
is assigned to class if

(12.2-12)

for all The “loss” for a correct decision generally is assigned a value of
zero, and the loss for any incorrect decision usually is assigned the same
nonzero value (say, 1). Under these conditions, the loss function becomes

(12.2-13)Lij = 1 - dij

j Z i.j;

a
W

k = 1
Lkip(x>vk)P(vk) 6 a

W

q = 1
Lqjp(x>vq)P(vq)

vi

j = 1, 2, Á , W; j Z i.ri(x) 6 rj(x)vi

r1(x), r2(x), Á , rW(x)
W

rj(x) = a
W

k = 1
Lkjp(x>vk)P(vk)

rj(x), j = 1, 2, Á , W,>
vkP(vk)

vkp(x>vk)

rj(x) =
1

p(x) a
W

k = 1
Lkjp(x>vk)P(vk)

p(A>B) = [p(A)p(B>A)]>p(B).

rj(x) = a
W

k = 1

Lkjp(vk>x)

vj

W
Lij.vi,

vjp(vi>x).
vi

Consult the book Web site
for a brief review of prob-
ability theory.
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where if and if Equation (12.2-13) indicates a loss of
unity for incorrect decisions and a loss of zero for correct decisions. Substitut-
ing Eq. (12.2-13) into Eq. (12.2-11) yields

(12.2-14)

The Bayes classifier then assigns a pattern x to class if, for all 

(12.2-15)

or, equivalently, if

(12.2-16)

With reference to the discussion leading to Eq. (12.2-1), we see that the Bayes
classifier for a 0-1 loss function is nothing more than computation of decision
functions of the form

(12.2-17)

where a pattern vector x is assigned to the class whose decision function yields
the largest numerical value.

The decision functions given in Eq. (12.2-17) are optimal in the sense that they
minimize the average loss in misclassification. For this optimality to hold, however,
the probability density functions of the patterns in each class, as well as the proba-
bility of occurrence of each class, must be known.The latter requirement usually is
not a problem. For instance, if all classes are equally likely to occur, then

Even if this condition is not true, these probabilities generally can
be inferred from knowledge of the problem. Estimation of the probability density
functions is another matter. If the pattern vectors, x, are -dimensional,
then is a function of variables, which, if its form is not known, re-
quires methods from multivariate probability theory for its estimation.These meth-
ods are difficult to apply in practice, especially if the number of representative
patterns from each class is not large or if the underlying form of the probability
density functions is not well behaved. For these reasons, use of the Bayes classifier
generally is based on the assumption of an analytic expression for the various den-
sity functions and then an estimation of the necessary parameters from sample pat-
terns from each class. By far the most prevalent form assumed for is the
Gaussian probability density function. The closer this assumption is to reality, the
closer the Bayes classifier approaches the minimum average loss in classification.

Bayes classifier for Gaussian pattern classes

To begin, let us consider a 1-D problem involving two pattern classes
governed by Gaussian densities, with means and and standard

deviations and respectively. From Eq. (12.2-17) the Bayes decision func-
tions have the form

s2,s1

m2m1(W = 2)
(n = 1)

p(x>vj)

np(x>vj)
np(x>vj)

P(vj) = 1>W.

dj(x) = p(x>vj)P(vj) j = 1, 2, Á , W

p(x>vi)P(vi) 7 p(x>vj)P(vj) j = 1, 2, Á , W; j Z i

p(x) - p(x>vi)P(vi) 6 p(x) - p(x>vj)P(vj)

j Z i,vi

= p(x) - p(x>vj)P(vj)

rj(x) = a
W

k = 1
(1 - dkj)p(x>vk)P(vk)

i Z j.dij = 0i = jdij = 1
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FIGURE 12.10
Probability
density functions
for two 1-D
pattern classes.
The point 
shown is the
decision boundary
if the two classes
are equally likely
to occur.

x0

(12.2-18)

where the patterns are now scalars, denoted by Figure 12.10 shows a plot of
the probability density functions for the two classes. The boundary between
the two classes is a single point, denoted such that If the
two classes are equally likely to occur, then and the de-
cision boundary is the value of for which This point is
the intersection of the two probability density functions, as shown in Fig. 12.10.
Any pattern (point) to the right of is classified as belonging to class Sim-
ilarly, any pattern to the left of is classified as belonging to class When
the classes are not equally likely to occur, moves to the left if class is
more likely to occur or, conversely, to the right if class is more likely to
occur. This result is to be expected, because the classifier is trying to minimize
the loss of misclassification. For instance, in the extreme case, if class never
occurs, the classifier would never make a mistake by always assigning all pat-
terns to class (that is, would move to negative infinity).

In the n-dimensional case, the Gaussian density of the vectors in the jth pat-
tern class has the form

(12.2-19)

where each density is specified completely by its mean vector and covari-
ance matrix which are defined as

(12.2-20)

and

(12.2-21)

where denotes the expected value of the argument over the patterns of
class In Eq. (12.2-19), is the dimensionality of the pattern vectors, andnvj.

Ej5 #6
Cj = Ej5(x - mj)(x - mj)

T6

mj = Ej5x6
Cj,

mj

p(x>vj) =
1

(2p)n>2 ƒ Cj ƒ 1>2 e- 1
2(x - mj)

TCj
-1(x - mj)

x0v1

v2

v2

v1x0

v2.x0

v1.x0

p(x0>v1) = p(x0>v2).x0

P(v1) = P(v2) = 1>2,
d1(x0) = d2(x0).x0

x.

=
1

22psj

e
-

(x - m
j
)2

2sj
2

P(vj) j = 1, 2

dj(x) = p(x>vj)P(vj)

See the remarks at the
end of this section regard-
ing the fact that the Bayes
classifier for one variable
is an optimum threshold-
ing function, as men-
tioned in Section 10.3.3.
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is the determinant of the matrix Approximating the expected value 
by the average value of the quantities in question yields an estimate of the
mean vector and covariance matrix:

(12.2-22)

and

(12.2-23)

where is the number of pattern vectors from class and the summation is
taken over these vectors. Later in this section we give an example of how to
use these two expressions.

The covariance matrix is symmetric and positive semidefinite. As explained
in Section 11.4, the diagonal element is the variance of the kth element of
the pattern vectors.The off-diagonal element is the covariance of and 
The multivariate Gaussian density function reduces to the product of the uni-
variate Gaussian density of each element of x when the off-diagonal elements
of the covariance matrix are zero. This happens when the vector elements 
and are uncorrelated.

According to Eq. (12.2-17), the Bayes decision function for class is
However, because of the exponential form of the

Gaussian density, working with the natural logarithm of this decision function
is more convenient. In other words, we can use the form

(12.2-24)

This expression is equivalent to Eq. (12.2-17) in terms of classification per-
formance because the logarithm is a monotonically increasing function. In
other words, the numerical order of the decision functions in Eqs. (12.2-17)
and (12.2-24) is the same. Substituting Eq. (12.2-19) into Eq. (12.2-24) yields

(12.2-25)

The term is the same for all classes, so it can be eliminated from
Eq. (12.2-25), which then becomes

(12.2-26)

for Equation (12.2-26) represents the Bayes decision func-
tions for Gaussian pattern classes under the condition of a 0-1 loss function.

The decision functions in Eq. (12.2-26) are hyperquadrics (quadratic func-
tions in n-dimensional space), because no terms higher than the second degree
in the components of x appear in the equation. Clearly, then, the best that a

j = 1, 2, Á , W.

dj(x) = ln P(vj) -
1
2
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–1(x - mj) D

= ln p(x>vj) + ln P(vj)
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Consult the book Web site
for a brief review of vec-
tors and matrices.
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Bayes classifier for Gaussian patterns can do is to place a general second-
order decision surface between each pair of pattern classes. If the pattern pop-
ulations are truly Gaussian, however, no other surface would yield a lesser
average loss in classification.

If all covariance matrices are equal, then for By
expanding Eq. (12.2-26) and dropping all terms independent of we obtain

(12.2-27)

which are linear decision functions (hyperplanes) for 
If, in addition, where I is the identity matrix, and also 

for then

(12.2-28)

These are the decision functions for a minimum distance classifier, as given
in Eq. (12.2-5). Thus the minimum distance classifier is optimum in the
Bayes sense if (1) the pattern classes are Gaussian, (2) all covariance matri-
ces are equal to the identity matrix, and (3) all classes are equally likely to
occur. Gaussian pattern classes satisfying these conditions are spherical
clouds of identical shape in dimensions (called hyperspheres). The mini-
mum distance classifier establishes a hyperplane between every pair of
classes, with the property that the hyperplane is the perpendicular bisector
of the line segment joining the center of the pair of hyperspheres. In two di-
mensions, the classes constitute circular regions, and the boundaries be-
come lines that bisect the line segment joining the center of every pair of
such circles.

n

dj(x) = xTmj -
1
2

mj
Tmj j = 1, 2, Á , W

j = 1, 2, Á , W,
P(vj) = 1>W,C = I,

j = 1, 2, Á , W.

dj(x) = ln P(vj) + xTC-1mj -
1
2

mj
TC-1mj

j,
j = 1, 2, Á , W.Cj = C,

EXAMPLE 12.3:
A Bayes classifier
for three-
dimensional
patterns.

■ Figure 12.11 shows a simple arrangement of two pattern classes in three di-
mensions. We use these patterns to illustrate the mechanics of implementing
the Bayes classifier, assuming that the patterns of each class are samples from
a Gaussian distribution.

Applying Eq. (12.2-22) to the patterns of Fig. 12.11 yields

Similarly, applying Eq. (12.2-23) to the two pattern classes in turn yields two
covariance matrices, which in this case are equal:

C1 = C2 =
1

16
C3 1 1

1 3 -1
1 -1 3

S

m1 =
1
4
C3

1
1
S and m2 =

1
4
C1

3
3
S
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Because the covariance matrices are equal the Bayes decision functions
are given by Eq. (12.2-27). If we assume that then
Eq. (12.2-28) applies, giving

in which

Carrying out the vector-matrix expansion for provides the decision
functions:

The decision surface separating the two classes then is

Figure 12.11 shows a section of this surface, where we note that the classes
were separated effectively. ■

One of the most successful applications of the Bayes classifier approach is
in the classification of remotely sensed imagery generated by multispectral

d1(x) - d2(x) = 8x1 - 8x2 - 8x3 + 4 = 0

d1(x) = 4x1 - 1.5 and d2(x) = -4x1 + 8x2 + 8x3 - 5.5

dj(x)

C-1 = C 8 -4 -4
-4 8 4
-4 4 8

S
dj(x) = xTC-1mj -

1
2

mT
j C-1mj

P(v1) = P(v2) = 1>2,

x3

x1

(1, 0, 0)

(1, 0, 1)

(0, 0, 0)

(1, 1, 1)

(0, 0, 1)
(0, 1, 1)

(0, 1, 0)

P v1

P v2

(1, 1, 0)

x2

FIGURE 12.11
Two simple
pattern classes
and their Bayes
decision boundary
(shown shaded).
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EXAMPLE 12.4:
Classification of
multispectral data
using a Bayes
classifier.

■ As discussed in Sections 1.3.4 and 11.4, a multispectral scanner responds to
selected bands of the electromagnetic energy spectrum; for example, 0.45–0.52,
0.52–0.60, 0.63–0.69, and 0.76–0.90 microns.These ranges are in the visible blue,
visible green, visible red, and near infrared bands, respectively. A region on the
ground scanned in this manner produces four digital images of the region, one
for each band. If the images are registered spatially, a condition generally met
in practice, they can be visualized as being stacked one behind the other, as
Fig. 12.12 shows. Thus, just as we did in Section 11.4, every point on the
ground can be represented by a 4-element pattern vector of the form

where is a shade of blue, a shade of green, and so on.
If the images are of size pixels, each stack of four multispectral im-
ages can be represented by 266,144 four-dimensional pattern vectors. As noted
previously, the Bayes classifier for Gaussian patterns requires estimates of the
mean vector and covariance matrix for each class. In remote sensing applica-
tions, these estimates are obtained by collecting multispectral data whose class
is known from each region of interest.The resulting vectors are then used to es-
timate the required mean vectors and covariance matrices, as in Example 12.3.

Figures 12.13(a) through (d) show four multispectral images of
the Washington, D.C. area taken in the bands mentioned in the previous para-
graph.We are interested in classifying the pixels in the region encompassed by
the images into one of three pattern classes: water, urban development, or veg-
etation.The masks in Fig. 12.13(e) were superimposed on the images to extract

512 * 512

512 * 512
x2x1x = (x1, x2, x3, x4)

T,

Spectral band 1

Spectral band 2

Spectral band 3

Spectral band 4
x �

x1

x2

x3

x4

FIGURE 12.12
Formation of a
pattern vector
from registered
pixels of four
digital images
generated by a
multispectral
scanner.

scanners aboard aircraft, satellites, or space stations. The voluminous image
data generated by these platforms make automatic image classification and
analysis a task of considerable interest in remote sensing. The applications of
remote sensing are varied and include land use, crop inventory, crop disease
detection, forestry, air and water quality monitoring, geological studies, weath-
er prediction, and a score of other applications having environmental signifi-
cance. The following example shows a typical application.
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FIGURE 12.13 Bayes classification of multispectral data. (a)–(d) Images in the visible blue, visible green,
visible red, and near infrared wavelengths. (e) Mask showing sample regions of water (1), urban
development (2), and vegetation (3). (f) Results of classification; the black dots denote points classified
incorrectly. The other (white) points were classified correctly. (g) All image pixels classified as water (in
white). (h) All image pixels classified as urban development (in white). (i) All image pixels classified as
vegetations (in white).

a b c
d e f
g h i
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Training Patterns Independent Patterns

Class
No. of 

Classified into Class
%

Class
No. of

Classified into Class
%

Samples 1 2 3 Correct Samples 1 2 3 Correct

1 484 482 2 0 99.6 1 483 478 3 2 98.9
2 933 0 885 48 94.9 2 932 0 880 52 94.4
3 483 0 19 464 96.1 3 482 0 16 466 96.7

TABLE 12.1
Bayes classification of multispectral image data.

samples representative of these three classes. Half of the samples were used
for training (i.e., for estimating the mean vectors and covariance matrices),
and the other half were used for independent testing to assess preliminary
classifier performance. The a priori probabilities, seldom are known in
unconstrained multispectral data classification, so we assume here that they
are equal:

Table 12.1 summarizes the recognition results obtained with the training
and independent data sets. The percentage of training and independent pat-
tern vectors recognized correctly was about the same with both data sets, indi-
cating stability in the parameter estimates. The largest error in both cases was
with patterns from the urban area.This is not unexpected, as vegetation is pre-
sent there also (note that no patterns in the vegetation or urban areas were
misclassified as water). Figure 12.13(f) shows as black dots the patterns that
were misclassified and as white dots the patterns that were classified correctly.
No black dots are readily visible in region 1, because the 7 misclassified points
are very close to the boundary of the white region.

Figures 12.13(g) through (i) are much more interesting. Here, we used the
mean vectors and covariance matrices obtained from the training data to clas-
sify all image pixels into one of the three categories. Figure 12.13(g) shows in
white all pixels that were classified as water. Pixels not classified as water are
shown in black. We see that the Bayes classifier did an excellent job of deter-
mining which parts of the image were water. Figure 12.13(h) shows in white all
pixels classified as urban development; observe how well the system per-
formed in recognizing urban features, such as the bridges and highways.
Figure 12.13(i) shows the pixels classified as vegetation. The center area in
Fig. 12.13(h) shows a high concentration of white pixels in the downtown area,
with the density decreasing as a function of distance from the center of the
image. Figure 12.13(i) shows the opposite effect, indicating the least vegetation
toward the center of the image, when urban development is at its maximum.■

We mentioned at the beginning of Section 10.3.3 that thresholding may be
viewed as a Bayes classification problem, which optimally assigns patterns to
two or more classes. In fact, as the previous problem shows, pixel-by-pixel clas-
sification is really a segmentation problem that partitions an image into two or

P(vi) = 1>3, i = 1, 2, 3.

P(vi),
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more possible types of regions. If only one single variable (e.g., intensity) is
used, then Eq. (12.2-17) becomes an optimum function that similarly partitions
an image based on the intensity of its pixels, as we did in Section 10.3. Keep in
mind that optimality requires that the PDF and a priori probability of each
class be known.As we have mentioned previously, estimating these densities is
not a trivial task. If assumptions have to be made (e.g., as in assuming Gaussian
densities), then the degree of optimality achieved in segmentation is proportional
to how close the assumptions are to reality.

12.2.3 Neural Networks
The approaches discussed in the preceding two sections are based on the use
of sample patterns to estimate statistical parameters of each pattern class. The
minimum distance classifier is specified completely by the mean vector of each
class. Similarly, the Bayes classifier for Gaussian populations is specified com-
pletely by the mean vector and covariance matrix of each class. The patterns
(of known class membership) used to estimate these parameters usually are
called training patterns, and a set of such patterns from each class is called a
training set. The process by which a training set is used to obtain decision func-
tions is called learning or training.

In the two approaches just discussed, training is a simple matter. The train-
ing patterns of each class are used to compute the parameters of the decision
function corresponding to that class. After the parameters in question have
been estimated, the structure of the classifier is fixed, and its eventual perfor-
mance will depend on how well the actual pattern populations satisfy the un-
derlying statistical assumptions made in the derivation of the classification
method being used.

The statistical properties of the pattern classes in a problem often are un-
known or cannot be estimated (recall our brief discussion in the preceding sec-
tion regarding the difficulty of working with multivariate statistics). In practice,
such decision-theoretic problems are best handled by methods that yield the
required decision functions directly via training. Then, making assumptions re-
garding the underlying probability density functions or other probabilistic in-
formation about the pattern classes under consideration is unnecessary. In this
section we discuss various approaches that meet this criterion.

Background

The essence of the material that follows is the use of a multitude of elemen-
tal nonlinear computing elements (called neurons) organized as networks
reminiscent of the way in which neurons are believed to be interconnected
in the brain. The resulting models are referred to by various names, includ-
ing neural networks, neurocomputers, parallel distributed processing (PDP)
models, neuromorphic systems, layered self-adaptive networks, and connec-
tionist models. Here, we use the name neural networks, or neural nets for
short. We use these networks as vehicles for adaptively developing the coef-
ficients of decision functions via successive presentations of training sets of
patterns.
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Interest in neural networks dates back to the early 1940s, as exemplified by
the work of McCulloch and Pitts [1943]. They proposed neuron models in the
form of binary threshold devices and stochastic algorithms involving sudden 0-
1 and 1-0 changes of states in neurons as the bases for modeling neural systems.
Subsequent work by Hebb [1949] was based on mathematical models that at-
tempted to capture the concept of learning by reinforcement or association.

During the mid-1950s and early 1960s, a class of so-called learning machines
originated by Rosenblatt [1959, 1962] caused significant excitement among re-
searchers and practitioners of pattern recognition theory. The reason for the
great interest in these machines, called perceptrons, was the development of
mathematical proofs showing that perceptrons, when trained with linearly sep-
arable training sets (i.e., training sets separable by a hyperplane), would con-
verge to a solution in a finite number of iterative steps. The solution took the
form of coefficients of hyperplanes capable of correctly separating the classes
represented by patterns of the training set.

Unfortunately, the expectations following discovery of what appeared to be
a well-founded theoretic model of learning soon met with disappointment.
The basic perceptron and some of its generalizations at the time were simply
inadequate for most pattern recognition tasks of practical significance. Subse-
quent attempts to extend the power of perceptron-like machines by consider-
ing multiple layers of these devices, although conceptually appealing, lacked
effective training algorithms such as those that had created interest in the per-
ceptron itself. The state of the field of learning machines in the mid-1960s was
summarized by Nilsson [1965]. A few years later, Minsky and Papert [1969]
presented a discouraging analysis of the limitation of perceptron-like ma-
chines. This view was held as late as the mid-1980s, as evidenced by comments
by Simon [1986]. In this work, originally published in French in 1984, Simon
dismisses the perceptron under the heading “Birth and Death of a Myth.”

More recent results by Rumelhart, Hinton, and Williams [1986] dealing with
the development of new training algorithms for multilayer perceptrons have
changed matters considerably. Their basic method, often called the generalized
delta rule for learning by backpropagation, provides an effective training method
for multilayer machines. Although this training algorithm cannot be shown to
converge to a solution in the sense of the analogous proof for the single-layer
perceptron, the generalized delta rule has been used successfully in numerous
problems of practical interest.This success has established multilayer perceptron-
like machines as one of the principal models of neural networks currently in use.

Perceptron for two pattern classes

In its most basic form, the perceptron learns a linear decision function that di-
chotomizes two linearly separable training sets. Figure 12.14(a) shows schemat-
ically the perceptron model for two pattern classes. The response of this basic
device is based on a weighted sum of its inputs; that is,

(12.2-29)d(x) = a
n

i = 1
wixi + wn + 1



884 Chapter 12 ■ Object Recognition

Pattern
vectors

x


x1

x1

w1

w2

O �

Activation element

�1    if d(x) � 0

�1    if d(x) � 0

wi

wn

wn�1

Weights

x2

x2

xn

xn

1

xi

xi

�1

�1

�1

�1

Pattern
vectors

x


w1

w2

O �

Activation element

�wn�1

d(x) �   wixi � wn�1

n

i�1

�1    if   wixi � � wn�1

n

i�1

�1    if   wixi � � wn�1

n

i�1

i�1
  wixi

n

 wi

wn

FIGURE 12.14 Two equivalent representations of the perceptron model for two pattern
classes.

which is a linear decision function with respect to the components of the pat-
tern vectors. The coefficients called weights, modify
the inputs before they are summed and fed into the threshold element. In this
sense, weights are analogous to synapses in the human neural system. The
function that maps the output of the summing junction into the final output of
the device sometimes is called the activation function.

When the threshold element causes the output of the perceptron
to be indicating that the pattern x was recognized as belonging to class 
The reverse is true when This mode of operation agrees with the
comments made earlier in connection with Eq. (12.2-2) regarding the use of a
single decision function for two pattern classes. When x lies on thed(x) = 0,

d(x) 6 0.
v1.+1,

d(x) 7 0,

wi, i = 1, 2, Á , n, n + 1,

a
b
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decision surface separating the two pattern classes, giving an indeterminate
condition. The decision boundary implemented by the perceptron is obtained
by setting Eq. (12.2-29) equal to zero:

(12.2-30)

or

(12.2-31)

which is the equation of a hyperplane in n-dimensional pattern space. Geo-
metrically, the first coefficients establish the orientation of the hyperplane,
whereas the last coefficient, is proportional to the perpendicular dis-
tance from the origin to the hyperplane.Thus if the hyperplane goes
through the origin of the pattern space. Similarly, if the hyperplane is
parallel to the 

The output of the threshold element in Fig. 12.14(a) depends on the sign of
(x). Instead of testing the entire function to determine whether it is positive

or negative, we could test the summation part of Eq. (12.2-29) against the term
in which case the output of the system would be

(12.2-32)

This implementation is equivalent to Fig. 12.14(a) and is shown in Fig. 12.14(b),
the only differences being that the threshold function is displaced by an
amount and that the constant unit input is no longer present.We return
to the equivalence of these two formulations later in this section when we dis-
cuss implementation of multilayer neural networks.

Another formulation used frequently is to augment the pattern vectors by
appending an additional element, which is always equal to 1, regard-
less of class membership. That is, an augmented pattern vector y is created
from a pattern vector x by letting and appending the
additional element Equation (12.2-29) then becomes

(12.2-33)

where is now an augmented pattern vector, and
is called the weight vector. This expression is usu-

ally more convenient in terms of notation. Regardless of the formulation used,
however, the key problem is to find w by using a given training set of pattern
vectors from each of two classes.

w = (w1, w2, Á , wn, wn + 1)
T

y = (y1, y2, Á , yn, 1)T

= wTy

d(y) = a
n + 1

i = 1
wiyi

yn + 1 = 1.
yi = xi, i = 1, 2, Á , n,

(n + 1)st

–wn + 1

O = d +1 if a
n

i = 1
wixi 7 -wn + 1

-1 if a
n

i = 1
wixi 6 -wn + 1

wn + 1,

d

xj-axis.
wj = 0,

wn + 1 = 0,
wn + 1,

n

w1x1 + w2x2 + Á + wnxn + wn + 1 = 0

d(x) = a
n

i = 1
wixi + wn + 1 = 0
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Training algorithms

The algorithms developed in the following discussion are representative of the
numerous approaches proposed over the years for training perceptrons.

Linearly separable classes: A simple, iterative algorithm for obtaining a so-
lution weight vector for two linearly separable training sets follows. For two
training sets of augmented pattern vectors belonging to pattern classes and

respectively, let w(1) represent the initial weight vector, which may be cho-
sen arbitrarily. Then, at the kth iterative step, if and 
replace by

(12.2-34)

where is a positive correction increment. Conversely, if and
replace with

(12.2-35)

Otherwise, leave unchanged:

(12.2-36)

This algorithm makes a change in w only if the pattern being considered at the
kth step in the training sequence is misclassified. The correction increment is
assumed to be positive and, for now, to be constant. This algorithm sometimes
is referred to as the fixed increment correction rule.

Convergence of the algorithm occurs when the entire training set for both
classes is cycled through the machine without any errors. The fixed increment
correction rule converges in a finite number of steps if the two training sets of
patterns are linearly separable. A proof of this result, sometimes called the
perceptron training theorem, can be found in the books by Duda, Hart, and
Stork [2001]; Tou and Gonzalez [1974]; and Nilsson [1965].

c

w(k + 1) = w(k)

w(k)

w(k + 1) = w(k) - cy(k)

w(k)wT(k)y(k) Ú 0,
y(k) H v2c

w(k + 1) = w(k) + cy(k)

w(k)
wT(k)y(k) … 0,y(k) H v1

v2,
v1

EXAMPLE 12.5:
Illustration of the
perceptron
algorithm.

■ Consider the two training sets shown in Fig. 12.15(a), each consisting of two
patterns. The training algorithm will be successful because the two training
sets are linearly separable. Before the algorithm is applied the patterns are
augmented, yielding the training set for class and

for class Letting and presenting the
patterns in order results in the following sequence of steps:

wT(2)y(2) = [0, 0, 1]C0
1
1
S = 1 w(3) = w(2) = C0

0
1
S

wT(1)y(1) = [0, 0, 0]C0
0
1
S = 0 w(2) = w(1) + y(1) = C0

0
1
S

c = 1, w(1) = 0,v2.5(1, 0, 1)T, (1, 1, 1)T6
v15(0, 0, 1)T, (0, 1, 1)T6
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FIGURE 12.15
(a) Patterns
belonging to two
classes.
(b) Decision
boundary
determined by
training.

where corrections in the weight vector were made in the first and third steps
because of misclassifications, as indicated in Eqs. (12.2-34) and (12.2-35). Be-
cause a solution has been obtained only when the algorithm yields a complete
error-free iteration through all training patterns, the training set must be pre-
sented again. The machine learning process is continued by letting

and and proceeding in the
same manner. Convergence is achieved at yielding the solution
weight vector The corresponding decision function is

Going back to the original pattern space by letting 
yields which, when set equal to zero, becomes the equation
of the decision boundary shown in Fig. 12.15(b). ■

Nonseparable classes: In practice, linearly separable pattern classes are the
(rare) exception, rather than the rule. Consequently, a significant amount of
research effort during the 1960s and 1970s went into development of tech-
niques designed to handle nonseparable pattern classes. With recent advances
in the training of neural networks, many of the methods dealing with nonsepa-
rable behavior have become merely items of historical interest. One of the
early methods, however, is directly relevant to this discussion: the original
delta rule. Known as the Widrow-Hoff, or least-mean-square (LMS) delta rule
for training perceptrons, the method minimizes the error between the actual
and desired response at any training step.

d(x) = -2x1 + 1,
xi = yid(y) = -2y1 + 1.

w(14) = (-2, 0, 1)T.
k = 14,

y(8) = y(4),y(5) = y(1), y(6) = y(2), y(7) = y(3),

wT(4)y(4) = [-1, 0, 0]C1
1
1
S = -1 w(5) = w(4) = C -1

0
0
S

wT(3)y(3) = [0, 0, 1]C1
0
1
S = 1 w(4) = w(3) - y(3) = C -1

0
0
S

a b
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Consider the criterion function

(12.2-37)

where is the desired response (that is, if the augmented training pat-
tern vector y belongs to class and if y belongs to class ). The task
is to adjust w incrementally in the direction of the negative gradient of (w) in
order to seek the minimum of this function, which occurs when that
is, the minimum corresponds to correct classification. If represents the
weight vector at the kth iterative step, a general gradient descent algorithm
may be written as

(12.2-38)

where is the new value of w, and gives the magnitude of the
correction. From Eq. (12.2-37),

(12.2-39)

Substituting this result into Eq. (12.2-38) yields

(12.2-40)

with the starting weight vector, w(1), being arbitrary.
By defining the change (delta) in weight vector as

(12.2-41)

we can write Eq. (12.2-40) in the form of a delta correction algorithm:

(12.2-42)

where

(12.2-43)

is the error committed with weight vector when pattern is presented.
Equation (12.2-43) gives the error with weight vector If we change it

to but leave the pattern the same, the error becomes

(12.2-44)

The change in error then is

(12.2-45)

= - ¢wTy(k)

= - CwT(k + 1) - wT(k) Dy(k)

¢e(k) = Cr(k) - wT(k + 1)y(k) D - Cr(k) - wT(k)y(k) D

e(k) = r(k) - wT(k + 1)y(k)

w(k + 1),
w(k).

y(k)w(k)

e(k) = r(k) - wT(k)y(k)

¢w = ae(k)y(k)

¢w = w(k + 1) - w(k)

w(k + 1) = w(k) + a Cr(k) - wT(k)y(k) Dy(k)

0J(w)
0w

= -(r - wTy)y

a 7 0w(k + 1)

w(k + 1) = w(k) - aB 0J(w)
0w
R

w = w(k)

w(k)
r = wTy;

J
v2r = -1v1,

r = +1r

J(w) =
1
2

(r - wTy)2
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But so

(12.2-46)

Hence changing the weights reduces the error by a factor The next
input pattern starts the new adaptation cycle, reducing the next error by a fac-
tor and so on.

The choice of controls stability and speed of convergence (Widrow and
Stearns [1985]). Stability requires that A practical range for 
is Although the proof is not shown here, the algorithm of 
Eq. (12.2-40) or Eqs. (12.2-42) and (12.2-43) converges to a solution that mini-
mizes the mean square error over the patterns of the training set.When the pat-
tern classes are separable, the solution given by the algorithm just discussed
may or may not produce a separating hyperplane. That is, a mean-square-error
solution does not imply a solution in the sense of the perceptron training theo-
rem. This uncertainty is the price of using an algorithm that converges under
both the separable and nonseparable cases in this particular formulation.

The two perceptron training algorithms discussed thus far can be extended to
more than two classes and to nonlinear decision functions. Based on the historical
comments made earlier, exploring multiclass training algorithms here has little
merit. Instead, we address multiclass training in the context of neural networks.

Multilayer feedforward neural networks

In this section we focus on decision functions of multiclass pattern recognition
problems, independent of whether or not the classes are separable, and involv-
ing architectures that consist of layers of perceptron computing elements.

Basic architecture: Figure 12.16 shows the architecture of the neural network
model under consideration. It consists of layers of structurally identical comput-
ing nodes (neurons) arranged so that the output of every neuron in one layer
feeds into the input of every neuron in the next layer.The number of neurons in
the first layer, called layer is Often, the dimensionality of the
input pattern vectors.The number of neurons in the output layer, called layer 
is denoted The number equals the number of pattern classes that the
neural network has been trained to recognize.The network recognizes a pattern
vector x as belonging to class if the ith output of the network is “high” while
all other outputs are “low,” as explained in the following discussion.

As the blowup in Fig. 12.16 shows, each neuron has the same form as the
perceptron model discussed earlier (see Fig. 12.14), with the exception that the
hard-limiting activation function has been replaced by a soft-limiting “sig-
moid” function. Differentiability along all paths of the neural network is re-
quired in the development of the training rule. The following sigmoid
activation function has the necessary differentiability:

(12.2-47)hj(Ij) =
1

1 + e-(Ij +uj)>uo

vi

W,NQNQ.
Q,

NA = n,NA.A,

0.1 6 a 6 1.0.
a0 6 a 6 2.

a

a 7y(k + 1) 72,
a 7y(k) 72.

= -ae(k) 7y(k) 72
¢e = -ae(k)yT(k)y(k)

¢w = ae(k)y(k),
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FIGURE 12.16 Multilayer feedforward neural network model. The blowup shows the basic structure of each neuron element throughout the network.
The offset, is treated as just another weight.uj,
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FIGURE 12.17
The sigmoidal
activation
function of
Eq. (12.2-47).

where is the input to the activation element of each node
in layer of the network, is an offset, and controls the shape of the sig-
moid function.

Equation (12.2-47) is plotted in Fig. 12.17, along with the limits for the
“high” and “low” responses out of each node. Thus when this particular func-
tion is used, the system outputs a high reading for any value of greater than

Similarly, the system outputs a low reading for any value of less than 
As Fig. 12.17 shows, the sigmoid activation function always is positive, and it
can reach its limiting values of 0 and 1 only if the input to the activation ele-
ment is infinitely negative or positive, respectively. For this reason, values near
0 and 1 (say, 0.05 and 0.95) define low and high values at the output of the neu-
rons in Fig. 12.16. In principle, different types of activation functions could be
used for different layers or even for different nodes in the same layer of a
neural network. In practice, the usual approach is to use the same form of acti-
vation function throughout the network.

With reference to Fig. 12.14(a), the offset shown in Fig. 12.17 is analo-
gous to the weight coefficient in the earlier discussion of the percep-
tron. Implementation of this displaced threshold function can be done in the
form of Fig. 12.14(a) by absorbing the offset as an additional coefficient
that modifies a constant unity input to all nodes in the network. In order to
follow the notation predominantly found in the literature, we do not show a
separate constant input of into all nodes of Fig. 12.16. Instead, this input
and its modifying weight are integral parts of the network nodes. As noted
in the blowup in Fig. 12.16, there is one such coefficient for each of the 
nodes in layer 

In Fig. 12.16, the input to a node in any layer is the weighted sum of the out-
puts from the previous layer. Letting layer denote the layer preceding layer

(no alphabetical order is implied in Fig. 12.16) gives the input to the activa-
tion element of each node in layer denoted 

(12.2-48)Ij = a
NK

k = 1
wjkOk

Ij:J,
J

K

J.
NJ

uj

+1

uj

wn + 1

uj

uj.Ijuj.
Ij

uoujJ
Ij, j = 1, 2, Á , NJ,
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for where is the number of nodes in layer is the
number of nodes in layer and are the weights modifying the outputs 
of the nodes in layer before they are fed into the nodes in layer The out-
puts of layer are

(12.2-49)

for
A clear understanding of the subscript notation used in Eq. (12.2-48) is im-

portant, because we use it throughout the remainder of this section. First, note
that represents the input to the activation element of the jth
node in layer Thus represents the input to the activation element of the
first (topmost) node in layer represents the input to the activation ele-
ment of the second node in layer and so on. There are inputs to every
node in layer but each individual input can be weighted differently.Thus the

inputs to the first node in layer are weighted by coefficients
the inputs to the second node are weighted by coeffi-

cients and so on. Hence a total of coefficients
are necessary to specify the weighting of the outputs of layer as they are fed
into layer An additional offset coefficients, are needed to specify com-
pletely the nodes in layer 

Substitution of Eq. (12.2-48) into (12.2-47) yields

(12.2-50)

which is the form of activation function used in the remainder of this section.
During training, adapting the neurons in the output layer is a simple matter

because the desired output of each node is known. The main problem in train-
ing a multilayer network lies in adjusting the weights in the so-called hidden
layers. That is, in those other than the output layer.

Training by back propagation: We begin by concentrating on the output
layer.The total squared error between the desired responses, and the corre-
sponding actual responses, of nodes in (output) layer is

(12.2-51)

where is the number of nodes in output layer and the is used for con-
venience in notation for taking the derivative later.

The objective is to develop a training rule, similar to the delta rule, that allows
adjustment of the weights in each of the layers in a way that seeks a minimum to
an error function of the form shown in Eq. (12.2-51). As before, adjusting the

1
2QNQ

EQ =
1
2 a

NQ

q = 1
(rq - Oq)2

Q,Oq,
rq,

1

1 + e
-aa

Nk

k = 1
wjkok +ujb>uo

hj1Ij2 =

J.
uj,NJJ.

K
NJ * NKw2k, k = 1, 2, Á , NK;

w1k, k = 1, 2, Á , NK;
JNK

J,
NKJ,

I2J,
I1J.

Ij, j = 1, 2, Á , NJ,

k = 1, 2, Á , NK.

Ok = hk(Ik)

K
J.K

OkwjkK,
J, NKNJj = 1, 2, Á , NJ,



12.2 ■ Recognition Based on Decision-Theoretic Methods 893

weights in proportion to the partial derivative of the error with respect to the
weights achieves this result. In other words,

(12.2-52)

where layer precedes layer is as defined in Eq. (12.2-42), and is a
positive correction increment.

The error is a function of the outputs, which in turn are functions of the
inputs Using the chain rule, we evaluate the partial derivative of as follows:

(12.2-53)

From Eq. (12.2-48),

(12.2-54)

Substituting Eqs. (12.2-53) and (12.2-54) into Eq. (12.2-52) yields

(12.2-55)

where

(12.2-56)

In order to compute we use the chain rule to express the partial
derivative in terms of the rate of change of with respect to and the rate
of change of with respect to That is,

(12.2-57)

From Eq. (12.2-51),

(12.2-58)

and, from Eq. (12.2-49),
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Substituting Eqs. (12.2-58) and (12.2-59) into Eq. (12.2-57) gives

(12.2-60)

which is proportional to the error quantity Substitution of 
Eqs. (12.2-56) through (12.2-58) into Eq. (12.2-55) finally yields

12.2-61)

After the function has been specified, all the terms in Eq. (12.2-61) are
known or can be observed in the network. In other words, upon presentation of
any training pattern to the input of the network, we know what the desired re-
sponse, of each output node should be.The value of each output node can
be observed as can the input to the activation elements of layer and 
the output of the nodes in layer Thus we know how to adjust the weights that
modify the links between the last and next-to-last layers in the network.

Continuing to work our way back from the output layer, let us now analyze
what happens at layer Proceeding in the same manner as above yields

12.2-62)

where the error term is

(12.2-63)

With the exception of all the terms in Eqs. (12.2-62) and (12.2-63) either
are known or can be observed in the network. The term makes no sense in
an internal layer because we do not know what the response of an internal
node in terms of pattern membership should be.We may specify what we want
the response to be only at the outputs of the network where final pattern
classification takes place. If we knew that information at internal nodes, there
would be no need for further layers.Thus we have to find a way to restate in
terms of quantities that are known or can be observed in the network.

Going back to Eq. (12.2-57), we write the error term for layer as

(12.2-64)

The term presents no difficulties. As before, it is

(12.2-65)

which is known once is specified because can be observed.The term that
produced was the derivative so this term must be expressed in a
way that does not contain Using the chain rule, we write the derivative as
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(12.2-66)

where the last step follows from Eq. (12.2-56). Substituting Eqs. (12.2-65) and
(12.2-66) into Eq. (12.2-64) yields the desired expression for 

(12.2-67)

The parameter can be computed now because all its terms are known. Thus
Eqs. (12.2-62) and (12.2-67) establish completely the training rule for layer The
importance of Eq. (12.2-67) is that it computes from the quantities and 
which are terms that were computed in the layer immediately following layer 
After the error term and weights have been computed for layer these quanti-
ties may be used similarly to compute the error and weights for the layer imme-
diately preceding layer In other words, we have found a way to propagate the
error back into the network, starting with the error at the output layer.

We may summarize and generalize the training procedure as follows. For
any layers and where layer immediately precedes layer compute the
weights which modify the connections between these two layers, by using

(12.2-68)

If layer is the output layer, is

(12.2-69)

If layer is an internal layer and layer is the next layer (to the right), then 
is given by

(12.2-70)

for Using the activation function in Eq. (12.2-50) with 
yields

(12.2-71)

in which case Eqs. (12.2-69) and (12.2-70) assume the following, particularly
attractive forms:

(12.2-72)

for the output layer, and

(12.2-73)

for internal layers. In both Eqs. (12.2-72) and (12.2-73), j = 1, 2, Á , NJ.
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■ We illustrate now how a neural network of the form shown in Fig. 12.16 was
trained to recognize the four shapes shown in Fig. 12.18(a), as well as noisy
versions of these shapes, samples of which are shown in Fig. 12.18(b).

Pattern vectors were generated by computing the normalized signatures of
the shapes (see Section 11.1.3) and then obtaining 48 uniformly spaced samples
of each signature. The resulting 48-dimensional vectors were the inputs to the
three-layer feedforward neural network shown in Fig. 12.19. The number of
neuron nodes in the first layer was chosen to be 48, corresponding to the di-
mensionality of the input pattern vectors. The four neurons in the third (out-
put) layer correspond to the number of pattern classes, and the number of
neurons in the middle layer was heuristically specified as 26 (the average of the
number of neurons in the input and output layers). There are no known rules
for specifying the number of nodes in the internal layers of a neural network, so
this number generally is based either on prior experience or simply chosen ar-
bitrarily and then refined by testing. In the output layer, the four nodes from

Equations (12.2-68) through (12.2-70) constitute the generalized delta rule
for training the multilayer feedforward neural network of Fig. 12.16. The
process starts with an arbitrary (but not all equal) set of weights throughout the
network. Then application of the generalized delta rule at any iterative step in-
volves two basic phases. In the first phase, a training vector is presented to the
network and is allowed to propagate through the layers to compute the output

for each node.The outputs of the nodes in the output layer are then com-
pared against their desired responses, to generate the error terms The
second phase involves a backward pass through the network during which the
appropriate error signal is passed to each node and the corresponding weight
changes are made. This procedure also applies to the bias weights As dis-
cussed earlier in some detail, these are treated simply as additional weights that
modify a unit input into the summing junction of every node in the network.

Common practice is to track the network error, as well as errors associat-
ed with individual patterns. In a successful training session, the network
error decreases with the number of iterations and the procedure converges
to a stable set of weights that exhibit only small fluctuations with additional
training. The approach followed to establish whether a pattern has been clas-
sified correctly during training is to determine whether the response of the
node in the output layer associated with the pattern class from which the
pattern was obtained is high, while all the other nodes have outputs that are
low, as defined earlier.

After the system has been trained, it classifies patterns using the parame-
ters established during the training phase. In normal operation, all feedback
paths are disconnected. Then any input pattern is allowed to propagate
through the various layers, and the pattern is classified as belonging to the
class of the output node that was high, while all the others were low. If more
than one output is labeled high, or if none of the outputs is so labeled, the
choice is one of declaring a misclassification or simply assigning the pattern to
the class of the output node with the highest numerical value.

uj.

dq.rp,
OqOj

EXAMPLE 12.6:
Shape
classification
using a neural
network.
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Shape 1

FIGURE 12.18
(a) Reference
shapes and
(b) typical noisy
shapes used in
training the
neural network of
Fig. 12.19.
(Courtesy of Dr.
Lalit Gupta, ECE
Department,
Southern Illinois
University.)

a
b

top to bottom in this case represent the classes respectively.
After the network structure has been set, activation functions have to be se-
lected for each unit and layer. All activation functions were selected to sat-
isfy Eq. (12.2-50) with so that, according to our earlier discussion,
Eqs. (12.2-72) and (12.2-73) apply.

The training process was divided in two parts. In the first part, the weights were
initialized to small random values with zero mean, and the network was then
trained with pattern vectors corresponding to noise-free samples like the shapes
shown in Fig. 12.18(a).The output nodes were monitored during training.The net-
work was said to have learned the shapes from all four classes when, for any train-
ing pattern from class the elements of the output layer yielded and

for In other words, for any pattern of class
the output unit corresponding to that class had to be high while, simulta-
neously, the output of all other nodes had to be low

The second part of training was carried out with noisy samples, generated as
follows. Each contour pixel in a noise-free shape was assigned a probability 
of retaining its original coordinate in the image plane and a probability

of being randomly assigned to the coordinates of one of its eight
neighboring pixels. The degree of noise was increased by decreasing (that is,
increasing ).Two sets of noisy data were generated.The first consisted of 100
noisy patterns of each class generated by varying between 0.1 and 0.6, giving
a total of 400 patterns. This set, called the test set, was used to establish system
performance after training.
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Several noisy sets were generated for training the system with noisy data.
The first set consisted of 10 samples for each class, generated by using 
where denotes a value of used to generate training data. Starting with the
weight vectors obtained in the first (noise-free) part of training, the system
was allowed to go through a learning sequence with the new data set. Because

implies no noise, this retraining was an extension of the earlier, noise-
free training. Using the resulting weights learned in this manner, the network
was subjected to the test data set yielding the results shown by the curve la-
beled in Fig. 12.20. The number of misclassified patterns divided by the
total number of patterns tested gives the probability of misclassification, which
is a measure commonly used to establish neural network performance.

Next, starting with the weight vectors learned by using the data generated with
the system was retrained with a noisy data set generated with 

The recognition performance was then established by running the test samples
through the system again with the new weight vectors. Note the significant im-
provement in performance. Figure 12.20 shows the results obtained by continuing

Rt = 0.1.Rt = 0,
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RRt
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FIGURE 12.19
Three-layer
neural network
used to recognize
the shapes in Fig.
12.18.
(Courtesy of Dr.
Lalit Gupta, ECE
Department,
Southern Illinois
University.)
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FIGURE 12.20
Performance of
the neural
network as a
function of noise
level. (Courtesy
of Dr. Lalit
Gupta, ECE
Department,
Southern Illinois
University.)

this retraining and retesting procedure for and 0.4. As expected if
the system is learning properly, the probability of misclassifying patterns from the
test set decreased as the value of increased because the system was being
trained with noisier data for higher values of The one exception in Fig. 12.20 is
the result for The reason is the small number of samples used to train
the system.That is, the network was not able to adapt itself sufficiently to the larg-
er variations in shape at higher noise levels with the number of samples used.This
hypothesis is verified by the results in Fig. 12.21, which show a lower probability
of misclassification as the number of training samples was increased. Figure 12.21
also shows as a reference the curve for from Fig. 12.20.

The preceding results show that a three-layer neural network was capable of
learning to recognize shapes corrupted by noise after a modest level of training.
Even when trained with noise-free data ( in Fig. 12.20), the system was
able to achieve a correct recognition level of close to 77% when tested with data
highly corrupted by noise ( in Fig. 12.20). The recognition rate on the
same data increased to about 99% when the system was trained with noisier data
( and 0.4). It is important to note that the system was trained by in-
creasing its classification power via systematic, small incremental additions of
noise.When the nature of the noise is known, this method is ideal for improving
the convergence and stability properties of a neural network during learning. ■

Complexity of decision surfaces: We have already established that a single-
layer perceptron implements a hyperplane decision surface. A natural ques-
tion at this point is:What is the nature of the decision surfaces implemented by
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Rt = 0
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Rt.
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a multilayer network, such as the model in Fig. 12.16? It is demonstrated in the
following discussion that a three-layer network is capable of implementing ar-
bitrarily complex decision surfaces composed of intersecting hyperplanes.

As a starting point, consider the two-input, two-layer network shown in
Fig. 12.22(a). With two inputs, the patterns are two dimensional, and there-
fore, each node in the first layer of the network implements a line in 2-D
space. We denote by 1 and 0, respectively, the high and low outputs of these
two nodes. We assume that a 1 output indicates that the corresponding input
vector to a node in the first layer lies on the positive side of the line. Then the
possible combinations of outputs feeding the single node in the second layer
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v2v1
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�
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�

v1

FIGURE 12.22
(a) A two-input,
two-layer,
feedforward
neural network.
(b) and (c)
Examples of
decision
boundaries that
can be
implemented with
this network.
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are (1, 1), (1, 0), (0, 1), and (0, 0). If we define two regions, one for class 
lying on the positive side of both lines and the other for class lying any-
where else, the output node can classify any input pattern as belonging to one
of these two regions simply by performing a logical AND operation. In other
words, the output node responds with a 1, indicating class only when both
outputs from the first layer are 1. The AND operation can be performed by a
neural node of the form discussed earlier if is set to a value in the half-open
interval (1, 2]. Thus if we assume 0 and 1 responses out of the first layer, the
response of the output node will be high, indicating class only when the
sum performed by the neural node on the two outputs from the first layer is
greater than 1. Figures 12.22(b) and (c) show how the network of Fig. 12.22(a)
can successfully dichotomize two pattern classes that could not be separated
by a single linear surface.

If the number of nodes in the first layer were increased to three, the network
of Fig. 12.22(a) would implement a decision boundary consisting of the inter-
section of three lines.The requirement that class lie on the positive side of all
three lines would yield a convex region bounded by the three lines. In fact, an
arbitrary open or closed convex region can be constructed simply by increasing
the number of nodes in the first layer of a two-layer neural network.

The next logical step is to increase the number of layers to three. In this case
the nodes of the first layer implement lines, as before. The nodes of the second
layer then perform AND operations in order to form regions from the various
lines. The nodes in the third layer assign class membership to the various re-
gions. For instance, suppose that class consists of two distinct regions, each of
which is bounded by a different set of lines.Then two of the nodes in the second
layer are for regions corresponding to the same pattern class. One of the output
nodes needs to be able to signal the presence of that class when either of the
two nodes in the second layer goes high.Assuming that high and low conditions
in the second layer are denoted 1 and 0, respectively, this capability is obtained
by making the output nodes of the network perform the logical OR operation.
In terms of neural nodes of the form discussed earlier, we do so by setting to
a value in the half-open interval [0, 1).Then, whenever at least one of the nodes
in the second layer associated with that output node goes high (outputs a 1), the
corresponding node in the output layer will go high, indicating that the pattern
being processed belongs to the class associated with that node.

Figure 12.23 summarizes the preceding comments. Note in the third row that
the complexity of decision regions implemented by a three-layer network is, in
principle, arbitrary. In practice, a serious difficulty usually arises in structuring the
second layer to respond correctly to the various combinations associated with
particular classes. The reason is that lines do not just stop at their intersection
with other lines, and, as a result, patterns of the same class may occur on both
sides of lines in the pattern space. In practical terms, the second layer may have
difficulty figuring out which lines should be included in the AND operation for a
given pattern class—or it may even be impossible.The reference to the exclusive-
OR problem in the third column of Fig. 12.23 deals with the fact that, if the input
patterns were binary, only four different patterns could be constructed in two 
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dimensions. If the patterns are arranged so that class consists of patterns
and class consists of the patterns class mem-

bership of the patterns in these two classes is given by the exclusive-OR (XOR)
logical function, which is 1 only when one or the other of the two variables is 1,
and it is 0 otherwise. Thus an XOR value of 1 indicates patterns of class and
an XOR value of 0 indicates patterns of class 

The preceding discussion is generalized to dimensions in a straight-
forward way: Instead of lines, we deal with hyperplanes. A single-layer net-
work implements a single hyperplane. A two-layer network implements
arbitrarily convex regions consisting of intersections of hyperplanes. A three-
layer network implements decision surfaces of arbitrary complexity. The num-
ber of nodes used in each layer determines the complexity of the last two
cases. The number of classes in the first case is limited to two. In the other two
cases, the number of classes is arbitrary, because the number of output nodes
can be selected to fit the problem at hand.

Considering the preceding comments, it is logical to ask:Why would anyone
be interested in studying neural networks having more than three layers?
After all, a three-layer network can implement decision surfaces of arbitrary
complexity. The answer lies in the method used to train a network to utilize
only three layers. The training rule for the network in Fig. 12.16 minimizes an
error measure but says nothing about how to associate groups of hyperplanes
with specific nodes in the second layer of a three-layer network of the type dis-
cussed earlier. In fact, the problem of how to perform trade-off analyses be-
tween the number of layers and the number of nodes in  each layer remains
unresolved. In practice, the trade-off is generally resolved by trial and error or
by previous experience with a given problem domain.

n
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EXAMPLE 12.7:
Using shape
numbers to
compare shapes.

■ Suppose that we have a shape and want to find its closest match in a set
of five other shapes ( and ), as shown in Fig. 12.24(a). This problem
is analogous to having five prototype shapes and trying to find the best match
to a given unknown shape. The search may be visualized with the aid of the
similarity tree shown in Fig. 12.24(b). The root of the tree corresponds to the
lowest possible degree of similarity, which, for this example, is 4. Suppose that
the shapes are identical up to degree 8, with the exception of shape whose
degree of similarity with respect to all other shapes is 6. Proceeding down the

a,

ea, b, c, d,
f

12.3 Structural Methods

The techniques discussed in Section 12.2 deal with patterns quantitatively and
largely ignore any structural relationships inherent in a pattern’s shape. The
structural methods discussed in this section, however, seek to achieve pattern
recognition by capitalizing precisely on these types of relationships. In this sec-
tion, we introduce two basic approaches for the recognition of boundary
shapes based on string representations. Strings are the most practical approach
in structural pattern recognition.

12.3.1 Matching Shape Numbers
A procedure analogous to the minimum distance concept introduced in
Section 12.2.1 for pattern vectors can be formulated for the comparison of re-
gion boundaries that are described in terms of shape numbers. With reference
to the discussion in Section 11.2.2, the degree of similarity, between two re-
gion boundaries (shapes) is defined as the largest order for which their shape
numbers still coincide. For example, let and denote shape numbers of
closed boundaries represented by 4-directional chain codes. These two shapes
have a degree of similarity if

(12.3-1)

where indicates shape number and the subscript indicates order. The distance
between two shapes and is defined as the inverse of their degree of similarity:

(12.3-2)

This distance satisfies the following properties:

(12.3-3)

Either or may be used to compare two shapes. If the degree of similarity is
used, the larger is, the more similar the shapes are (note that is infinite for
identical shapes). The reverse is true when the distance measure is used.
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tree, we find that shape has degree of similarity 8 with respect to all others,
and so on. Shapes and match uniquely, having a higher degree of similari-
ty than any other two shapes. At the other extreme, if had been an unknown
shape, all we could have said using this method is that was similar to the
other five shapes with degree of similarity 6. The same information can be
summarized in the form of a similarity matrix, as shown in Fig. 12.24(c). ■

12.3.2 String Matching
Suppose that two region boundaries, and are coded into strings (see
Section 11.5) denoted and respectively. Let represent
the number of matches between the two strings, where a match occurs in the
kth position if The number of symbols that do not match is

(12.3-4)

where is the length (number of symbols) in the string representation of
the argument. It can be shown that if and only if and are identical
(see Problem 12.21).

A simple measure of similarity between and is the ratio
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FIGURE 12.24
(a) Shapes.
(b) Hypothetical
similarity tree.
(c) Similarity
matrix.
(Bribiesca and
Guzman.)
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EXAMPLE 12.8:
Illustration of
string matching.

■ Figures 12.25(a) and (b) show sample boundaries from each of two object
classes, which were approximated by a polygonal fit (see Section 11.1.3). Figures
12.25(c) and (d) show the polygonal approximations corresponding to the
boundaries shown in Figs. 12.25(a) and (b), respectively. Strings were formed
from the polygons by computing the interior angle, between segments as each
polygon was traversed clockwise. Angles were coded into one of eight possible
symbols, corresponding to 45° increments; that is,
… 90°; Á ; a8: 315° 6 u … 360°.

6 ua2: 45°a1: 0° 6 u … 45°;

u,

R 1.a 1.b 1.c 1.d 1.e 1.f

1.a

1.b 16.0

1.c 9.6 26.3

1.d 5.1 8.1 10.3

1.e 4.7 7.2 10.3 14.2

1.f 4.7 7.2 10.3 8.4 23.7

R 2.a 2.b 2.c 2.d 2.e 2.f

2.a

2.b 33.5

2.c 4.8 5.8

2.d 3.6 4.2 19.3

2.e 2.8 3.3 9.2 18.3

2.f 2.6 3.0 7.7 13.5 27.0

R 1.a 1.b 1.c 1.d 1.e 1.f

2.a 1.24 1.50 1.32 1.47 1.55 1.48

2.b 1.18 1.43 1.32 1.47 1.55 1.48

2.c 1.02 1.18 1.19 1.32 1.39 1.48

2.d 1.02 1.18 1.19 1.32 1.29 1.40

2.e 0.93 1.07 1.08 1.19 1.24 1.25

2.f 0.89 1.02 1.02 1.24 1.22 1.18

FIGURE 12.25
(a) and (b)
Sample
boundaries of two
different object
classes; (c) and
(d) their
corresponding
polygonal
approximations;
(e)–(g) tabula-
tions of 
(Sze and Yang.)

R.

a b
c d
e f

g

Hence is infinite for a perfect match and 0 when none of the corresponding
symbols in and match ( in this case). Because matching is done sym-
bol by symbol, the starting point on each boundary is important in terms of re-
ducing the amount of computation.Any method that normalizes to, or near, the
same starting point is helpful, so long as it provides a computational advantage
over brute-force matching, which consists of starting at arbitrary points on each
string and then shifting one of the strings (with wraparound) and computing
Eq. (12.3-5) for each shift. The largest value of gives the best match.R

a = 0ba
R
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Figure 12.25(e) shows the results of computing the measure for six samples
of object 1 against themselves. The entries correspond to values and, for
example, the notation 1.c refers to the third string from object class 1. Figure
12.25(f) shows the results of comparing the strings of the second object class
against themselves. Finally, Fig. 12.25(g) shows a tabulation of values obtained
by comparing strings of one class against the other. Note that, here, all values
are considerably smaller than any entry in the two preceding tabulations, indi-
cating that the measure achieved a high degree of discrimination between the
two classes of objects. For example, if the class membership of string 1.a had
been unknown, the smallest value of resulting from comparing this string
against sample (prototype) strings of class 1 would have been 4.7 [Fig. 12.25(e)].
By contrast, the largest value in comparing it against strings of class 2 would
have been 1.24 [Fig. 12.25(g)]. This result would have led to the conclusion that
string 1.a is a member of object class 1. This approach to classification is analo-
gous to the minimum distance classifier introduced in Section 12.2.1. ■

Summary
Starting with Chapter 9, our treatment of digital image processing began a transition
from processes whose outputs are images to processes whose outputs are attributes
about images, in the sense defined in Section 1.1. Although the material in the present
chapter is introductory in nature, the topics covered are fundamental to understanding
the state of the art in object recognition.As mentioned at the beginning of this chapter,
recognition of individual objects is a logical place to conclude this book. To go past this
point, we need concepts that are beyond the scope we set for our journey back in
Section 1.4. Specifically, the next logical step would be the development of image analy-
sis methods whose proper development requires concepts from machine intelligence.

As mentioned in Sections 1.1 and 1.4, machine intelligence and some areas that de-
pend on it, such as scene analysis and computer vision, still are in their relatively early
stages of practical development. Solutions of image analysis problems today are charac-
terized by heuristic approaches. While these approaches are indeed varied, most of them
share a significant base of techniques that are precisely the methods covered in this book.

Having concluded study of the material in the preceding twelve chapters, you are
now in the position of being able to understand the principal areas spanning the field of
digital image processing, both from a theoretical and practical point of view. Care was
taken throughout all discussions to lay a solid foundation upon which further study of
this and related fields could be based. Given the task-specific nature of many imaging
problems, a clear understanding of basic principles enhances significantly the chances
for their successful solution.

References and Further Reading
Background material for Sections 12.1 through 12.2.2 are the books by Theodoridis and
Koutroumbas [2006], by Duda, Hart, and Stork [2001], and by Tou and Gonzalez [1974].
The survey article by Jain et al. [2000] also is of interest. The book by Principe et al.
[1999] presents a good overview of neural networks. A special issue of IEEE Trans.
Image Processing [1998] is worth comparing with a similar special issue ten years earli-
er (IEEE Computer [1988]).The material presented in Section 12.2.3 is introductory. In
fact, the neural network model used in that discussion is one of numerous models pro-
posed over the years. However, the model we discussed is representative and also is

R

R

R
R

R
R
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used quite extensively in image processing. The example dealing with the recognition
of distorted shapes is adapted from Gupta et al. [1990, 1994]. The paper by Gori and
Scarselli [1998] discusses the classification power of multilayer neural networks.An ap-
proach reported by Ueda [2000] based on using linear combinations of neural networks
to achieve minimum classification error is good additional reading in this context.

For additional reading on the material in Section 12.3.1, see Bribiesca and Guzman
[1980]. On string matching, see Sze and Yang [1981], Oommen and Loke [1997], and
Gdalyahu and Weinshall [1999]. Additional references on structural pattern recogni-
tion are Gonzalez and Thomason [1978], Fu [1982], Bunke and Sanfeliu [1990], Tanaka
[1995], Vailaya et al. [1998], Aizaka and Nakamura [1999], and Jonk et al. [1999]. See
also the book by Huang [2002].

Problems
12.1 (a) Compute the decision functions of a minimum distance classifier for the

patterns shown in Fig. 12.1. You may obtain the required mean vectors by
(careful) inspection.

(b) Sketch the decision surfaces implemented by the decision functions in (a).
12.2 Show that Eqs. (12.2-4) and (12.2-5) perform the same function in terms of pat-

tern classification.
12.3 Show that the surface given by Eq. (12.2-6) is the perpendicular bisector of the

line joining the n-dimensional points and 
12.4 Show how the minimum distance classifier discussed in connection with Fig. 12.7

could be implemented by using resistor banks ( is the number of classes), a
summing junction at each bank (for summing currents), and a maximum selector
capable of selecting the maximum of inputs, where the inputs are currents.

12.5 Show that the correlation coefficient of Eq. (12.2-8) has values in the range
(Hint: Express in vector form.)

12.6 An experiment produces binary images of blobs that are nearly elliptical in shape
(see the following figure). The blobs are of three sizes, with the average values of
the principal axes of the ellipses being (1.3, 0.7), (1.0, 0.5), and (0.75, 0.25).The di-
mensions of these axes vary about their average values. Develop an image
processing system capable of rejecting incomplete or overlapping ellipses and
then classifying the remaining single ellipses into one of the three size classes
given. Show your solution in block diagram form, giving specific details regarding
the operation of each block. Solve the classification problem using a minimum
distance classifier, indicating clearly how you would go about obtaining training
samples and how you would use these samples to train the classifier.

;10%

g(x, y)[-1, 1].

W

WW

mj.mi

�

Detailed solutions to the
problems marked with a
star can be found in the
book Web site. The site
also contains suggested
projects based on the ma-
terial in this chapter.
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12.7 The following pattern classes have Gaussian probability density functions:
and

(a) Assume that and obtain the equation of the Bayes deci-
sion boundary between these two classes.

(b) Sketch the boundary.

12.8 Repeat Problem 12.7, but use the following pattern classes:
and Observe

that these classes are not linearly separable.

12.9 Repeat Problem 12.6, but use a Bayes classifier (assume Gaussian densities). In-
dicate clearly how you would go about obtaining training samples and how you
would use these samples to train the classifier.

12.10 The Bayes decision functions were de-
rived using a 0-1 loss function. Prove that these decision functions minimize the
probability of error. (Hint: The probability of error is where 
is the probability of being correct. For a pattern vector x belonging to class

Find and show that is maximum [ is mini-
mum] when is maximum.)

12.11 (a) Apply the perceptron algorithm to the following pattern classes:
and

Let and 

(b) Sketch the decision surface obtained in (a). Show the pattern classes and in-
dicate the positive side of the surface.

12.12 The perceptron algorithm given in Eqs. (12.2-34) through (12.2-36) can be ex-
pressed in a more concise form by multiplying the patterns of class by in
which case the correction steps in the algorithm become if

and otherwise. This is one of several
perceptron algorithm formulations that can be derived by starting from the gen-
eral gradient descent equation 

where is a criterion function, and the partial derivative is evaluat-
ed at Show that the perceptron algorithm formulation is obtainable
from this general gradient descent procedure by using the criterion function

where is the absolute value of the argument.

(Note: The partial derivative of with respect to w equals y.)

12.13 Prove that the perceptron training algorithm given in Eqs. (12.2-34) through 
(12.2-36) converges in a finite number of steps if the training pattern sets are linear-
ly separable. [Hint: Multiply the patterns of class by and consider a nonnega-
tive threshold, so that the perceptron training algorithm (with ) is
expressed as if and 
otherwise.You may need to use the Cauchy-Schwartz inequality: ]

12.14 Specify the structure and weights of a neural network capable of performing
exactly the same function as a minimum distance classifier for two pattern class-
es in n-dimensional space.

7a 72 7b 72 Ú (aTb)2.
w(k + 1) = w(k) + y(k)wT(k)y(k) 7 T,w(k + 1) = w(k),

c = 1T,
-1v2

wTy

ƒ arg ƒJ(w, y) =
1
2

( ƒ wTy ƒ - wTy),

w = w(k).
c 7 0, J(w, y)

w(k + 1) = w(k) - cB 0J(w, y)

0w
R

w = w(k)

w(k + 1) = w(k) + cy(k)wT(k)y(k) 7 0,
w(k + 1) = w(k),

-1,v2

w(1) = (-1, -2, -2, 0)T.c = 1, (1, 1, 1)T6.(0, 1, 0)T,
v2: 5(0, 0, 1)T, (0, 1, 1)T,(1, 0, 0)T, (1, 0, 1)T, (1, 1, 0)T60, 0)T,v1: 5(0,

p(x>vi)P(vi)
p(e)p(c)p(c)vi, p(c>x) = p(vi>x).

p(c)1 - p(c),p(e)

dj (x) = p(x>vj)P(vj), j = 1, 2, Á , W,

v2: 5(-2, 0)T, (0, -2)T, (2, 0)T, (0, 2)T6.(0, -1)T, (1, 0)T, (0, 1)T6
v1: 5(-1, 0)T,

P(v1) = P(v2) = 1
2

v2: 5(4, 4)T, (6, 4)T, (6, 6)T, (4, 6)T6.v1: 5(0, 0)T, (2, 0)T, (2, 2)T, (0, 2)T6

�

�

�

�
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12.15 Specify the structure and weights of a neural network capable of performing
exactly the same function as a Bayes classifier for two pattern classes in n-
dimensional space. The classes are Gaussian with different means but equal co-
variance matrices.

12.16 (a) Under what conditions are the neural networks in Problems 12.14 and 12.15
identical?

(b) Would the generalized delta rule for multilayer feedforward neural net-
works developed in Section 12.2.3 yield the particular neural network in (a)
if trained with a sufficiently large number of samples?

12.17 Two pattern classes in two dimensions are distributed in such a way that the pat-
terns of class lie randomly along a circle of radius Similarly, the patterns of
class lie randomly along a circle of radius where Specify the struc-
ture of a neural network with the minimum number of layers and nodes needed
to classify properly the patterns of these two classes.

12.18 Repeat Problem 12.6, but use a neural network. Indicate clearly how you would
go about obtaining training samples and how you would use these samples to
train the classifier. Select the simplest possible neural network that, in your
opinion, is capable of solving the problem.

12.19 Show that the expression given in Eq. (12.2-71), where
follows from Eq. (12.2-50) with 

12.20 Show that the distance measure of Eq. (12.3-2) satisfies the properties
given in Eq. (12.3-3).

12.21 Show that in Eq. (12.3-4) is 0 if and only if and are
identical strings.

12.22 A certain factory mass produces small American flags for sporting events. The
quality assurance team has observed that, during periods of peak production,
some printing machines have a tendency to drop (randomly) between one and
three stars and one or two entire stripes. Aside from these errors, the flags are
perfect in every other way.Although the flags containing errors represent a small
percentage of total production, the plant manager decides to solve the problem.
After much investigation, he concludes that automatic inspection using image
processing techniques is the most economical way to handle the problem. The
basic specifications are as follows: The flags are approximately 7.5 cm by 12.5 cm
in size. They move lengthwise down the production line (individually, but with a

variation in orientation) at approximately 50 cm/s, with a separation be-
tween flags of approximately 5 cm. In all cases, “approximately” means 
The plant manager hires you to design an image processing system for each pro-
duction line.You are told that cost and simplicity are important parameters in de-
termining the viability of your approach. Design a complete system based on the
model of Fig. 1.23. Document your solution (including assumptions and specifi-
cations) in a brief (but clear) written report addressed to the plant manager.

;5%.
;15°

bab = max( ƒ a ƒ , ƒ b ƒ ) - a

D(A, B)

uo = 1.hj
œ (Ij) = 0hj(Ij)>0Ij,

hj
œ (Ij) = Oj(1 - Oj)

r2 = 2r1.r2,v2

r1.v1
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Preview
This appendix contains code tables for use in CCITT and JPEG compression.
Tables A.1 and A.2 are modified Huffman code tables for CCITT Group 3 and
4 compression. Tables A.3 through A.5 are for the coding of JPEG DCT coef-
ficients. For more on the use of these tables, refer to Sections 8.2.5 and 8.2.8 of
Chapter 8.

Coding Tables for Image
Compression
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Run White Code Black Code Run White Code Black Code
Length Word Word Length Word Word

0 00110101 0000110111 32 00011011 000001101010
1 000111 010 33 00010010 000001101011
2 0111 11 34 00010011 000011010010
3 1000 10 35 00010100 000011010011
4 1011 011 36 00010101 000011010100
5 1100 0011 37 00010110 000011010101
6 1110 0010 38 00010111 000011010110
7 1111 00011 39 00101000 000011010111
8 10011 000101 40 00101001 000001101100
9 10100 000100 41 00101010 000001101101

10 00111 0000100 42 00101011 000011011010
11 01000 0000101 43 00101100 000011011011
12 001000 0000111 44 00101101 000001010100
13 000011 00000100 45 00000100 000001010101
14 110100 00000111 46 00000101 000001010110
15 110101 000011000 47 00001010 000001010111
16 101010 0000010111 48 00001011 000001100100
17 101011 0000011000 49 01010010 000001100101
18 0100111 0000001000 50 01010011 000001010010
19 0001100 00001100111 51 01010100 000001010011
20 0001000 00001101000 52 01010101 000000100100
21 0010111 00001101100 53 00100100 000000110111
22 0000011 00000110111 54 00100101 000000111000
23 0000100 00000101000 55 01011000 000000100111
24 0101000 00000010111 56 01011001 000000101000
25 0101011 00000011000 57 01011010 000001011000
26 0010011 000011001010 58 01011011 000001011001
27 0100100 000011001011 59 01001010 000000101011
28 0011000 000011001100 60 01001011 000000101100
29 00000010 000011001101 61 00110010 000001011010
30 00000011 000001101000 62 00110011 000001100110
31 00011010 000001101001 63 00110100 000001100111

TABLE A.1
CCITT
terminating codes.
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Run White Code Black Code Run White Code Black Code
Length Word Word Length Word Word

64 11011 0000001111 960 011010100 0000001110011
128 10010 000011001000 1024 011010101 0000001110100
192 010111 000011001001 1088 011010110 0000001110101
256 0110111 000001011011 1152 011010111 0000001110110
320 00110110 000000110011 1216 011011000 0000001110111
384 00110111 000000110100 1280 011011001 0000001010010
448 01100100 000000110101 1344 011011010 0000001010011
512 01100101 0000001101100 1408 011011011 0000001010100
576 01101000 0000001101101 1472 010011000 0000001010101
640 01100111 0000001001010 1536 010011001 0000001011010
704 011001100 0000001001011 1600 010011010 0000001011011
768 011001101 0000001001100 1664 011000 0000001100100
832 011010010 0000001001101 1728 010011011 0000001100101
896 011010011 0000001110010

Code Word Code Word

1792 00000001000 2240 000000010110
1856 00000001100 2304 000000010111
1920 00000001101 2368 000000011100
1984 000000010010 2432 000000011101
2048 000000010011 2496 000000011110
2112 000000010100 2560 000000011111
2176 000000010101

TABLE A.2
CCITT makeup
codes.

DC Difference 
Range Category AC Category

0 0 N/A
1 1 1
2, 3 2 2

3 3
4 4
5 5
6 6
7 7
8 8
9 9
A A
B B
C C
D D
E E
F N/A-32767, Á , -16384, 16384, Á , 32767

-16383, Á , -8192, 8192, Á , 16383
-8191, Á , -4096, 4096, Á , 8191
-4095, Á , -2048, 2048, Á , 4095
-2047, Á , -1024, 1024, Á , 2047

-1023, Á , -512, 512, Á , 1023
-511, Á , -256, 256, Á , 511
-255, Á , -128, 128, Á , 255

-127, Á , -64, 64, Á , 127
-63, Á , -32, 32, Á , 63
-31, Á , -16, 16, Á , 31

-15, Á , -8, 8, Á , 15
-7, Á , -4, 4, Á , 7

-3, -2,
-1,

TABLE A.3 JPEG
coefficient coding
categories.
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Category Base Code Length Category Base Code Length

0 010 3 6 1110 10
1 011 4 7 11110 12
2 100 5 8 111110 14
3 00 5 9 1111110 16
4 101 7 A 11111110 18
5 110 8 B 111111110 20

TABLE A.4 JPEG
default DC code
(luminance).

Run/ Run/
Category Base Code Length Category Base Code Length

0/0 4
0/1 00 3 8/1 11111010 9
0/2 01 4 8/2 111111111000000 17
0/3 100 6 8/3 1111111110110111 19
0/4 1011 8 8/4 1111111110111000 20
0/5 11010 10 8/5 1111111110111001 21
0/6 111000 12 8/6 1111111110111010 22
0/7 1111000 14 8/7 1111111110111011 23
0/8 1111110110 18 8/8 1111111110111100 24
0/9 1111111110000010 25 8/9 1111111110111101 25
0/A 1111111110000011 26 8/A 1111111110111110 26
1/1 1100 5 9/1 111111000 10
1/2 111001 8 9/2 1111111110111111 18
1/3 1111001 10 9/3 1111111111000000 19
1/4 111110110 13 9/4 1111111111000001 20
1/5 11111110110 16 9/5 1111111111000010 21
1/6 1111111110000100 22 9/6 1111111111000011 22
1/7 1111111110000101 23 9/7 1111111111000100 23
1/8 1111111110000110 24 9/8 1111111111000101 24
1/9 1111111110000111 25 9/9 1111111111000110 25
1/A 1111111110001000 26 9/A 1111111111000111 26
2/1 11011 6 A/1 111111001 10
2/2 11111000 10 A/2 1111111111001000 18
2/3 1111110111 13 A/3 1111111111001001 19
2/4 1111111110001001 20 A/4 1111111111001010 20
2/5 1111111110001010 21 A/5 1111111111001011 21
2/6 1111111110001011 22 A/6 1111111111001100 22
2/7 1111111110001100 23 A/7 1111111111001101 23
2/8 1111111110001101 24 A/8 1111111111001110 24
2/9 1111111110001110 25 A/9 1111111111001111 25
2/A 1111111110001111 26 A/A 1111111111010000 26
3/1 111010 7 B/1 111111010 10
3/2 111110111 11 B/2 1111111111010001 18
3/3 11111110111 14 B/3 1111111111010010 19
3/4 1111111110010000 20 B/4 1111111111010011 20
3/5 1111111110010001 21 B/5 1111111111010100 21
3/6 1111111110010010 22 B/6 1111111111010101 22
3/7 1111111110010011 23 B/7 1111111111010110 23

1010 (=  EOB)

TABLE A.5 JPEG
default AC code
(luminance).

(Continued)



Run/ Run/
Category Base Code Length Category Base Code Length

3/8 1111111110010100 24 B/8 1111111111010111 24
3/9 1111111110010101 25 B/9 1111111111011000 25
3/A 1111111110010110 26 B/A 1111111111011001 26
4/1 111011 7 C/1 1111111010 11
4/2 1111111000 12 C/2 1111111111011010 18
4/3 1111111110010111 19 C/3 1111111111011011 19
4/4 1111111110011000 20 C/4 1111111111011100 20
4/5 1111111110011001 21 C/5 1111111111011101 21
4/6 1111111110011010 22 C/6 1111111111011110 22
4/7 1111111110011011 23 C/7 1111111111011111 23
4/8 1111111110011100 24 C/8 1111111111100000 24
4/9 1111111110011101 25 C/9 1111111111100001 25
4/A 1111111110011110 26 C/A 1111111111100010 26
5/1 1111010 8 D/1 11111111010 12
5/2 1111111001 12 D/2 1111111111100011 18
5/3 1111111110011111 19 D/3 1111111111100100 19
5/4 1111111110100000 20 D/4 1111111111100101 20
5/5 1111111110100001 21 D/5 1111111111100110 21
5/6 1111111110100010 22 D/6 1111111111100111 22
5/7 1111111110100011 23 D/7 1111111111101000 23
5/8 1111111110100100 24 D/8 1111111111101001 24
5/9 1111111110100101 25 D/9 1111111111101010 25
5/A 1111111110100110 26 D/A 1111111111101011 26
6/1 1111011 8 E/1 111111110110 13
6/2 11111111000 13 E/2 1111111111101100 18
6/3 1111111110100111 19 E/3 1111111111101101 19
6/4 1111111110101000 20 E/4 1111111111101110 20
6/5 1111111110101001 21 E/5 1111111111101111 21
6/6 1111111110101010 22 E/6 1111111111110000 22
6/7 1111111110101011 23 E/7 1111111111110001 23
6/8 1111111110101100 24 E/8 1111111111110010 24
6/9 1111111110101101 25 E/9 1111111111110011 25
6/A 1111111110101110 26 E/A 1111111111110100 26
7/1 11111001 9 F/0 111111110111 12
7/2 11111111001 13 F/1 1111111111110101 17
7/3 1111111110101111 19 F/2 1111111111110110 18
7/4 1111111110110000 20 F/3 1111111111110111 19
7/5 1111111110110001 21 F/4 1111111111111000 20
7/6 1111111110110010 22 F/5 1111111111111001 21
7/7 1111111110110011 23 F/6 1111111111111010 22
7/8 1111111110110100 24 F/7 1111111111111011 23
7/9 1111111110110101 25 F/8 1111111111111100 24
7/A 1111111110110110 26 F/9 1111111111111101 25

F/A 1111111111111110 26

TABLE A.5
(Continued)
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Achromatic (monochromatic) light,

45, 396
Acoustic imaging, 20–22
Acquisition. See Image acquisition
Adaptive context dependent

probability, 550–551
Adaptive filters. See Spatial filters
Additive cost functions, 515
Additivity, 73, 344
Adjacency of pixels, 68–69
Affine transformations, 87–89. See

also Geometric
transformations

Aggregation of fuzzy sets, 182, 185
Aliasing, 217–219, 228–235

filtering and, 218, 229
image interpolation and

resampling and, 230–233
moiré patterns and, 233–235
spatial, 229
temporal, 229

Alpha-trimmed mean filter, 327–330
Analysis filter banks, 470, 503–504
Analysis trees, wavelet packets, 510–514
Anti-aliasing, 218, 229
Approximation coefficients,

472, 486, 489
Approximation pyramids, 464–466
Arithmetic coding, 548–551
Arithmetic logic unit (ALU), 29
Arithmetic mean filter, 322
Arithmetic operations, 74–80
Array operations, 72–73
Autocorrelation, 353
Autocorrelation matrix, 599
AVS compression, 538, 541

B
Back propagation, neural network

training by, 892–899
Background, 70, 83
Backprojections, 363–365

fan-filtered, 381–387
filtered, 375–378, 381–387
halo-effect blurring from, 363–365
parallel-beam filtered, 375–381

Band-limited functions, 214–217,
227–228

Bandpass filters, 294, 336, 390
Bandreject filters, 294, 335, 390
Bartlane cable system, 3–4
Basis functions, 477, 567, 570–571

DCT, 569
Haar, 474
series expansion using, 477
Walsh-Hadamard, 568

Basis images. See Basis functions
Bayes

classification, 874–882
classifier, 873
decision function, 874–876
decision rule, 742
formula, 744

Bidirectional frames (B-frames), 590
Binary images, 68, 628

border following, 796
boundary of, 70
compression of, 554, 562
logical operations on, 83
morphological operations on,

628–664
segmentation and, 443, 696, 726, 774

Binary trees, 510
Biorthogonality, 470
Bit-plane coding, 562–566
Bit-plane slicing, 117
Bit rate, 537
Bits, 30, 58–59, 60
Blind

deconvolution, 346
spot, 37

Block matching, 590–591
Block transform coding, 566–584

bit allocation for, 574–579
JPEG compression and, 579–584
selection of transform for, 567–573
subimage size and, 573–574
threshold implementation, 577–579
zonal implementation, 576–577

Blurring. See Filtering
BMP compression, 538, 541, 554
Border 70. See also Boundary

clearing, 663–664
following, 796–798
inner, 70
outer, 70

Bottom-hat transformation, 672–674
Boundary. See also Border,

Regional descriptors
definition, 70
chain codes, 798
curvature of, 815–816
decomposition of, 810–812
description, 815–822
detection of for segmentation,

725–738
diameter, 815
eccentricity of, 815
edge linking and, 725–738
extraction, 189, 642–643
following, 796–798
Fourier descriptors for, 818–821
length, 815
Moore boundary tracking

algorithm, 796–797
pixels, 70–71

polygonal approximation, 801–808
representation, 795–815
segments, 810–812
signatures, 808–810
shape numbers of, 816–817
statistical moments of, 821–822

Brightness, 39–43, 45, 396, 398
adaptation of human eye, 39–43
chromatic light and, 45, 396
color image processing and, 396, 398
subjective, 39–40

Butterworth filters
bandpass, 294, 336
bandreject, 294, 335
highpass (BHPF), 284–285
lowpass (BLPF), 273–276, 351
notch, 295, 337
sharpening using, 284–285
smoothing using, 273–276

C
Canny edge detector, 719–725
Cartesian product, 57, 181, 665
CAT. See Computed tomography
Cataracts, 37
CCD arrays, 38, 50, 59, 313, 392, 451
CCITT, 538
CCITT compression, 556–559
Chain codes, 798–801
Chessboard distance, 71
Chromatic (color) light, 45, 396
Chromaticity diagram, 399–400
City-block distance, 71
Classifiers

Bayes, 874–882
minimum distance, 866–869
neural network, 882–902
optimum statistical, 872–882
probability and, 873–874
structural, 903–906

Closing, 635–639, 668–670, 677
gray-scale morphology and,

668–670, 677
morphological operation of, 635–639
reconstruction, by, 677

CMY color model, 402, 406–407
CMYK color model, 402, 407
Code. See also Compression

arithmetic, 548–551
block, 543
CCITT makeup, 912
CCITT terminating, 911
Elias gamma, 547
Golomb, 544–548
Gray, 563
Huffman, 542–544
JPEG default AC, 913–914
JPEG default DC, 913
instantaneous, 543
length, 527

Index
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Code (cont.)
MH (Modified Huffman) coding,

555
MMR (modified modified

READ), 556
MR (modified READ), 556
natural binary, 528
READ (relative element address

designate), 556
Rice, 545
symbols, 527
unary, 544
uniquely decodable, 543
variable-length, 529
words, 527

Codec, 536
Coding, 466–473, 527, 528–530, 540,

542–614. See also Compression
methods for image compression,

540, 542–614
redundancy, 527, 528–530
subband, 466–473
symbol-based (or token-based),

559–562
Cohen-Daubechies-Feauveau

biorthogonal wavelets, 518–519
Color

fundamentals, 395
gamut, 400
models, 401–414
safe browser, 404
safe RGB, 404
safe (Web), 404

Color image processing, 394–460
chromaticity diagram, 399–400
color corrections, 433
color “gradient,” 449
CMY model, 402, 406–407
CMYK model, 402, 407
color slicing, 431
compression and, 454–455
edge detection, 447
full-color processing, 394, 424–426
histogram processing, 438
HSI model, 402, 407–414
intensity slicing, 415
intensity to color, 418
models for, 401–414
noise in, 451–454
pseudocolor, 394, 414–424
RGB model, 401–402, 402–406
segmentation, 445–450
sharpening, 442–443
smoothing in, 439–442
transformations in, 426–439
trichromatic coefficients, 399

Color transformations, 426–439
color circle for, 430
color management systems (CMS)

for, 433–437
complements, 430–431
corrections to color and tone,

433–437

formulation for, 426–429
histogram processing for, 438–439
profiles for, 433–434
slicing, 431–433
tonal range for, 434–436

Commission Internationale de
l’Eclairage (CIE), 397,
399–400, 434

Compact support, 481
Complex numbers, 202–203
Compression, 27, 454–455, 525–626

arithmetic coding, 548–551
bit-plane coding, 562–566
block transform coding, 566–584
BMP, 554
CCITT, 555–559
coding redundancy, 527, 528–529
color images, 454–455
containers for, 538–540, 541
fidelity criteria, 534–536
formats for, 538–540, 541
fundamentals of, 526–540
Golomb coding, 544–548
Huffman coding, 542–544
irrelevant information and, 527,

530–531
JBIG-2, 561–566
JPEG, 579–584
JPEG-2000, 607–613
Lempel-Ziv-Welch (LZW) coding,

551–553
mapping and, 530, 537–538
measuring information for, 531–534
methods of, 540, 542–614
models for, 536–538
MPEG-4 AVC (or H.264), 594–596
predictive coding, 584–603
quantization and, 531, 537–538,

596–598, 602–603
ratio, 526–527
run-length coding, 553–559
spatial redundancy, 527, 529–530
standards for, 538–540, 541
symbol-based coding, 559–562
temporal redundancy, 527,

529–530
wavelet coding, 604–614

Components of image processing
system, 28–30

Computed tomography (CT), 6, 11,
49, 312, 362–387

Computerized axial tomography
(CAT). See Computed
tomography

Connected component
definition, 69
description, 823–827
extraction of, 645–647, 685
segmentation, 764, 772

Connected pixels, 69
Connected set, 69
Constrained least squares filtering,

357–361

Containers for image compression,
538–540, 541

Continuous wavelet transform
(CWT), 491–493

scale and translation in, 491
admissibility criterion, 491

Contour. See Border, Boundary
Contraharmonic mean filter, 323–325
Contrast, 2, 58, 78, 97, 120, 186, 847.

See also Enhancement
local, 758
medium, 77, 117
measure of, 828, 832–834
simultaneous, 41
stretching, 106, 115, 116

Control points, 90
Convex hull

definition, 647
extraction, 647–649
for description, 810–812

Convex deficiency, 647
Convolution

by digital filtering, 467
circular, 223, 249
filter, 150
integral, 345
kernel, 150
mask, 150
spatial continuous, 209–10, 411
spatial discrete, 146–150
theorem, 210, 249, 254, 263, 345,

379, 789, 870
Co-occurrence matrix, 830–836
Correlation

circular, 254
coefficient, 620, 870
descriptor, 831, 834
matching by, 869–872
spatial, 146–150
theorem, 255

Cross-modulation, 470
CT. See Computed tomography
Cutoff frequency, 270

D
Dam construction for watersheds,

772–774
Data compression, 526. See also

Compression
Dead zones, 607
Decimation, 231
Decision function, 866
Decision surfaces, complexity of,

899–902
Decoding, 536, 538

Huffman coding and, 543
image decompression and, 536,

538
inverse mapper for, 538
symbol decoder for, 538

Decomposition, 515–518, 606–607
boundary segments from,

810–812
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level selection for wavelet coding,
606–607

trees in wavelet packets, 515–518
wavelets and, 515–518, 606–607

Defense Meteorological Satellite
Program (DMSP), 15

Defuzzification, 182–183, 185
Degradation. See also Restoration

estimating, 346–350
linear, position-invariant, 343–346
model of, 312–313

Delta modulation (DM), 597–598
Denoising, 312, 508
Derivative. See also Gradient,

Laplacian
first order, 158–160, 693
second order, 158–160, 693

Description, 815–855
area, 815
basic rectangle, 815
boundary, 815
circularity ratio, 822
compactness, 822
diameter, 815
eccentricity, 815
Euler number, 823
Fourier descriptors, 818
moment invariants, 839
perimeter, 822
principal components, 842
regional. See Regional descriptors
relational, 852
shape numbers, 816
statistical moments, 821
texture, 827–839
topological, 823

Denoising, 508
Detail coefficients (horizontal,

vertical, and diagonal), 472,
486, 489

Differential pulse code modulation
(DPCM), 599–602

Digital
filter. See Filters
image, definition of, 1

Digital image processing. See also
Image

defined, 1–3
fields of, 7–25
fundamentals of, 35–103
high-level processes of, 2
history of, 3–7
origins of, 3–7
sensors for, 28, 46–51
steps in, 25–28

Digital signal filtering, 466–469
Digital signal processing (DSP),

466–469
Digital Video Disks (DVDs),

525–526
Digitizer, 28, 48
Dilation. See Morphological image

processing

Dilation equation, 482
Discrete cosine transform (DCT),

569. See also JPEG
compression

Discrete Fourier transform (DFT)
average value, 246, 253
circular convolution. See

Convolution
circular correlation. See

Correlation
derivation of, 202–213
Fast Fourier Transform (FFT),

299–303
implementation, 298–303
padding, 251–253
pair, 1-D, 236
periodicity of, 237–239
phase angle, 245, 253
polar representation, 253
properties, 236–253
separability, 254
spectrum, 207, 226, 245, 253
symmetry properties, 242
two-dimensional, 235–236
zero padding, 251–252
wraparound error, 250

Discrete wavelet transform (DWT),
488–490, 502. See also 
Wavelets

Discriminant (decision) analysis,
862–863, 866

Distance measures, 71–72, 92–93,
445, 762–763, 809, 815,
866–869, 877, 903

Dots (pixels)
per inch (DPI), 59, 234, 559
per unit distance, 59

Downsampling, 464–465
DPI, 59, 234, 559
DV compression, 538, 540
Dynamic range, 57–58

E
Edge. See also Edge detection

color, 447–450
definition, 70
direction, 706
enhancement, 157–168, 280–289,

671
gradient, 165, 449, 601, 671, 706
linking, 725–738
magnitude, 165–166, 706
map, 711
models, 700–706
noise sensitivity, 704–705
normal, 707
operators, 708
ramp, 159, 693, 702
roof, 693, 702
step, 159, 693, 702
types, 158–160, 694
unit normal, 707

wavelet transform and, 504–505,
507–508

zero crossing, 159, 703, 717
Edge detection, 447–450,

700–725. See also Edge
boundary detection, 725
Canny edge detector,

719–725
derivatives, 158–162, 693–694
edge linking, 725–738
false negative, 722
false positive, 722
gradient, 165, 449, 601, 671,

706–714. See also Gradient
gradient and thresholding, 713
hysteresis thresholding, 722
Laplacian of Gaussian (LoG),

715
Marr-Hildreth edge detector,

714–719
models for, 700–706
nonmaxima suppression, 721
Prewitt edge detector, 708–710,

787
ramp edges, 693–695, 700
Roberts detector, 167, 708
roof edges, 693, 701–702
Sobel edge detector,

166–168, 708–710, 788
spaghetti effect, 717
spatial filters and, 695
step edges, 693–695, 700
wavelet-based, 507–508

Electromagnetic (EM) spectrum, 2,
7–20, 43–46

gamma radiation, 8–9, 45–46
imaging in, 7–20
importance of, 2
infrared regions, 12–18, 46
light and, 43–46
microwave band, 18–20, 45, 46
radio band, 20, 45, 46
source of image from, 7–8
units of, 44, 45
visible band, 12–18, 44–45
X-rays, 9–11, 45–46

Electron beam computed
tomography, 367

Electron microscopy, 7, 20, 46, 115,
142, 256

Elias gamma codes, 547
Encoding, 536, 537, 553–555. See also

Compression
image compression and, 536, 537
mapper for, 537
quantizer for, 537
run-length (RLE), 553–555
symbol coder for, 537

Empty set, 80
Enhancement

adaptive, 128, 330, 332
contrast enhancement, 113, 127,

128, 186, 289, 310
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Enhancement (cont.)
contrast stretching, 106, 115, 116
combined methods, 169–173
defined, 25, 107, 201
frequency domain, 257–298
fuzzy techniques for, 186–191
homomorphic filtering, 289
image averaging, 75
image subtraction, 77
histogram processing for, 120–144
intensity transformations, 107–119
local, 139, 142, 330, 332
median filter, 156, 195, 326, 332, 389
order statistic filters, 156, 325
sharpening, 157, 280
smoothing 75, 152, 269
spatial filters, 144–168

Entropy, 532–533
Erlang (gamma) noise, 315–316
Erosion. See Morphological image

processing
Estimating the degradation function,

346–350
Euclidean

distance, 92. See also Distance
measures

norm, 92
Expansions, 477–486, 486–488

basis functions of, 477
biorthogonal, 478
coefficients of, 477
multiresolution analysis (MRA),

477, 481–482
orthonormal, 478
overcomplete, 478
scaling functions, 477, 479–483
series, 477–479, 486–488
wavelet functions for, 483–486
wavelet series, 486–488

Exponential Golomb codes, 547
Exponential noise, 316

F
False color. See Pseudocolor
False contouring, 63, 100, 119, 623
Fan-beam filtered backprojections,

381–387
Fast Fourier transform (FFT). See

Discrete Fourier transform
Fast wavelet transform (FWT),

493–501, 502–505, 510–519
analysis filter banks, 495–496,

503–504
image compression using,

604–613
inverse, 498–500
multi-resolution processing using,

493–501, 502–505
synthesis filter banks, 499–500,

503–504
time-frequency tiles, 500–501

two-dimensional, 501–505
wavelet packets for, 510–519

FAX, 555
Feature selection. See Description
Fidelity criteria, 534–536
Fiducial marks, 95
Filters

deconvolution, 346
frequency domain. See Frequency

domain filtering
kernels, 145. See also Spatial filters
finite impulse response (FIR),

264, 468
Hamming window, 377
Hann window, 377
reconstruction, 217
spatial. See Spatial filters, Spatial

filtering
transfer function, 257
zero-phase-shift, 262

Filter banks, 469–471
Filters, digital, 466–473

biorthogonal, 470, 518–519
coefficients, 468
Cohen-Daubechies-Feauveau

biorthogonal coefficients, 518
convolution and, 467
Daubechies 8-tap orthonormal

coefficients, 472
filter banks, 469–471
filter taps, 468
finite impulse response, 468
FIR, 468
Haar coefficients, 497
impulse response, 468
JPEG-2000 irreversible 9–7, 609
modulation in, 469
order of, 468
order reversal in, 469
orthonormal, 471–472, 497, 507
perfect reconstruction, 470
prototypes, 471
sign reversal in, 468
symlet (4th order orthonormal)

coefficients, 507
Filter banks, 469–471

FWT analysis, 495–498, 511
FWT synthesis, 499–500
wavelet packet analysis, 513

Filtering
frequency. See Frequency domain

filtering
spatial. See Spatial filtering

Finite impulse response (FIR) filters,
264, 468

Fixed increment correction rule, 886
Fluorescence microscopy, 11–12
Foreground, 70, 83
Formats for image compression,

538–540, 541
Forward mapping, 87
Fourier descriptors, 818–821

Fourier series, 200–201, 203
Fourier-slice theorem, 374–375
Fourier spectrum, 109–110, 206–207,

245–249
log transformations and, 109–110
phase angle and, 245–249
plot of frequency of, 206–207

Fourier transform 205–255
continuous, 205, 226
convolution. See Convolution
discrete. See Discrete Fourier

transform
Fast Fourier transform (FFT). See

Discrete Fourier transform
history of, 200–201, 304
pair, 95, 205, 210, 222, 226, 236, 870
power spectrum, 245
sampling and, 211–220, 227–235

Fractal images, 24–25
Frame buffers, 30
Freeman chain code, 798–801
Frequency domain, 199–310, 782–785

additional characteristics,
255–257

aliasing. See Aliasing
convolution. See Convolution
discrete Fourier transform (DFT).

See Discrete Fourier transform
fast Fourier transform (FFT). See

Discrete Fourier transform
filtering. See Frequency domain

filtering
Fourier series, 200–201, 203
Fourier spectrum, 245–249
Fourier transform. See Fourier

transform
impulse. See Impulse
motion in segmentation, 782–785
sampling. See Sampling
sifting property. See impulse

Frequency domain filtering, 255–298.
See also Spatial filtering

bandpass filters, 294–298, 335–340
bandreject filters, 294–298, 335–340
box filter, 207
Butterworth filters, 273–276,

284–285, 294–297, 335–338, 351
correspondence with spatial

filtering, 263, 269
fundamentals of, 257–263
Gaussian filters for, 258–259,

265–269, 276–277, 285–286,
294–297, 335–338

highboost filters, 288
high frequency emphasis, 288
highpass filters for, 258, 281–286
homomorphic filters, 289–293
ideal filters, 216–217, 228, 260–262,

269–273, 277, 281–285, 294,
335–338

Laplacian, 286–288
lowpass filters, 217, 258, 269–281
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notch filters, 294–298, 335–340
sharpening, 281–293
smoothing, 269–281
steps, 263
unsharp masking, 288

Frequency intervals, 223–224
Frequency spectrum. See also

Spectrum
FWT, 496, 511
subband coding, 469
wavelet packet, 513–514

Front-end subsystem, 29
Full-color image processing, 394,

424–426
Functionally complete, 83
Fuzzy sets, 84–85, 173–191

aggregation of, 182, 185
color fuzzified by, 178–186
definitions for, 174–178
defuzzification of, 182–183, 185
implication of, 179–182, 185
intensity transformations and,

186–189
membership (characteristic)

functions, 84, 173–178
principles of theory, 174–178
set operations of, 84–85, 173–174
spatial filtering and, 186–191
use of, 178–186, 186–189, 189–191

G
Gamma

correction, 111–113
noise. See Noise

Gamma-ray imaging, 8, 21, 47
Gaussian filter

frequency. See Frequency domain
filtering

spatial. See Spatial filtering
Gaussian noise. See Noise
Gaussian pattern class, 874–882
Gaussian pyramid, 464
Geometric mean filter, 323, 361–362
Geometric transformations, 87–92

Affine, 87
control points, 90
identity, 88
rotation, 88
scaling, 88
shearing, 88
tie points, 90
translation, 88

GIF compression, 538, 541, 551
Global thresholding. See

Thresholding
Golomb codes and coding, 544–548
Golomb-Rice codes, 545
Gradient, 165–168, 447–451, 671–672,

706–714
color segmentation, 447–451
edge detection, 706–714

edge normal (vector), 707
edges, 168, 447–451
first-order derivatives, as, 165–168
gray-scale morphology, 671–672
morphological, 671
operators, 166–168, 447–451,

707–712
Prewitt operators, 709–710
properties of, 706–707
Roberts operators, 166–167,

708–708
sharpening, 165–168
Sobel operators, 166–168, 709–710
thresholding, combined with,

713–714
Granular noise, 598
Granulometry, 674–675
Gray level, 1, 45, 52, 106. See also

Intensity
Gray level co-occurrence matrix,

830
Gray scale, 45, 52. See also Intensity
Gray-scale morphology, 665–679. See

also Morphological image
processing

bottom-hat transformation, 672–674
closing, 668–670, 677
dilation, 666–668, 676–677
erosion, 666–668, 677
gradient, 671–672
granulometry, 674–675
opening, 668–670, 677
reconstruction, 676–679
smoothing, 670–671
textural segmentation, 675–676
top-hat transformation, 672–674

H
Haar transform, 474–477
Halftone dots, 234–235
Hamming window, 377
Hann window, 377
Harmonic mean filter, 323
HDV compression, 538, 541
Heisenberg cells/boxes, 500
Heisenberg uncertainty principle, 500
Hertz (Hz), 44
High definition (HD) television, 526
High-frequency-emphasis filtering,

288–289
Highboost filtering, 162–165,

288–289
Highpass filters

frequency. See Frequency domain
filtering

spatial. See Spatial filtering
HSI color model, 402, 407–414,

443–445
conversion from RGB, 410–411
conversion to RGB, 411–413
manipulation of images, 413–414
plane concept of, 408–410

segmentation, 443–445
uses of, 407

Histogram processing, 120–144,
438–439

definition, 120
color transformation using,

438–439
equalization, 122–128
global, 120–138
intensity transformation, 122, 126
inverse transformation, 122, 128
local, 139–144
matching (specification), 128–138
normalized, 120)
probability density function

(PDF) for, 123–125
statistics, use of, 139–144

Hit-or-miss transformation, 640–641
Hole filling, 643–645, 660, 662–663, 685
Homogeniety, 73, 344, 832
Homomorphic filtering, 289–293
Hough transform, 733–738
Hue, color image processing and,

398–399, 407–414
Huffman coding, 542–544
Human eye, see Visual perception
H.261, H.262, H.263, and H.264, 538,

540, 594–596

I
Ideal filter. See Frequency domain

filtering
IEC, 538
Illumination, 51–52, 740–741

correction, 78–79, 672–673,
756, 761

eye response, 17, 37, 40
image model, in, 51–52, 289–293
nonuniform, 78–79, 672–673,

741, 756,
segmentation and, 740–741
source, 46–50
standard, 434, 608
structured light, 17

Image
acquisition, 46–50
analysis, 2
blur, 347–350
color processing, 394–460
compression. See compression
deconvolution, 346
element. See Pixel
enhancement. See Enhancement
filtering. See Filtering
formation model, 50, 289
illumination. See illumination
intensity. See Intensity
interpolation. See Interpolation
morphology. See Morphological

image processing
pixel. See Pixel
reflectance, 51, 289
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Image (cont.)
registration, 75, 89, 779, 842
resampling, 65, 230, 617, 799
restoration. See Image restoration
rotation. See Geometric

transformations
scaling. See Geometric

transformations
segmentation. See Segmentation
sensing, 7–25, 46–50
sensors, 46–50
shearing. See Geometric

transformations
translation. See Geometric

transformations
zooming, 65, 87, 230

Image compression standards, 538–541
Image file formats and image

containers, 538–541
Image information, 531–534
Image pyramids, 463–466
Image transforms. See Transforms
Imaging modalities, 8–25
Implication in fuzzy sets, 179–182, 185
Impulse

continuous, 203–204, 225–226
discrete, 147–149, 225–226
noise, 156–157, 316–318
response, 264, 344–345, 347, 468,

472, 609
sifting property of, 203–205,

225–226, 468
train, 204–205, 208–209, 228
unit discrete, 147–149, 204, 225–226

Independent frames (I-frames), 589
Information theory, 532–534
Infrared, 7, 12, 21, 44, 77, 396, 418, 422,

690, 823, 827, 846, 879
Intensity, 1, 45, 59–65

fuzzy techniques, 173, 186–189
mean, 140. See also Moments
mapping, 542, 87–89, 106–144, 426
quantization, 52–54
scale, 52
scaling, 79–80
statistical descriptors, 96–97,

139–144
transformations, 85, 105–144
thresholding, 738–763
transformations, 106–144
variance, 140. See also Moments

Intensity transformations, 106
bit-plane slicing, 117
contrast stretching, 106, 115, 116
gamma, 110
histogram equalization, 120–128
histogram matching, 128–138
histogram specification, 128–138
intensity-level slicing, 115
local, 139–144
log, 109
negative, 108

piecewise linear, 115
power law, 110

Interpolation, 65–68, 87–91, 220,
230–233, 463, 540, 593

bicubic, 66
bilinear, 66
nearest neighbor, 65–66
resampling (shrinking and

zooming) images by, 65–68
Inverse filtering, 351–352
Inverse Fourier transform. See

Fourier transform, Discrete
Fourier transform

Inverse mapping, 87
Inverse transforms. See Transforms
Invisible watermarks, 616–620
ISO, 538
Isopreference curves, 64
Isotropic filters, 160
ITU-T, 538

J
Jaggies, 232
JBIG compression, 538, 539
JBIG2 compression, 538, 539, 561–562
JPEG compression, 538, 539, 579–584,

607–614
block transform coding for, 579–584
JPEG-2000 standard, 607–614
wavelet coding for, 607–614

JPEG-LS compression, 538, 539, 550
JPEG-2000 compression, 538, 539,

607–613
components, 608
derived vs. expounded

quantization, 611
irreversible component transform,

608
lifting-based wavelet transforms,

609
tile components, 609

L
LANDSAT satellite, 14, 784, 826
Laplacian

defined, 160
color, 442
convolution using, 789
combined with gradient, 169, 750
decomposition, 790
frequency domain, 255, 286, 307–308
isotropic property, 197, 699
of Gaussian (LoG), 715, 789
operators, 161
PDF, 588
pyramid, 466
restoration for, 358
scaling, 162
sharpening with, 162–163, 287
thresholding for, 696–699, 714,

749–753
zero crossing, 159, 703, 717

Large scale integration (LI), 5
Least-mean-square (LMS) delta 

rule, 887
Lempel-Ziv-Welch (LZW) coding,

551–553
Light, 43–46, 395–401. See also

Electromagnetic (EM)
spectrum

absorption of, 396–397
achromatic, 396
chromatic, 396
color image processing and, 395–401
microscopy, 13
monochromatic, 45
vision and. See Visual perception
EM spectrum visible band for,

43–46, 395–396
primary and secondary color of,

397–398
Line detection, 697–700
Line pairs

per mm, 59
per unit distance, 59

Linear
convolution. See Convolution
correlation. See Correlation
FIR filters, 264
frequency domain filters, 250
masks, 150
motion, 349, 366
operations, 73–74, 254, 343–346
transforms, 93
spatial filters, 145, 150
system, 203, 312, 343–346

Linearly separable classes, 886–887
Live image, 77
Lloyd-Max quantizer, 603
Log transformations, 109–110
Logical operations, 83–84
Lossless predictive coding, 584–589
Lossy predictive coding, 596–599
Lowpass filters

frequency. See Frequency domain
filtering

spatial. See Spatial filtering
LSB watermarks, 616
Luminance, chromatic light and, 45,

396
LZW coding. See Lempel-Ziv-Welch

(LZW) coding

M
Mach bands, 41, 42
Macroblocks, 589
Magnetic resonance imaging (MRI),

20, 50, 90, 113, 368
Mahalanobis distance, 763. See also

Distance measures
Mallat’s herringbone algorithm, 493
Mapper, 537
Mapping, 87–88, 132–133, 135–136,

530, 537–538. See also Intensity
mapping
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decoding (decompression) and,
538

encoding (compression) and, 537
forward, 87–88
histogram processing and,

132–133, 135–136
inverse, 88, 538

Markers
morphological reconstruction for,

656–664, 676–677
thresholding, 750
watersheds for, 776–778

Markov sources, 534
Marr-Hildreth edge detector, 714–719
Masks. See also Spatial filters

definition, 106
masking function, 571
threshold, 577
unsharp masking and, 162–165

Mask mode radiography, 77
Matching, 866–872, 903–906

block, 590–591
correlation, by, 869–872
minimum distance classifier

method, 866–869
shape numbers, 903–904
strings, 904–906

Matrix operations, 56, 72–73, 92–93
array operations versus, 72–73
notation for pixels, 56
vector operations and, 92–93

Max filters, 152, 326
Mean absolute distortion (MAD), 590
Mean filters. See Spatial filters
Mean of intensity. See Moments
Mean pyramid, 464
Mean square error (MSE)

filtering in, 352–357
measure, 354

Medial axis transformation (MAT),
812–813

Median filters, 156–157, 326, 389
adaptive, 332–335
updating, 196

Membership (characteristic)
functions, 84, 173–178

Mexican hat
operator, 715
wavelet, 492

Micron, 44
Microdensitometer, 48
Microwave, 7, 18, 44, 418
Midpoint filter, 327
Min filter, 157, 327
Minimum distance classifier, 866–869
Minimum-perimeter polygon (MPP),

801–807
Minkowsky

addition, 683
subtraction, 682

M-JPEG, 538, 541
Modified Huffman (MH) coding, 555

Modified READ (MR) coding, 556
Modified Modified READ (MMR)

coding, 556
Modulation, 469
Modulation function, 341
Moiré patterns, 233–235, 296
Moments

statistical, 96–97, 821, 828, 859, 863
invariant, 839–842

Monochromatic (achromatic) light,
45, 396

Moore boundary tracking algorithm,
796–797

Morphological image processing,
627–688

alternating sequential filtering,
670

binary images, summary, 662–664
black top-hat, 672
border clearing. See

Morphological reconstruction
bottom-hat transformation, 672
boundary extraction, 642–643
closing, 635–369, 668–670
connected components, 645–647
convex hull, 647–649
dilation, 633–635, 656–659,

666–668
erosion, 630–633, 635, 656–659,

666–668
filtering, 627, 633, 638, 670, 687
gradient, 671
granulometry. 674
gray-scale, 665–680
hit-or-miss transformation,

640–641
hole filling, 643–645, 662–663
opening, 635–639, 659, 662,

668–670
operations summary of, 662–664
preliminaries, 628–630
pruning, 654–656
reconstruction. See Morphological

reconstruction
reflection of sets in, 628
set operations for, 80–84, 628–630
shading correction, 673
skeletons, 651–654. See also

Skeletons
smoothing, 670
structuring element, 629
textural segmentation, 675
thickening, 650–651
thinning, 649–650
top-hat transformations, 672, 677
translation of sets in, 629
white top-hat, 672

Morphological reconstruction,
656–664, 676–679

border clearing and, 663–664
dilation by, 658–659, 676–677
erosion by, 658–659, 677

geodesic dilation and erosion,
656–659, 676–677

gray-scale images and, 676–679
hole filling and, 662–663
opening by, 659, 662, 677
top-hat by, 677

Motion compensation, predictive
coding and, 589–596

Motion estimation, 590–594
Motion in segmentation, 778–785

accumulative difference images
(ADIs), 779–780

frequency domain techniques for,
782–785

reference images, establishment
of, 781–782

spatial techniques for, 778–782
Moving averages for thresholding,

759–761
MPEG-1, MPEG-2, MPEG-4 (AVC),

538, 540, 594–596
MQ-coder, 550
Multilayer feedforward neural

networks, 819–902
Multiresolution analysis (MRA), 477,

481–482
requirements for, 481–482

Multiresolution processing, 461–524
expansions, 477–486
Haar transform, 474–477
image pyramids, 463–466
MRA equation, 482
multiresolution analysis (MRA),

477, 481–482
scaling functions, 477, 479–483,

501–502
series expansions, 477–479, 486–488
subband coding, 466–473
theory of, 461–462
wavelets and, 461–524

Multispectral imaging, 14–15, 92, 422,
826, 846–849, 879–881

N
Nanometer, 44
Negative images, 82, 85, 108–109
Neighborhood

definition, 68
operations, 85–87, 105–106, 145–169

Neighbor
of a pixel, 68
nearest, 66, 87–89, 220, 230. See

also Interpolation
types, 68–69

Neural networks, 882–902
algorithms for, 886–889
back propagation, training by,

892–899
background of, 882–883
decision surfaces, complexity of,

899–902
multilayer feedforward, 819–902
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Nanometer, (cont.)
perceptrons for, 883–885, 886–889
training (learning) process for,

882–902
training patterns, 882

N-largest coding, 577
Noise 53, 58, 139

bipolar, 316
color images in, 451
data-drop-out, 316
Erlang, 315
exponential, 316
gamma, 315
Gaussian, 76, 314
impulse, 156, 316
models, 313
parameter estimation, 319
periodic, 297, 318–319, 335
power spectrum, 353
probability density functions

(PDF), 314–319
Rayleigh, 314
reduction, 75. See also Filtering
salt-and-pepper, 156, 316
spatial and frequency properties

of, 313–314
spike, 316
uniform, 316
unipolar, 316
white, 313, 354, 508, 720, 784

Noiseless coding theorem, 533
Nonlinear

filtering, 145, 152, 156, 165, 325,
330, 870

operation, 73–74, 102
Nonseparable classes, 887–889
Notch filters. See Frequency domain

filtering
Null set, 80
Nyquist rate, 215. See also Sampling

O
Object recognition. See Patterns,

Recognition
Opening. See Morphological image

processing
Optical illusions, 42–43
Order-statistic filters. See Spatial

filters
Ordered pairs, 80. See also Cartesian

product
Orthonormality, 471
Otsu’s method. See Threshold,

Thresholding

P
Parallel-beam filtered

backprojections, 375–381
Parallel distributed processing (PDP)

models, 882
Patterns, 861–909

back propagation and, 892–899
class structure of, 861–865
classifiers, 866–869, 872–882
decision surfaces and, 899–902
discriminant (decision) analysis

for, 862–863, 865
Gaussian class, 874–882
linearly separable classes, 886–887
matching, 866–872, 903–906
multiclass recognition, 889–902
neural networks and, 882–902
nonseparable classes, 887–889
object recognition and, 861–902
perceptrons and, 883–885, 886–819
recognition and, 861–909
training (learning), 882–902
vector generation for, 862–864

PDF, 538, 541, 563
Pel. See Pixel
Percentile, 157, 326–327, 751
Perceptrons, 883–885, 886–819
Perfect reconstruction filters, 470–471
Periodic impulses. See Impulse train
Phase angle. See Fourier transform,

Discrete Fourier transform
Photoconverter, 47
Photodiode, 48
Photons, 7, 45
Photopic vision, 37
Piecewise-linear transformation

functions, 115–119
Pixel

adjacency of, 68
array operations, 72
connected, 69
definition, 2, 56
distance between, 71
interpolation. See Interpolation
neighborhood operations, 85–87.

See also Spatial filtering
neighbors of, 68
path, 69
per unit distance, 59
relationships between, 68
single operation, 85
transformation. See Intensity

transformations
PNG compression, 538, 541, 551
Point detection. See Segmentation
Point processing, 106–107
Point spread function, 345
Polygonal approximation, 801–807,

807–808
merging techniques, 807–808
minimum-perimeter polygons

(MPP), 801–807
splitting techniques, 808

Positron emission tomography (PET),
9, 50, 90, 293, 368, 388

Power-law (gamma) transformations,
110–115

Power spectrum, 245, 353

Prediction errors, 584
Prediction residuals, 588

motion compensated, 589–595
pyramid, 464, 466

Predictive coding, 584–603
delta modulation (DM), 597–598
differential pulse code modulation

(DPCM), 599–602
lossless, 584–589
lossy, 596–599
motion compensation and,

589–596
optimal predictors for, 599–602
optimal quantization in, 602–603
prediction error for, 584–585,

599–602
Predictive frames (P-frames), 590
Previous pixel predictor, 586
Prewitt gradient operators. See

Spatial filters
Probability density function 

(PDF), 123–125, 314–319,
873–882

Erlang, 315
exponential, 316
gamma, 315
Gaussian, 76, 314, 875
impulse, 156, 316
parameter estimation, 319
Rayleigh, 314
salt-and-pepper, 156, 316
uniform, 316

Probability mass function (PMF), 545
Probability models, 550–551
Projections, image reconstruction

from, 362–387
Pruning. See Morphological image

processing
Pseudocolor image processing, 394,

414–424
intensity slicing for, 415–418
intensity-to-color transformations,

418–421
monochrome images and, 422–424
transformations of, 414–424

Q
Q-coder, 550
Quantization, 52–68, 531, 537–538,

596–598, 602–603, 607. See also
Sampling

dead zone, 607
intensity resolution and, 59–65
interpolation and, 65–68
Lloyd-Max quantizer, 603
mapping and, 531, 537–538
optimal, 602–603
predictive coding and, 596–598,

602–603
wavelet coding design of, 607

Quicktime, 538, 541
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R
Radiance, chromatic light and, 45, 396
Radio band, 7, 20, 44, 279
Ram-Lak filter, 376
Random fields, 98
Radon transform, 366, 368–373
Ramp edges. See Edges
Rayleigh noise. See Noise
Recognition, 27–28, 861–909

Bayes classifier, 872–882
classifiers for, 866–869, 872–882
correlation, 869–863
correlation coefficient, 870–872
decision-theoretic methods for,

866–902
discriminant analysis, 862
feature selection, 863
learning, 861
matching and, 866–872, 903–906
minimum-distance, 866
neural networks for, 882–902
optimum classifiers, 872–874
patterns, 861–902
shape number matching, 903–904
string matching, 904–906
structural methods for, 903–906

Reconstruction, 217, 219–220,
362–387, 656–664, 677–680

backprojection, 363–365, 375–381,
381–387

computed tomography (CT),
365–368

fan-beam filtered backprojections,
381–387

filters, 217
Fourier-slice theorem for, 374–375
function, recovery of a, 219–220
gray-scale morphological,

677–680
image restoration by, 362–387
laminogram, 373
morphological, 656–664, 677–680
parallel-beam filtered

backprojections, 375–381
projections, from, 362–387
Radon transform for, 368–373
Ram-Lak filter, 376
Shepp-Logan phantom, 372
sinogram, 371

Redundancy, 526–530
coding, 527, 528–529
relative data, 526–527
spatial, 527, 529–530
temporal, 527, 529–530

Reference images, 89–91, 778–782, 784
Refinement equation, 482
Reflectance, 45, 51–52, 289–293,

740–741
Region

definition, 69
growing. See Region-based

segmentation

of interest (ROI), 78, 611, 643,
655, 768

quadregions, 767
splitting. See Region-based

segmentation
descriptors. See Description

Region-based segmentation, 763–769
merging regions, 766–769
region growing, 763–766
splitting regions, 766–769

Regional descriptors, 822–842
area, 822
circularity ratio for, 822–823
compactness and, 822–823
contrast, 832–834
correlation, 832–834
entropy, 832–834
Euler number, 825
gray-level co-occurrence matrix,

830
homogeneity, 832–834
maximum probability, 832–834
moment invariants for, 839–842
perimeter, 822
principal components, 842
relational descriptors, 852
texture content of, 827–839
topological, 823–827
uniformity, 832–834

Registration, image, 75, 89, 779, 842
Relative Element Address Designate

(READ) coding, 556
Remote sensing, 14–15, 526, 871, 879
Representation, 27, 795–860

boundary (border) following,
796–798

boundary segments for, 810–812
chain codes for, 798–801
description and, 795–860
polygonal approximation,

801–807, 807–808
signatures for, 808–810
skeletons, 812–815

Resampling. See Image resampling
Reseau marks, 90
Restoration, 26, 311–393

blind deconvolution, 346
constrained least squares filtering,

357–361
deconvolution, 346
degradation functions, estimation,

346–351
degradation of an image,

311, 312–313, 343–346,
346–351

frequency domain filtering for
noise reduction, 335–343

geometric mean filter, 361–362
inverse filtering, 351–352
least square error filter, 353
linear, positive-invariant

degradations, 343–346

minimum mean square error
filtering, 352–357

noise models for, 313–321
noise reduction and, 322–335,

335–343
parametric Wiener filter, 362
reconstruction. See

Reconstruction
spatial filtering for noise

reduction, 322–335
spectrum equalization filter, 362
Wiener filtering, 352–357

RGB color models, 401–402, 402–406,
410–413, 445–447

conversion from HSI format,
411–413

conversion to HSI format, 410–411
cube concept of, 402–406
safe colors, 404–406
segmentation and, 445–447

Rice codes, 545
Roberts cross-gradient operators,

166–167, 708–708
Robust invisible watermarks, 617
Roof edges, 693, 701–702
Root-mean-square (rms) error, 354,

534–536
Rubber-sheet transformations,

87–92
Run-length coding (RLE), 530,

553–559
Run-length pairs, 530, 553

S
Safe colors, 404–406
Salt-and-pepper noise. See Noise
Sampling, 52–68, 211–220, 223–224,

227–235. See also Quantization
aliasing. See Aliasing
basic concepts of, 52–54
decimation, 231
Fourier transform and, 211–220,

227–235
intensity resolution, 59–65
interpolation and, 65–68, 230–233
intervals, 223–224
jaggies, 232
moiré patterns from, 233–235
Nyquist rate, 215–216
one-variable functions, 211–220
reconstruction (recovery),

219–220, 230–233
representing digital images by,

55–59
sensor arrangement and, 54
spatial coordinates (x, y) and, 52–68
spatial resolution, 59–65
super-sampling, 231
theorem, 213–217, 227–228
two-variable (2-D) functions,

227–235
Saturation, 58, 298–399
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Scaling
geometric. See Geometric

transformations
intensity, 79–80

Scaling functions, 477, 479–483, 501–502
coefficients of, 482
Haar, 480
separable 2D, 501

Scaling vectors, 482
Scanning electron microscope (SEM),

23, 115, 142, 256
Scotopic vision, 37
Segmentation, 689–794

color, 443–450
definition, 690
edge-based. See Edge detection
foundation, 690–695
frequency-based, 782–785
line detection, 697
motion and, 778–785
point detection, 696
region growing. See Region-based

segmentation
texture based, 769
thresholding. See Thresholding
watersheds. See Watersheds

Sensors, 28, 46–52, 54
acquisition and, 46–52
arrays, 50, 54
cooling, 76
image formation model for, 51–52
imaging component for, 28
sampling and quantization using, 54
single, 48
strips, 48–50, 54

Sequential baseline system, 580
Series expansions, 477–479, 486–488
Set operations, 80–83, 84–85, 628–630,

630–635, 635–639. See also
Fuzzy sets

basics of, 80–83
closing, 635–369
crisp, 84
dilation, 633–635
erosion, 630–633, 635
fuzzy concept of, 84–85, 173–191
morphological image processing

and, 628–630, 630–635, 635–639
opening, 635–639, 668–670

Shading correction, 78–79, 673, 741, 761
Shannon’s first theorem, 533–534
Shape numbers, 816–817, 903–904
Sharpening. See Filtering
Shepp-Logan phantom, 372
Shrinking. See Image resampling
Sifting property. See Impulse
Signal-to-noise (SNR) ratios, 354, 535
Signatures, 808–810
Simultaneous contrast, 41–42
Single-pixel operations, 85
Skeletons, 651–654, 812–815

Slope overload, 598
Smoothing. See Filtering
SMPTE, 538
Sobel gradient operators. See Spatial

filters
Software for imaging, 29–30
Spatial coordinates, 1, 55
Spatial domain

convolution. See Convolution
correlation. See Correlation
definition 55
image transform difference 93–94
filtering. See Spatial filtering
frequency domain

correspondence, 263
operations, 85–92

Spatial filters. See also Spatial filtering
adaptive local, 330–332
adaptive median, 332–335
alpha-trimmed, 327
arithmetic mean, 322
averaging, 152
contraharmonic mean, 323
defined, 106
generating, 151
geometric mean, 323
gradient, 165
harmonic mean, 323
highboost, 162
isotropic, 160
Laplacian, 160–163
lowpass, 152
max, 157, 326,
median, 156, 326
midpoint, 327
min, 157, 326
order statistic, 156–157, 325
Roberts, 167
sharpening, 157–168
smoothing, 152–157, 322
Sobel, 167
unsharp mask, 162
vector representation, 150
weighted average, 153

Spatial filtering, 104–198, 322–335
adaptive local, 330–332
adaptive median, 332–335
convolution and, 146–150
correlation and, 146–150
defined, 106
enhancement methods combined,

169–173
fundamentals of, 144–152
fuzzy techniques for, 173–191
linear, 145–155
masks. See Spatial filters
mechanics of, 145
noise reduction by, 322–335
nonlinear, 145, 155–157, 322–335
order-statistic, 155–157, 325
sharpening, 157–168

smoothing, 152–157
vector representation of, 150–151

Spatial operations, 85–92
Spatial redundancy, 527, 529–530
Spatial resolution, 59–65
Spatial techniques for motion in

segmentation, 778–782
Spatial variables, 55
Spectrum. See Fourier transform,

Discrete Fourier transform
Standard definition (SD) television,

525–526
Standards for image compression,

538–540, 541
Statistical moments. See Moments
Step edges. See Edges
Stochastic image processing, 98
Storage capacity for imaging, 30
String descriptions, 864–865, 904–906
Subband coding, 466–473
Subjective brightness, 39
Subsampling pyramids, 464
Subspace analysis trees, 511
Successive doubling, 300
Sum of absolute distortions (SAD), 590
Superposition integral, 345
Super-sampling, 231
Symbol coders, 537
Symbol-based coding, 559–562
Symlets, 505–507
Synthesis filter banks, 470, 499–500,

503–504
Synthetic imaging, 24–25

T
Temporal redundancy, 527, 529–530
Texture, 675–676, 769, 827–839

co-occurrence matrix for, 830–836
description by, 827–839
gray-scale morphology and,

675–676
intensity histogram for, 828–830
segmentation, 675–676, 769
spectral approaches to, 837–839
statistical approaches for, 828–836
structural approaches for, 836–837

Thematic bands, 14
Thickening. See Morphological image

processing
Thinning. See Morphological image

processing
Threshold. See also Thresholding

basic, 107, 738, 741
Bayes, 742, 875, 881–882
coding, 575–579
color, 445
combined with blurring, 169
combined with gradient, 713, 749
combined with Laplacian, 750
global, 741
hysteresis, 722, 754
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local, 758–761
optimum, 742,
Otsu, 673, 742, 752
multiple, 722, 739, 752–756
multivariable, 445, 761–763
variable, 756

Thresholding, 107, 115, 508, 577–579,
713–714, 738–763

basics, 738
Bayes, 742, 875, 881–882
coding implementation, 577–579
edges using in, 749
function, 107, 115
global, 738, 741–756
gradients, combined with, 713–714
hard, 508
illumination and, 740–741
intensity, 738–739
Laplacian, combined with, 750
local, 758–761
measure of separability, 745
moving averages, 759
multiple thresholds, 752
multivariable, 445, 761–763
noise in, 739–740
object point for, 738
optimum, 742
Otsu, 673, 742,752
reflectance and, 740–741
segmentation and, 738–763
smoothing in, 747
soft, 508
variable, 738, 756–763

Tie (control) points, 90
TIFF, 538, 541, 551
Tight frame, 479
Tiling images, 24, 501
Time-frequency tiles (or plane),

500–501
Tokens, 560
Top-hat transformation, 672–674
Top-hat by reconstruction, 677
Topological descriptors, 823–827
Transformation, 87–92, 104–198,

640–641, 672–674
Affine, 87–89
bottom-hat, 672–674
domains in, 104
geometric (rubber-sheet). See

Geometric transformations
gray-scale morphology and,

672–674
hit-or-miss, 640–641
intensity, 104–198
kernels, 95
morphological image processing

and, 640–641
rubber sheet, 87, 823
spatial, 85, 105–171
top-hat, 672–674
top-hat by reconstruction, 677

Transforms, 93–96, 104, 366, 368–373,
474–477, 486–493, 501–510,
566–584

block transform coding, 566–584
discrete cosine, 569
domains in, 93–94, 104
discrete cosine, 96, 539, 569
discrete Karhunen-Loeve, 845
Fourier. See Fourier transform
Haar, 96, 474–477
Hotelling, 845–852
Hough. See Hough transform
image (2-D linear), 93–96
morphological. See Morphological

image processing
pair, 94
principal components, 842–852
Radon, 366, 368–373
selection of for block transform

coding, 567–573
slant, 96
Walsh-Hadamard, 96, 568
wavelet, 486–493, 501–510. See

also Wavelets
Transmission electron microscope

(TEM), 23
Trichromatic coefficients, 399

U
Ultra large scale integration 

(ULSI), 5
Ultrasound imaging, 20, 46, 368, 388
Ultraviolet, 7, 11, 37, 44, 45
Unary codes, 544
Unbiased estimate, 141
Uniform. See Noise
Unit delays, 466–467
Unit discrete. impulse. See Impulse
Unit impulse. See Impulse
Units of measurement, 44, 45, 58–60

bits for image storage, 58–60
electromagnetic (EM) spectrum,

44, 45
intensity resolution, 59–60
spatial resolution, 59

Unsharp masking, 162–165, 288–289
Upsampling, 464–465

V
Variable thresholding. See

Thresholding
Variable-length code, 529, 542–544
Variance of intensity. See Moments
VC-1 compression, 538, 541, 594
Vector operations, 92–93, 150–151,

424–426
full-color image processing,

424–426
matrix operations and, 92–93
spatial filtering, 150–151

Very large scale integration (VLSI), 5
Visible band of the EM spectrum,

12–18, 44–45
Visible watermarks, 615
Vision. See also Visual perception

human, 36–43, 396, 718, 778
machine 2–3, 6, 906

Visual perception, 36–43, 395–401
absorption of light, 396–397
brightness adaptation, 39–43
color image processing and,

395–401
discrimination between changes,

36–43
human eye physical structure, 36–38
image formation in eye, 38–39
Mach bands, 41, 42
optical illusions, 42–43
simultaneous contrast, 41–42
subjective brightness, 39–40
Weber ratio, 40–41

W
Walsh-Hadamard transform (WHT),

568–569
Watermarking digital images, 614–621

block diagram for, 617
reasons for, 614

Watermarks, 614–621
attacks on, 620–621
fragile invisible, 617
insertion and extraction, 615–616,

618–620
invisible watermark, 616
private (or restricted key), 617
public (or unrestricted key), 617
robust invisible, 617
visible watermark, 615

Watersheds (morphological), 769–778
algorithm for, 774–776
dam construction for, 772–774
knowledge incorporation in, 769
markers used for, 776–778
segmentation using, 769–778

Wavelet coding, 604–614
decomposition level selection,

606–607
JPEG-2000 compression, 607–614
quantizer design for, 607
selection of wavelets for, 604–606

Wavelet functions, 483
coefficients of, 484
Haar, 484–485
separable 2D, 502
time-frequency characteristics,

500–501
Wavelet vectors, 484
Wavelet packets, 510–519

binary tree representation, 510–518
cost functions for choosing, 515–518
suspace analysis tree, 511
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Wavelets, 27, 461–524
compression, 604–607
continuous wavelet transform

(CWT), 491–493
discrete wavelet transform

(DWT), 488–490, 502
edge detection, 507–508
fast wavelet transform (FWT),

493–501, 502–505, 510–519
functions, 483–486
JPEG-2000, 607–613
Mexican hat, 492–493
multiresolution processing and,

461–524

noise removal, 508–510
one-dimensional transforms,

486–493
packets, 510–519
series expansions, 486–488
transforms, 486–493, 501–510
two-dimensional transforms,

501–510
Weber ratio, 40–41
Weighting function, 341
White noise. See Noise
Wiener filtering, 352–357
WMV9 compression, 538, 541,

594

X
X-rays, 9, 115, 157, 289, 324, 362, 363,

365, 417, 420, 646, 667, 671, 697,
731, 764, 768

Z
Zero crossing property, 160, 703,

714–717
Zero-memory source, 532
Zero-phase-shift filters, 262, 294
Zonal coding implementation,

576–577
Zooming. See Image zooming
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